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Résumé
Le Sahel est une région caractérisée par une tres forte variabilité intra-saisonniére des
précipitations. Cette variabilité affecte fortement les écosystemes durant la phase de
croissance de la végétation. L’objectif de cette these est de caractériser cette
variabilité a échelle locale a partir des relations entre les précipitations et la
dynamique de la végétation, et d’identifier des indicateurs pertinents qui permettraient

de mieux décrire cette variabilité dans chaque saison.

Cette étude est effectuée dans le bassin versant du Ferlo, une région au nord du
Sénégal. Une premiére partie est consacrée a la caractérisation des relations entre
anomalies de pluie et croissance de la végétation a partir des données de télédétection
spatiale TRMM3B42, RFE 2.0, SM-ECV (Soil Moisture) et LAl MODIS. Pour cela,
le bassin versant du Ferlo est subdivisé en 9 sous-zones « entités homogénes », de
méme classe de couverture végétale et méme type de sol. Sur chacune sont analysées
les données de pluie des deux bases de données, I’humidité du sol et le LAI sur la
période 2000 — 2010. Dans un second temps, a I’aide d’un modéle de végétation
adapté a la région forcé par les pluies satellite, le LAI est simulé sur plusieurs entités
et est comparé au LAI MODIS, en appliquant aux simulations les mémes
méthodologies que pour les observations.

Les resultats de cette étude montrent une cohérence entre les variations des
précipitations des deux bases de données et I’humidité du sol. Les variations du LAI
sont plus fortement corrélées aux variations de I’humidité du sol qu’a celles de la
pluie. Sur le Ferlo, on observe qu’il faut 2 semaines pour que la végétation réponde a
une anomalie de pluie au cours de la saison des pluies. A I’échelle de la saison, la date
de démarrage des pluies n’a pas d’incidence sur le maximum de LAI, contrairement a
la durée et I’intensité des pauses de pluie. Les entités sur sol sableux (ferrugineux)
présentent une meilleure sensibilité aux fluctuations de pluie que celles sur lithosol.
De plus, sur les entités situées au Sud-Est, la densité de la végétation arbustive et
arborée induit un cycle phénologique différent de celui des herbacées (décalage du

maximum de LAI).

Le modele STEP, initialisé avec les données de pluie satellite, reproduit apres
ajustement la phase de croissance de la végétation dans les entités ou les herbacées



dominent. La réponse du LAI simulé aux anomalies de pluie est comparable a celles

observées, confirmant I’interprétation des observations.

Cette étude a permis de définir les parametres les plus pertinents qui affectent la
dynamique de la végétation mais aussi de mettre en évidence les capacités du modéle

a décrire le cycle saisonnier de la végétation.

Mots-clés: Précipitations, végétation, LAI MODIS, SM, Ferlo, Sahel



Abstract

The Sahel is characterized by a strong intra-seasonal variability of rainfall. This
variability strongly affects ecosystems during the vegetation growth. The objective of
this thesis is to characterize this variability at the local scale from the relationship
between rainfall and vegetation dynamics, and to identify relevant indicators to better

describe the variability in each season.

This study is carried out in the Ferlo’s catchment, a basin located in northern Senegal.
The first part is devoted to the characterization of the relationship between rainfall
anomalies and growth of vegetation from remote sensing data TRMM3B42, RFE 2.0
SM-ECV (Soil Moisture) and MODIS LAI. Aiming that, the Ferlo basin is divided
into 9 zones "homogeneous entity"”, in terms of vegetation cover class and soil type.
For each one are analyzed the rain data from both databases, soil moisture and LAI
over the period 2000-2010. In a second time, with a vegetation model adapted to the
region forced by satellite rain fields, the LAI is simulated on several entities and is
compared to the MODIS LAI, applying on the simulations the same methodologies as

for observations.

The results of this study show consistency between rainfall variations with both
databases and soil moisture. The LAI variations are more strongly correlated with the
soil moisture variations than with the rainfall. On the Ferlo, we observe that
vegetation needs two weeks to respond to rainfall anomalies during the rainy season.
At the season scale, the starting date of the rainy season does not affect the maximum
LAI, unlike the duration and intensity of the dry spells. Entities located on sandy soil
(ferruginous) have better sensitivity to rainfall fluctuations as those located on
lithosoils. In addition, on entities located in the Southeast, the density of the shrub and
tree vegetation induces a different phenological cycle than those of the herbaceous
(lag of the maximum LAL).

The model STEP, initialized with satellite rainfall data, reproduces after adjustment
the vegetation growth stage in the entities where grassland dominates. The response



of the simulated LAI to the rain anomalies is consistent with those observed,

confirming the interpretation of observations.

This study allowed to define the most relevant parameters that affect the dynamics of
vegetation but also to highlight the capabilities of the model to describe the seasonal
cycle of vegetation.

Keywords: Rainfall, vegetation, MODIS LAI, SM, Ferlo, Sahel
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Introduction Générale

Au Sahel, les précipitations sont caractérisées par un fort gradient latitudinal qui est
de I’ordre de 1 mm par km (Lebel et al., 2003). La saison des pluies ne dure que 3
mois et est gouvernée par le systeme de mousson. La grande cohérence temporelle et
spatiale de périodes seches (et humides) sont les caractéristiques exceptionnelles de la
variabilité des précipitations dans le Sahel (Nicholson et Grist 2001).

La dynamique de la végetation est principalement régie par la structure de la
répartition des précipitations (Le Houérou, 1989). Pendant I'expérience HAPEX-
SAHEL, Taylor et Lebel (1998) ont suggéré que la quantité de précipitations pendant
la saison des pluies pourrait étre plus élevée sur les surfaces couvertes de végétation
que sur des sols nus en raison des différences dans les flux d'eau et de I'énergie a
I'interface atmosphere - sol - végétation. Dans cette région, le cycle phénologique des
herbacées démarre et se termine avec la saison des pluies. Sur le Sénégal, (Cornet,
1981) a montré I'importance du bilan hydrique pour mieux comprendre la variabilité
de la production végétale inter annuelle et locale.

Cependant, I’étude de la variabilité des pluies permet de mieux comprendre leurs
variations intra saisonniéres mais aussi mieux cerner ou prévoir les évolutions dans le
cycle phénologique. Ce qui pourrait permettre d’identifier des indicateurs de
I’efficacité de la mousson qui permettront de contribuer a I’élaboration d’une stratégie
d’adaptation robuste de prévision et de gestion, assurant le maintien d’un niveau
suffisant de ressources en eau. Cependant pour mieux comprendre cette variabilité
intra saisonniére des précipitations et de son impact sur la croissance de la végétation,

il est nécessaire de prendre en compte les échelles spatio-temporelles fines du
paysage.

Dans cette thése, nous nous intéresserons aux variabilités intra saisonniéres de la
pluviométrie et de la végétation dans le bassin versant du Ferlo, une région

sahélienne du Sénégal, durant la décennie 2000 & 2010. Le choix de cette région est
basé principalement sur sa position géographique, sa superficie, mais aussi sur le fait

11



qu’elle est une région sylvo-pastorale donc modérément anthropisée, et sans

changement majeur d’occupation du sol durant cette décennie.

Les objectifs de cette thése sont de comprendre la variabilité des précipitations aux

échelles saisonniéres et annuelles et son impact sur la croissance de la vegétation.

Pour atteindre ces objectifs, des analyses et inter comparaisons de données de pluie,
d’humidité du sol et de végétation sont effectuées. Les mesures in situ de stations
pluviométriques étant d’une part lacunaires, et d’autre part tres peu nombreuses, nous
nous sommes tournés vers I’utilisation d’observations de satellite. Ces derniéres
permettent d’avoir des données continues aux échelles spatio-temporelles recherchées
(intra-saisonnier, région).—La réponse de la végétation a la pluie est en partie
contr6lée par le type de sol (Nicholson et Farrar, 1994; Farrar et al., 1994). C’est
pourquoi nous avons subdivisé le bassin en sous-zones homogenes constituées
chacune d’un seul type de sol et d’une seule classe de végétation. Sur ces différentes
sous-zones sont effectuées les différentes analyses.

Afin de consolider les analyses effectuées sur les observations satellite, nous nous
sommes intéressée a la représentation des relations intra-saisonnieres pluie-végétation

dans un modele régional de croissance de la végétation herbacée.
Cette these se présente en 4 Chapitres :

Dans le Chapitre 1, sont présentés la problématique de notre étude, puis une
présentation du bassin du Ferlo dans le détail avec ses spécificités. Une évaluation des
données in situ disponible est effectuée.

Le Chapitre Il présente les données d’observation satellite avec une analyse de leur
évolution spatio-temporelle; puis il décrit les différentes méthodes qui ont été utilisées

pour réaliser cette étude.

Dans le Chapitre 111 est présentée I’étude des relations entre les variations de pluie et
de la dynamique du couvert végétal sur le Ferlo avec des inter-comparaisons de

parameétres dans les cycles de ces variables

Le Chapitre 1V est consacré a la modélisation de la croissance de la végétation avec

STEP avec une analyse comparative entre simulations et observations.

La conclusion générale fait la synthese des différents résultats et propose quelques

perspectives.

12



Chapitre 1.

La pluviométrie au Sahel, impacts sur la
végétation; la région d’étude (Ferlo)
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Introduction

Dans ce chapitre seront présentés dans un premier temps, une synthese des travaux
antérieurs sur la pluviométrie au Sahel, sur ces relations avec la dynamique de la
végétation. Puis le bassin versant du Ferlo (un exemple du Sahel), notre zone d’étude,
est présenté en détail. Cette présentation du Ferlo se focalise sur les aspects du milieu
physique avec une description tres détaillée des caractéristiques morphologiques,
floristiques, géologiques, hydrologiques et climatiques.

1.1. La pluie au Sahel

Le Sahel est une région de transition a la fois floristique et climatique entre le Sahara
au nord et le domaine Soudanien au sud. Cette zone est caractérisée par I’alternance
d’une longue saison seche (entre 8 et 9 mois) et d’une courte saison des pluies (entre
3 et 4 mois). L’une des particularités de cette région est que le cumul des
précipitations n’est pas forcément lié a la longueur de la saison des pluies (Balme et
al., 2005). Selon Nicholson (2000), la position du ZCIT n’est pas le facteur majeur

déterminant le cumul des précipitations annuelles.

L’Afrique de I’Ouest est caractérisée par I’étagement latitutdinal des zones (du Nord
au Sud) Sahélienne, Soudanienne et Guinéenne. Le systéme de mousson est géré,
d’une part par les gradients de température et d’énergie en surface entre cet ensemble
continental et le bassin océanique Atlantique I’entourant, et d’autre part par les
rétroactions avec le cycle de I’eau atmosphérique a I’origine du développement de
systemes convectifs puissants (principaux pourvoyeurs des précipitations sur cette
région) qui amplifient fortement (par diverses rétroactions) I’intensité du systeme de
mousson a I’échelle régionale. La dynamique atmosphérique est un facteur important

de contréle de la pluviométrie.

Cependant les activités humaines peuvent aussi avoir une influence non négligeable.
Charney (1975) avait souligné qu’une surexploitation des sols entrainait une

augmentation de I’albédo au Sahel avec un impact direct sur la circulation de Hadley.

Les contrastes terre-mer avec le Golfe de Guinée ont été largement étudiés (Janicot,
1992; Sultan et al., 2003, Janicot et al., 2010), alors que les mécanismes qui pilotent

les variations est-ouest (entre le centre du Sahel et la région ouest du continent) sont
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moins bien établis, bien qu’ils jouent un réle important dans les variations intra
saisonniéres a inter annuelles de la mousson ouest Africaine. Le jet d'est africain
(AEJ) est situé dans une région de forts gradients de températures a basse altitude
entre le Sahara et la cote Guinéenne (Figure 1.1). A ces basses latitudes, les alizés du
sud de I'Atlantique fournissent la plupart de I'humidité pour la mousson ouest
africaine (Lebel et Ali 2009). La variabilité interannuelle des précipitations dans le
Sahel est essentiellement contrblée par la position de I'AEJ (Lebel et Ali 2009). Les
ondes d'est africaines (AEW) développées dans I’AEJ (par exemple, Hall et al., 2006;
Kiladis et al., 2006), jouent un réle important dans le développement de grands
systemes convectifs organisés (MCS), responsables de la plupart des précipitations

dans la région.

Les systemes convectifs de méso échelle complexes sont caractérisés par le
déplacement rapide des lignes de grains. La plupart des précipitations en Afrique de
I’Ouest proviennent des lignes de grains (Lebel et al., 1998). Les lignes de grains sont
comme une coalescence de cumulonimbus produite par une instabilité de la structure
verticale de I’atmosphére, qui conduit & un fort cisaillement du vent dans les basses
couches. Elles peuvent s’étendre sur 300 a 500 km dans le sens méridien (Mathon et
al., 2002) et sur une centaine de kilométres dans le sens zonal avec une vitesse de
propagation entre 10-15 m/s (Redelsperger et al., 2002 ; Diongue et al., 2002) et leur

durée de vie peut atteindre 2 jours au maximum.
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Figure 1.1. Schéma de la circulation atmosphérique dans le systeme de mousson ouest africaine durant
I’été boréal. Les lignes solides fermées représentent les lignes de courant au niveau du jet d'est africain
(AEJ) autour de 600 hpa ; en gris ombragé, on représente le pic de précipitations et I'ombrage jaune
indique I'emplacement de la couche d‘air saharienne (SAL). Au-dessous sont figurées les variations
méridiennes de température potentielle (6) et de I'énergie statique humide (6,) dans la couche limite
atmosphérique. Au Nord de 10 ° N 8, commence a diminuer tandis 6 continue d'augmenter, en raison
de l'asséchement de la masse d'air nord au cceur de la zone de convergence intertropicale (aprés le Plan
scientifique international AMMA, 2005) (Lebel et Ali 2009).

Durant la période 1970-1990, le Sahel a connu un déficit des précipitations ainsi que
de grandes sécheresses au cours des années 70 et 80 qui a correspondu a une
diminution du nombre des événements pluvieux surtout au cours des mois de juillet et
ao(t selon Le Barbé et Lebel (1997), qui ont conduit a la communauté internationale a
s’interroger davantage sur une désertification de cette région. La désertification a été
définie par PNUE (Programme des Nations Unies pour I’Environnement) en 1991
comme une « dégradation des terres dans les zones arides, semi-arides et sub-humides
seches, résultant principalement de I’activité de I’homme. Elle integre un certain
nombre de processus qui aboutissent a I’appauvrissement des sols et de la végétation
& ou I’activité humaine est le facteur principal ». En plus de I’activité humaine
s’ajoutent les variations climatiques selon la convention des Nations Unies pour la
lutte contre la désertification. Beaucoup d’études ont montré que I’image d’une
avancée du Sahara qui entrainerait la transformation irréversible de la totalité du

Sahel en désert était inexacte, ainsi que I’exagération de I’étendue des surfaces
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affectées. La plupart des dégradations identifiées comme dues a I’action de I’lhomme
sont en fait la réponse du systeme sol-végétation-atmosphéere a la variabilité naturelle
du climat sahélien (Nicholson et al., 1998). Il apparait plutét que des facteurs
climatiques combinés & des facteurs locaux, tels que les activités humaines,
pourraient, en réduisant le couvert végétal et la pluviosité, conduire a la dégradation

de la surface de maniére permanente dans les cas extrémes (Dolman et al., 1997).

Selon le rapport du GIEC (2007), cette région pourrait & I’avenir subir une sécheresse
persistante du fait du changement climatique. On devrait s’attendre a ce que la
production agricole et I’accés a la nourriture soient sérieusement compromis du fait
que les zones propices a I’agriculture, la durée des saisons de végétation et le potentiel
de production vont nécessairement diminuer. Dans certains pays particulierement
dépendants de I’agriculture pluviale, les rendements pourraient diminuer de 50% d’ici
a 2020.

La pluie étant en relation binaire avec différents parameétres susceptibles de
I’influencer (Leroux, 1995), la sécheresse au Sahel nait des effets manquants de ces
parametres. 1ls peuvent étre le couvert végétal, I’albédo, les températures terrestres et

marines, etc...

La faiblesse des précipitations annuelles et leur répartition irréguliere dans le temps et
dans l'espace contribuent considérablement a la fragilisation de I'environnement et des
écosystemes. Dans cette région de I’Afrique de I’ouest Sahélienne, I'évolution de la
végeétation naturelle et du rendement des cultures sont fortement dépendants de la
disponibilité en eau de I'année en cours (Diello et al., 2005).

Le Sénégal partage avec la Mauritanie I’extrémité Ouest du Sahel et présente une
variation de la couverture végétale en latitude trés importante, liée au gradient
pluviométrique. Cette région se distingue assez nettement de la région centrale du
Sahel. Sur le Sénégal, on observe de nombreux systémes locaux, liés aux entrées d’air
maritimes venant de I’océan Atlantique, et des systémes provenant des montagnes
guinéennes, notamment le Fouta Djalon, ainsi que du Mali. Le Sénégal est ainsi
parcouru par les gros systemes convectifs, qui se déplacent ensuite sur I’océan
Atlantique Est ou certains d’entre eux, en fin de saison de mousson, se transforment

en dépression tropicale voire en cyclone.
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La saison de mousson au Sénégal démarre en moyenne un peu plus tard que sur le
centre du Sahel, et se termine en septembre, mais on observe depuis quelques années
I’occurrence de précipitations non moins importantes en octobre. Les variations des
précipitations par rapport a la moyenne climatologique sur 63 ans (1950 — 2013)
(Figure 1.2) montrent une reprise la pluviométrie a partir des années 2000 mais qui
sont caractérisees a partir de 1950 par une grande variabilité interannuelle (Ali et
Lebel 2008). Les précipitations sahéliennes présentent un tres fort gradient latitudinal,
de I’ordre de 1 mm par km (Lebel et al., 2003). Au Sénégal aussi, le nord est moins
arrosé que le sud, non seulement parce qu'il est moins longtemps baigné par le flux de
mousson mais aussi parce qu'il n'est alimenté que par des lignes de grains et que la
partie nord de celles-ci donne moins de précipitations que la partie sud, par suite d'une
moindre épaisseur de la mousson (Le Borgne, 1988). Il est important donc de
travailler a une échelle suffisamment fine si I'on veut restituer le mieux possible la
forte variabilité spatiale des champs de précipitations qui caractérise cette région. La
dépendance de la végétation a la disponibilité en eau se reflete clairement dans un
gradient de densité correspondant a celui de la pluie et a la distribution des espéces
végétales (Fensholt et al., 2004).

Sahel precipitation anomalies 1950-2013
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Figure 1.2. Anomalies de précipitation dans le Sahel (box 20-10N, 20W-10E) calculées par rapport a
la climatologie sur la période 1950-2013 de Juin & Octobre (http://jisao.washington.edu/data/sahel/).

Les anomalies négatives indiquent que les apports de pluie étaient déficients par rapport a la

climatologie.
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Figurel.3. Corrélation linéaire entre le NDVI mensuel et le cumul de pluie sur 3 mois basée sur les
estimations GPCP pour la période 1982-2003 (Source Herrmann et al. 2005)

1.2. Impacts sur la végétation

Durant la saison des pluies, le cycle végétatif repond de fagon étroite aux variations
pluviométriques. Les variations intra saisonnieres et interannuelles ont des impacts
sur la dynamique de la végétation naturelle mais aussi sur la disponibilité de la
production alimentaire car I’agriculture est essentiellement pluviale. Mais I’état de ces
ressources et le développement de la végétation (naturelle ou agricole) dépendent
fortement de I’évolution de I’occupation des sols et de la population utilisatrice de
I’eau. Or ces deux sources de variations sont interconnectées, du moins aux echelles
de temps annuelles a décennales. Lebel et al. (2009) ont en effet montré que le débit
des fleuves n’est pas directement lié a la pluviométrie, mais aussi a I’usage des sols :
le changement d’occupation des sols (déforestation au profit de I’agriculture) entraine
en effet un ruissellement accru qui contribue au remplissage des nappes, alors méme
que la surface est plus séche. Ainsi la surveillance des parametres de surface comme
I'numidité du sol est essentielle. Le suivi de la variabilité spatio-temporelle de
I’humidité du sol est aussi important pour comprendre les interactions sol-végétation-
atmosphére (Baup et al., 2007). Selon le projet AMMA (African Monsoon
Multidisciplinary Analysis), I’humidité du sol sur le Sahel peut fournir une meilleure
compréhension de la mousson ouest-africaine et son évolution physique, chimique et
celle des milieux biologiques (GEWEX-News, 2006). En étudiant les savanes sud
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Africaines, (Tinley, 1982) a trouvé que la variabilité de I'numidité du sol exerce le

contr6le dominant sur la distribution spatiale des foréts, savanes et herbacées.

Parce que dans le Sahel la croissance de la végétation est étroitement liée aux
précipitations (Fontaine et al., 1999; Le Barbé et al., 2002; Camberlin et al., 2007),
les variations au cours de la saison des pluies affectent fortement la production
agricole, le cycle de la végétation naturelle, et par conséquent I’économie régionale.
Mais en retour les surfaces semi-arides Africaines sont trés sensibles a la dégradation
des sols d'origine anthropique. Leurs impacts apparaissent plus évidents sur
I’évolution du couvert végétal de surface (Nicholson et al., 1994). Les relations entre
les précipitations et la croissance de la végétation ont fait I’objet de nombreuses
études a différentes échelles spatio-temporelles.

- A grande échelle spatiale:

Sur la région Sahélienne aux échelles annuelle et inter annuelle, (Anyamba et al.,
2005) ont trouvé une corrélation positive et significative entre les anomalies de
végetation (NDVI) et de précipitation. A partir des relations pluie-végeétation, la
variabilité intra saisonniere et inter annuelle de la végétation sur I’ Afrique de I’Ouest
est caractérisée (Philippon et al., 2007). En comparant les dates de début et de fin de
la pluie et de la végétation sur le Sahel et sous-Sahel, Zhang et al., 2005 ont montré
que la phénologie de la végétation en région aride et semi-aride dépend fortement de
la saisonnalité des précipitations.

La caractérisation de la réponse de la végétation par rapport aux précipitations a partir
du parametre I’efficacité de la pluie utilisable (RUE : rain use efficiency), du rapport
entre la production primaire nette et des précipitations a montré une tendance a la
hausse sur la majeure partie du Sahel entre 1982 et 1990 (Prince et al., 1998).
Cependant, ces études ont été effectuées a I’échelle régionale et la plupart de ces
études ont généralement porté sur les tendances saisonniéres moyennes ou a I’inverse
n’ont utilisé que de courtes séries temporelles inter annuelle. En outre, seules

quelques-unes ont adopté une approche comparative.
- A petite échelle spatiale

Sur les régions Ouest, Est, et Sud Africaines, Martiny et al., 2005 ont trouvé que la
physiologie des végétaux mais aussi la disponibilité en eau souterraine joue un role

trés important dans cette relation. Sur I’Afrique de I’Ouest sahélienne (Mali et le
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Niger) et I’Afrique de I’Est (Kenya et Tanzanie), Nicholson et al. (1990) ont trouvé
une bonne relation significative entre les variations des précipitations et de la
vegétation (NDVI) aux échelles saisonniéres et interannuelles pour la région Est
Africaine sur la période de Novembre 1982 et Octobre 1985 ou les précipitations
annuelles moyennes varient d'environ 200 & 1200 mm et que cette relation est linéaire
dans le Sahel en dessous d'un seuil de précipitations de l'ordre de 1000 mm/an. Les
relations NDVI-précipitations ont été démontrées significatives sur I’ Afrique orientale
(Kenya et Tanzanie) entre Novembre 1982 et Octobre 1985 (Davenport et Nicholson,
1993) et sur I’ Afrique du sud de 1983 a 1988 (Richard et Poccard, 1998).

Sur une région semi-aride (la Botswana), la réponse de la vegétation (NDVI) aux
précipitations et a I’humidité du sol est largement contrdlée par le type de sol
(Nicholson et Farrar, 1994; Farrar et al., 1994). Avec des corrélations significatives
entre les séquences de pluie et la végétation (NDVI1) au nord du Cameroun (nord de
9°N: domaine sahélien) sur la période de 1982 a 2002, (Djoufack et al., 2011) ont
montré que la végétation au Sahel est plus sensible aux sequences séches en debut de

cycle.

Dans ces études sur des échelles spatiales plus petites que le Sahel, mémes si les
variations saisonniéeres ont été étudiées, I’homogénéité des régions n’était pas bien

prise en compte.

Récemment, Bobée et al. (2012 ont montré la possibilité d’utiliser le LAl (Leaf Area
Index) comme indicateur des précipitations «efficaces», en corrélant les données de
pluie locale avec le LAI fourni par MODIS (Moderate Resolution Imaging
Spectroradiometer) sur la période 2000-2008 (seuil de 20 mm) a échelle fine sur la
grande cOte Sénégalaise. Inspirés par cette étude basée sur des données de 4
pluviometres de Dakar & Saint Louis avec des données manquantes sur certaines
stations et années, nous avons jugé d’aller plus loin avec des données completes
couvrant toute une région. Le Sahel est caractérisé par une forte variabilité climatique,
entrainant de fortes hétérogénéités dans la répartition des écosystémes tels que la
vegétation et le sol, qui ont été pris en compte dans certaines de ces études
antérieures. Ainsi dans notre étude, pour plus réduire cette hétérogénéité, nous avons
divisé le bassin versant en des unités homogenes de végétation et de sol c’est a dire la
méme végétation sur le méme sol. Sur ces unités homogenes a I’échelle de la parcelle,

les variations intra saisonniéres des précipitations a partir des relations entre des
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parameétres spécifiques dans les cycles saisonniers de pluie et de végétation sont
étudiées. L’intensité de ces relations entre ces parameétres a permis d’identifier des

indicateurs d’efficacité de la pluie.

1.3. La région d’étude: Le Ferlo
1.3.1. Situation géographique

Le bassin versant du Ferlo (Figure 1) se situe au centre du domaine climatique
sahélien sénégalais entre les latitudes 16°15 et 14°30 Nord et les longitudes 12°50 et
16° Ouest. 11 s’étend sur une superficie d’environ 70 000 km? (CSE, ROSELT/OSS,

2002). C’est la région éco géographique la plus vaste du Sénégal.

Elle doit son nom a la riviere Fété Oté (Ferlo). Le bassin versant du Ferlo est limité
par la vallée du fleuve Sénégal au nord et le bassin arachidier au sud. Cette région du
Ferlo est un lieu de naissance et un axe tres actif de transhumance et d’acheminement
du bétail.

Les systemes de production, plus particuliérement le pastoralisme, déterminent la
démographie sur le bassin versant du Ferlo. Cette région compte plus d’éleveurs que
toute autre région du pays. En plus du pastoralisme, I’agriculture et la cueillette
constituent aussi des systemes de production (Sarr, 2009). Selon les activités
pratiquées, le Ferlo peut étre subdivisé en différentes sous-zones qui sont : une sous-
zone Nord pastorale a grande mobilité ; une sous-zone Centre (de transition)
agropastorale ; une sous-zone Ouest agricole sous pluie, avec maraichage et élevage
des petits ruminants ; une sous-zone Est agro-sylvo-pastorale et une sous-région Sud

dans laquelle I’agropastoralisme est pratiqué (Sarr, 2009; ISRA, 1996).
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Le Ferlo est aussi une zone sylvo-pastorale dont les écosystemes sont au cceur du

gradient climatique ouest-sahélien.
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Figure 1.4. Présentation de la zone d’étude le bassin versant du Ferlo avec la carte d’occupation du sol

1.3.2. Géomorphologie

Une succession de dunes et de bas-fonds caractérisent le Ferlo. Leur allure générale
s’aplanit progressivement du nord vers le sud pour se terminer par une topographie quasi-
plane laissant transparaitre les affleurements rocheux de la cuirasse a Linguére (Ferlo
ferrugineux) (CSE/ROSELT, 2002). Par rapport aux formations géologiques, le bassin
du Ferlo se divise en deux parties : le Ferlo sableux a I’Est et le Ferlo ferrugineux ou

cuirassé.

1.3.3. Pédologie

Les deux sous zones Ferlo sableux et Ferlo ferrugineux déterminent le profil
pédologique tout au long du bassin versant. On distingue six types de sol sur le bassin
versant du Ferlo (Figure 2, PNAT, 1985), dont les plus représentatifs, au nombre de
cing sont les sols ferrugineux tropicaux, les sols hydromorphes, les régosols, les sols

rouge bruns et les lithosols.

24



16°W 15°W 14°W 13°W

Soil Types in Ferlo N

16°N

16°N

15°N Legend

|50
Soil Name 1N
HYDROMORPHIC
777 LITHOSOLS

LITTLE EVOLVED

RED BROWN

/ REGOSOLS

14°N1 I RIVER -—— Kilometers r14°N
%/ TROPICAL FERRUGINOUS 015% & 0 120

16°W 15°W 14°W 13°W

Figure 1.5. Carte des différents types de sol couvrant le bassin versant Ferlo (extrait de la carte
pédologique du Sénégal de PNAT, 1985)

Les sols ferrugineux tropicaux

Les sols ferrugineux tropicaux non lessivés se sont constitués pendant la phase séche
de I'Ogolien. lls ont une coloration jaune ou rouge et sont pauvres en matiere
organique et en humus. La formation de ces sols s'est effectuée avec libération de fer
et de manganése. lls présentent une texture sableuse avec une faible capacité de
rétention en eau ; ces sols sont par conséquent perméables et bien drainés. Cette

perméabilité des sols est essentielle pour la recharge de la nappe.

Les sols ferrugineux sont des sols pauvres en matiéres organiques et peu profonds. Ils
reposent sur les plateaux du Ferlo occidental et septentrional et sont trés sensibles a
I’érosion hydrique intense. La structure de surface est peu compacte et I’infiltration
est bonne. Cependant la présence de cuirasse et d’argile conduit a la stagnation de
I’eau dans les zones de dépression en saison des pluies, d’ou la naissance de petites

mares. Comparés aux sols rouge-brun, la perméabilité et le drainage sont plus faibles.

Les sols rouge-bruns
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Ces sols sont caractérisés par des sables meubles, leur teneur en éléments fins est
faible et croit peu ou pas en profondeur. Ils ont une faible capacité de rétention mais
une bonne perméabilité (Cornet et Poupon, 1977). Sur ces sols la teneur en sable varie
tres peu dans le profil entre 81 et 85% respectivement sur les moins sableux (& 2m) et
plus sableux (& 0.3m), alors que les teneurs en argile et limon varient de facon
importante dans les premieres couches du sol (Fournier, 1995).

Les sols Hydromorphes

Les sols hydromorphes sont des sols «intra zonaux » (Michel, 1973). Ils sont
caractéristiques des « niayes *» au sens strict et se sont formés en présence d'un exceés
d'eau dans des conditions dites asphyxiantes. Ce sont des sols riches en matiére
organique et sont de couleur plus ou moins noire. Ils peuvent étre légérement salés a
certaines périodes de I'année. La durée et I'intensité de I'nydromorphie peuvent varier
suivant la position topographique et le niveau de recharge de la nappe. On retrouve les
sols hydromorphes dans les dépressions ou dans les zones ou la nappe est assez
superficielle. Sur les bassins versant du Ferlo ces sols sont sur les pentes et le long de
la vallée de la riviere Ferlo, ils recouvrent la cuvette de la vallée et les zones non
inondées sur lesquels le maraichage est effectué. Ils sont favorables a ces cultures
maraicheres. Avec le dépdt de limons et de matieres organiques en faible profondeur
apportés par la riviére, ces sols ont un excellent potentiel de fertilité.

Les sols Régosols

On les trouve au centre du bassin versant ; ils sont trés peu profonds et peu évolués,

ils occupent généralement les pentes inférieures en association avec les lithosols.

L les “niayes”: sont une zone géographique du nord-ouest du Sénégal, constituée de dunes et de
dépressions propices aux cultures maraicheres. Cette étroite bande, d'une longueur de 180 km et d'une
largeur variant entre 25 et 30 km, s’étend d'une part entre la presqu’ile du Cap vert et la frontiére
mauritanienne et d'autre part entre la frange littorale appelée grande-cote et, approximativement, la

route menant de Dakar a Saint Louis.

Quatre subdivisions administratives se partagent la zone des Niayes : la région de Dakar, la region de

Thiés, la region de Louga et la région de Saint Louis.
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C’est des sols minéraux bruts d’apport généralement éolien, sur une roche tendre.

Ils sont peu fertiles.
Les sols Lithosols

Ce sont des sols minéraux bruts avec un potentiel agricole tres médiocre. Ils reposent
sur un affleurement rocheux couvrant tout le sud-est du Ferlo. lls sont trés peu épais
et limités en profondeur par la cuirasse continue dont les fragments peu altérés

constituent I’essentiel du profil.

La répartition de ces différents types de sols subdivisent le Ferlo en deux grands
ensembles qui sont le Ferlo sableux (Nord-Ouest) caractérisé par des sols rouge-brun
et des sols ferrugineux et le Ferlo cuirasse ou latéritique (Sud-Est) ou les dépdts
sableux disparaissent au profit de sols gravillonnaires avec, par endroits, des

affleurements latéritiques.

1.3.4. Hydrologie

Le Ferlo est une région au climat de type sahélien. Avant son asséchement durant la
période 1970 - 2000, le Ferlo était un affluent du fleuve Sénégal. Aujourd'hui, durant
la saison des pluies il alimente le lac de Guiers. Ni le Ferlo, ni le lac de Guiers ne
contribuent plus directement a I’alimentation du fleuve Sénégal. Les eaux de surface
sont ainsi trop limitées pour la satisfaction des besoins en eau des hommes et de leurs
animaux. Les eaux souterraines sont exploitées, mais la profondeur des nappes est
considérable (entre 20 m dans le meilleur des cas et 150 m) (Ndiaye, 2007).

En ce qui concerne I’hydrologie, on distingue les nappes profondes, appelées
aquiféres du Maestrichtien et de I’Eocéne d’une part et celles dites superficielles ou
nappes du Continental terminal et du Quaternaire d’autre part (Michel, 1973).

1.3.4.1. Les ressources en eau souterraine
Les eaux souterraines son contenues dans:
La nappe profonde Maastrichtienne

Les sables maastrichtiens renferment un important aquifére alimentant la presque
totalité des forages hydrauliques. Ils ont une puissance de 300 m au niveau du Ferlo,
ou les perméabilités sont assez bonnes, notamment dans le Nord, avec des valeurs de

I'ordre de 10 *ms™ (Audibert, 1970). Le niveau de la nappe est rarement supérieur &
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40 m. Cependant dans le Ferlo, le niveau piézométrique s’abaisse rapidement. Au
Sud-Est de Lingueére, le niveau de I’eau se situe a plus de 100 m de profondeur
(Ndiaye 2007). La nappe est aussi alimentée par les crues du fleuve Sénégal et elle est

en partie fossile.
Les nappes superficielles ou phréatiques

Elles constituent un systeme d’aquiféres dans lequel nous avons: le Continental
Terminal, I’Eocéne et le Paléocene. Le Continental Terminal est constitué par une
alternance de sables et d'argiles dans sa partie sud, de sables et de gres argileux dans
le Ferlo, d'argiles et de sables au nord. Ce dernier sert d’approvisionnement en eau
grace aux puits. L’Eocéne et le Paléocéne ne sont pas faciles a exploiter a cause de
leur formation calcaire et de plus ils sont plus profonds.

Cependant les variabilités pluviométriques affectent le niveau de ces nappes. Ce

dernier influe directement sur la végétation et notamment sur les ligneux.

1.3.4.2. Les ressources en eau de surface

Sur le bassin versant du Ferlo, le Lac de Guiers constitue la seule ressource en eau
pérenne. Il occupe le centre d'une vaste dépression naturelle de 50 km de long. Sa
profondeur ne dépasse pas 2,5 m. A la cote + 1 m, sa surface est de 240 km? pour un
volume moyen de 390 millions de m®. A la cote + 2 m, sa superficie atteint 300 km?
pour un volume de 600 millions de m>. Le lac de Guiers est alimenté par le fleuve
Sénégal auquel il est relié par la riviere canalisée de la Taouey, mais aussi par les
eaux venant de la vallée du Ferlo durant la saison des pluies. Sur le plan économique
le lac joue un rdle trés important car étant le seul réservoir d'eau douce de la région, il
approvisionne en particulier la capitale (Dakar), fournissant 30 % de l'eau de
consommation. Pompée et traitée sur place dans les usines de Gnith et Keur Momar
Sarr, elle est acheminée par une conduite forcée souterraine de 300 km de long.

Cependant, il existe des mares qui sont pour la majorité temporaires avec des durées
de vie entre 2 et 5 mois selon leur superficie apres la saison des pluies (Ndiaye 2007).
Par exemple la mare de Barkedji dont la surface est passée de 26,6 ha (26 aodt 2003)
a 0,3 ha (19 janvier 2004) ; la partie sud-est est la derniére a s’assécher (Ndione et al.,
2009). Ces mares sont situées dans des bas-fonds ou sont collectées les eaux de pluies.

En plus des forages, ces mares demeurent les seules sources d’approvisionnement en
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eau entre juillet et février. Elles permettent ainsi aux populations de disposer de I’eau
de boisson mais également d’abreuver le bétail (Ndione et al., 2009).

1.3.5. Les formations végétales
1.3.5.1. Physionomie de végétation

La végétation dans le domaine sahélien Sénégalais atteint son maximum de croissance
en fin de saison des pluies aux environs du mois de septembre. Sur le bassin versant
du Ferlo, la végétation varie selon le type de sol et en fonction du gradient climatique.
Cette végétation se présente sous forme de tapis herbacé plus ou moins continu
pouvant atteindre 60 cm a 1 m (Cornet et Poupon, 1977) parsemé d’arbres. La strate
arborée a une influence importante sur le développement des herbacées, elle influence
la structure spécifique, la richesse floristique et la production de phytomasse (Grouzis
et al., 1991). La strate herbacée est composée essentiellement d’especes annuelles. Du
nord vers le sud du bassin la transition se fait peu a peu de la pseudo-steppe arbustive

vers une savane arbustive a arborée plus dense.

La steppe arborée et arbustive : est le type de végétation le plus largement répandu
sur les sols sablonneux dans cette région du Ferlo. Il se caractérise par I’existence
d’une strate arbustive ou arborée trés ouverte, souvent épineuse, parsemant un tapis

herbacé discontinu a base de graminées annuelles

La savane arboree et arbustive : est une formation issue de la dégradation des foréts
claires et, bien souvent, maintenues en I’état par les feux de brousse ; elles sont de trés
loin les formations végétales les plus fréquentes de I’ensemble des régions littorales.
Elles sont caractérisées par une strate continue de graminées parsemée par une strate

ligneuse ouverte. Leur couvert dépasse rarement les 15%

1.3.5.2. Composition de la végétation

Dans cette région, le climat joue un réle important dans la composition floristique de
la végétation. Cependant selon le type de sol les espéces végétales sont reparties le

long du bassin versant ainsi :

a- Ferlo sableux: cette partie est caractérisée par une végétation de pseudo-steppe
arbustive avec une dominance d'Acacia tortilis et balanites aegytiaca. Selon les types
de sol et la topographie, certaines especes dominantes telles que Acacia senegal et

commiphora apparaissent. Les graminées dominantes sont Cenchrus biflorus,
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Schoenefeldia gracilis et Dactyloctenium aegyptium (These Ba, 2008). Dans cette

partie du Ferlo, les sols Ferrugineux tropicaux faiblement évolués et les sols rouges

brun sont utilisés respectivement pour la culture de l'arachide et du mil, de niébé

également.

b- Ferlo cuirassé ou latéritique: cette région est constituée par une strate ligneuse
dense avec une dominance de I'espéce Pterocarpus lucens. On y retrouve aussi les
espéces comme Acacia seyal, Combretum micrathum (kinkéliba), C. nigricans,
Guiera senegalensis, Feretia apodanthera et Grewia bicolor.

Balanites
aegyptiaca :

feuillage vert pendant et a la fin de la saison séche. Une floraison sans époque
fixe et trés peu exigeant au sol (H. J. Von Maydell; 1990).

Le feuillage apparait en fin de saison des pluies, vers le mois octobre, avec
souvent, deux générations de feuilles qui chevauchent (Poupon 1979). La phase
reproductive démarre pratiquement avec la feuillaison et peut se pour suivre sur
10 & 12 mois. Le rythme phénologique affecté par la sécheresse (Poupon ; 1979)
(Fournier ; 1995). La feuillaison démarre en pleine saison séche avec souvent
une reprise de la formation foliaire alors que la chute des anciennes feuilles n'est
pas encore terminée (Poupon, 1980). La floraison s'étale de novembre & mars
(Fournier, 1995)

Boscia

senegalensis :

sols trés secs, rocheux, argileux, pierreux ou latéritiques (H. J. Von Maydell;
1990). Le feuillage permanent, non épineux (Fournier ; 1995)

Acacia
raddiana :

Il est fréquent dans les zones les plus séches le long des cours d'eau temporaires,
sur des sols a la fois Iégers et bien drainés comme les Ferrugineux tropicaux. Le
debut de la feuillaison a souvent lieu avant l'arrivée des premiéres pluies
(Fournier; 1995). Son maximum de feuillaison en octobre et ne se défeuille pas
totalement en saison séche

Ligneux - - - - y
g Sclerocarya La floraison a lieu durant la saison séche lorsque les arbres sont dépourvus de
birrea : feuilles
Floraison pendant toute la saison séche (H. J. Von Maydell; 1990) sur des sols
Calotropis fortement dégradés
Proceda :
Combretum Il perd ses feuilles quelques mois pendant la saison seche. La floraison a lieu en
glutinosum : saison seche aprés les feux de brousse auxquels il résiste trés bien. Une fois
établi quelque part, il forme facilement des peuplements denses. Il est
particuliérement résistant a I’aridité, survivant la ou des graminées ne pourraient
le faire, et repousse trés vite aprés les feux. Il est souvent grégaire sur les sols
sableux et dégradés.
acacia senegal : | Espéce trés résistante au sec (Von Maydell; 1990) préfére sols sableux comme
rouge-brun et ferrugineux tropicaux. Cette espéce fleurit avant et pendant la
saison des pluies de mai a ao(t et une seule fois en début de saison des pluies
avec une seconde floraison possible en janvier-février au Ferlo (Poupon, 1980;
Fournier; 1995)
Tableau 1: Répartition des especes végétales dans la partie Ferlo sableux sur le bassin versant du Ferlo
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Herbacées

Guiera
senegalensis:

Sur des sols sableux dans des endroits secs, le feuillage reste longtemps pendant
la saison seche (H.J. Von Maydell; 1990)

Schoenefeldia

espéce annuelle

gracilis :
Zornia est une bonne plante fixatrice des sols, Plante herbacée annuelle a tiges érigées
glochidiata: ou décombantes. Les plantes de Zornia glochidiata fanent aprés la saison des
pluies et se désintegrent rapidement. Elle est retrouvée autour des points d'eau
dans le Ferlo
Cenchrus persiste jusqu’a la fin de la saison séche, graminée annuelle, généralement sur
biflorus: des sols sableux secs et dans des zones cultivées
Aristida espéce annuelle, une floraison aprés la saison de mousson. L'herbe se desseche 2
mutabilis: mois aprés son apparition. La phase végétative se produit en saison des pluies
Aristida espéce annuelle, floraison entre Février et Juin

adscensionis:

Dactyloctenium

espéce annuelle, sur sol sableux. Elle fleurit en Aodt dans le Sahel.

aegyptium :
Eragrostis espéce annuelle, avec une floraison qui commence quelques jours aprés les
tremula: premiéres pluies. La phase végétative dure 19-35 jours et il y a peu de croissance

végétative apres le démarrage de la floraison.
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Tableau 2: Répartition des especes végétales dans la partie Ferlo cuirassé sur le bassin versant du Ferlo

Combretum elle perd ses feuilles quelques mois pendant la saison séche. La floraison a lieu en

glutinosum : saison séche aprés les feux de brousse auxquels il résiste tres bien. Une fois établi
quelque part, il forme facilement des peuplements denses. Il est particuliérement
résistant & I’aridité, survivant 1a ou des graminées ne pourraient le faire, et
repousse trés vite apres les feux. Il est souvent grégaire sur les sols sableux et
dégradés.

Commiphora véritable détecteur d'humidité. Sensible a l'arrivée du premier souffle d'humidité,

africana : c'est a dire le renversement du sens des vents. Ses feuilles ne peuvent vivre qu'en
air humide : elles sont trés sensibles & la sécheresse et dés la fin de la saison des
pluies elles se désséchent. Elle résiste a la saison seche en déformant ses branches
(Clanet et Gillet,1980)

Combretum Sur sols argileux, latéritiques (Von Maydell)

Ligneux | nigricans :

Pterocarpus leur floraison de janvier a juin (Von Maydell)). c'est un arbre qui conserve

lucens : souvent son feuillage jusqu’a la seconde moitié de la saison seche. Il fleurit a la
fin de la saison séche, juste avant la sortie des nouvelles feuilles, ou bien les
fleurs sortent en méme temps que les jeunes feuilles. Il préfére les sols sableux
profonds, mais également les sols argileux

Dalbergia Les semis forment un systéme racinaire étendu, qui leur permet de survivre

melanoxylon : durant la longue saison séche et en cas de feu. Les arbres perdent leurs feuilles
durant la saison seche, et la nouvelle pousse commence au début de la saison des
pluies.

Acacia seyal : Sur des sols argileux, elle supporte aussi bien les inondations que les sécheresses
périodiques. Se rencontre prés des mares et des bas-fonds (Von Maydell))

Ziziphus supporte les grandes chaleurs et la sécheresse. Sur des sols temporairement

mauritiana: inondés. Floraison de Octobre a Janvier (Von Maydell, 1990 ; Fournier, 1995).
Fructification dés la 4éme année. Plein de rendement dés la 10 & 12éme année
(Von Maydell).

Eragrostis espéce annuelle, avec une floraison qui commence quelques jours apres les

tremula : premiéres pluies. La phase végétative dure 19-35 jours et il y a peu de croissance
végétative aprés le démarrage floraison.

Schoenefeldia herbe annuelle

gracilis :

Andropogon graminée annuelle ou vivace; pousse sur des sols latéritiques superficiels,

pseudapricus : sableux ou graveleux

Spermacoce est une espéce annuelle. Elle se multiplie par graines. Elle est trés rare sur les sols

stachydea : argileux humides. La germination a lieu dés les premiéres pluies du mois de mai
et se prolonge jusqu'en juin

Herbacées

Schizachyrium

exilé

Pennisetum herbacée annuelle

pedicellatum :

Zornia légumineuses non pérennes, la ou Zornia domine dans les paturages loin des

glochidiata : points d'abreuvement, la disponibilité en eau est faible. La végétation y démarre
tardivement.

Loudetia graminée annuelle, sur des sols argileux

togoensis :

L'agriculture est dominée par les cultures pluviales avec des tentatives de cultures

maraichéres. Une production céréaliére suffisant a peine a 36% des besoins, avec
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d'autres types de cultures comme le niébé (Vigna unguiculata), lI'arachide (Arachis
hypogea), I'hibiscus et le béref. Le systeme de cultures, trés peu performant, est
caractérisé par une faible utilisation de fertilisants organiques et de produits
phytosanitaires, le manque de technicité et l'usage de matériel rudimentaire.
L'association mil-béref est trés répandue. Cette pratique permet en année de faible
pluviosité de récolter beaucoup de béref a la place du mil, le béref (sorte de pastéque)
étant peu exigeant en eau (Diop et al., 2002).

1.3.6. Le Climat

Le Ferlo est caractérisé par un climat tropical semi-aride de type sahélien sec. Ce
bassin versant est une zone de transition entre les domaines sahéliens et soudaniens.
Le climat sur le bassin est gouverné par les paramétres comme la température,

I’humidité relative, les vents et la pluviométrie.
a- La température

Elle est généralement élevee et varie entre un minimum de 18°C en janvier et un
maximum qui peut dépasser 40°C en mai avant le démarrage des précipitations et
baisse légerement avec I’influence de la mousson. Les températures trés élevées
accélérent I’évapotranspiration qui impacte négativement sur les herbacées.
L’évaporation entraine un important déficit hydrique qui explique le caractére tres

ouvert des formations végétales.
b- L’humidité

Dans cette région de climat continental les influences océaniques sont tres réduites.
L’humidité atteint un minimum en janvier et son maximum au mois de septembre
avec des variations journaliéres trés importantes. L’insolation est forte et donc

I’évaporation élevée.
c- Le vent
Les vents sont fréquents et se présentent en trois types de flux de circulation :

- Les alizés continentaux ou harmattan : En saison séche, principalement en avril
et mai, I'harmattan (vent du NE) chaud et sec souffle sur la région. Il correspond a la
branche méridionale des flux de [I’agglutination anticyclonique « saharo-
méditerranéenne ». Il se traduit par une forte amplitude thermique journaliére. A son

passage |’alizé continental provoque de fortes valeurs de I’évaporation.
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- Des masses d'air humide de secteur N ou NW, s'installent dans la zone en
janvier et février, pouvant provoquer du brouillard, de la rosée et méme parfois des

chutes de pluies (appelées « pluies hors saison » ou « Heug »).

- Le flux de mousson: Les vents de mousson provenant du SW soufflent
essentiellement en juillet, ao(t et septembre. Ils emmenent de l'air trés humide, source

de pluies.

La convergence entre I’harmattan et le flux de mousson marque I’emplacement du

Front Intertropical qui représente la trace au sol de la ZCIT.

1.4. Variations des précipitations au Ferlo
1.4.1. Variations inter annuelles des précipitations sur le Ferlo

La variabilité interannuelle des précipitations peut indiquer les périodes séches ou
humides dans une décennie. Le Barbé et Lebel 1997 ont montré que la variabilité
interannuelle des pluies dans les zones sahéliennes résultait du nombre de systemes
convectifs plutét que leur efficacité de générer de la pluie. Par rapport aux données in
situ dont nous avons disposé, I’analyse des variations inter annuelles des
précipitations est effectuée. Avec la collaboration du CSE, nous avons disposé d’une
série de données in situ sur différentes stations sur le Ferlo sur la période 1961 a 2009.
Pour couvrir tout le bassin versant du Ferlo, 3 stations pluviométriques ont été
choisies. Ces stations sont choisies pour la disponibilité de leurs données jusqu’en
2009 méme s’il y a des années manquantes mais aussi de par leur position
géographique le long du bassin : la station pluviométrique de Sagata-Louga localisée
au nord (16.18°W et 15.28°N), celle de Barkedji située au centre du bassin (14.87° W
et 15.28°N) et Ranérou vers le sud-est (13.97°W et 15.3°N) (figure 1.2). Ainsi pour
estimer la variabilité inter annuelle sur le Ferlo depuis 1961, nous analysons le cumul
sur les différentes et sur chacune des stations considérées (figure 1.3). Pour évaluer la
disponibilité des données sur toute la série, c’est a dire repérer les biais journaliers,

mensuels ou annuels, les cumuls des trois stations sont compareés (figure 1.3).
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Figure 1.6. Localisation des stations pluviométriques de notre base de données qui contiennent des

données jusqu’aux années 2000 sur le bassin versant du Ferlo
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Figure 1.7. Variations inter annuelles de la pluviométrie sur le Ferlo de 1961 & 2009 pour les stations

pluviométriques de Sagata-Louga, Barkedji, Linguére et Matam

La figure 1.7 montre des variations inter annuelles assez similaires entre les stations
avec des années plus humides que d’autres. Cette figure montre aussi deux phases de
baisse du cumul des précipitations correspondant aux périodes déficitaires sur le Ferlo
qui sont situées une a la fin des années 1970 et une autre a partir de 1991. Cette

période est caractérisée aussi par deux périodes trés humides: fin des années 1980 et
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apres 1992.

Si I’on considére les années complétes entre 2000 et 2009 sur toutes les stations
confondues, la station de Barkedji présente des cumuls de pluie respectivement entre
349 et 739 mm/an, pour la station de Matam ce cumul varie entre 215 et 714 mm/an
avec plus d’événements enregistrés sur Ranérou. Seules sur 2 stations, la série est
compléte (Linguére et Matam) et les autres sont pleines de données manquantes. Pour
mieux caractériser la variabilité de pluie sur chacune des 4 stations, il est nécessaire
d’estimer le nombre d’événements pluvieux correspondant. Ainsi, le nombre
observations annuelles c’est a dire le total des événements journaliers de Juin a
Octobre et le cumul de pluie durant cette période de la saison sont analyses (figure
1.8).
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Figure 1.8. (a, b, c et d) Inter Comparaison du cumul de pluie (e, f, g, h) Nombre d’observations

pluvieuses durant la saison des pluies de Juin & Octobre entre les 5 stations de 2000 a 2010
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La comparaison entre les cumuls sur les 4 stations de 2000 a 2010, montre sur les
stations avec peu ou bien sans données manquantes, une variabilité inter annuelle
assez cohérente les mémes périodes d’années humides et séches. A partir de I’année
2000 la reprise de la pluviométrie est bien notée, cette période étant caractérisée par
une forte variabilité (succession d’années séches et humides). Les années seches ne
sont pas consécutives comme avant 2000 (cf. figure 1.6). La distribution spatiale de la
pluviométrie est inégale le long du bassin, avec un cumul plus fort sur la station de
Matam située a I’est et plus faible sur Sagata a I’ouest alors que la station de Barkédji

et Linguére au centre restent entre les deux extrémes.

Cependant par rapport a la disponibilité des données, on note des ruptures sur la

décennie avec des données manquantes sur certaines années et pour certaines stations.

La figure 1.8 e, f, g et h montre une variation de fagon aléatoire du nombre de pluies
journalieres observées durant chaque année dans les différentes stations. En
comparant le nombre d’événements et le cumul, on observe qu’en plus de I’intensité
des événements pluvieux, le cumul dépend fortement du nombre d’événements. En
moyenne sur le bassin Ferlo le nombre d’événements pluvieux est sensiblement égal a

25 événements par année sur la partie ouest et 40 sur la région plus a I’est.

Ces variations sur le nombre d’événements pluvieux sont aussi affectées par les
données manquantes a I’intérieur méme de la saison des pluies. Ces données

manquantes constituent un véritable probléme dans les mesures au sol.

1.4.2. La variabilité intra saisonniére

La variabilité saisonniere correspond aux fluctuations a I’intérieur de la saison. Il
s’agit des occurrences de phases seches ou de réduction des précipitations et de
phases humides durant la saison des pluies. C’est entre les mois de Juin a Octobre que
I’essentiel des précipitations est enregistré, avec un maximum de pluie tombée

observé au mois d’Aout.
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Figure 1.9. Inter comparaison des variations intra saisonniéres des cumuls mensuels de la pluie
journaliére et de I’écart type (en tirets rouge) de juin & octobre durant la saison 2009 pour les stations
de Linguére, Barkedji et Matam.

Les variations des cumuls mensuels (figure 1.9) montrent une distribution progressive
des précipitations durant la saison de Juin a Octobre en 2009. Le cumul de pluie
maximum est atteint au mois d’Ao(t pour les stations de Linguere et Barkédji alors
que pour Matam ce maximum est observé en Septembre. Ce décalage du maximum
est du a des données journalieres manquantes ou des erreurs de mesure au courant du
mois d’Ao0t sur cette station. Les variations de I’écart type montrent une dispersion

assez au cours des mois les plus humides comme juillet et aout.

Malgré les biais dans les observations, les précipitations avec les mesures in situ sur
cette région sont caractérisées par une forte variabilité. Elles décrivent a peu pres de
facon cohérente les grandes périodes de sécheresse qu’a connues le Sahel. Les années
humides et seches durant la décennie 2000 a 2010 sont bien visibles. Avec ces
stations qui sont situées de part et d’autre du bassin, la distribution spatiale du cumul
de pluie décrit un gradient est-ouest est observé. Les données de pluviometres sont
peu nombreuses dans le Ferlo du fait de la faiblesse du réseau de mesure par rapport a
la surface du bassin versant. Sur la majeure partie du Sahel, les pluviometres sont
rares et de fiabilité variable, avec des mesures pas toujours facilement disponibles
(Adeyewa et Nakamura, 2003; Nicholson et al., 2003a). Cependant la-non
disponibilité de ces mesures au sol nous a conduit a I’utilisation des données de la
télédétection.
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Chapitre 2.

Présentation des données et méthodes
utilisées

The TRMM satellite
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Introduction

La télédétection est I’ensemble des techniques qui permettent d’étudier a distance des
objets ou des phénomeénes. Elle est aussi I’ensemble des techniques qui permettent par
I’acquisition d’images d’obtenir de I’information sur la surface de la terre de
I’atmosphére et des océans sans contact direct avec ces derniers. La télédétection
englobe tout les processus qui consistent a capter et enregistrer I’énergie d’un
rayonnement électromagnétique émis ou réfléchi, a traiter et analyser I’information

qu’il représente pour ensuite le mettre en application.

Le rayonnement électromagnétique : selon la théorie corpusculaire de la lumiere, il
peut étre considéré comme un flux de particules élémentaires appelés photons. Selon
la théorie ondulatoire, il est composé de deux champs électrique et magnétique
perpendiculaires et se déplacant a la vitesse de la lumiere. L’onde électromagnétique
est caractérisée par sa longueur et sa fréquence. La longueur d’onde étant la distance
entre deux points homologues (deux crétes ou deux creux) (A (m)). La fréquence est

le nombre d’oscillations par unité de temps (v(Hz)).

Interaction rayonnement électromagnétique-matiere : le rayonnement qui traverse
I’atmosphére subit des interactions avec les particules atmosphériques et il se produit
deux phénomenes majeurs, la diffusion et [I’absorption. La diffusion, elle
correspondrait a des phénomeénes de réflexion multiples entre le rayonnement et les
particules atmosphériques selon la longueur d’onde et les dimensions de ces
obstacles. L’absorption, quant a elle, est un phénomene lié aux niveaux d’énergie des
composantes de I’objet absorbant. Le rayonnement absorbé modifie I’énergie interne

des molécules et se manifeste par une augmentation de leur température.

Sur la surface terrestre le rayonnement électromagnétique est réfléchi, absorbé et
transmis dans des proportions variables.

2.1. Acquisition des données de la télédétection

Dans la télédétection les plates formes utilisées sont diverses (au sol, ballons, avions,
et satellites). Lorsque la source illuminant la cible est indépendante du capteur elle est
dite passive en général cette source est le soleil (ou la terre dans le cas de I’IR et les
micro-ondes). C’est le cas des satellites LANDSAT (Land Satellite), SPOT (Satellite
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Pour I’Observation de la Terre) etc... Elle est active dans le cas contraire exemple le
LIDAR (LIght Detection And Ranging) qui utilise une source laser, le RADAR
(RAdio Detection And Ranging) avec une source hyperfréquence.

2.2. Les satellites d’observation

En orbite, ils sont de trois types :

Géostationnaire : une orbite équatoriale et circulaire a une altitude d’environ
36000 km. Le satellite se déplace a la méme vitesse angulaire et dans le méme

sens que la terre et observe en permanence la méme région.

Héliosynchrone : une orbite circulaire avec le plan de I’orbite du satellite qui
est réglé de maniere a observer régulierement un point particulier a la méme
heure locale solaire. Ces satellites permettent d’avoir une bonne résolution

méme en micro-ondes car I’altitude est relativement basse (300 a 1500 km).

L’orbite circulaire quelcongue qui offre I’avantage de passer a la méme
altitude au dessus d’un point de la terre a des heures différentes.

Un capteur de télédétection au sol ou embarqué est caractérisé par trois types de

résolution :

La résolution spectrale : elle correspond aux bandes de longueurs d’onde

auxquelles les capteurs sont sensibles.

La résolution spatiale : c’est la surface élémentaire d’échantillonnage observée

instantanément par le capteur. Elle correspond au pixel.

La résolution temporelle : étant la période entre deux acquisitions de la méme
scene. Contrairement aux précédentes, elle ne dépend pas du capteur mais de
I’orbite et du mode de manceuvre du satellite.

2.3. Présentation générale des données et Méthodes utilisées

Cette partie présente les données utilisées au cours de cette étude et les méthodes

appliquées pour I’analyse de ces données. Pour la réalisation de cette étude, les

données satellitaires ont servi de base de données. Ces données concernent le cycle de

I’eau (précipitation et humidité du sol) et la végétation.
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2.3.1 Données hydrométéorologiques
2.3.1.1. Les données de précipitation

Aprés I’évaluation des données in situ (Chapitre 1), I’utilisation d’estimations des
précipitations par satellites s’est donc imposée, bien que la fiabilité de ces données
soit toujours discutée. Ainsi dans cette étude les deux produits de satellite utilisés sont

TRMM3BA42 avec une résolution 25 km et RFE2.0 avec une résolution de 1 km.

Le choix de ces produits est basé sur le fait que leur domaine spatial couvrant notre
région d'étude et sur leur fréquente utilisation par la communauté scientifique. Le
produit TRMM3B42 couvre toute la bande tropicale et est utilisé pour la plupart des
études climatiques sur les régions tropicales. Pour la caractérisation des précipitations
sur une région du Brésil, Arvor et al., (2008) ont utilisé les données de TRMM3B42
qui ont été validées par des indices statistiques. Zhang et al., (2005) ont étudié la
réponse de la phénologie de la végétation aux précipitations sur la base du produit
TRMM3B42 malgré leur faible résolution. Le produit RFE2.0 congu uniquement pour
le continent africain est utilisé dans plusieurs domaines scientifiques tels que le
domaine médical comme I’illustre I’étude clinique de Schiff et al., (2012) réalisée en
corrélant des données RFE2.0 avec des cas traités de I'nydrocéphalie.

- le produit TRMM3B42 v7

TRMM (Tropical Rainfall Measuring Mission) est un satellite de recherche destiné
a I’étude de la distribution et de la variabilité des précipitations dans les tropiques
dans le systéme climatique actuel. En couvrant les régions tropicales et sub-tropicales
de la Terre, le satellite TRMM fournit des informations sur les précipitations et le
dégagement de chaleur associé qui contribue a alimenter la circulation atmosphérique

globale.

Le satellite a été lancé en 1997 en partenariat entre National Aernautics and Space
Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Il
embarque plusieurs instruments, dont deux directement utilisés pour les
précipitations. Le Precipitation Radar (PR) peut détecter toute la colonne de
précipitation, donnant des informations sur l'intensité et la distribution de la pluie, le
type de la pluie, de la profondeur de I’orage et la hauteur a laquelle la neige fond en
pluie. Le PR est capable de détecter des taux de pluie d’environ 0.7 millimetres par

heure. Le Precipitation Radar a une résolution horizontale au sol de cing kilometres et
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une fauchée de 247 km. Le PR a été construit par I'Agence nationale de
développement spatial (JAXA) du Japon. Le TRMM Micro-ondes Imager (TMI)
mesure I'énergie micro-onde émise par la Terre et son atmosphere. TMI est en mesure
de quantifier la vapeur d'eau, I'eau des nuages, et l'intensité des précipitations dans
I'atmosphere (http://pmm.nasa.gov/ TRMM/).

Les mesures de précipitations TRMM ont apporté et continuent d'apporter des
contributions critiques a la prévision des cyclones tropicaux, la prévision numérique

du temps, et la climatologie des précipitations, parmi beaucoup d'autres sujets.

Le produit TRMM3B42 est disponible & une résolution spatiale de 0.25° x 0.25° avec
un pas de temps de 3h. Il couvre la bande 50°N-50°S. L'algorithme de pluie 3B42
utilise une combinaison optimale de données de TRMM et de plusieurs capteurs
micro-ondes (AMSU-A/B, SSMI, AMSR-E) et un ajustement des températures de
brillance IR des satellites météorologiques géostationnaires (Huffman et Bolvin,
2015; Huffman et al, 2007). Au fil des années, le produit TRMM3B42 dont la
premiere version était disponible depuis janvier 1998 a connu des améliorations.
Depuis, le produit a fait I’objet de beaucoup d’études. Sur I’Afrique de I’Ouest, on a
utilisé 920 stations de pluviometres pour évaluer le produit TRMM ; leurs résultats
ont montré un excellent accord entre les précipitations de satellite et celles mesurées
in situ aux échelles temporelles et spatiale (Nicholson et al., 2003). La performance
de TRMM a été mesurée sur I’ Afrique (Adeyewa et Nakamura, 2003) et en particulier
sur I’Afrique de I’Ouest (Nicholson et al., 2003b).-Selon (Huffman et al. (2007,
2010); Huffman et Bolvin, 2013) les estimations de précipitation 3B42 sont produites
en quatre étapes: d’abord les estimations micro-ondes de précipitations sont calibrées
et combinées; les estimations de précipitations infrarouges sont créées en utilisant les
précipitations micro-ondes calibrées, puis les estimations micro-ondes (HQ) et
infrarouge (IR) sont combinées et I’ensemble ajusté sur des données mensuelles. En
ce qui concerne la version 7 qui est utilisée dans cette étude, plusieurs modifications
ont été incorporées (Huffman et al., 2007, 2010). Les données TMI ne sont plus
entrées aux produits TRMM car elles ont été abandonnées (Huffman et Bolvin 2015).
La base de données TRMM-3B42 est largement utilisée (Arvor et al., 2008;
Javanmard et al., 2010). Le TRMM3B42 a servi d’entrée de modeéle pour prévoir les

inondations (Li et al., 2009). Les analyses ont montré que la base de pluie TRMM
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avait une bonne pertinence pour estimer les précipitations intenses des cyclones
tropicaux (Chen et al., 2013).

La base de données TRMM3BA42 utilisée dans cette étude couvre la période 2000 a
2010.

- le Produit RFE2.0

RFE2.0 (African Rainfall Estimation Algorithm Version 2) développé par le CPC
(Climate Prediction Center) de la NOAA a une résolution de 0.1°x 0.1° et est
journalier (Xie et Arkin, 1996). La version 2.0 remplace la version 1.0 en Janvier
2001. Le produit est disponible pour le continent africain, entre 40°S et 40°N et entre
20°W et 55°E. RFE 2.0 utilise des techniques supplémentaires pour mieux estimer les
précipitations : il combine I'utilisation du CCD (Cold Cloud Duration), dérivé de la
température du sommet des nuages), et les données de stations de pluviometres, en
plus des micro-ondes passives (AMSU, SSM/I). Les données infrarouges de Météosat
7 sont acquises & des intervalles de 30 minutes, et les zones représentant la
température du sommet des nuages de moins de 235°K sont utilisées pour estimer les
précipitations convectives. Les estimations SSM/I sont acquises a intervalles de 6
heures, alors que les estimations de précipitations AMSU sont disponibles toutes les
12 heures. Depuis Juin 2001, les données AMSU- B seront intégrées a RFE 2.0.
Comme pour SSM/I, les taux de pluie AMSU-A sont fondés sur un algorithme de
diffusion sur la terre et un algorithme d'émission sur I'océan (Zhao et al., 2000).
Chaque type d'observation satellite est converti en pluie estimée en utilisant son
algorithme approprié, les pondeérations sont calculées pour chaque pluie puis
comparées aux pluies mesurées afin d'enlever I'erreur aléatoire. La distribution des
précipitations obtenue a partir des mesures de pluviometres permet de corriger les
biais systématiques. Les pluviometres du réseau GTS (Global Telecomminucation
System) constitué de plus de 1000 pluviometres sur le continent Africain sont utilisés
dans cet algorithme.

Ce produit est utilisé dans la plupart des études en Afrique et plus particulierement au
Sahel (Pierre et al., 2011).

Ces deux produits ont déja démontré de bonnes aptitudes sur la ceinture sahélienne en
comparaison avec les observations pluviométriques en termes de répartition des

précipitations et des statistiques de base (Roca et al., 2010). Ces deux produits sont

45



utilisés dans de nombreuses études comme par exemple pour évaluer la qualité de la
saison des pluies dans le Sahel (Samimi et al., 2012). IIs ont été comparés avec les
données du réseau CLISS composé de 600 pluviomeétres sur neuf pays dans le Sénégal
(Pierre et al., 2011).

Les données de RFE 2.0 et TRMM3B42 dont nous disposons dans cette étude couvre
respectivement les boxes -25.125°W a 25.125°E et -30.125°S a 30.125°N et 20W a -
10°E et 10 a 20° N. Avant d’évaluer les relations entre ces produits de pluie et la
dynamique de végétation, les variations intra saisonniéres et inter annuelles de ces
précipitations estimées par satellite sont analysées dans un premier temps ; puis pour

estimer leur différence et leur ressemblance, ces produits sont comparés entre eux.
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Figure 2.1. Variations inter annuelles du cumul de pluie avec les produits de satellite TRMM3B42 (a)

et RFE 2.0 (b) sur les périodes respectives 2000 & 2010 et 2001 & 2010 sur le bassin versant du Ferlo

Les variations inter annuelles du cumul pluie durant la saison de Juin a Octobre avec
les deux produits de pluie (figure 2.1) montrent une évolution assez cohérente de la
pluie durant la décennie de 2000 a 2010. Cette eévolution montre qu’il existe des
années plus humides que d’autres. Avec les deux produits, le cumul de pluie entre
Juin et Octobre est faible pour la saison 2002 mais plus fort en 2010 avec TRMM et
RFE. Les deux années extrémes 2002 (séche) et 2005 (humide) qui ont marqué cette
région durant cette période ressortent bien pour les deux produits avec des cumuls
respectifs en 2002 pour RFE et TRMM entre 217 et 296 mm et en 2005 entre 476 et

538 mm. Par rapport aux données in situ (Chapitre 1), les deux bases de données de
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précipitation satellite présentent tous les deux des similarités dans leurs variations
inter annuelles mais aussi avec les variations du cumul sur la station de Barkedji par
exemple. Entre les bases de données, les précipitations sont surestimées ou sous-
estimées pour TRMM ou RFE avec des cumuls maximums durant cette décennie qui
atteigne 720 mm pour TRMM et 520 pour RFE. En moyenne sur les dix années
I’écart entre TRMM et RFE serait de I’ordre de 100 mm par an.

TRMM3B42

RFE 2.0

100 100
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Figure 2.2. Distribution de la quantité de pluie de 2000 & 2010 pour TRMM3B42 (a) et 2001 a 2010
avec RFE 2.0 (b) le long du bassin Ferlo

La figure 2.2 montre que les quantités de pluie sont trés variées avec une domination
des faibles pluies et une rareté des gros événements qui dépassent 30 mm par jour.
Entre TRMM et RFE, la distribution des précipitations sur les intervalles de 0 a 20
mm est presque la méme et a partir 25 mm, cette répartition n’est plus la méme. Avec
le produit RFE, on observe plus de pluies inférieures a 1 mm qu’avec TRMM.
Contrairement a RFE, avec le produit TRMM les précipitations journalieres peuvent

dépasser 40 mm/jour.
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Figure 2.3. Variations saisonniéres et spatiales des précipitations moyennes avec TRMM et RFE
(agauche) et (a droite) la différence entre les précipitations moyennes de RFE et TRMM dans chaque
mois de juin & septembre durant la saison 2002 sur le Ferlo

La distribution de la pluie pour chaque mois de Juin a Septembre avec TRMM et RFE
durant la saison des pluies la plus séche 2002 (figure 2.3) montre des différences de la
quantité de pluie suivant la localisation avec le sud plus favorable aux fortes pluies ce
qui confirme le gradient climatique qui caractérise le Sahel. Avec les deux bases de
pluie, le maximum est observé au mois d’Aout. Apres le début observé en Juin, le
mois de Juillet est marqué par une sécheresse pour RFE alors qu’avec TRMM cette
pause ou diminution des précipitations n’est pas observée. En Septembre, TRMM
comme RFE montrent une baisse des précipitations qui annonce la fin de saison des

pluies.

La différence entre RFE et TRMM montre que d’un endroit a I’autre du bassin et d’un
mois a I’autre I’écart entre les deux produits peut étre positif ou négatif. L’ écart
positif en juin début de la saison montre que les premieres qui sont faibles par rapport
a celles des mois suivants sont bien enregistrées dans RFE que dans TRMM. En
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Latitude

moyenne sur le reste de la saison de juillet & septembre TRMM I’emporte sur RFE.
Cependant vers la fin de la saison en septembre I’écart positif a I’extréme nord du
bassin correspondant & une domination des pluies RFE qui sont en général composées
de faibles précipitations montre la diminution de I’intensité des pluies commence

d’abord dans la partie nord.

TRMM3B42 RFE — TRMM (2005)
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Figure 2.4. Variations saisonniéres et spatiales des précipitations moyennes avec TRMM et RFE
(agauche) et (a droite) la différence entre les précipitations moyennes de RFE et TRMM dans chaque
mois de juin & septembre durant la saison 2005 sur le Ferlo

La figure 2.4 montre des précipitations trés fortes avec les deux produits de pluie pour
la saison des pluies trés humide 2005. Durant cette année-1a, on observe un maximum
des précipitations qui arrive en Juillet avec des pluies tres fortes mais localisées.
Comme pour I’année 2002, ici aussi en Juillet contrairement en Juin, les pluies sont
plus fortes avec TRMM. Quelque soit la qualité de la saison des pluies, en début de
saison au mois Juin, les pluies sont plus fortes avec RFE. Cependant, c’est au mois
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d’Aout que la totalité du bassin est couverte par ces pluies assez fortes. La
dégradation débute au mois de Septembre avec les pluies qui commencent a étre rares
vers le nord et cette diminution se prolonge au fur et a mesure qu’on avance vers le

sud.

En juillet 2005 la différence montre un écart nord-sud avec RFE dominant au sud et
TRMM. Cet écart peut étre du au fait qu’en plus des systéemes convectifs RFE prend
prend en compte les précipitations locales. Ce mélange fortes pluies et faibles pluies,
réduit la moyenne de pluie enregistrée pour ce mois alors que TRMM enregistre
uniquement les gros événements. La différence marquée entre le nord (négative) et le
sud (positive) montre que les faibles pluies ou événements locaux sont plus férquentes

dans la partie.
2.3.1.2. L’humidité du sol

L'humidité du sol est une variable importante pour la compréhension de I'hydrologie
et du climat. L”humidité dans les couches superficielles constitue un des facteurs qui
peut renseigner sur la quantité journaliere d’eau tombée. Elle conditionne également
la mise en place de la végétation (début de la croissance ou germination,
fleuraison...etc.). L'humidité du sol est définie comme I'eau présente dans la partie
non saturée du profil du sol c’est a dire entre la surface du sol et le niveau de I'eau
souterraine (Dorigo et al., 2011; Seneviratne et al., 2010). Son évaluation est donc
importante pour la compréhension du cycle de croissance des vegétaux. Beaucoup
d’études ont montré que dans les zones arides et semi-arides I’humidité du sol et la
végetation sont tres fortement corrélées. L humidité du sol se divise en deux
composantes : une humidité du sol de surface correspondant aux premiers centimetres
et I’humidité de la zone racinaire. Elle peut étre exprimée comme la fraction
volumique de I'eau & une profondeur du sol (m* d'eau par m* de sol) ou que la
profondeur de la colonne d'eau contenue dans une profondeur donnée de sol (mm

d'eau par mm de sol).

Dans cette étude, I’humidité du sol utilisée est I’humidité superficielle a une
profondeur entre 0.5 et 2 cm issue de mesures micro ondes. Ces mesures couvrent
tout le globe. Les données ECV (Essential Climate variable) d'humidité du sol avec
une résolution spatiale de 0,25 ° x 0.25 ° et un pas de temps journalier sont utilisées.
Ce produit est disponible sur (http://www.esa-soilmoisture-cci.org/). Ce produit
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combine de maniere synergique d’humidité du sol a partir de quatre capteurs passifs
(le Scanning Multi-channel Microwave Radiometer (SMMR), le Special Sensor
Microwave Imagers (SSM/I), le Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI) et Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E)) et deux capteurs actifs (European Remote Sensing
Satellites (ERS) Active Microwave Instrument (AMI) et Advanced SCATterometer
(ASCAT)) dans un ensemble de données global couvrant la période 1979 a 2010
(Dorigo et al., 2014; Parinussa et al., 2013; Wagner et al., 2012; Liu et al., 2011).

L'humidité du sol a partir d'observations micro-ondes actives et passives a été
largement validée avec des données in situ (Wagner et al., 2007; De Jeu et al., 2008;
Gruhier et al., 2010; Brocca et al., 2011). Elle a été évaluée en utilisant des mesures
in situ sur 596 sites répartis a travers 28 réseaux d’humidité du sol dans le monde
(Dorigo et al., 2014). La validation du produit de I'numidité du sol ECV a bénéficié
de l'augmentation du nombre de réseaux in situ de I'humidité du sol, l'initiative du
Réseau international de I'humidité du sol (http://www.ipf.tuwien.ac.at/insitu/)
(Dorigo et al., 2011).

Nous disposons des données SM-ECV depuis 1978 a 2010 sur toute la bande
comprise entre les longitudes -179.875 et 179.875°E et les latitudes -89.875 et
89.875°N.
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Figure 2.5. Variations inter annuelles des anomalies d”humidité du sol par rapport & la climatologie sur

les 11 années le long du bassin versant du Ferlo
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L’évolution de I’humidité moyenne annuelle durant la décennie (figure 2.5) montre
une baisse de I’humidité du sol au cours des trois premiéres années particulierement
en 2002 mais aussi une humidité moyenne plus forte en 2010. Comme I’humidité du
sol est une partie intégrante de la pluviométrie, I’évolution inter annuelle de
I’lhumidité moyenne annuelle montre bien les années excédentaires et déficitaires en
pluviométrie. Ces variations de I’humidité du sol sont bien cohérentes avec les

variations du cumul annuel des précipitations avec TRMM et RFE (figure 2.1).
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Figure 2.6. Variations intra saisonnieres de I’humidité du sol moyenne sur le bassin versant Ferlo en

2002 et 2005 aux mois de Juin, Juillet Aout et Septembre.

La figure 2.6 confirme la différence entre les années 2002 et 2005 observée avec les
cumuls de pluie avec I’année 2005 plus humide. En 2002 comme avec la pluie, la

sécheresse au mois de Juillet apparait sur I’humidité du sol. Par contre en 2005
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I’évolution est continue avec pas de rupture. Dans les deux cas le maximum
d’humidité est atteint quelques jours aprés le maximum de la pluie, en Septembre.
Cependant, la distribution de I’humidité du sol le long du bassin ne montre pas de
facon trés visible le gradient nord sud car les écoulements sont inégalement répartis
suivant la géologie et la topographie. La présence de plans d’eau comme le lac de

Guiers contribue aussi a cette répartition.
2.3.2. Données de végétation

2.3.2.1. Les données d’occupation du sol

Des données d’occupation du sol ont permis de réaliser une cartographie de la
vegeétation de la région d’étude. Pour réaliser la classification du couvert végétal, des
images Landsat5 TM de I’année 2010 au mois de Novembre sur le site

https://Ipdaac.usgs.gov/data_access/glovis ont servi de support avant la validation

avec la carte d’occupation des sols de la FAO (Food Agricultural Organization) 2005.

Le satellite Landsat5 a été lancé en Mars 1984. Il était constitué de deux types de
capteurs : le multi spectrale scanner (MSS) avec 4 bandes qui a cessé de fonctionner
depuis 1992 et le Thematic Mapper (TM) avec sept bandes qui fonctionne jusqu’a
présent. La transmission directe des données depuis I’espace a des stations terrestres
se fait grace a des bandes X (avec une gamme de fréquence de 8 a 12 GHz et de
longueur d’onde de 3.75 a 2.5 cm) et S (avec une gamme de fréquence de 2 a 4 GHz
et une longueur d’onde de 15 a 7.5cm) placées au bord du satellite avec des
puissances d’émission respectives de plus de 20 Kw et 7 Kw.

Les scanners pour le capteur TM sont a haute résolution et possedent 7 bandes
spectrales qui couvrent une zone de 185 Km sur 185 Km avec une fréquence de 16
jours. Il décrit une orbite polaire héliosynchrone a une altitude de 705 Km avec une
inclinaison de 98.2° avec une heure locale de passage a I’équateur & 9 :45 (+/- 15 mn).

Pour prendre en compte les différents types de sol sur la zone, la carte des types de sol
du PNAT (Plan Nation de I’Aménagement du Territoire) du Sénégal sera utilisée
(source CSE).
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Tableau 2.1. Caractéristiques de Landsat5 TM

Bandes Longueur d’onde Résolution Utilisation

(ou canaux)

TM1 0.45-0.52 um | 30m x 30m Différenciation sols/végétaux,
(Bleu) zones cotieres

TM2 0.52-0.62 um | 30m x 30m Végétation
(Vert)

T™M3 0.63-0.69 um | 30m x 30m Différenciation  des  espéces
(Rouge) végétales

TM4 0.76-0.90 pm | 30m x 30m Biomasse
(Proche Infrarouge)

TM5 1.55-1.75 um | 30m x 30m Différenciation neige/nuage
(Moyen Infrarouge)

TM6 10.4-12.4 120m x 120m Thermique
(Infrarouge
Thermique)

TM7 2.08-2.35 um | 30m x 30m Lithologie (Géologie)
(Moyen Infrarouge)

Figure 2.7. Fenétre montrant les images Landsat5 obtenues sur le site internet

https://Ipdaac.usgs.qgov/data_access/glovis,

(exemple carré jaune) sont téléchargees.

les scénes qui correspondent & des portions d’images
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2.3.2.2. Le LAI (Leaf Area Index)

La densité de la végeétation peut étre suivie par le LAI (Leaf Area Index) qui est défini
comme le nombre de couches de feuilles équivalentes a une unité de surface au sol
(Zhang et al., 2005). Le LAI définit une propriété structurelle importante du couvert,
a savoir la surface de la feuille par unité de surface au sol. Les données de LAI
utilisées dans cette étude sont issues du produit MOD15A2 LAI (instrument MODIS
(Moderate Resolution Imaging Spectroradiometer)) (Ruhoff et al., 2013; Yuan et al.,
2011 ; De Kauwe et al., 2011; Myneni et al., 2002). Ce produit est un composite tous
les 8 jours avec une résolution de 1 Km? sur une grille sinusoidale. La résolution des
données MODIS de 1 Km permet en effet une analyse détaillée a I’échelle des gros
systemes convectifs. Le produit MODIS LAI a bord des plateformes TERRA et
AQUA avec une fine résolution spatio-temporelle et une bonne qualité sur le Sahel et
un décalage d’environ 0.2 m*m? en saison séche (Knyazikhin et al., 1998 ; Fensholt
et al., 2004; Bobee et al., 2012). Les données de LAI sont calculées en utilisant un
algorithme synergique (Knyazikhin et al., 1998). L’algorithme de MODIS LAI est
constitué d’une procédure principale qui exploite le contenu de I’information
spectrale des surfaces de réflectance de MODIS jusqu’a sept bandes spectrales. Pour
I’ajustement de [I’algorithme sont prises en compte deux longueurs d’onde
indépendantes et spécifiques du couvert ainsi que I’albédo de la feuille (Tian et al.,
2002a). Le produit LAI est une valeur de LAI entre 0 et 8 m%/m? et est global. Pour
suivre la dynamique de la végétation dans cette région, les données couvrent la
période du jour numéro 49 (Février) 2000 au jour 361 (Décembre) 2010 et sont

disponibles sur https://Ipdaac.usgs.gov. Ces données ont fait I’objet de beaucoup

d’études telles que leur validation par (Morisette et al., 2002 ; Privette et al., 2001 ;
Justice et al., 2000). Elles sont utilisées dans un modéle trois dimensions pour simuler
le transfert radiatif de la surface de la plante (Myneni et al., 1997). Pour une
vérification de la qualité du produit, une comparaison avec des données de LAI
mesurées, effectuée en zone semi-aride et sud africaine a montré un bon accord
(Privette et al., 2002). Le produit LAI est de bonne qualité dans les régions
Sahéliennes (Bobee et al., 2012). La validation du produit MODIS LAI avec des
cartes de référence de LAI (Garrigues et al., 2008). Une évaluation sur plus de 25
sites a été entreprise pour une validation du LAI (Privette et al., 2001). Le LAI est

aussi un parameétre d’état dans tous les modéles décrivant I'échange de flux d'énergie,
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de masse (par exemple, I'eau et le CO;), et dynamique entre la surface et la couche

limite planétaire.

LAl Moyen (m2/m'2)
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Figure 2.8. Variations inter annuelles du LAI moyen sur le bassin versant du Ferlo de 2000 & 2010 sur
la période de Juin a Décembre

La figure 2.8 montre que I’évolution inter annuelle du LAI moyen suit les mémes
variations que celles de la pluie et de I’humidité du sol. Les impacts des années séches
et humides sont bien visibles dans les variations du LAI avec un LAI moyen plus
faible en 2002. Ces variations montrent aussi que le couvert végétal dans cette région

n’est pas dense avec un LAl moyen annuel qui n’atteint pas 1 m%m?.
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Figure 2.9. Variations intra saisonniéres du LAl moyen en 2002 (a) et 2005 (b) de Juin & Septembre le
long du bassin versant du Ferlo

Le figure 2.9 montre une distribution spatiale non homogeéne du LAI le long du bassin
durant la saison avec la partie sud plus couverte que le nord. Cette répartition du LAI
suit la méme évolution que celle des précipitations, caractérisée par le fort gradient
nord-sud. L’évolution des variations saisonniéres du LAI moyen montre que la
vegétation démarre sa croissance en moyenne au mois de Juillet pour atteindre son
maximum en Septembre. Ces variations sont en cohérence avec les variations de la
pluie durant la saison (figure 2.3 et 2.4). Les dates de début, maximum et fin du LAl

sont décalées de quelques jours par rapport aux dates de début, maximum et de fin de
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la pluie. Cet accord entre les paramétres dans le cycle de ces variables est bien réaliste

car la végétation évolue en fonction de la pluie donc sa réponse n’est pas spontanée.

Entre 2002 et 2005, la figure 2.9 montre bien le stress hydrique subi par la végétation
en 2002 avec un LAl plus faible qu’en 2005.

Cependant I’analyse des différentes bases de données de satellite montre une

cohérence entre elles avec des évolutions assez similaires.

2.3.3. Données météorologiques

Ces données concernent le vent, le rayonnement global, les températures minimales et
maximales et I’humidité relative issus des ré-analyses de ERA-interim du Centre
Européen de Prévisions Météorologiques a Moyen Terme (CEPMMT). Elles sont
utilisées comme entrée dans le modeéle de végétation STEP, donc présentées dans le
Chapitre 4.

2.4. Méthodes utilisées

Dans un premier temps pour faire réaliser cette étude, une classification de
I’occupation du sol, des types de sol sont nécessaires. Avec le SIG (Systeme
d’Information Géographique), I’image entiere LandSat5 obtenue aprés mosaique avec
le logiciel de télédétection ERDAS imagine des différentes scénes téléchargées sur le
https://Ipdaac.usgs.gov/data_access/glovis et la carte d’occupation du sol de la FAO
(Food Agricultural Organization) de 2005 (CSE;

http://www.glcn.org/databases/se landcover en.jsp), une classification du couvert

vegétal de la région d’étude est realisée. Trois classes principales de par leur
représentation significative ont été retenues : Steppe Arbustive Arborée (STAA);
Savane Arbustive Arborée (SAA) et Savane Arborée (SA).

La classification des types de sol sur la zone d’étude est obtenue par un découpage de
cette région sur la carte des types de sol du PNAT (Plan National de I’Aménagement
du Territoire) du Sénégal en 1985 (source CSE).

Pour mieux analyser cette forte variabilité des précipitations dans cette région
Sahélienne, une échelle suffisamment fine est considérée, c’est I’entité homogeéne.
L’entité homogéne correspond a un polygone de superficie supérieur ou égal a 100

Km? (équivalent & 100 pixels de LALI), elle est obtenue grace a la superposition des
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deux classifications (de occupation du sol et des types de sol). Neuf entités
homogenes constituent cette région du Ferlo (figure 2.11).

L’étude des relations pluie-végétation est basée sur la connaissance des paramétres
dans leur cycle de développement.
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Figure 2.11. Représentation des différentes entités homogénes découpées a partir des cartes

d’occupation du sol et de type de sol. Ces noms correspondent a I’abréviation anglaise

Tableau 2.2. Description des noms affectés aux différentes entités homogénes

Abréviation  Abréviation Description

anglaise francaise

SStT-F STAA-F Steppe Arbustive Arborée (SAA) sur sols Ferrugineux tropicaux
(F)

TSv-L SA-L Savane Arborée (SA) sur sols Lithosols (L)

TSvVS-F1 SAA-F1 Savane Arbustive Arborée (SAA) sur sols Ferrugineux tropicaux
(F)

TSVS-F2 SAA-F2 Savane Arbustive Arborée (SAA) sur sols Ferrugineux tropicaux
(F)

TSvS-L1 SAA-L1 Savane Arbustive Arborée (SAA) sur sols Lithosols (L)

TSvS-L2 SAA-L2 Savane Arbustive Arborée (SAA) sur sols Lithosols (L)

TSvS-L3 SAA-L3 Savane Arbustive Arborée (SAA) sur sols Lithosols (L)

TSVS-R SAA-R Savane Arbustive Arborée (SAA) sur sols Régosols (R)

TSvS-RB SAA-RB Savane Arbustive Arborée (SAA) sur sols Rouges Bruns (RB)
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- Détection des paramétres dans le cycle saisonnier des précipitations

Une saison des pluies est définie par le cycle saisonnier des précipitations qui est
caractérisé par les parameétres suivant : un début et une fin de la saison des pluies
correspondant aux premiers et derniers événements pluvieux indiquant I’apparition
puis la disparition d’une convection organisée, un maximum de pluie tombée et la
longueur de la saison. Les dates de ces différentes phases sont définies selon plusieurs
criteres basés sur un seuil de pluie tels que agronomique, hydrologique et spatiale ou
climatique (Balme et al., 2005). Dans le cycle saisonnier sont aussi pris en compte les
parameétres tels que le cumul de pluie au cours de la saison et les pauses

pluviométriques.

Pour la détermination des paramétres dates de début et de fin de la saison des pluies,
beaucoup de méthodes ont été développée. (Balme et al., 2005) ont défini les dates de
démarrage et fin de la saison des pluies en appliquant les criteres hydrologique et
agronomique. Le premier consiste a considérer la premiere pluie enregistrée
supérieure ou égale a un seuil (0.5 mm, 25 mm ou 5 mm) et la derniére pluie
supérieure ou égale au seuil. Pour le second la date de démarrage de la saison arrive
aprés le ler mai, avec 20 mm de pluie cumulée sur 3 jours, sans épisode sec excédant
7 jours dans les 30 jours qui suivent (pour éviter les faux départs) et, comme date de
fin de saison apres le ler septembre, 20 jours consécutifs sans pluie. Pour déterminer
les dates de début et de fin de la saison des pluies, Liebmann et al. (2001) ont
appliqué la méthode basée sur le calcul de la somme “Anomalous accumulation ”,
aprés Marengo et al., 2001, avec la date de début correspondant au cumul sur 5 jours
des pluies supérieures ou égales a 4 mm/jours. (Odekunle, 2005) définit la date de
début de la pluie comme la premiére courbure maximale positive des précipitations
cumulées. Dans ce travail nous avons adapté cette méthode car elle est cohérente et
facile a comprendre. En considérant toute I’année, la fin de la saison des pluies est
définie comme la derniére pluie journaliére juste supérieure de la premiére pluie dans

la saison.
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Figure 2.11. Représentation de la méthode de détection des dates de début et de fin de la saison des
pluies avec le cumul de pluie annuel (bleu) et le cumul lissé (rouge).

La figure 2.11 montre I’évolution du pourcentage de pluie cumulée au cours de la
saison sur laquelle sont détectées les dates de début et de fin. Apres lissage avec le
spline de ces pourcentages de pluie cumulée, la dérivée seconde du spline est
appliquée a ce dernier pour avoir les courbures sur cette évolution. La premiére
maximale correspond a la date de début de saison des pluies et la derniére courbure

minimale a la date de la fin de la saison.

Les pauses pluviométriques au cours de la saison des pluies ont été détectées en fixant
un seuil de pluie en dessous du quel la pluie est nulle. Le nombre d’intervalles
consécutifs dans lesquels la pluie est nulle constitue une pause de pluie. Ce seuil de
pluie est fixé pour chacune des bases de données de pluie. Des seuils de 0.5 mm pour
RFE et 0.8 mm pour TRMM ont été fixés apres analyse de I’évolution des pauses
pour différents seuils compris entre 0.1 et 1 mm (figure Ch.3).

Pour détecter ces pauses de pluie aussi, nous avons calculé les anomalies,
particulierement les anomalies négatives qui correspondent a des périodes de stress
hydrique durant la saison. Pour détecter ces anomalies, la formule suivante a été

appliquée:

A'=(Aj—A) avec

A': anomalie

Aj : la pluie (LAI) moyenne pour lI'année j

A : la climatologie de la série (10 ou 11 années)
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- Détection des paramétres dans le cycle phénologique de la végétation :

Les phases du cycle végétatif se résument en une germination correspondant au
début de la croissance en réponse a l’arrivée des précipitations; si toutes les
conditions climatiques sont normales, la végétation poursuit sa croissance pour
atteindre la maturation (maximum de la croissance) et aprés cette phase commence la

phase de sénescence (fin de la croissance) c’est a dire le dessechement.

Dans un premier temps, pour détecter les phases dans le cycle phénologique avec les
observations de satellites, un lissage est nécessaire pour éliminer le bruit dans les
estimations et obtenir une meilleure évolution temporelle du LAI. Beaucoup de
méthodes sont utilisées pour le lissage des estimations biophysiques de végétation:
lissage médian (Reed et al., 1994), curve fitting (Hermance et al., 2007; Bradley et
al., 2007), methode basée sur I’analyse de Fourier (Bacour et al., 2006b; Roerink et
al., 2000; Moody and Johnson, 2001), lissage polynomial (Chen et al., 2004; Verger
et al., 2011b), fonction d’ajustement “Asymétrique Gaussienne” (AG) (Jonsson and
Eklundh, 2002; Jonsson and Eklundh, 2004), decomposition multi-resolution
(Kandasamy et al., 2012a; Sakamoto et al., 2010; Sakamoto et al., 2005), regression
des moindres carrés (Eilers, 2003). Yuan et al. 2011 ont ajusté les données MODIS
LAl avec le Savitzky-Golay (SG) uniquement avec des définitions de contréle de la
qualité pour enfin les comparer avec des cartes de référence de LAI. La méthode du
Locally Adjusted Cubic-spline Capping (LACC) est appliquée pour lisser les images
de MODIS LAI (produit de MOD15A2) (Chen et al., 2006).

Pour déterminer ces différentes phases de la dynamique de la végétation, plusieurs
méthodes sont proposées. Dans leur étude (Bobee et al., 2012) ont utilisé la double
fonction sigmoide pour détecter les étapes dans la croissance de la végétation.
(Jonsson and Eklundh 2004, Yuan et al., 2011) ont utilisé les fonctions “Asymétrique
Gaussienne” (AG) et Savitzky-Golay (SG). Certaines de ces méthodes de lissage
pourraient également combler les lacunes. Dans cette étude le lissage avec le spline-
cubic a été effectué sur les données de MODIS LAI car facile a manipuler

informatiquement et fait partie de ces fonctions qui comblent les lacunes.
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Figure 2.12. Représentation de la méthode de détermination des différentes étapes dans le cycle
phénologique de la végétation (LAI) avec les variations intra saisonniéres du LAI moyen (bleu) durant
la saison 2008. En rouge : le LAI lissé, noir : les courbures ; et pointillés vert verticaux : limites du

cycle phénologique.

La fonction spline est utilisée pour lisser le LAI (rouge) et la dérivée seconde de cette
fonction appliquée au LAI (noir) permet de détecter les courbures sur le LAI lissé.
Les premier et dernier maxima de courbure correspondant respectivement au
démarrage et a la sénescence. Le minimum de courbure détermine le maximum de la
croissance atteinte. A I’intérieur du cycle, les courbures minimales ou maximales
intermédiaires correspondent respectivement aux anomalies négatives ou positives

dans I’évolution du LAL.

Aprés détermination des différents parametres dans le cycle végétatif et la saison des
pluies, des analyses intra et inter annuelles sur I’évolution des différentes bases de
données sont effectuées. Des inter comparaisons par des corrélations simples ou
linéaires entre les bases de données, entre les différents parametres déterminés dans
les cycles d’évolution des variables, sont effectuées. Dans les différentes corrélations
réalisées, seuls les coefficients significatifs sont représentés. Pour étudier cette
significativité, deux méthodes sont appliquées. La premiere pour les régressions
linéaires est le test de Student pour o = 5%. La seconde méthode consistée a appliquer
le test de Monte Carlo pour la recherche de la significativité des coefficients de
corrélation dans les corrélations entre anomalies. Cette méthode est définie comme

suit : Pour une variable aléatoire X, on fixe a priori, a l'aide de la fonction de
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répartition de X, pour chaque nombre choisi au hasard, une valeur de X (c'est ce qu'on
appelle la transformation par quantile), puis on tire au sort un nombre N au hasard et
on en déduit N valeurs de X qui constituent la réalisation d'un échantillon de X. Dans

ces corrélations nous avons considéré N =1000 tirés au sort.

Conclusion

Comparées aux variations des précipitations in situ (Chapitre 1), les deux bases de
données de pluie TRMM et RFE décrivent au mieux la variabilité des précipitations
ainsi que leurs variations au cours du temps sur le bassin versant du Ferlo. L’humidité
du sol comme le LAI ont montré des évolutions cohérentes a celles des précipitations
satellite. Ainsi, la non-disponibilité des données in situ et la cohérence dans ces
données de satellite ont conduit a I’utilisation de ces derniéres pour réaliser notre

étude.

Les différentes méthodes présentées ont permis d’obtenir les différents résultats
présentes dans ce qui suit (Chapitre 3).
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Chapitre 3.

Rainfall Intra-Seasonal Variability and
Vegetation Growth iIn the Ferlo Basin
(Senegal)
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3.1. Résumé article
Introduction

Dns le bassin versant du Ferlo, il y a 7 stations météorologiques dont les données sont
tres incomplétes (Chapitre 2). 1l est apparu des le début de I’étude qu’il ne serait pas
possible de couvrir la période 2000 a 2010 de facon satisfaisante. Nous avons donc
utilisé des données de satellite. Les produits de satellite utilisés pour cette étude sont
les bases de données TRMM3B42 avec une résolution spatiale de 0.25° au pas de
temps de 3 heures et RFE 2.0 dont la résolution spatiale est 0.1° au pas de temps
journalier pour les précipitations, le produit ESA-CCI.SM avec une résolution de
0.25° et journalier pour I’humidité du sol, et le produit MODIS LAI avec une

résolution spatiale de 1 km? et temporelle de 8 jours pour la végétation (Chapitre 2).

Dans un premier temps, une classification de I’occupation du sol est réalisée sur la

base d’images LandSat5 obtenues sur https://Ipdaac.usgs.gov/data_access/glovis et de

la carte de la FAO de 2005 http://www.glcn.org/databases/se landcover en.jsp. Puis a

partir des cartes d’occupation du sol et des types de sol, la zone d’étude est discrétisée
en 9 entités homogeénes (Chapitre 2). Les entités homogenes sont constituees par une
classe de végétation unique sur un type de sol unique. Dans cette étude toutes les
analyses sont effectuées sur chacune des 9 différentes entités.

Nous avons comparé les caractéristiques des cycles saisonniers issus de ces bases de

données (voir ch. 2, fig. 1).
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Figure 3.1. Variations intra saisonniéres de la pluie (bleu), I’Humidité du sol (rouge) et le LAI (vert)

durant la saison 2005

Comme la pluie, le cycle saisonnier du LAI varie selon un gradient NO- SE avec un
maximum de LAI qui devient de plus en plus fort au fur et & mesure qu’on va vers le
sud (Chapitre 2).

La figure 3.1 illustre la cohérence temporelle entre les variations de pluie, d’humidité
du sol et de LAI pour une saison. Différentes méthodes ont été utilisées dans un
premier temps pour détecter ou déterminer les parametres spécifiques pour la pluie,

I’lhumidité et la végétation (Chapitre 2).

Des analyses comparatives sont effectuées entre les différents produits, d’abord entre
les données de précipitation entre elles et avec le soil moisture (SM) pour s’assurer de
leur fiabilité, puis la réponse du couvert végétal est testée d’une part a partir des
corrélations entre le maximum de la croissance de la végétation et des parametres
caractéristiques de la saison des pluie tels que le cumul de pluie et de SM, la
fréquence et la durée des pauses de pluie ou anomalies (SM) au cours de la saison.
D’autre part a partir de corrélations entre les anomalies de pluie ou de SM et les
anomalies de LAI. L’anomalie annuelle correspondant a la différence entre la
moyenne annuelle et la climatologie sur la décennie 2000-2010 (Chapitre 2).
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La différence qu’indique I’inter comparaison des produits de pluie entre eux est liée
en grande partie & leur résolution différente, TRMM3B42 avec sa résolution médiocre
détecte bien les gros systémes convectifs mais moins bien les pluies locales et faibles,
alors que RFE 2.0 avec sa résolution plus fine, prend en compte également les
événements locaux. Ces petites pluies sont significatives a I’échelle ou nous
travaillons. La comparaison entre les produits de pluie et SM montre une liaison forte
et significative entre les variables pluie et humidité du sol. Cette comparaison montrre

aussi que le produit RFE 2.0 est plus proche de la variable SM.

En réponse aux variations de la pluie ou de I’humidité du sol issues des différentes
bases de données, on obtient des corrélations différentes avec les variations de LAI:
avec SM, et RFE les corrélations sont fortes et significatives contrairement a celles
obtenues avec TRMM. Ceci s’explique pour SM, qui est I’humidité dans les couches
superficielles du sol, donc fortement liée a I’eau (ou RU) directement disponible pour
la plante (eau dans la zone racinaire aprés soustraction de plusieurs facteurs tels que
I’évapotranspiration, le ruissellement, la percolation). Le produit RFE couvrant
uniquement le continent africain, avec un algorithme incluant des données de
pluviomeétres, est plus proche des mesures in situ que TRMM, d’ou probablement la
réponse de la végétation plus forte avec RFE.

Les inter-comparaisons entre le LAI, la pluie et SM ont montré I’importance du type
de sol dans ces relations. Les corrélations entre le maximum de LAI et la quantité de
pluie ou SM moyen, le nombre de pauses et I’intensité de I’anomalie correspondante
(avec différents seuils = 3, 5 et 7 jours sur la durée des pauses) et la durée de la pause
la plus longue ont montré des différences trés significatives entre les entités
constituées uniquement de sols ferrugineux et lithosols, avec une réponse cohérente
de la végétation sur des sols ferrugineux plus au nord et pas du tout de réponse avec
celle sur des lithosols au sud. Ces différences sont liées a la pédologie car ces deux
groupes présentent des propriétés physico-chimiques différentes. Les lithosols qui
sont des affleurements de roche inaltérée dure sur lesquels I’infiltration peut étre lente
et donc la disponibilité de la réserve utile (RU) est décalée par rapport a la croissance
de la végétation. Les sols ferrugineux tropicaux sont de texture sableuse a sablo-
argileuse, de couleur rouge, plus ou moins lessivée, permettant une infiltration facile

et une RU toujours disponible et utilisée rapidement par les végétaux. De plus, le
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relief de bas plateaux avec une pente faible, est sillonné de nombreux bas-fonds (plus
concentrés dans cette partie sud-est) a mares temporaires ou se situent les sols
lithosols. L accumulation de ces mares temporaires fait que I’humidité est permanente
dans cette sous-zone d’ou la dépendance a la pluie indirecte des végétaux

contrairement aux zones sur sols ferrugineux qui sont situés plus a I’ouest.

Enfin un autre résultat est que les produits de satellite pour la variable en eau
montrent globalement une bonne cohérence entre eux. Dans leurs relations avec les
variations dans la croissance de la végétation, la nette différence observée entre ces
produits apparait quand les pluies faibles sont filtrées (c’est & dire quand un seuil est
fixé). La croissance de la végétation est plus sensible aux variations de SM et de RFE.

Ce travail fait I’objet d’un article intitulé «Rainfall Intra-Seasonal Variability and
Vegetation Growth in the Ferlo Basin (Senegal)» publié dans la revue Remote

Sensing, qui suit.

3.2. Article: Rainfall Intra-Seasonal Variability and Vegetation Growth in the
Ferlo Basin (Senegal)
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Abstract: During the monsoon season, the spatiotemporal variability of rainfall impacts the growth of
vegetation in the Sahel. This study evaluates this effect for the Ferlo basin in central northern Senegal.
Relationships between rainfall, soil moisture (SM), and vegetation are assessed using remote sensing
data (TRMM3B42 and RFE 2.0 for rainfall, ESA-CCI.SM for soil moisture and MODIS Leaf Area Index
(LAI)). The principal objective was to analyze the response of vegetation growth to water availability
during the rainy season using statistical criteria at the scale of homogeneous vegetation-soil zones.
The study covers the period from June to September for the years 2000 to 2010. The surface SM is
well correlated with both rainfall products. On ferruginous soils, better correlation of intra-seasonal
variations and stronger sensitivity of the vegetation to rainfall are found compared to lithosols
soils. LAI responds, on average, two to three weeks after a rainfall anomaly. Moreover, dry spells
(negative anomalies) of seven days’ length (three days for SM anomaly) significantly affect vegetation
growth (maximum LAI within the season). A strong and significant link is also found between total
precipitation and the number of dry spells. These datasets proved to be sufficiently reliable to assess
the impacts of rainfall variability on vegetation dynamics.

Keywords: sahel; rainfall; TRMM; RFE; soil moisture; MODIS LAI

1. Introduction

The rainy season in the Sahel occurs from May to October. It is highly variable in time and space,
although maximum monthly rainfall generally occurs in August [1]. The vegetation cycle closely
follows the seasonality in rainfall, with almost all biomass production taking place in the humid
summer months [2]. The variability in the length and strength of the rainy season strongly affects food
production through both arable agriculture, livestock and grazing. However, soil properties are also
important in driving the vegetation species composition and biomass amount [3]. Thus, the regional
economy is strongly dependent on the combination of soil characteristics and rainfall.

Most previous studies have focused only on average or cumulative rainfall during the rainy
season, and the start [4] and end date of the season [5]—the variability within the monsoon has
generally been neglected. However, the length and frequency of dry spells [6] and the frequency,
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amount and duration of rainfall events [7] are essential variables controlling the relationships between
rainfall and vegetation growth.

We study the pastoral Ferlo region in Senegal, at the sub-regional scale. Considering this to be
the radius of human activity centered on a village; it is characterized by large spatial and temporal
variations in rainfall with a high heterogeneity. These intra-seasonal variations have been poorly
studied until now, because the meteorological network is too sparse to assess the spatial heterogeneity
of the rainfall (only one rain gauge has been operating over the past few years in Ferlo) and there is no
rainfall radar deployed in the region. Satellite remote sensing (RS) constitutes key technologies for
improving the availability of vegetation data and of climatic data in Sahel, as shown in the review by
Karlson and Ostwald [8].

Satellite data are frequently used at regional scales, but because of their horizontal resolution, and
the accuracy of the products (rainfall rate in particular), it can be problematic to use them appropriately
at smaller scales. Nevertheless, satellites provide the only available measurements with the coverage
to allow us to analyze sub-regional variations in rainfall. As an example, Tarnavsky ef al. (2013) [9]
demonstrated how satellite products can be used to constrain a hydrological model in the Ferlo
watershed, and similarly, Soti et al. (2010) [10] successfully assessed the spatial and temporal
dynamics of pond water levels and water areas in the Ferlo, using remote sensing rainfall and
land-cover products.

This work focuses on the influence of the intra-seasonal spatiotemporal variability of rainfall on
the seasonal variation of vegetation in the whole semi-arid Ferlo basin of Senegal, using remote sensing
products, over the period 2000 to 2010. Because several products can be used to describe the impact
of rainfall on vegetation, the relationships they give between rainfall and vegetation growth were
assessed. In addition satellite-derived surface Soil Moisture (SM) is considered. SM plays a crucial role
in the continental water cycle, specifically in the partitioning of precipitation between transpiration
and soil evaporation, surface runoff and infiltration [11-13]. To evaluate the impact of intra-seasonal
rain variations on vegetation growth, the Ferlo region was subdivided into homogeneous sub-regions,
in which the mean vegetation amount was assessed with the Leaf Area Index (LAI) derived using
satellite data. The rainfall and LAI variations were analyzed in terms of anomalies with respect to
the climatology to infer the effects of rain excess or droughts on growth, and then on the maximum
vegetation cover within the season.

Section 2 details the Ferlo region, the satellite products used for vegetation and rain, and the
methodology. The rainfall and SM data are compared at the scale of these homogeneous areas. Mean
features, both spatially and temporally, are pointed out in Section 3. In Section 4, rainfall anomalies are
correlated to LAI anomalies within the seasonal distribution and year to year to assess the vegetation
response. Results from the previous sections are discussed in Section 5, before the concluding remarks
in Section 6.

2. Datasets and Methods

2.1. Study Area

The Ferlo basin is located in the north-central part of the Senegalese Sahelian climate zone between
latitudes 14°30'N and 16°15'N and longitudes 12°50'W and 16°W (Figure 1a). The Ferlo River is a
tributary of the Senegal River; during the rainy season it flows into the Senegal River via the Guiers
Lake. According to Tappan et al. [14], three eco-regions are represented within the Ferlo basin:

e thenorthern sandy pastoral region (24,763 km?) where the predominant soils are red-brown sandy
soils and ferruginous tropical sandy soils, covered by open shrub steppes and grasslands. On
average, tree and shrub canopy cover does not exceed 5% of the total area, and the pseudo-steppe
consists of a discontinuous herbaceous cover of annual grasses;

e the ferruginous pastoral region (30,908 km?) where soils are mainly shallow loamy and gravelly
ferruginous tropical soils and lithosols on the plateau, and deep, sandy-to-loamy, leached tropical
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ferruginous soils in the valleys, the vegetation being characterized by shrub savanna, and
bushland, often relatively dense. The herbaceous layer comprises a mix of annual and perennial
grasses, leguminous species and other plants;

e the southern sandy pastoral region (10,852 km?) where the predominant soils are ferruginous
tropical sandy soils, slightly leached, and covered by shrubs and tree savanna. In the wetter,
southern part of the region, species diversity increases and the tree species become more
abundant [14]. The herbaceous layer is dominated by leguminous species.

Tables 1 and 2 summarize the soil characteristics and main vegetation species, following [14-16].
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Figure 1. (a) Location of the Ferlo watershed study area; (b) land-cover map obtained from the FAO
for 2005 [17] (Centre de Suivi Ecologique (CSE), Dakar); (c) Soil type map extracted from the Senegalese
Plan National d’Aménagement du Territoire (PNAT) published in 1986.

Table 1. Description of the five main soil types in the Ferlo watershed derived from the Plan National
d’Aménagement du Territoire (PNAT) map of Senegal soils in 1986 (from Centre de Suivi Ecologique

(CSE), Dakar).
Soils Description
Found on the western and southern part with a sandy and
clayey-sandy texture; they have a red color and are poor in organic
Ferruginous Tropical soils matter. The soil surface is degraded as a result of exploitation and the
absence of fallow periods. They usually have a low level of organic
matter.

Found in the Ferlo valley and its former tributaries, they have variable
textural features ranging from sandy silt to clayey silt. Their
development is linked to a slight deficiency of drainage, which allows
a certain accumulation of organic material.

Hydromorphic soils

Very shallow and little evolved; they generally occupy the lower slopes

Regosols soils in association with lithosols. They have low organic matter content.
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Table 1. Cont.

Soils Description
Cover practically all of eastern Ferlo, they are raw mineral soils formed
Lithosols soils by non-climatic erosion of hard rock. They have low organic matter
content.

Located in northern and western Ferlo on low plateaus and fixed
dunes, they are characterized by poor organic matter content and low

Brown Red soils chemical fertility, they consist mainly of sand and clay. These soils
have a red-brown color with low organic matter content uniform over
much of the profile.

Table 2. Main vegetation species found in the Ferlo basin.

Vegetation Type North to Center Ferlo South Ferlo

Acacia seyal Guiera senegalensis
Combretum micrathum (kinkéliba)
C. glutinosum
C. nigricans
Tree and bush species Pterocarpus lucens
Guiera senegalensis
Feretia apodanthera
Grewia bicolor
Pterocarpus lucens

Combretum glutinosum

Dactyloctenium aegyptium, Zornia glochidiata Reichb
Aristida mutabilis Alysicarpus ovalifolius
Cenchrus biflorus
Herbaceous species Schoenefeldia gracilis
Tribulis terrestris Indigofera senagalensis
Cassia obtifolius
Zornia glochidiata.

2.2. Satellite Data

The decade beginning in 2000 was selected for this study because the available satellite products
are of the highest quality in terms of the number of observations (including time and space
sampling) and accuracy. The LAI, rainfall and SM products used in this work are described in
the following sections.

2.2.1. LAI

LAl is defined as the green leaf surface area of a canopy per unit of ground surface (m?-m~2).
It can be provided from MODIS (TERRA and AQUA) instruments [18-22] available at [23]. The
MODIS LAI composite product [24] is available every eight days with a spatial resolution of 1 km?.
It is projected onto a 10° sinusoidal grid and is distributed in HDF-EOS format. The product is
subjected to extensive quality control and has been found to work well in the Sahel [25], with a
minimum uncertainty of about + 0.2 m?2m—2 during the dry season ([14,24]). Zhang et al. [26] also
used this product to monitor the vegetation growth. For Fensholt ef al. [27], MODIS LAI data reproduce
"the real world LAI" with R? ranging between 0.23 and 0.98 in a semi-arid savanna (in the center
and north of Senegal). The product quality has been checked by comparing MODIS LAI and in situ
measured LAI for semi-arid woodland and savanna in southern Africa [28]. The MODIS LAI data
proved to be effective for phenology monitoring [29,30]. The MODIS dataset used in this work covers
the period from February 2000 to December 2010.

2.2.2. Rainfall

The TRMM3B42 (Tropical Rainfall Measuring Mission) [31] product is available for the 50°N-50°S
latitude band, at a spatial resolution of 0.25° x 0.25° and a time-step of three hours. The derived
rainfall is based mainly on microwave measurements from the TRMM mission (Microwave Imager
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TMI, Precipitation Radar PR), complemented with measurements from other platforms (Special Sensor
Microwave/Imager (SSMI) on the Defense Meteorological Satellite Program (DMSP) satellite series,
the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) on AQUA, and
the Advanced Microwave Sounding Unit-B (AMSU-B) on the National Oceanic and Atmospheric
Administration (NOAA) satellites). In addition, infrared data from geostationary satellites provide
information on the precipitation cloud life, obtaining full coverage of the tropical latitudes. Data from
the years 2000 to 2010 are used in this study.

The RFE 2.0 (African Rainfall Estimates Version 2.0) product [32] has a spatial resolution of
0.1° x 0.1° and a daily time-step. It covers from 40°S to 40°N and from 20°W to 55°E—the entire
African continent. RFE 2.0 data are based on the combination of daily Global Telecommunication
System (GTS) rain gauge data that consist of about 1000 rain gauges in Africa, as well as Advanced
Microwave Sounding Unit (AMSU) and Special Sensor Microwave/Imager (SSM/I) satellite rainfall
estimates. RFE 2.0 uses additional techniques to better estimate precipitation while continuing the
use of cloud top temperature and station rainfall data, which formed the basis of RFE 1.0. Meteosat 7
geostationary satellite infrared data and are acquired at 30-min intervals, and areas depicting cloud top
temperatures of less than 235 K are used to estimate convective rainfall. Both estimates are acquired
at six-hour intervals and have a resolution of 0.25 degrees. Finally, daily rainfall is estimated by
combining all satellite data using a maximum likelihood estimation method. GTS station data are then
used to remove bias. Warm cloud precipitation estimates are not included in RFE 2.0. The database
starts in October 2000, so all applications of this product in this study are for the period 2001-2010.

Both TRMM3B42 and the RFE 2.0 products can be used to evaluate the quality of the rainy season
in the Sahel, as for example by Samimi et al. (2012) [33]. The major difference between them is that RFE
2.0 incorporates data from rain gauge measurements [34], whereas TRMM3B42 does not. These two
daily products have been used in many previous studies across Africa analyzing precipitation [35],
and TRMM3B42 data have been used to study the response of vegetation phenology to rainfall [36].
This product also showed good skill at estimating intense tropical cyclone rainfall [35] and at flood
prediction [37]. RFE 2.0 data were also evaluated for Uganda in East Africa using a network of 27 rain
gauges [38], showing that RFE 2.0 and two other satellite products (GPCP-1DD and TAMSAT) had
similar characteristics and a high level of skill compared to model outputs (ERA-40 and ERA-Interim).

2.2.3. Soil Moisture

SM is defined as the water present in the unsaturated part of the soil profile, i.e., between the soil
surface and the water table (e.g., [39,40]). Several studies have stressed the important role of SM in the
water cycle (e.g., [41]) and in vegetation development (e.g., [42,43]).

The SM dataset used in this study is derived from microwave measurements, with both active and
passive sensors, SMMR, SSM /I, TMI and ASMR-E (for the passive products) and the ERS and ASCAT
scatterometers (for the active products) [44—46]. The signals from microwave sensors are related to
SM in the upper few centimeters of the soil but the relationships between SM at the surface and in the
root zone are well established (e.g., [45]). The SM product, in volumetric (m3-m~3) units, has a spatial
resolution of 0.25° x 0.25° and a daily time-step. It is available at [47]. Its validation has benefited from
the increasing number of in situ datasets, many of them resulting from the initiative of the International
Soil Moisture Network (available at [48]) [39], including 596 sites distributed through 28 SM networks
worldwide [49].

2.3. Methodology

The challenge in this study is to interpret satellite data at a smaller scale compared to the
horizontal resolution of the rainfall and SM data, and to incorporate local surface properties. With
this aim, the Ferlo area was divided into homogeneous sub-areas, each with a unique set of
parameters (soil-vegetation), in which the variabilities of the rainfall and vegetation growth can
be analyzed individually.
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2.3.1. Surface Classification

Land Cover

The land-cover classification (Figure 1b) was derived from a set of Landsat 5 images acquired by
the TM sensor in November 2010 and geometrically corrected. This month corresponds to the end
of the rainy season and to the end of vegetation growth. The data were obtained from [50] and were
processed to produce a single mosaic image. A geographic information system (GIS) was then used to
classify the Ferlo region into homogeneous zones by visual interpretation. The classification obtained
was then compared with the Food Agricultural Organization (FAO) land-cover classification (available
at: [17]) that also makes use of aerial photographs and socio-economic data. The two classifications
were found to be consistent, although the FAO map includes a larger number of classes. Finally, a
three-class classification corresponding to the dominant natural vegetation types, namely: shrub-steppe
with trees (SStT), tree-savanna (TSv) and tree-savanna with shrubs (TSvS) was implemented.

Homogeneous-Zone Characterization

A map (Figure 1c) of the main soil types was obtained from the Senegalese Plan National
d’Aménagement du Territoire (PNAT) [51] (available from Centre de Suivi Ecologique, Dakar, Senegal).
Using a GIS, soil type and vegetation classification maps were projected onto the same coordinate
system. With these maps over-imposed, the polygons in which at least 100 LAI pixels (areas larger or
equal to 100 km?) of a nearly single type of vegetation on a unique soil type were identified, following
the above classification (Figure 2). These homogeneous vegetation-soil zones (VSZs) are described
in Table 3. Their names are based on their vegetation and soil types. Because of these criteria, some
non-homogeneous areas (river valleys and small cropland areas mostly found in transition zones)
were filtered out, explaining the discontinuous patterns in Figure 2. In particular, the hydromorphic
soils were not considered because continuous hydromorphic areas do not reach the threshold of
100 LAI pixels. Note that the soil-type homogeneity was taken as stronger criteria than the vegetation
type, because the vegetation-type tree savanna with shrubs dominates most of the Ferlo.
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T T T T N
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Figure 2. Vegetation-Soil Zones (VSZ) map obtained from the superposition of the land-cover and
soil-type maps, the heterogeneous transition zones were masked. The legend items are spelled out
in Table 3.
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Table 3. Abbreviations for the different vegetation-soil zones (VSZ) obtained from combining maps of
vegetation types and maps of soil types.

Abbreviation Description

TSvS-L1 Tree-Savanna with Shrubs (TSvS) on lithosols Soils (L)
TSv-L Tree-Savannah (TSv) on lithosols Soils (L)

TSvS-L2 Tree-Savanna with Shrubs (TSvS) on Lithosols soils (L)

Tree-Savanna with Shrubs (TSvS) on Ferruginous tropical

TSvS-Fl soils (F) in southeast sub-region
TSvS-L3 Tree-Savanna with Shrubs (TSvS) on Lithosols soils (L)
TSvS-R Tree-Savanna with Shrubs (TSvS) on Regosol soils (R)
Tree-Savanna with Shrubs (TSvS) on Ferruginous tropical (F)
TSvS-F2 . .
in northwest sub-region
TSvS-RB Tree-Savanna with Shrubs (TSvS) on Red-Brown soils (RB)
SStT-F Shrub-Steppe with Trees (S5tT) on Ferruginous tropical (F)

2.3.2. Vegetation Phenology Parameters

The phenological cycle in the Sahel is characterized by rapid vegetation growth at the end of June,
following the monsoon onset, a maximum biomass (and LAI) in September, and a senescence phase
through until the end of December. Even during the period of maximum variation of LAI within a
VSZ (as expressed by the standard deviation), the 10% extreme values in the VSZ make a negligible
impact on the mean LAI Therefore, in the following, only the mean LAI values over the total area
of each VSZ will be used. However, within-season temporal variations in LAI do result from the
monsoon variability: in particular, marked decreases in LAI are observed every year during the growth
phase. Phenological indicators such as the dates of the start and end for the growing season, and
the maximum of the vegetation growth (date and amplitude) can be used to analyze the vegetation
intra-seasonal and inter-annual variations.

Several methods have been proposed for determining these phenological dates, such as the
sigmoid [25], the Gaussian Asymmetric (AG), and the Savitzky-Golay (SG) ([22,52]) functions.
However, these methods do not allow one to globally adjust the phenological cycle. Chen et al. [53]
proposed a Locally Adjusted Cubic-spline Capping (LACC) method to smooth the LAl image from
the MODIS (MOD15A2) product. Following this approach, a cubic spline weighted by the inverse
of the normalized variance was used within the VSZ. As a result, LAI time series were fitted and
phenological dates were determined with the first and last curvature maxima corresponding to the
start date of the growing season and to senescence, respectively. The maximum of LAI corresponds
to the minimum curvature. Variations within the season are evaluated as anomalies with respect to
the 11-year climatology, to which a three-point moving window is applied to remove the residual
small-scale variability.

2.3.3. Soil Moisture

The dates defining the SM seasonal variations, i.e., start and end day of the wet period, are
detected using a cubic-spline fit. As with LAI the start and end days are estimated as the days with
the first (and last) curvature maximum, and dry spells are defined as negative anomalies with respect
to the 11-year climatology.

2.3.4. Rainfall Parameters

Three parameters were computed to characterize the rainy season and its intra-seasonal variation,
namely: the onset and end dates of the rainy season, and the total rainfall amount during the vegetation
growth season (June through September). At the intra-seasonal scale, the most important feature is the
occurrence of dry spells.
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Several methods have been developed to determine the dates of onset and end of the rainy season.
Here, we applied the method of Odekunle [54] that defines the start date of the rainfall as the first
positive point of maximum curvature of the cumulative precipitation. The end of the rainy season
is defined as the latest date in the year when the daily rainfall is just greater than that which fell on
the first rain day of the season. A rainfall threshold is required to detect dry spells during the rainy
season, because statistical rainfall retrieval methods are inherently uncertain for low precipitation. This
threshold may be defined differently according to the scientific discipline (meteorologist, agronomist
or hydrologist) and the data source (local data or satellite data). Here, we define dry spells as occurring
when the rainfall is less than or equal to 0.8 mm per day for TRMM3B42 and 0.5 mm per day for RFE
2.0 during a period of at least seven consecutive days.

2.3.5. Comparison of TRMM3B42 and RFE 2.0 Products

Figure 3 presents the average rainfall and SM, and their standard deviations for the 2000-2010
decade. The two satellite products show similar spatial distributions of total rainy season rainfall.
Although the mean maps present a picture of overall agreement (Figure 3a,c,e), the spatiotemporal
variations (Figures 3b,d,f and 4) show that the TRMMB3B42 product displays much higher variation,
particularly in the southeast. TRMM3B42 and RFE 2.0 standard deviations differ by a factor of
approximately two. Despite an observed intensity difference, with higher maxima in the southern
VSZs for TRMM3B42 (Figure 4), the two products are well correlated when comparing the yearly
cumulated rainfalls of all VSZs over 10 years (Figure 5b). These results are consistent with previous
work [34], which has shown that RFE 2.0 underestimates rainfall amount compared to the TRMM
product. In their validation of satellite-based precipitation products, Thiemig et al. [55] show that
RFE 2.0 and TRMM 3B42 present the best performance when compared to other products such as
CMORPH [56], GPROF 6.0 [57].

2.3.6. Use of the Satellite-Derived Soil Moisture for Depicting the Intra-Seasonal Rainfall Variation

Figure 4c shows the mean seasonal evolution of SM over each VSZ for the 2000-2010 time period.
Consistent with the rainfall distribution throughout the season, minimum SM is observed in those VSZs
found in the north (SStT-F, TSvS-RB, TSvS-F2), while maximum SM is found in the southeast (TSv-L,
TSvS-L1, TSvS-L2). However, the SM spatial variations do not show the same clear NW-SE gradient
found for the rainfall. The main reason is that, despite the weak orography, the SM distribution in
Ferlo is also constrained by the watershed hydrology, as shown by Tarnavsky et al. [9]. At the scale of
the VSZs, SM temporal variations are quite similar to those of rainfall (Figure 5), but with smoother
variations. The maximum values of SM and rainfall occur between the middle and end of August with
SM decreasing more slowly than rainfall in the drying phase.

For both TRMM3B42 and RFE2.0, a good correlation between the mean SM and cumulated rainfall
over the growth period, for each year and each VSZ, was found, as shown in Figure 5 (r = 0.76 and
r = 0.83 for TRMM3B42 and RFE 2.0, respectively) and Figure 6a. The major difference between rainfall
and SM is that while SM is a continuous time series, rain occurs as a series of discrete events. On
average, over all VSZs, the rainy season onset dates agree to within one day (around Day 158). The
dates of maximum rain are close for both rain products (difference, on average, of less than three days),
but maximum SM occurs 10 days later, after loss through infiltration, runoff and evapotranspiration
(Figure 6b). Finally, the number of dry spells longer than one week, estimated from the three datasets,
agree to within one spell (between two and three dry spells for RFE 2.0 and SM, between three and four
for TRMM3B42), and the duration of the longest dry spell per year is, on average, 11 days (12 days for
TRMM3B42). Following the rainfall spatial variations, the dry spells are shorter in the south than in
the north.

There is thus good agreement between the seasonal and intra-seasonal characteristics of rain
and SM (Figure 6) and the CCI-SM product seems to properly depict the effects of the major rainfall
variations within the season.
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Figure 3. Spatial variations of rainy season rainfall (i.e., for months June through September) from 2000
to 2010, (a) and (b) show 11-year average seasonal rainfall and the variations of the standard deviation
(STD) from TRMM3B42, (c) and (d) 10-year average and the STD variations for RFE 2.0, (e) and (f)
11-year average and the STD variations for soil moisture.
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Figure 4. Average rainfall over eight-day intervals from (a) RFE and (b) TRMM,; and (c) soil moisture
for each Vegetation-Soil Zone (VSZ) averaged over the 2000-2010 decade (see Table 3 for legend items).
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Figure 5. The total amount of rain from June through September averaged for the period 2000-2010
over the area of each vegetation-soil zone (VSZ, see Table 3 for legend items): (a) comparison between
REFE rainfall and the soil moisture, and (b) comparison between TRMM and RFE.
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Figure 6. Comparison between some parameters characterizing the rainy season from TRMM3B42,
RFE 2.0 and soil moisture (SM) in average on each vegetation soil zone (VSZ, see Table 3 for legend
items) over the 2000-2010 decade: (a) cumulative rainfall and SM; (b) dates of onset and maximum
(respectively in dark and clear colors); (c¢) number of dry spells and (d) the longest dry spells).

3. Mean Patterns of the Rainfall and Vegetation Phenology

The seasonal evolution of rainfall and SM (Figure 4) highlights the differences between those
VSZs in the southeast and those in the northwest: the maximum, around day 240, is clearly seen for
the TSvS-L (1 to 3) areas, but less obviously for SStT-F and TSvS-RB. The northern Ferlo (SStT-F) is
the driest, with rather low time variability. This is consistent with the rain climatology of the Sahel,
whereby the rainy season is composed of local rainfall events, and mesoscale convective systems,
propagating from east to west, linked with African Easterly Waves. In the south of the Sahel, local
convection leads to a rather regular frequency of precipitation, but further north, local convective
storms are scarce and rainfall only results from the few mesoscale systems which reach that part of
the region. The standard deviation maps of seasonal rainfall therefore show a higher interannual
variability in the southeast part of the region (Figure 3b,d). The maximum SM standard deviation is
observed in the western part of Ferlo, near 15.5°W (Figure 3f), which is the only significant area with
arable agriculture (see Figure 1b). However, the local rain and SM variations in the SE of TSvS-F2 are
stronger than those expected from the mean rainfall gradient. The proximity of the Ferlo riverbed, with
a confluence of three rivers, is possibly the cause: as shown by Tarnavsky ef al. [9], SM and runoff are
locally maximal, and Soti et al. [10] showed the sensitivity of ponds in this area to rain perturbations.

As with rainfall and SM, the mean weekly LAIs were computed for every year, and averaged
over the decade. The mean vegetation phenological cycles extracted for each VSZ are shown in
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Figure 7a. A cubic spline was applied to remove the individual small-scale variability. Figure 7b
shows the standard deviation of LAI calculated for each VSZ over the month of September (month
of the maximum LAI and maximum variability) and Figure 8 summarizes the spatial variations of
some characteristic parameters (start dates, end dates, dates and values of the maximum LAI) in the
vegetation cycle. The TSvS-L1 zone presents the maximal values (mean LAI about 2.9 m?-m~2) with
a strong variability (standard deviation about + 0.19), as well as the earliest onset date (Figure 8a).
The opposite occurs in the TSvS-RB zone which has the lowest maximal LAI (about 0.8) with a low
variability (standard deviation lower than +0.05) (Figure 8a,b).
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Figure 7. (a) Variations of the mean LAI smoothed with the cubic spline, each color representing a
homogeneous vegetation-soil zone (VSZ, see Table 3 for legend items); (b) into box plot, the standard
deviation of LAI (a red segment inside the rectangle shows the median, the “whiskers (black horizontal
dash)” above and below the box show the minimum and maximum standard deviation and the blue
box around the median is the lower quartile (median value of the lower half of the data) and the upper
quartile (median value of the upper half of the data)) for each zone over the 2000-2010 decade.

Figure 8a shows that LAI follows the same southeast-northwest gradient as rainfall and SM, as
observed previously by Justice et al. [58]: in the southeast, the growing season starts earlier and the
maximum is higher, whereas in the northwest the growth starts later and reaches a lower maximum
(Figure 8a). On average, the vegetation season starts in June (on average day 160 in the southeast, but
one month later day 180 in the northwest), and finishes in November (around day 329 in the southeast
and day 313 in the northwest), i.e., a difference in the length of the phenological cycle of between two
and three weeks between the southeast and northwest. The maximum LAI is reached earlier in the
northwest than in the southeast (Figure 8c). The phenological cycle is longer (Figure 8b), and LAl is
higher in the south, which is consistent with the higher total rainfall amount during the season. The
date of maximum vegetation is observed between the end of September in the northwest and the end
of October in the southeast. Another feature of the southeast of Ferlo is that LAI is never lower than
0.5 (see Figure 7a), even at the end of the dry season, providing evidence of the presence of evergreen
vegetation. This is not observed in the northwest part of the region, as already noted in Section 2.1.
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Figure 8. Spatial variations of some characteristic parameters in the vegetation phenological cycle over
the period 2000 to 2010: (a) start of the growing season; (b) end of the growing season; (c) date of
maximum LAIL and (d) the maximum value of LAIL

4. Intra-Seasonal Analysis of Vegetation Response

The rainfall comprises a succession of wet and dry periods within the season; the pattern
of these periods directly affects SM and vegetation growth. Between its onset and end, the West
African Monsoon system is driven by these fluctuations that define the active and inactive phases of
the monsoon.

In the previous section, the mean effect of variations within the rainy season over the decade was
examined. Now, the intra-seasonal variations and anomalies of rainfall, SM, and LAI are analyzed.
How breaks in the rainy season impact the vegetation has been widely studied ([2,25,59-62]). However,
these general relationships may not apply when plant growth is strongly influenced by very local and
specific features (e.g., soil type, species composition).

4.1. Effect of Rainfall Anomalies on LAI Variations through the Season

Rainfall, SM and LAI anomalies were calculated for each VSZ by removing the 11-year average
annual cycle from the yearly data. These averages were smoothed to reduce the small-scale variability
using a moving window of three weeks. Rainfall and SM anomalies were recalculated at LAI dates
(eight-day time-step) by averaging the daily data, then time series of the June-September anomalies
were built over the 2000-2010 decade. Finally, lagged correlations with the corresponding LAI time
series were calculated.

As rainfall does not have a Gaussian distribution, we evaluated the statistical significance of
correlations by applying a Monte Carlo test at 90%. To do this, yearly time series of rainfall (or SM)
anomalies were randomly distributed within the 10 years before calculating the correlations with the
actual LAI time series. A thousand random changes were performed to evaluate the mean significance
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level to which the correlation is compared. Finally, the mean lag between the time series was estimated
by averaging the lags with a significant correlation coefficient (larger than a given threshold). In these
correlations, anomalies (positive and negative) were separately correlated to distinguish the impacts
of wet and dry anomalies on the vegetation.

Figure 9 summarizes the results for all VSZs. The value of the correlation coefficient is given in the
left-hand panels, and the mean lag in the right-hand panels. Upper panels are for positive anomalies;
bottom panels are for negative ones.
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Figure 9. Comparison of correlation coefficients and lags in number of weeks between anomalies of
rainfall and SM, and anomalies of LAI (TRMM3B42/LAI (blue) and RFE/LAI (green) and SM/LAI
(red)) over the period 2000-2010 and on all the VSZs (see Table 3 for legend items) in the Ferlo watershed;
with (a) correlation coefficients between positive anomalies; (b) correlation coefficients between
negative anomalies; (c) lags between positive anomalies and (d) lags between negative anomalies.

4.1.1. Positive Anomalies (Rainfall or SM above the Mean)

The positive rainfall and SM anomalies are correlated with LAI anomalies for all VSZs except
the TSvS-L1, for which no significant correlation was found. This is also the case in TSv for both
TRMM3B42 and RFE 2.0, as well as in TSvS-L2 for RFE 2.0. For all but the lithosols zones, the mean
lag is about two weeks. This means that the vegetation growth is increasing two weeks after the
positive rainfall anomaly occurs. The longer time lag obtained for SM on these VSZs is doubtful, as
it corresponds to a lower correlation coefficient compared to the other VSZs. When looking at the
correlation plots, a flat correlation coefficient is observed for all lags. These VSZs are characterized by a
larger value of LAI (even significant during the dry season) and higher amounts of incoming/available
water (rainfall and SM), as presented in the previous sections.
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4.1.2. Negative Anomalies (Rainfall or SM below the Mean)

The negative rainfall or SM anomalies are better correlated to LAI negative anomalies than
positive ones: the correlation coefficient is larger with a difference of +0.1, on average, for the two
rain datasets and SM. We note that a significant correlation is missing only in TSvS-L1, and only
for TRMM3B42. Compared to positive anomalies, negative anomalies have a stronger effect on the
vegetation, as they induce water stress. The correlation coefficients between negative anomalies are
almost the same when using the two rainfall products but they are higher in the case of SM. For both
anomaly types, the correlations with SM are slightly larger than with rainfall on most of the VSZs.
The vegetation response is faster for SM compared to rainfall with an average lag of between one
to two weeks and two to three weeks, respectively, over all areas. The time lag varies among the
homogeneous VSZs. In general, the correlation coefficients calculated for ferruginous soils are greater
than 0.5, whereas for lithosols, they are less than 0.50.

4.2. Impacts of Within-Season Rainfall and SM Variability on LAI

At the seasonal scale, the vegetation growth depends on the rainfall amount and its distribution
during the rainy season. Water content in the root zone is the factor that most limits vegetation
growth (e.g., [63,64]). The results of Section 4.1 indicate that rainfall anomalies impact vegetation
growth. We now examine how the year-to-year variation could affect this correlation. To investigate the
impact of rainfall anomalies within the season on the vegetation phenology, we examine the statistical
relationships between LAI and selected rainfall-related indicators and investigate two questions:

- Is the vegetation phenology (delay, amplitude) sensitive to the rainfall onset date?
- Do the variations in the total rainfall amount have a similarly effect on all VSZs, and do the dry
spells have a similar effect on the vegetation growth, whatever their date, number and duration?

To answer these questions, rainfall and SM were compared with LAI averaged over each VSZ, for
every year. In these comparisons, rainfall, SM and LAI anomalies are all normalized relative to their
maximum in each VSZ, in order to homogenize the overall VSZ variability.

The vegetation response relative to rainfall and SM indicators was analyzed using linear
regression. The statistical significance of these relationships was evaluated using Student’s t-test,
with a significance threshold of o« = 5%. The anomalies within the season were calculated as the
difference between each yearly time series and the smoothed average over the period 2000-2010, for
each VSZ. Precipitation and SM time series were re-sampled with the same eight-day time-step as
the LAL

4.2.1. Rainy-Season Onset

To examine the impact of annual onset shifts with respect to the average date, we compared the
difference between each season’s rainfall onset date and the mean rainfall onset date with the growing
season start date and maximum LAI date (shifted with respect to the average date).

In zones with ferruginous soils, there is a fairly good correlation between the rainfall onset date
and the start of the growing season (r = 0.54 and r = 0.51 for TRMM3B42 and RFE, respectively),
significant by Student’s t-test. However, on the lithosols, these correlations are very low and not
significant (r = 0.13 and r = 0.14).

However, the onset date of rainfall or SM does not affect the date of maximum LAI (no significant
correlation). Thus, the phenological cycle is not delayed by late onset of the rainy season.

4.2.2. Rainfall Amount

The analysis of positive and negative rainfall anomalies has shown that the vegetation response
is not the same for all the VSZs, with no significant coefficients on the lithosols. To investigate these
differences, the links between total rainfall, mean SM and negative anomalies (number of dry spells;
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intensity of dry spells; duration of maximum dry spell; and intensity of maximum dry spell) and
maximum of LAI were analyzed. For this, the lithosol and non-lithosol VSZs were separated. To
give the same number of degrees of freedom in the statistical test, three ferrugineous and three
lithosol VSZs were considered in both cases. Three thresholds on the duration of anomalies were
used: >3 days; >5 days and >7days. Figure 10 summarizes the link between indicators of the rainfall
amount variations and the vegetation growth up to the time of maximum LAL

- Total rainfall over the growing season (June-September):

The interannual correlations between the maximum LA, total rainfall and SM for June-September
(Figure 10a and Table 4) are significant (p < 0.05) on the non-lithosols soils with high correlation
coefficients (¥ > 0.60 for TRMM; RFE 2.0 and SM), contrary to the lithosols, for which this relationship
is not significant (p > 0.05 with < 0.2).

- Impact of dry spells

To evaluate the impact of dry spell duration, number and intensity (rainfall anomaly with respect
to the 11-year average) as well as SM negative anomalies on the yearly vegetation growth, three dry
spell durations were explored: >3, >5 and >7 days (Figure 10).

A significant relationship was found for all zones other than those with lithosols. The correlations
of the maximum LAI with SM anomalies (number and intensity) were all significant whatever the
threshold on the duration of the dry spell, whereas the correlations with RFE 2.0 are significant only
for the longest dry spell duration (>7 days). Table 5 compares the longest SM anomaly duration and
the maximum LAI for the three lithosols and the three ferruginous zones. For the latter, the correlation
coefficients vary between —0.50 and —0.70, whereas they are not significant for the others. Similar
results were found when correlating the anomaly intensity (cumulated over all dry spells, or only
the longest one) with the maximum LAI Again, the correlation is the largest with the SM anomaly
amplitude compared with the anomalies derived from the two rainfall datasets. However, in addition
to the soil type, the spatial distribution of dry spells is different (Figure 6), since the longest dry spells
are localized in the northern part of Ferlo and have more impact in this sub-region than in the south.
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Figure 10. Comparison of correlation coefficients between water availability and the maximum of
vegetation growth on the Ferlo VSZs with (a) for non-lithosol VSZs and (b) lithosol VSZs over the
period 2000-2010. TA: Total Amount; N-DS: Number of Dry Spells; I-DS: Intensity of Dry Spells;
LDS-D: Longest Dry Spell Duration and LDS-I: Longest Dry Spell Intensity. The digits 3, 5 and 7 are
the numbers of days corresponding to the thresholds of dry spell duration. The colors are dark blue for
TRMM3B42; green for RFE 2.0 and dark red for SM. Horizontal solid and dashed lines correspond to
the levels of significance for p < 5%.

Table 4. Inter-comparison of significant correlation coefficients between the total rainfall (TRMM3B42
and RFE 2.0), mean soil moisture (SM) and maximum LAI on each vegetation-soil zone (VSZ, see
Table 3 for acronyms) over the period 2000 to 2010.

Correlation Coefficient

VSZ
With TRMM With RFE 2.0 With SM

TSvS-L1 - - -

TSv-L - - -
TSvS-L.2 - - -
TSvS-F1 0.61 0.47 0.53
TSvS-L3 0.56 0.30 0.32
TSvS-R 0.84 0.84 0.71
TSvS-F2 0.68 0.55 0.64
TSvS-RB 0.82 0.74 0.79

SStT-F 0.69 0.77 0.78

Table 5. Significant correlation coefficients after application of the Student -test with a 5% threshold
between duration of dry spell (with SM) and maximum of LAI from (JJAS) and the corresponding Root
Mean Square Error (RMSE) on each VSZ (see Table 3 for the acronyms).

VSZ Significant Correlation Coefficients RMSE
SStT-F -0.71 3.29
TSvS-F2 -0.79 3.23
TSvS-F1 —0.54 4.34
TSvS-L3 — 4.31
TSvS-L2 — 4.63
TSvS-L1 — 4.52
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5. Discussion

5.1. Significant Information from Rainfall and SM Products

The analysis shows that rainfall and SM have similar spatial variations, but with less temporal
variability for SM. This can be expected since SM is an integrated variable, resulting from the
surface partitioning of rainfall into evapotranspiration, surface runoff and infiltration. It has a slow
temporal evolution.

Although TRMM3B42 and RFE 2.0 are direct estimates of the daily rainfall, the uncertainty in
their variations, as seen when comparing the two databases, results in a similar uncertainty in the
rainy season patterns at the scale of each VSZ. Despite the unknown source of these errors, SM
properly depicts the overall rainfall seasonal variations and anomalies. An advantage of SM is that its
relationship with the microwave radiometer measurement (variations of the surface emission linked
to soil dielectric properties) is more direct than that for precipitation (conversion of instantaneous
emission from droplets and crystals in the atmosphere into a cumulated surface amount). In addition,
the SM variations are smoother than those of rainfall, because SM integrates the effect of sporadic
rainfall events, with continuous surface processes. This makes it easier to determine season-to-season
and within-season variations.

The correlation between cumulated rainfall over the growth season and the maximum LAI in that
season is very similar for the three products: on the non-lithosols, it is larger than 0.6.

The major differences between products occur with the anomalies. The direct correlations of
anomalies longer than seven days over the whole time range as well as correlations of yearly integrated
indicators show differences between the three products:

- Correlations of both positive and negative anomalies are higher for SM and RFE 2.0 than
TRMM3B42, except on lithosols. In addition, the time lag obtained with SM for negative anomalies
is slightly smaller than for the two rainfall products.

- Correlations of the cumulated water deficit, as well as the number of dry spells and the duration
of the longest one, with maximum LAI were calculated to evaluate the impact of dry spells on
the maximum LAI Again, a significant correlation was found, except for lithosols. However, this
correlation becomes significant for SM as soon as the dry anomaly is longer than three days, but
is significant for both rainfall products only for anomalies longer than seven days. In general, a
better correlation is obtained with TRMM3B42 than RFE 2.0 (for example, see the correlation for
the longest dry spell).

In any case, SM appears to be a better indicator for detecting anomalies which impact the LAL As
noted earlier, an important source of uncertainty for rainfall comes from the discontinuous sampling
of rainfall events, which are then summed to give a daily value. Thus, it is difficult to assess the
significance of a three-day dry spell, which, in addition, depends on the threshold used on the rainfall
products (see Section 2.3.3). On the contrary, any SM anomaly means that less water is available for
the vegetation at the surface. Thus, SM anomalies are more directly linked to vegetation growth.

The direct correlation of rainfall anomalies with SM anomalies over the 2000-2010 time series
shows a slight delay (by about one week). Thus, there is a more rapid response of vegetation to SM
anomalies than to rainfall anomalies (on average two days of shift relative to the positive and negative
anomalies of SM, between 2.5 to 3.5 days for negative anomalies, and between two to three days for
positive anomalies of rain).

These results confirm earlier findings by Nicholson et al. [60] that vegetation greenness in semi-arid
environments is more strongly related to SM, a function of rainfall accumulated over a period of time,
than to instantaneous rainfall. Even if satellite-derived SM is a surface variable, its variations are more
consistently related to vegetation growth compared to rainfall, because part of the rainfall will be lost
as surface runoff, interception and soil evaporation, making the rainfall unrepresentative of the water
transpired by the vegetation during photosynthesis.
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5.2. Impact of the Intra-Seasonal Variations in the Rainy Season on the Vegetation Phenology

5.2.1. Impacts of Water Variability Across the Ferlo Basin

The maximum LAI map confirms the climatic gradient observed in rainfall and SM: the southeast
has a denser savanna with a significant proportion of ligneous species (shrubs and trees); in contrast,
the northwest vegetation is mainly composed of herbaceous species (see Table 1). This difference is
linked to the overall water availability in the two sub-regions.

Consequently, the less dense and less watered northwest sub-region is more sensitive to
intra-seasonal and seasonal variations. The rainfall and SM seasonal fluctuations strongly affect the
northwest, as shown by the correlation coefficients all being greater than 0.50 for northern VSZs, unlike
the southern ones (see, for example, the difference between non-lithosols and lithosols in Figure 10).
The yearly indicators such as the maximum duration of dry spells strongly affect the vegetation growth
in the northwest (r = —0.57), contrary to the southeast (r = —0.11). This difference can be attributed
to the impact of local storms being more frequent in the southeast: SM is therefore greater and the
vegetation is less sensitive to dry spells, being better able to cope with rainfall fluctuations (negative
or positive).

The correlation between times series confirms the differences between northwest and southeast:
correlation coefficients for both positive and negative anomalies are higher for VSZs in the northwest
(see, for example, the differences between TSvSF2/TSvS-F1, TSvS-L3/TSvS-L1). In the extreme
southeast, no correlation is obtained.

5.2.2. Role of Vegetation Cover and Soil Type

In the same climatic sub-zone, the LAI intensity on lithosols is higher than on ferruginous
soils, even during dry spells. Moreover, the TSvS-L zones present two peaks of LAI unlike the
others such as SStT-F. However, the observed differences cannot be attributed to the climatic gradient
alone, as the vegetation also changes along this gradient, and the soil types are not homogeneously
distributed within the Ferlo basin. As already presented, the vegetation is composed of trees, shrubs
and herbaceous species. Sahelian vegetation is distinguished from that of other arid zones by the
scarcity of perennial grasses [65] and in the northern part of the basin, shallow-rooted annual grasses
dominate. In the southeast, ligneous species have a greater presence; these plants have roots that give
them access to deep soil water or shallow groundwater.

The features of the woody savanna identified here may come from the presence of species such as
microphyll for Acacia and sclerophyll for Boscia senegalensis. These species have an inverse phenological
cycle of growth during the beginning of the rainy season, keeping their leaves throughout the dry
season. They have well-developed mechanisms to reduce water loss through transpiration [65] and
therefore perform better than herbaceous vegetation under water deficit conditions. These differences
in plant physiology and architecture may explain the double peak in LAI seasonal variation. Thus, it is
probable that annual grasses are the most sensitive to water input anomalies, with perennial grasses
being more resilient, due to their deeper root system. Finally, the transpiration control and deep roots
of shrubs and trees make them the most resilient to dry spell—induced water shortage.

The geographical position of the different soil types mixes the impact of soil properties with
the climatic gradient effect. The correlation study confirms the differences between lithosols
and ferruginous soils. The correlations between the rainfall onset date and the start of the
vegetation-growing season on the ferruginous soils are significant (r > 0.50) by Student’s t-test (p < 0.05),
whereas on lithosols soils they are lower and not significant (r = 0.13). On the ferruginous soils,
vegetation responds more rapidly and more strongly. The correlations between rainfall and vegetation
anomalies (positive and negative) confirm this difference between the soil types with correlation
coefficients always being significant with ferruginous soils, but not with lithosols. To further elucidate
the role of the soil type, we compared VSZs located in the same climatic area, mainly TSvS-F1 and
TSvS-L3. Their phenological cycles and the response to within-season anomalies were very similar, but
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the correlations between the total rainfall and the maximum LAI were significantly lower for TSvS-L3
than TSvS-F1 (Table 4). Contrary to TSvS-F1, there was no significant correlation between the duration
of the longest dry spell and the LAI maximum for TSvS-L3 (Table 5). Lithosols thus have a different
response to the rainfall variations.

The above results could be explained by differences in infiltration rate between the two soil types.
Infiltration through lithosols is slow because these soils are composed of hard rock that allows water
to remain at the surface for a longer time, making it available for herbaceous vegetation. In contrast,
for the other soils (ferruginous, red-brown, regosols), the faster infiltration makes the vegetation more
sensitive to soil water availability. This might explain the weak or null response of lithosol VSZs to
intra-seasonal rainfall anomalies. In addition, lithosols are located in the southeast where the flat
topography leads to negligible surface runoff. Flat topography is more favorable to vegetation growth,
resulting in denser savanna which recovers more strongly. These effects might explain the weak or
null response of lithosol VSZs to intra-seasonal rainfall anomalies.

6. Conclusions

In this study, satellite data were used to evaluate the impact of intra-seasonal rainfall variations
on the natural vegetation growth of a small region in the Sahel (Ferlo, Senegal). The Ferlo region was
subdivided into nine zones, mainly homogeneous in terms of vegetation and soil type. These zones
were sufficiently large to allow the use of rainfall, SM and LAI satellite products, but small enough to
properly depict the spatial heterogeneity of the soil and vegetation cover.

First, two well-known rainfall products, RFE 2.0 and TRMM3B42, were compared over a 10-year
period at the scale of the homogeneous zones. Despite differences in the cumulated rainfall amounts,
TRMM3B42 and RFE2.0 were well correlated over the whole region. Both were also well correlated
with the ESA CCLSM product, although the mean variations over the rainy season are smoother
than the rainfall ones. The three databases provide intra-seasonal variations, which were found to
correlate with the variations in vegetation phenology. However, correlations with RFE 2.0 were found
to be higher than with TRMM3B42; SM variations were found to be significantly more correlated to
LAI (anomalies and maximum value) than rainfall variations. SM thus appears as the most relevant
parameter for evaluating the impact of rainfall anomalies on vegetation growth. The within-season
rainfall and SM anomalies are followed three weeks later (on average) by correlated anomalies in
LAL Dry spells are correlated with the maximum LAI. However, a significant response of the LAl is
observed only when the absence of rainfall lasts more than seven days, whereas a three-day deficit of
SM leads to a significant correlation. These results were validated over all soils except lithosols. In the
latter case, most of the correlations failed to be significant.

Our study shows how the combined analysis of satellite-observed rainfall, SM and LAI can help
to better understand the vegetation/rainfall relationship and to assess spatiotemporal variability in
vegetation growth, in relation to soil type. The significant correlations obtained indicate that LAl is
a “good index” of the quality of the monsoon season and that SM data can be used to monitor this
indicator. The next step should thus be the building of a statistical prediction tool, which could be
used to predict the vegetation biomass before the end of the growing season. To extend this study, the
methodology should be incorporated into process-based vegetation growth models for evaluating the
impacts of rainy season onset, cumulated rainfall and dry spells on the production of animal grazing
and crops.
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Introduction

La simulation d’un processus physique est définie comme une représentation du
comportement d’un ou des processus physiques au moyen de modeéles dont les
parameétres et variables sont basés sur ceux du processus étudié. La modélisation du
couvert végétal permet de simuler la dynamique de la végétation durant la saison
pluvieuse en réponse aux variations pluviométriques. Ces simulations doivent fournir
des informations sur les étapes de la phénologie de la végétation tels que le maximum
de croissance de la végétation, le démarrage, etc... mais aussi permettre d’élaborer
des prévisions sur I’évolution du couvert végétal. Ces derniers seront reliés aux
parameétres appropriés de pluie sélectionnés dans la premiére partie avec les

observations pour estimer la cohérence de ces relations.
Ce chapitre se compose de trois parties :

La modélisation de la végétation sera présentée, a partir de quelques modeles parmi
les plus utilisés, puis le modéle STEP sera décrit en détails. L’ajustement du modéle
STEP et les simulations réalisées sur le Ferlo sont ensuite présentées, et comparées
avec le LAl MODIS, avec la méme méthodologie que dans le chapitre précédent.

4.1. La modélisation de la végétation

Les modeéles de végétation se composent de deux types : les modeles dits globaux
avec des resolutions grossieres et les modeéles régionaux plus spécifique a I’échelle

fine d’une région ou d’une parcelle.

4.1.2. Les modeéles globaux de végétation

Ils sont congus pour modéliser les changements de végétation comme réponse aux
changements climatiques, le cycle de carbone de la biosphére terrestre, etc... Ces
modeles utilisent des séries chronologiques de données météorologiques et prennent
en compte des paramétres comme les propriétés du sol, la latitude, etc...lls sont plus
souvent utilisés pour simuler les effets futurs du changement climatique sur la

dynamique de la végétation naturelle, les cycles du carbone et de I’eau.

Plusieurs modeles sont utilisés pour simuler les changements globaux et futurs de la
dynamique des écosystéemes. Ici, nous décrivons trois d’entre eux représentatifs des

modeles utilisés pour les recherches climatiques.
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1. ORCHIDEE (Organising Carbon and Hydrology In Dynamic EcosystEms)
(Krinner et al., 2005): il simule les bilans d'eau et d'énergie des surfaces continentales,
ainsi que la phénologie et le cycle du carbone de la biosphére terrestre. Ce modéle
peut étre utilisé en couplé c’est a dire en interaction continue avec un modéle
d’atmosphére pour étudier I’évolution du climat passé, présent et futur. ORCHIDEE
est basé sur le concept de Plant Functional Types (PFTs) pour décrire toute la
distribution de la végétation en un nombre réduit d'éléments. 13 PFTs existent dans
ORCHIDEE pour représenter cultures agricoles, herbacées, arbres tropicaux,
tempérées et boréales (De Weirdt et al., 2012). Il est basé sur 3 modules:

- Le module
biophysique SECHIBA (Schématisation des EChanges Hydriques a I’ Interface
entre la Biosphére et I’Atmospheére) (Ducoudré et al., 1993; de Roshay and
Polcher 1998) avec un pas de temps demi horaire. Il simule les échanges
biophysiques d'eau et d'énergie entre les surfaces continentales et I'atmosphére
a l'échelle de la demi-heure. Il résout également les mécanismes de
photosynthése, de respiration, de croissance et maintenance, et de transpiration
de la végetation.

- La composante
biogéochimique d'ORCHIDEE est le module STOMATE (Saclay Toulouse
Orsay Model for the Analysis of Terrestrial Ecosystems) (Viovy 1997).
STOMATE calcule sur une base quotidienne des processus tels que la
phénologie, I'allocation du carbone au sein de la plante, la décomposition de la
litiere et la respiration du sol. STOMATE fournit a SECHIBA la description
physique de la végétation nécessaire pour calculer les flux (ex. I’indice foliaire
(LAI)). En retour il recoit les facteurs environnementaux et climatiques qui
affectent le développement de la végétation (ex. Le stress hydrique et
thermique). Le pas de temps de ce module est journalier.

- Un module de
la dynamique de la végétation naturelle potentielle, c'est a dire I'évolution a
long terme d'un type de végétation par rapport a un autre provenant du modele
LPJ (Lund Postdam Jena) (Sitch et al., 2003). Il inclut I'apparition et la

disparition de plantes en fonction de critéres climatiques, la compétition pour
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la lumiére, le réle des feux. Le pas de temps de ce module, plus long que
SECHIBA et STOMATE, est de un an.

2. Le modele LPJ (Lund-Postdam-Jena model) (Cramer et al., 2001; McGuire et
al., 2001; Sitch et al., 2003) est un modele global de végétation qui combine des
représentations a grande échelle de la dynamique de la végétation terrestre et des
échanges surface-atmosphére de carbone et d'eau. Le modéle provient de la famille de
modele BIOME (Prentice et al., 1992). Le LPJ couple les processus hydrologiques et
physiologiques rapides avec les processus lents de I’écosysteme en utilisant le pas de
temps journalier pour I’eau du sol, la température du sol, la neige, le couvert
physiologie et la phénologie, mensuel pour les processus microbiennes du sol et
annuelle pour la dynamique de la végétation. LPJ considére explicitement les
processus clés de I'écosysteme tels que la croissance de la végétation, la mortalité, la
répartition du carbone, et la concurrence des ressources. Pour tenir compte de la
diversité de la structure et de fonctionnement entre les plantes, 10 plant functional
types (PFTs) sont distingués (Gerten et al., 2004). La végétation est définie en termes
PFT, chaque PFT est représenté par une plante individuelle avec sa biomasse
moyenne, sa surface de la couronne, sa hauteur et le diameétre des tiges (avec les
arbres seulement) de sa population, par le nombre d'individus dans la population, et
par la couverture fractionnaire dans la cellule de grille. Dans ce modeéle, l'indice de
surface foliaire est mis a jour quotidiennement en fonction des conditions
environnementales en vigueur, mais la valeur maximale dépend de la dynamique de la
végétation annuelle. Le modeéle simule la biogéographie globale, la production
primaire nette, et la dynamique de la toundra, de la forét boréale, de la forét tropicale,
et les écosystemes de savane, qui sont compatibles avec les observations (Bonan et
al., 2003). Le modeéle est appliqué pour des évaluations de I'équilibre du carbone de la
biosphére terrestre. (Prentice et al., 2000; Cramer et al., 2001), (Joos et al., 2001;
Lucht et al., 2002) I’ont utilisé pour des simulations de réponses transitoires au
réchauffement climatique. Le ruissellement et I'évapotranspiration calculée par LPJ
concordent bien avec les résultats respectifs de certains modeles hydrologiques
globaux, tandis que dans certaines régions, les eaux de ruissellement sont
significativement sur ou sous-estimées par rapport aux observations (Gerten et al.,
2004).
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3. Le CLM (Community Land Model) est un modéle terrestre faisant partie du
CESM (Community Earth System Model). Le modele formalise et quantifie les

concepts de la climatologie écologique. Ce modéle est basé sur un cadre
interdisciplinaire pour comprendre comment les changements naturels et humains
dans la végétation affectent le climat. Le CLM est constitué de plusieurs composants
(Oleson et al., 2004). 1l prend en compte les processus physiques, chimiques et
biologiques par lesquels les écosystemes terrestres affectent et sont affectés par le
climat a travers des échelles spatiales et temporelles variées. Le modéle représente
plusieurs aspects de la surface terrestre, y compris I'hétérogénéité de la surface, il se
compose de sous-modeles liés a la biogéophysique terrestre, le cycle hydrologique, la
biogéochimie, et la dynamique de la végétation. La simulation du cycle
biogéochimique représente les échanges de carbone, composés organiques volatils
(COV) biogenes, la poussiére et d'autres particules de la terre avec I'atmosphere. Les
processus biogéophysiques sont également représentés dans CLM, y compris les flux
d'énergie, de l'eau, les flux radiatif, physiologiques et les parametres hydrologiques.
Le CLM simule en outre le cycle hydrologique sur la terre, qui est affecté par
I'interception de I'eau par la végétation, les taux d'infiltration du sol et les quantités
d'eau dans le sol, les eaux de ruissellement de surface et la présence de la couverture
neigeuse. Enfin, le CLM représente de multiples aspects de la dynamique de la
vegeétation, y compris les cycles du carbone et de l'azote, la succession écologique
aprés un incendie, ainsi que la composition de la végétation et ses modifications au fil

des siecles provoquées par le changement climatique.

Les simulations CLM-DGVM de Bonan et al., (2003) dans le Sahel africain illustrent
I’impact des variations du climat sur les écosystéemes de savane et la dynamique du
feu sur plus de deux siecles. Les simulations avec le CLM-DGVM ont montré que la
modélisation biogéographique était cohérente avec les observations ainsi que celle de
la dynamique des écosystemes multiples.

Les modeles globaux de vegétation avec leurs échelles spatiales et temporelles
élevées sont efficaces pour prédire les impacts futurs du climat sur les écosystémes ou
décrire ces impacts dans le passé a I’échelle globale. Cependant méme s’ils peuvent
étre utilisés a des échelles locales, leur robustesse pour bien reproduire des
écosystemes spécifiques, notamment en zone semi-aride, n’a pas encore suffisamment

été étayee (e.g. Brender et al., 2009; Pierre, 2010). Ainsi pour étre plus proche de la
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réalité a des échelles locales, des modeles régionaux peuvent étre plus efficaces avec
les mémes concepts de base que les globaux.

4.1.3. Les modeéles régionaux de végétation

Plusieurs modeéles de végétation ont été élaborés pour tenir compte de la spécificité de
la dynamique de la végétation a I’échelle locale. Dans cette partie nous ne parlerons
que de modeéles déecrivant la végétation naturelle.

Pour analyser I’influence du climat local et du type de végétation sur I’activité
photosynthétique, (Bégué et al., 1994) ont utilisé un modéle de conductance
stomatique qui simule la conductance stomatique de couverts vegétaux sahéliens. Ce
modele relie la conductance stomatique réelle a une valeur “non stressée” contrdlée
par le rayonnement photosynthétiquement actif incident, limitée par une série de
fonctions de stress multiplicatives des effets de la température, de I’humidité de I’air

et du sol.

Le Roux et al. (1994) ont modélisé les interactions surface-atmosphére en savane
humide sur I’Afrique de I’ouest (Lamto, Cote d’Ivoire) avec un modele basé sur les
relations fonctionnelles existant entre la production et la phénologie de la savane
d’une part, et les bilans d’énergie et d’eau de ce type de surface d’autre part. Ce
modele est issu du couplage de deux sous-modéles fonctionnant au pas de temps
journalier et utilisant des variables climatiques standard en entrée : le modele de bilan
d’énergie et bilan hydrique du sol développé par la chaire de bioclimatologie de
I’Institut National Agronomique (Tuzet et al., 1992); et un modéle de production
primaire (modele de Monteith modifi€). Ce modele rend compte des variations
saisonniéres du stock en eau du sol et de la phénologie de la végeétation.

L’évapotranspiration est aussi simulée avec ce modéle.

Lo Seen et al. (1995) ont développé un modéle pour simuler les principaux processus
de la surface terrestre qui se produisent dans les zones herbacées arides et semi-arides.
Ce modele est compose d’une part d’un sous-modele hydrologique qui décrit les
bilans en eau et d'énergie, et d’autre part d’un sous-modele de croissance de la
végeétation qui regroupe les processus associés a la production de la biomasse.

Le modéle STEP (Sahelian Transpiration, Evaporation and Productivity) est dédié a la
simulation de la croissance de la végétation naturelle en zone Sahélienne (Mougin et

al., 1995). La végétation simulée est une strate herbacée composée d’espeéces
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annuelles. Dans STEP les données d’entrée sont les paramétres météorologiques, le
type de sol et I’albédo de la surface. Tracol et al. (2005) ont testé la performance des
processus du modele de STEP dans la variation de masse herbeuse au fil du temps et
le rendement d’herbacée le long d'un gradient bioclimatique nord-sud dans le Sahel.
STEP a été également couplé a un modéle SVAT (Soil Vegetation Atmosphere-
scheme) pour une meilleure prise en compte de la dynamique de végétation dans les
processus simulant les flux d’eau et d’énergie (Lo Seen et al., 1997). STEP a été
couplé avec des modeéles de transfert radiatif (Lo Seen et al., 1995) et micro-ondes
actif / passif (Frison et al., 1998). Ces modeles couplés ont été utilisés avec succes
pour interpréter les variations temporelles d'observations par satellite sur le Sahel,
fournissant ainsi une validation indirecte du modéle de croissance (par exemple Jarlan
et al., 2002).

Tous ces modéles ont la capacité de simuler les états de surface sur le Sahel mais seul
le modele STEP est capable de reproduire la dynamique des herbacées naturelles au
cours de la saison des pluies sur le Sahel en étant forcé avec des données de satellite
et aussi simple a mettre en ceuvre. C’est pourquoi nous I’avons choisi dans cette

étude.

4.2. Description du Modele STEP

Le modéle STEP est un modeéle de végétation simple de processus herbacés pour le
Sahel. 1l est basé sur un modéle développé pour les zones semi-arides tunisiennes
(Rambal, 1980) et adapté aux régions sahéliennes dans le but d’un couplage avec la
télédétection (Lo Seen et al., 1995) et de micro-ondes (Frison et al., 1998). Ce modeéle
a été congu initialement pour I’utilisation de données de satellite (Sahelian
Transpiration Evaporation and Production model) (Mougin et al., 1995). Il est
optimisé pour simuler la variation temporelle des paramétres principaux et processus
associés au développement de la végétation en zone Sahélienne aux échelles locale ou
régionale. Le modele décrit les principaux processus liés au fonctionnement des
herbacées et de la dynamique de I’eau du sol en milieu sahélien. Le modele STEP est
un modele a une dimension et il est composé de deux sous modeles : un sous-modéle
de bilan du carbone ou de croissance qui simule les processus de développement dans
le cycle phénologique de la végétation comme la photosynthése, la respiration, la

répartition et la sénescence ; et un sous-modele de bilan hydrique qui simule a la fois
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les processus de la dynamique de I’eau dans le sol tels que les infiltrations, le
ruissellement et le drainage mais aussi les échanges d’eau avec I’atmosphére (Jarlan
et al., 2005) par les phénomenes d’évaporation et de transpiration utilisant les
équations de Penman-Monteith (Monteith, 1965). Ces eéchanges d’eau a travers le
cercle Sol-Plante-Atmosphere et la disponibilité en eau dans le sol contrdlent dans ces
régions semi-arides la croissance et la mortalité de la végétation. Ce modele
fonctionne au pas de temps journalier avec comme données d’entrée journaliéres
météorologiques les températures maximale et minimale de I’air, le rayonnement
global, la pluie, la vitesse du vent et I’humidité relative. 1l est initialisé aussi par des
caractéristiques du sol comme la texture et de la biomasse avec des paramétres
initiaux d’entrée tels que la biomasse verte initiale (bg0), la proportion C3/C4 plantes
(Jarlan et al., 2008; Hiernaux et al., 2009), le rendement de conversion maximal ()
(Mougin et al., 1995), et la surface foliaire spécifique a I'émergence (SLAOQ). Ainsi a
partir de la biomasse simulée, des paramétres de la végétation tels que I'indice foliaire
(LAI), la couverture végetale Fraction (fv), hauteur de la végétation (h) et I'humidité
du sol (w) sont estimés. La modélisation avec STEP se présente en deux parties
distinctes en interaction : la croissance du couvert végétal et le bilan hydrique. La
biomasse totale herbacée est divisée en trois parties : la fraction verte, une faction
seche et la litiere. Chaque fraction est calculée avec une équation différentielle
obtenue en faisant le bilan des apports et des pertes. Par exemple la biomasse verte
résulte du bilan de la photosynthése brute moins la respiration et la sénescence. Pour
mieux prendre en compte la dynamique de la végétation au Sahel dans les processus
simulant les flux d’eau et d’énergie, STEP a été couplé avec un SVAT (Soil-
Vegetation-Atmopshere-Scheme) (Lo Seen et al., 1997).

Les paramétres comme I’efficience maximum de conversion d’énergie lumineuse en
matiere végétale (notée emax €n g ms/mJ PARa) et la biomasse initiale en début de
saison en g MS/m? permettent I’ajustement du modele. Celui-ci consiste a réduire
I’écart entre les mesures de la phytomasse réalisées in situ au cours de la saison de
croissance et les simulations. Le schéma suivant décrit les différents processus qui

composent le modéle STEP.
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Photosyntheés '4_> q Respiration '}4_1 Flux d’eau ‘
—_—— Eau utile > dans le sol
4 /’ | pe—>N 4
¥ T
| =
Sénescence Litiere
{ 4
]
h 1 =
SORTIES  Végétation (Biomasse, Eau (Evaporation,
LAI, Hauteur, Transpiration, Ruissellement,
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Figure 4.1. Schéma résumant les interactions entre les modules de la croissance de la plante et du bilan
en eau dans le modéle STEP et interactions des différents processus dans chaque module (source.
Jarlan et al., 2008).

Les calculs des différents processus dans chacun des modules composant le modéle
STEP (Mougin et al., 1995) se présentent comme suit :

4.2.1. Module de croissance ou bilan de carbone

Le bilan entre la production de matiére venant de la photosynthése, les pertes par
respiration, la sénescence et la litiere (chute des pailles) définit la dynamique de la
croissance des végétaux annuelle. Cette biomasse totale des herbacées au-dessus du
sol est la somme de trois composantes : la biomasse verte By, la biomasse morte Bq et

la biomasse litiere B;, qui sont décrites par les trois équations suivantes :

dB

~9-p_R - El
L =P-R-S (E1)
dB

r=S-L E2
” (E2)
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dB,
dt

=L-D (E3)

Avec Py la photosynthese brute, R; les pertes de respiration et S la sénescence, L la
chute de litiere au sol et D la décomposition de la litiére.

La biomasse initiale correspond au début de croissance de la végétation, elle apparait
lorsque I’humidité dépasse le point de flétrissement pendant en moyenne 5 jours
(Thése Tracol, 2004 ; Mougin et al., 1995; Grouzis, 1988; Elberse et Breman, 1989).

4.2.1.1. La photosynthése

Dans la quantification de la production de matiére végétale, le calcul de la
photosynthése est nécessaire car sur la canopée la photosynthése brute est donnée
comme le taux de photosynthese maximale pondérée par les effets liés a la diffusion

de CO; entre I’air, les tissus foliaires et la température (Mougin et al., 1995).

Un modele simple de feuille décrit le taux d’assimilation du CO, dans lequel la
photosynthése est fonction de la pression partielle ambiante (Ca), intercellulaire (Ci)
et de la résistance totale au transfert de CO, (Mougin et al., 1995). Elle s’exprime
comme sulit:

b = (Ca-_Ci)
¢ (1.64r,+r, +1.39r,)

(E4)

Ou rs, rm et r, sont les résistances stomatique du couvert, du mésophylle et
aérodynamique de la couche limite. Quand les besoins de la plante en eau sont
satisfaits, la résistance stomatique atteint sa valeur minimale alors Py devient
maximale Pmax. Ainsi en considérant (Ca — Ci) comme constante (Mougin et al.,
1995 ; Werk et al., 1983), Py devient :

BAr, 1, +1.39r,
(1645m|n m 139a
(1.64r +r, +1.39r,)

P, = Pmax (E5)

L’effet de I’eau sur la photosynthese ou fonction de potentiel hydrique foliaire

En considérant r, trés inférieur devant les autres résistances donc négligeable (Jones,
1976), I’effet des variations hydriques sur la photosynthese se traduit par la fermeture
des stomates qui limite les pertes d’eau par transpiration mais aussi I’assimilation du
gaz carbonique. La fermeture des stomates est directement contrdlée par le potentiel

hydrique foliaire ¢l (Lo Seen et al., 1994). Ainsi I’impact de la disponibilité en eau
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sur la photosynthése s’exprime alors en fonction de la résistance stomatique rs et du

potentiel hydrique de la feuille ¢l comme suit :
I
rs = rsmin(:l'-l-( 4 )n) (E6)
@l

Avec oly2, le potentiel d’eau de la feuille quand 50 % des stomates sont fermés et n

un parametre empirique (Fisher et al., 1981 ; Rambal et Cornet, 1982).

Cependant, la relation entre la température moyenne journaliére de la feuille TI qui
s’exprime a partir de la température moyenne journaliere de I’air et la photosynthese
journaliere est supposée linéaire (Andgus et Wilson, 1976) et s’exprime ainsi :

f(Tl) =1-(Tmax,-Tl)-c (E7)

Tmax, : la température de la feuille au maximum de photosyntheése ; ¢ une constante.

Le maximum de photosynthése de la canopée quant a lui s’exprime grace au produit
entre PARa (en Kg DM ha) et le paramétre de conversion de PARa absorbé au

dessus du sol de matiére séche &4 (Kg DM MJ™).
Pmax=1,¢.¢-¢e, =PARa ¢, (E8)
Avec |, le rayonnement global incident ; e I’efficience climatique ; &; I’efficience

d’interception de la végétation. &; s’exprime en fonction de la quantité de matiere

verte par rapport a la valeur du LAI (Leaf Area Index) de la végétation verte LAIlg

£, =Kpue' LOG(L+9.808 LA, ) (E9)

Enfin, la photosynthese nette exprime ainsi :
P, =Pmax f(¢l)- f(Tl) =PARa ¢ - f(gl)- f(TI) (E10)
f(g) et f(TI) représentent les effets de la disponibilité en eau et de la température de la

feuille ; PARa le rayonnement photosynthétiquement absorbé entre 400 et 700 um par

la végétation
4.2.1.2. Larespiration

La respiration correspond a I’addition de la photorespiration (Rp) avec la respiration
(Rd). La photorespiration serait une fraction constante (pr) de la photosynthése brute
pour les especes de type C3 et est négligeable pour les C4 (Ludlow et Wilson, 1972).
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La respiration est composée d’une composante de maintenance (Rm) et d’une
composante de construction (Rc). Rc est le colt du carbone pour la construction de
nouveaux tissus et il est fonction de I’efficience de conversion de la croissance Yg
qui est le rapport de la masse carbone incorporée dans les nouveaux tissus a la masse
totale de carbone utilisée ainsi que I’énergie consommée pour la synthése (Farrar,

1985 ; Amthor, 1986). La respiration de la croissance s’exprime ainsi :
Rc=(1-Y;) PSN- (1- pr) (E11)

Cependant une certaine consommation d’énergie correspondant a la respiration de
maintenance venant de la synthese des protéines, la réparation des membranes et le
maintien des gradients ioniques, est nécessaire pour la maintenance des tissus de la

plante (Penning de Vries, 1975). Elle s’exprime comme suit :
Rm=ms Y- BMg (E12)
Avec ms le coefficient de maintenance (d™*); BMg biomasse vivante

La respiration totale (en Kg DM ha™) devient alors :
Rt =Rd+ pr- PSN = PSN[1- Y, (1~ pr)] + ms Y;BM, (E13)

4.2.1.3. La sénescence

La sénescence dépend fortement de la disponibilité en eau, elle est aussi liée a I’age
de la plante, du taux d’apparition de nouvelles feuilles et des conditions
environnementales (Fischer et Turner, 1978).

La sénescence est contrblée ici par le stress hydrique Q10 en relation avec le potentiel
hydrique de la feuille gl. Le taux de sénescence est supposé constant jusqu’a la phase
de maturation des graines. Elle évolue considérablement aprés une certaine période de

bilan carboné négatif. La sénescence se calcule de la manieére suivante :
S=s BM, (E14)

Ou s est le taux de sénescence

4.2.2 Module du bilan hydrique

Ce module dépend essentiellement de la pluie journaliére et ses différents composants
depuis I’atmospheére jusqu’au sol tels que le ruissellement, le drainage, la percolation,

I’évaporation et la transpiration. Pour connaitre le flux d’eau dans le sol, le profil du
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sol est divisé en 4 couches caractérisées par leur texture et leur épaisseur : 3; 28 ; 70
et 200 cm. Dans chaque couche, le potentiel hydrique du sol s’exprime ainsi :

@y =aWw, ™ (E15)

Avec Wi la quantité d’eau dans la couche i (m*/m?), a; et b; des constantes liées & la

texture du sol.

Sur une couche donnée, le potentiel hydrique du sol W; varie en fonction du bilan
entre les pertes a I’intérieur de la couche et les apports de la couche supérieure par le
drainage (D), I’évaporation (E;) et la transpiration (Tr;) (Tracol, 2004). Ces variations

s’expriment ainsi :

%:P—R—El—Dl (E16)

Avec P les précipitations, R le ruissellement, E I’évaporation et D le drainage

aw,
5 =D-E-Ti-D (E17)

si W; > FC , on obtient :

D. = (Di—l — FCi)
| Ak,

Avec Aki :ei/Ki (E18)

Ou e est I’épaisseur de la couche i, K| la vitesse d’infiltration dans la couche i

D’une couche a I’autre, le transfert d’eau suit un modéle de type réservoir. Quand la
capacité au champ (FC) est atteinte pour la couche i, elle se vide dans la couche située
au dessous d’elle.

La transpiration de la plante (Tr) et I’évaporation du sol (E) sont liées aux potentiels
d’évaporation (PE) et de transpiration (PTr) qui sont estimées par I’Evapo-
Transpiration potentielle (PET) et des résistances aux transferts d’eau. L’évaporation
et la transpiration sont calculées en fonction de la résistance de la surface du sol (rsol)
et de la résistance de la canopée de la végétation (rcov) des transferts d’eau. La
résistance de la canopée est estimée par la résistance stomatique de la feuille (Van

Bavel, 1967), qui dépend du potentiel hydrique journaliére de la feuille ¢l.

L’évapotranspiration devient alors I’évapotranspiration potentielle pondérée par la
fraction de sols nus (fs) de la fraction verte du couvert (fg) :
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IR PR e
E+Tr—((rsol)fs+(rcov) fg) ETP (E19)

4.3. L’ajustement du modéle STEP

L’ajustement du STEP se fait par un choix de deux parameétres de calage en

minimisant la fonction « Codt » qui s’écrit comme suit :

%i(BMsim(i) — BMobs(i))? i (E20)

1

Colt(BMgO,¢ ., ) =

Avec BMsim la phytomasse simulée ; BMobs la phytomasse mesurée, N le nombre de
mesures effectuées durant la saison pluvieuse et i le jour de la mesure. Les valeurs de
BMgO et & comprises respectivement entre 0.5 et 2.5 g/m2, et 2.45 et 6.95 g/MJ
(Tracol, 2004).

4.4. Les indicateurs du fonctionnement du couvert végétal dans le modele

- I’efficience de conversion de I’énergie lumineuse en matiere végétale (Litght Use

Efficiency)

Elle s’exprime en (g,MS/MJ PARa), et correspond & la relation de proportionnalité
entre la production primaire aérienne nette simulée (PPNa: phythomasse simulée
maximale) et la portion de rayonnement absorbée par le couvert depuis le début de la

croissance des herbacees jusqu’a leur sénescence (PARa).

LUE :ﬂ (E21)

senescence

Y PARa

ger mination

- I’efficience d’utilisation d’eau du couvert (Water Use Efficiency)

Elle s’exprime en fonction de la production aérienne herbacée et de la quantité d’eau

transpirée et simulée (en gMS/mm H20 transpirée) :

PPN, (E22)

senescence
E Tr;

ger mination

WUE =

Avec Trj la transpiration journaliére intégrée de la germination a la sénescence
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- I’efficience d’utilisation de la pluie (Rainfall Use Efficiency)

Elle est définie comme étant le rapport entre la production aérienne herbacee et le
cumul annuel de la pluie (These Tracol 2004 ; Le Houérou, 1984). Cependant, la
réserve utile du couvert correspond a la différence entre le RUE et le WUE.

4.5. Mode de fonctionnement et paramétrage de STEP

Le modele fonctionne au pas de temps journalier en un point géographique. Pour
fonctionner, STEP utilise plusieurs entrées parmi lesquelles les données
météorologiques (précipitation, températures minimale et maximale de I’air, le vent,
I’lhumidité de I’air ou I’évapotranspiration potentielle et le rayonnement global), les
propriétés du sol (teneur en sable, argile) et I’albédo, ainsi que des parametres de
végetation (la proportion de C3/C4 et la répartition des racines par couche de sol).
D’aprés Mougin et al. (1995), lorsque les données mesurées ne sont pas disponibles,
I’ETP et le rayonnement global moyen journalier peuvent étre estimés a partir des
températures maximales et minimales journaliéres de I'air en utilisant I’approximation
de Linacre (Linacre, 1977). Le seul paramétre inconnu du modeéle est le facteur de
conversion. Il se traduit par le rapport entre I'accroissement de la matiére seche
optimale produite pendant un laps de temps et I'énergie photosynthétiquement active
absorbée pendant ce méme laps de temps. Ce facteur de conversion peut étre
considéré comme une efficacité de croissance en I'absence de limitation a I'eau et pour
une température de feuille de 20 ° C (Mougin et al., 1995). Ce parametre dépend de
plusieurs facteurs tels que le type de plante, la phénologie des plantes, et la fertilité
des sols.

Pour le calage du modeéle, seulement deux parametres du modeéle de croissance de la
plante sont retenus : le maximum de I’efficacité de conversion g (g DM/MJ) et la
masse verte initiale BMg0 (g MS/m?). Le BMgO est la premiére valeur non nulle prise
par la biomasse lorsque la végétation commence a pousser dans la maille considérée.
Les valeurs pour BMgO0 sont comprises entre 0.5 et 2.5 g DM/m? et entre 2.45 et 6.95
g DM/MJ pour ¢ (Tracol et al., 2005) et entre 4.5 — 7.6 g DM/MJ (selon Mougin et
al., 1995). On trouve apres I'optimisation des deux parameétres BMgO et g, par site et
par année, une bonne concordance entre simulations et des mesures. Cependant, la

bonne cohérence entre simulations et observations trouvées par Tracol et al. (2005)
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apres ajustement démontre la nécessité d’ajuster le modéle pour chaque site et par

année.

La validation du modéle STEP a eté réalisée sur le Ferlo (Sénégal) et un site du Mali
le Gourma (Mougin et al.,1995) par comparaison de la biomasse simulée et de la
biomasse observée. Les couplages de STEP avec des modeles de transfert radiatif et
micro-ondes actif/passif, ont été utilisés pour interpréter les variations temporelles
d'observations par satellite sur le Sahel, permettant ainsi une validation indirecte du
modeéle de croissance (Jarlan et al., 2002). Un bon accord a été trouvé entre la
biomasse totale simulée et mesurée au sol, ce qui indique que le modele est capable
de fournir une estimation régionale fiable de la biomasse sous différentes conditions
climatiques. La comparaison entre observations MODIS et simulations a montré des
corrélations nettement significatives en début de pousse comme au maximum de
végétation avec un maximum simulé atteint plus étalé dans le temps (selon Pierre,
2010). Ce modeéle a lI'avantage de donner I'évolution temporelle des paramétres de la
canopée et des variables a I’échelle temporelle journaliére. Le modéle STEP a été
initialement congu pour une utilisation avec les données de la télédétection spatiale
(Lo Seenetal., 1995).

4.6. Données utilisées et application du modéle STEP sur le Ferlo

Quatre entités homogenes sont sélectionnées pour cette étude : SStT-F, TSvS-F2,
TSvS-F1 et TSvS-L3 (correpondant en frangais a STAAF, SAA-F2, SAA-F1 et SAA-
L3) (Figure 4.2). Elles sont choisies par rapport a leur localisation sur le bassin
versant du Ferlo, et le type de sol. Les entités SAA-F1, SAA-F2 et STAAF sont trois
sous-zones sur des sols ferrugineux (sableux) réparties selon le gradient climatique
(voir Chapitre 3). L’entité SAA-L3 est choisie pour comparer les simulations de
STEP sur des sols différents mais avec des conditions pluviométriques identiques a
celle de SAA-F1. Sur ces zones différentes, les simulations sont effectuées avec en
entrée des données météorologiques et de propriété du sol. Les variations du LAI
déduites de ces simulations sont analysées et comparées a celles des observations
MODIS. Pour réduire I’écart entre le LAI simulé et observé, des ajustements ont été
effectués sur le paramétre .. pour chaque entité homogeéne, la valeur du paramétre .
qui permettait d’avoir un cycle saisonnier de LAI simulé proche de celui du LAI
MODIS a été choisie.
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Figure 4.2. Carte des entités homogenes indiquant celles choisies pour les simulations par un triangle
rouge. Ces entités sont SStT-F, TSvS-F2, TSvS-F1 et TSvS-L3 les noms anglais qui correspond en
francais & STAA-F (Steppe Arbustive Arborée/Ferrugineux tropicaux), SAA-F2 (Savane Arbustive
Arborée/Ferrugineux tropicaux n°2), SAA-F1 (Savane Arbustive Arborée/Ferrugineux tropicaux n°1),
SAA-L3 (Savane Arbustive Arborée/Lithosols n°3)

4.6.1. Données d’entrée météorologiques utilisées

Pour réaliser des simulations de la croissance de la végétation avec STEP, un jeu de
données journalieres météorologiques issues de la telédétection spatiale et de la
modélisation météorologique opérationnelle est utilise comme entrée sur la période
2000-2010:

- Les précipitations : les bases de données TRMM3B42 et RFE 2.0 avec des

résolutions respectives 0.25° et 0.10°,

- Les variables météorologiques : les températures, le vent, le rayonnement global,
I’lhumidité relative de I’air, issus des ré-analyses de ERA-interim du Centre Européen
de Prévisions Météorologiques a Moyen Terme (CEPMMT) avec une résolution

spatiale de 0.75° et au pas de temps de 6 heures sont utilisées.

Avant leur intégration dans le modéle, ces données ont subi un traitement de calcul et
aussi elles ont été spatialement interpolées sur la grille du produit de pluie qui
présentait la résolution la plus fine. Ainsi pour s’assurer de leur fiabilité, I’évolution
temporelle et spatiale de ces variables est évaluee (figure 4.3). Les simulations sont
effectuées sur un point de latitude et longitude sur chacune des entités considérées.
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Figure 4.3. Variations saisonniéres des variables météorologiques d’entrée du modéle durant I’année
2007 sur les sous-zones STAA-F et SAA-F1.

La figure 4.3 montre une évolution assez cohérente des différentes variables sur
I’entité STAA-F et SAA-F1 avec une augmentation de I’humidité relative et une
baisse des températures maximales apres le jour 200 (au mois d’Aout) correspondant
a la période de forts cumuls de pluie. Le rayonnement global compris entre 240 et 350
W/m?, I’humidité relative entre 30 et 85 %, les températures minimales entre 13 et 25
°C et maximales entre 25 et 40 °C et le vent a 10 m entre 1 et 7.5 m/s.

4.6.2. Données d’entrée de sol

Le modele prend en compte I’albédo et la texture du sol. Les données de texture
du sol concernant les pourcentages en sable, argile, et limon sur le Ferlo utilisées ici
dans chacune des quatre couches dont les épaisseurs sont définies dans le paragraphe
2.2 de ce chapitre, ont été obtenues avec la collaboration du CSE.

Par rapport aux données d’entrée, STEP présente une sensibilité spécifique par
rapport a chacune de ces variables.
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4.6.3. Ajustement du modele

La sensibilitt du modele est testée en le forcant avec chaque produit de pluie
(TRMM3B42 et RFE 2.0). Dans le chapitre précédent ces deux produits ont été
comparés, montrant des différences dans leurs variations spatiales et temporelles.

4.6.3.1. Choix du produit de pluie

Sur les 4 entités, des simulations ont été réalisées sur les 10 ans avec TRMM et RFE
en entrée. La figure 4.4 montre les cycles saisonniers du LAI simulé en gardant les

parameétres d’ajustement a la valeur 3.5 sur les 4 entités.

LAl Simules (RFE 2.0)

LAI Simules (TRMM3B42)

1 T 0.8 ‘
——STAAF () ——STAA-F (b)
——SAA-F2 0.7 | ——saA-F2 1
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Figure 4.4. Variations climatologiques du LAI simulé avec (a) RFE 2.0 et (b) TRMM3B42 sur 4

entités choisies sur la période 2000 a 2010.

La Figure 4.4 montre que le cycle saisonnier du LAI simulé sur I’ensemble des entités
considérées varie selon le produit de pluie. Le démarrage et la fin de la croissance de
la végétation sont presque identiques pour les deux produits avec un début fin Juin -
début Juillet et une sénescence a la fin du mois d’octobre (le jour 280 en moyenne).
Cependant avec TRMM3B42 (figure 4.4b) pour lequel I’intensité des précipitations
est plus forte, le maximum de LAI simulé arrive plus t6t, avant le jour 250 en
moyenne pour les 4 entités, alors qu’avec RFE 2.0 (figure 4.4a) ce maximum est
atteint aprés le jour 250 ce qui est plus proche des observations (voir figure 4.a
chapitre 3). Dans les deux cas les cycles saisonniers de LAI simulés montrent des
variations dans la premiere partie de la saison avant le maximum alors qu’aprés celui

ci ¢’est une évolution rapide vers la sénescence pour toutes les entités qui est obtenue.
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4.6.3.2. Ajustement du modele STEP
a) Paramétrage

Pour I’ajustement, le modéle dispose de 4 paramétres principaux : I’efficience g
comprise entre 2.5 et 7 g/MJ (Mougin et al., 1995 et Tracol et al., 2006), la biomasse
initiale BgO avec une valeur comprise entre 0.5 et 2.5 g/m? (Mougin et al., 1995 et
Tracol et al., 2006), la proportion de plantes en C3 et en C4 respectivement entre 30 -
60 % et 40 - 70 % (Jarlan et al., 2008; Hiernaux et al., 2009) et I’indice liant la
surface des feuilles & leur masse, le Specific Leaf Area SLAgO entre 180 et 280 cm?/g
(Jarlan et al., 2008).

Dans son analyse de la dynamique du LAI simulé pour des valeurs extrémes des
parameétres g, Bg0, C3C4 et SLAQO et des variables Tmin, Pierre (2010) a montré la
sensibilité trés prononcee a la valeur de I’efficience (un maximum de LAI atteint qui
passe de 0.6 & 1 m’m®) contrairement a la sensibilité trés faible a celle de la biomasse
initiale (avec un maximum de LAI de 0.6 & 0.4 m?m™). Pour cette raison, dans nos
simulations réalisées sur le Ferlo, seule I’efficience maximale de conversion « gc» est
utilisée pour I’ajustement. En effet I’efficience ¢ dans STEP est I'un des facteurs
permettant de calculer la production quotidienne de matiere végétale. Il représente le
rapport entre I'accroissement de la matiere séche optimale produite pendant un laps de
temps et I'énergie photosynthétiquement active absorbée pendant ce méme laps de
temps. Ce paramétre est trés sensible au type de photosynthese (C3, C4) qui a été pris
en compte dans le modéle mais aussi aux étapes de la phénologie de la plante. Dans le
domaine de la modélisation de la végétation sur le Sahel, une forte sensibilité a ce
parametre est établie (Hanan et al., 1997 ; Le Roux et al., 1997). En I’absence de
facteurs metéorologiques limitant la croissance des végétaux, seuls les facteurs
comme le type de métabolisme photosynthétique (plantes C3, C4) et le stade
phénologique peuvent faire varier ce paramétre (Bégué, 1991).

Suivant Mougin et al. (1995) et Tracol et al. (2005), les valeurs de . ont été testées
dans I’intervalle 2.5 a 7 g/MJ. Le modele doit étre ajusté sur chaque entité homogéne.
Ici sur toute la période de I’étude 2000 a 2010, on a ajusté le paramétre sur chaque
entité en moyenne sur toute la période considérée, bien que sur le Ferlo, le type de
vegeétation et les propriétés du couvert varient fortement a cause de la distribution des
précipitations et parfois de la pression de pature (Cissé, 1986; Tracol, 2004). De plus
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la distribution des nutriments, qui est fonction des apports de litiére et de la quantité
d’eau disponible dans le sol, affecte la croissance des herbacées qui varie d’une année
a I’autre (Penning de Vries et Djiteye 1982; Tracol, 2004). Le coefficient est choisi

identique pour les deux bases de données.
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Figure 4-5. (a) Cycle saisonnier du LAI simulé (RFE) avec ajutement du paramétre BgO (biomasse
initiale) (pour Bg0=0.8; 1.1 et 2.1); (b) Cycle saisonnier du LAI simulé avec le produit RFE 2.0 sans
seuil de pluie s = 0 (pointillés couleur claire) et avec seuil de pluie s = 1 (en traits pleins couleur

foncée) et pour 2 valeurs de I’efficience g = 3.5 (rouge) et e. = 6.5 (bleu) sur I’entité STAA-F.

La figure 4.5 confirme la plus forte sensiblité au paramétre . (figure 4.5 b) qu’au
paramétre Bg0 (figure 4.5 b). L’ajustement de BgO n’influence pas beaucoup
I’amplitude du LAI simulé mais peut cependant modifier la distribution temporelle du
LAI simulé avec un léger décalage du maximum de croissance mais aussi du cycle
phénologique. La figure 4.5 montre I’impact du choix de ce coefficient sur I’entité
STAA-F avec le passage de & =3.5 a g =6.5 correspondant respectivement aux
maxima de LAI simulé 0.36 m®> m? au jour 237 et 0.6 m* m? au jour 256. Ce
parameétre . impacte fortement sur la phénologie LAI. Quelle que soit la valeur du
parameétre g, la durée du cycle phénologique ne varie pas. Dans les simulations

présentées dans la suite, seul le parmetre ¢ est ajusté.

b) Le seuil de pluie

Un autre ajustement testé est le seuil de pluie, sachant que les données de satellite ne

sont pas comparables directement entre elles, ni avec les données de pluviométres.

116



Dans le chapitre 3, nous avons vu qu’un seuil de 1 mm/jour pouvait modifier de
maniere significative la répartition des pluies surtout dans la partie sud du bassin
Ferlo. Avec ce seuil appliqué aux données de RFE, le LAI simulé obtenu sur I’entité
STAAF est comparé au LAI simulé quand aucun seuil n’est appliqué a la pluie
(Figure 4.5, comparaison entre couleurs foncées et claires), montrant qu’il n’y a pas
de changements significatifs sur la valeur du maximum de LAI simulé ni sur sa date.
En revanche, le cycle phénologique est modifié avec un léger retard sur la date de
sénescence du LAI simulé quand le seuil de 1 mm/jour est appliqué, passant du jour
290 au jour 298. Ce choix du seuil de pluie allonge ainsi la saison de la végétation

simulée.

4.7. Validation du modele STEP
4.7.1. Comparaison entre observations et simulations sur la saison

Nous avons effectué des comparaisons entre les LAIs simulés, aprés ajustement avec
le paramétre ¢; et seuil 1 mm sur la pluie, et LAIs observées MODIS. Dans ces
comparaisons, pour chaque entité et chaque produit de pluie, nous avons attribué une
valeur de g; choisie pour s’approcher au mieux des observations. Avec RFE (ou
TRMM), les valeurs de I’efficience sont respectivement les suivantes : g. = 6.5 (7)
pour STAA-F ; 6.5 (6.5) pour SAA-F2 ; 4.5 (5) pour SAA-L3 et 4.2 (5) pour SAA-F1.
Ces valeurs sont choisies tout en restant dans les intervalles proposés par Mougin et
al., 1995 et Tracol et al., 2005, alors qu’il aurait fallu dépasser ces limites pour
STAA-F en particulier (e.= 8.5) pour atteindre exactement le maximum de LAI

observé correspondant (figure 4.7).

Avant toute comparaison nous avons soustrait du LAl observé MODIS la valeur du
LAI en saison seche, afin de comparer la dynamique de la végétation non-pérenne
mesurée et simulée. Dans un premier temps nous avons confronté directement les
cycles saisonniers observé et simulé (avec TRMM et RFE). Puis cette comparaison
est effectuée en calculant le coefficient de corrélation et I’écart quadratique moyen
(rmse) entre les maxima annuels. Dans cette partie avec les corrélations, seules les
simulations avec RFE 2.0 sont utilisées et discutées, vu que les comparaisons
moyennes ont montré une meilleure représentation du cycle annuel avec cette base de

pluie.
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Figure 4.6. (a) Comparaison entre les climatologies de LAI simulés (couleur foncé) (a) avec RFE, (b)
avec TRMM et LAI observés (couleur clair) sur les 4 entités considérées. Les indices « s » pour les

simulés et « 0 » pour les observés.

Sur les 4 entités considérées, sont comparés les cycles saisonniers des LAIs simulés
(en couleur foncée) et observés (en couleur claire) (figures 4.6 (a) et (b)). Avec les
LAIs simulés le démarrage de la croissance est plus précoce avec un cycle
phénologique plus court et un maximum atteint aussi plus petit ne dépassant pas 1 m?
m™. Les variations des LAls observés dans la premiére phase de la croissance avant le
maximum sont bien décrites par le modéle STEP avec des variations similaires sur le
LAI simulé. Le gradient nord-sud pour LAI simulé est décrit par modele avec la
méme distribution et la différence d’amplitude entre les différentes entités que pour le
LAI observé. Cependant, les climatologies simulées avec le produit RFE sont plus
proches de celles du LAI observé MODIS.
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Figure 4.7. Comparaison entre les cycles saisonniers de LAI simulé aprés ajustement sur chaque entité

et LAI observé MODIS. Les indices « s » et « 0 » sur la légende correspondent respectivement aux

simulations et observations.

La figure 4.7 montre que pour le LAI simulé peut atteindre ou étre trés proche du LAI

observé apres ajustement du modele avec des valeurs g élevées. Le cycle

phénologique du LAI simulé reste inchangé. Sur toutes les entités constituées de

savane avec des sols différents, le LAI simulé a atteint le maximum trés proche de

celui des observés aprés ajustement avec des paramétres compris dans les intervalles

définis. Sur I’entité de type de végétation steppe, ce paramétre devait étre tres grand

pour que le maximum devienne élevé. Ici on note I’impact du type de végétation qui

car en plus de la phénologie et de la fertilité du sol ce parameétre e. dependant en

partie du type de plante.
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Dans la figure 4.8, la comparaison entre les maxima de LAI atteint au cours de la
saison montre que malgré les faibles valeurs de LAI simulé, les valeurs maximales de
LAI simulé sont corrélées aux maxima observes avec un coefficient de corrélation de
I’ordre de r = 0.42 assez significatif car p < 0.05 et un RMSE = 0.27. Cette différence
d’amplitude entre les simulés et observés est notamment liée au fait que STEP simule
seulement la croissance des herbacées. La corrélation entre maximum simulé et
maximum observé confirme que la dynamique de la végétation de cette région
observée avec MODIS est dominée par les herbacées. Par rapport a la position des
entités, les écarts entre maximum simulé et maximum observé sont plus faibles pour
celles situées au nord (STAA-F; SAA-F2) que pour celles situées au sud (SAA-L3;
SAA-F1) sur lesquelles les valeurs du LAI sont plus fortes, et ou les espéces

arbustives et arborées sont plus présentes.

Au cours de la saison de végétation (de Juin a Octobre), les valeurs de LAI simulées
avec les deux produits de pluie sont corrélées a celles des observations MODIS
moyennes sur les 10 ou 11 années (figure 4.9). Cette relation entre les simulations et
observations est examinée pour savoir si le modeéle peut décrire I’évolution du couvert

vegeétal pendant toute la saison végétative quelque soit le produit de pluie.
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Figure 4.9. Régression linéaire entre LAIls simulés (a) avec RFE; (b) avec TRMM et LAls MODIS

observés.

D’apres la figure 4.9 entre le LAI simulé (TRMM et RFE) et LAl MODIS, on observe
une forte dispersion, mais avec un coefficient de corrélation significatif r = 0.52 et un

RMSE = 0.24 et p < 0.05 selon le test de Student appliqué pour la significativité.
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(a)

Avec moins de dispersion entre LAI simulés et LAl observés, la liaison reste plus
forte entre LAI simulé (RFE) et LAl MODIS avec un coefficient de corrélation r =
0.74 avec p < 0.05 et un RMSE = 0.19 donc plus petit. La relation linéaire entre les
LAls simulés et observés montre que le modele décrit la croissance de la végétation

de facon cohérente avec les mesures MODIS LAI jusqu’au maximum.
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Figure 4.10. Régression linéaire entre les moyennes mensuelles de LAIs simulés (a) avec RFE; (b)
avec TRMM et LAIs MODIS observés sur chacune des entités (en couleur claire vert (SAA-L3) et
cyan (SAA-F1) et en couleur sombre rouge (STAA-F) et bleu (SAA-F2).

Sur les entités considérées, les écarts entre le LAI simulé et observé sont différents.
Ces différences sont observées en fonction de la position les entités. Les coefficients
de corrélation entre LAI simulé et LAI observé sur les différentes entités (figure 4.10)
montrent que sur les entités localisées au sud les LAIs simulé et observé sont plus
proches que sur celles situées vers nord. Le LAI observé étant plus fort que celui
simulé et dans la région sud sont enregistrés les plus fortes valeurs de LAI simulé
comme observe d’ou la plus forte liaison entre ces derniers dans cette partie.
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Figure 4.11. Variations de la différence non normalisée (DNN) entre les maxima de LAI simulé (avec
RFE (a) et avec TRMM (b)) et observé dans chacune des 4 entités homogénes. Les différents boxplots :
la boite en couleur avec tirets horizontaux en haut (maximum) et en bas (minimum) correspond a
I’amplitude de la dispersion, le trait rouge a I’intérieur de la bofte représente la médiane.

La figure 4.11 montre une dispersion de la différence entre les maxima de LAI
observé MODIS et simlué tres variée mais des médianes assez différentes entre les
entités. Les différences entre les maxima de LAIs observé et simulé avec RFE (figure
4.11a) sont caractérisées par une distribution symétrique autour de la médiane pour
SAA-F2, SAA-L3, SAA-F1 et dissymétrique sur STAA-F alors qu’avec TRMM
(figure 4.11 b) cette distribution est nettement dissymétrique sur la plupart des entités.
Cette distribution symétrique montre I’écart plus faible entre LAl MODIS et LAI
simulé avec RFE. En moyenne avec les deux simulations la distribution est plus large

sur SAA-F1 située plus au sud.

Vu que les simulations avec RFE sont plus proches des LAIs MODIS, nous nous

limiterons a I’analyse des LAI simulés avec RFE dans la suite.
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4.7.2. Impacts des variations de pluie sur le maximum de LAI simulé

Pour évaluer les relations entre les paramétres de pluie et le maximum de LAl
MODIS, les relations linéaires entre le maximum de LAI simulé et ces paramétres
specifiques de la pluie sont analysées, de la méme fagon que dans le chapitre 3 pour
les observations. Comme précédemment la significativité est vérifiée avec le test de
Student pour o = 5%. Les paramétres testés sont le cumul de pluie, le nombre de
pauses pluviométriques, I’intensité de ces pauses, la durée de la pause de pluie la plus
longue et son intensité au cours de la saison des pluies de Juin a Octobre pour toute la
période de I’étude de 2000 a 2010 et sur les différentes entités considérées. Comme
dans le chapitre 3, nous avons considéré les pauses avec un seuil de durée de 3, 5, et 7
jours. L’objectif ici est de tester comment le modéle simule la réponse de la

vegeétation au maximum de croissance.
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Figure 4.12. Comparaison des coefficients de corrélation entre les variations dans la disponibilité en
eau et le maximum de croissance du LAI simulé (en rouge) et du LAI observé (en bleu). En trait et

pointillé noir, le niveau de significativité des coefficients pour o = 5 %.

La figure 4.12 montre les corrélations entre la disponibilité ou manque en eau et le
maximum de LAI simulé et observé au cours de la saison, en moyenne sur les 4
entités. Concernant le cumul de pluie et les pauses de 7 jours au moins, le LAl simulé
répond de la méme maniére que les observations avec des coefficients de corrélation
moins elevés mais significatifs. Comme pour les observations sur ces 4 entités, a
savoir la corrélation entre I’intensité ou la durée de la pause la plus longue, et les
maxima de LAI simulé, on ne trouve pas de corrélation significative. Pour ces
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derniers parametres, I’analyse effectuée sur seulement 4 entités est peut étre la cause
de I’absence de significativité (les résultats trouvés dans le chapitre 3 sur I’ensemble
des entités « non-lithosols » avec les observations étant différents). Le nombre

d’entités pourrait aussi étre a I’origine de cette absence de significativité.

Cependant, la réponse du LAI simulé montre globalement une bonne cohérence avec

les observations.

Nous avons également effectué des corrélations entre les anomalies de LAI simulé
quand le modele est forcé avec le produit RFE 2.0, avec les anomalies de pluie RFE.
Ces anomalies sont calculées par rapport a la climatologie sur toute la série (cf
chapitre 3). Ici pour encore évaluer les capacités et limites du modele, les coefficients
de corrélation et les délais de réponse entre les simulations (avec RFE) et observations
sont comparés sur les différentes entités (figure 4.13). De méme que pour les
observations, la significativité des coefficients de corrélation est testée en appliquant
le test le Monte Carlo décrit dans le Chapitre 3.
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Figure 4.13. Comparaisons (a; b) des coefficients de corrélation entre les anomalies positives (ou
négatives) de pluie (RFE) et les anomalies positives (ou négatives) de LAI simulé (en rouge) et LAI

observeé (en bleu) ; (c; d) entre les décalages correspondants.
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La figure 4.13 montre une cohérence entre les réponses pour les anomalies négatives
avec des coefficients de corrélation significatifs et similaires pour les simulations et
les observations. A I’exception de SAA-F2, la valeur de ces coefficients dépasse 0.40
dans les deux cas. La réponse a ces anomalies négatives arrive en moyenne apres 2
semaines pour les LAIs simulés et observés. En revanche, pour les anomalies
positives de pluies, contrairement aux observations, la réponse du LAI simulé n’est
pas significative en moyenne, avec des coefficients faiblement significatifs sur les

entités sud et non significatifs au nord.

Le modéle prend donc en compte les périodes de stress hydrique mais pas les
accumulations supérieures a la moyenne. Le fait que la réponse ne soit significative
que dans les entités les plus au sud pose question: sachant que les herbacées
dominent plus nettement au nord du Ferlo que dans le sud, on s’attendrait & obtenir a
I’inverse une réponse plus claire des simulations dans ces zones comme c’est le cas

pour les observations.

4.8. Conclusion

Nous pouvons retenir que le modele reproduit mieux la phase de la croissance de la
vegétation aprés calage du parametre .. Ce parameétre d’ajustement du modéle est
défini dans chaque sous-zone. Par rapport aux produits de pluie, un seuil de 1
mm/jour de pluie modifie légérement la phénologie de la végeétation, dans un sens de
plus grande cohérence avec les observations. Les faibles pluies dans les produits de
satellite qui raccourcissent la saison de la végétation simulée sont entachées d’une
plus grande incertitude. De plus I’effet de réelles faibles précipitations sur la
croissance de la végétation est réduit par I’évaporation.

Avec la méme méthodologie que pour les observations satellite, des analyses
comparatives on été effectuées pour estimer I’impact des variations intra saisonnieres

de la pluie sur la dynamique du LAI simulé.

La confrontation directe des valeurs de LAI simulé et observé montre des similarités
avec des coefficients significatifs, mais avec des écarts entre les maxima simulés et

observés.
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Ces écarts qui pourraient étre dus a la présence des steppes avec lesquels I’ajustement

du modeéle n’est pas facile comme dans le cas des savanes.

La réponse aux pauses pluviométriques du LAI simulé est presque similaire a celle
des observations. Les périodes séches de longue durée affectent le maximum de LAI
simulé de fagon cohérente avec les observations, confirmant I’impact des sécheresses
a I’intérieur de la saison des pluies sur la biomasse (Le Houérou, 1989 ; Nicholson et
al., 1990; Fontaine et al., 1999; Le Barbé et al., 2002; Camberlin et al., 2007; Ndiaye
et al.,2015).

Les anomalies de pluie en période de sécheresse sont presque bien corrélées avec
celles du LAI simulé. Par rapport & la disponibilité en eau avec les anomalies
positives, seules les 2 entités du sud sont faiblement affectées. Cette faible ou non-
réponse des entités pourrait étre liée a un probléme de représentation dans les autres
variables climatiques dans la région. La faible pente dans les régressions linéaires

résulte de la forte dispersion notée dans certaines entités (particulierement sud).

Cependant, la phase de sénescence rapide (Pierre, 2010) qui arrive juste apres que le

maximum de LAl est atteint, constitue la limite principale du modele.

La différence entre les simulations et les observations est partiellement due au fait que
le type de végétation mais aussi la fertilité des sols sont tres importants dans le

modéle.

Par ailleurs, il serait intéressant de refaire ces simulations en poussant plus loin les
ajustements du modele d’une part, et d’autre part en utilisant des données
météorologiques plus précises mesurées au sol ou méme des données satellite, en

sélectionnant seulement les entités sur les sols les plus fertiles.
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Conclusion et Perspectives

Nous avons étudié les impacts de la variabilité intra-saisonniére des précipitations sur
la dynamique de la végétation a I’échelle du bassin versant (le Ferlo) sur la période
2000-2010. La dynamique de la végétation dépend en plus de la pluviométrie, de
facteurs tels que le type de sol, et la composition floristique des végétaux. Les
principaux types de sol pris en compte et une classification de I’occupation du sol ont
conduit a définir des « zones homogénes ». Les classes sont des types de végétation
regroupant plusieurs espéces végétales. Ainsi comme pour le sol, chaque type de

végétation a été considéré de maniére individuelle.

Pour étudier ces variations intra saisonniéres, nous avons utilisé deux approches : une
premiére qui a consisté a une analyse des données d’observations satellite ; et une

seconde dans laquelle la croissance de la végétation est simulée avec le modele STEP.
- Variations intra saisonnieres des précipitations

A partir de données d’observations de satellite, nous avons analysé les variations intra
saisonniéres des précipitations. D’abord les distributions entre les données de pluie
(TRMM et RFE) et de SM (soil moisture) ont été analysées, montrant une cohérence
dans les variations temporelles intra-saisonnieres, et spatiales dans les différentes
zones climatiques du Ferlo. Les principales différences entre les deux bases de
données de pluie concernent I’amplitude de la pluie journaliére, ainsi que la
sensibilité aux pluies locales / faibles, représentées differemment. L’humidité du sol
apparait comme un signal intégrateur de I’eau disponible rapidement pour la
vegétation : le cycle global de I’humidité du sol est cohérent avec celui de la pluie,
mais de fagcon plus lissée dans le temps, et avec des variations locales dues aux

caractéristiques de la région (fond de vallée vs plateau).

Pour évaluer I’impact des variations de pluie sur la croissance de la végétation, nous
avons déterminé les différents parametres spécifiques dans les cycles saisonniers de

ces variables (tels que la date de début, le cumul pour pluie, la moyenne de SM, les
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pauses pluviométriques ou anomalies négatives de pluie et de SM). Les variations par
rapport a la moyenne (sur les 10 ans) pour évaluer leurs impacts sur le maximum de
LAI et les anomalies positives ou negatives de LAI au cours de la saison. Ainsi, hous
avons trouvé que par rapport aux produits de pluie et de SM, la réponse du LAI était
plus significative respectivement avec SM et RFE qu’avec TRMM. Entre pluie et SM,
la réponse plus forte de la végétation avec SM s’explique par la relation de cette
variable avec I’humidité dans la zone racinaire. Le type de sol intervient fortement
dans ces relations, la végétation sur des sols ferrugineux étant plus sensible aux
fluctuations de pluie comme de SM. La réponse sur des sols lithosols est globalement
peu significative, car dans ces sols trées minces sur roche quasi affleurante,

I’infiltration est lente et ils accumulent en surface plus longtemps I’humidité.

Les paramétres de pluie ou SM qui affectent plus le maximum de LAI sont le cumul
de pluie ou la moyenne de SM, les pauses de pluie (ou anomalies par rapport a la

moyenne) dont la durée est comprise entre 5 et 7 jours (en nombre et en intensité).

En revanche la date de début de la saison des pluies n’a pas d’impact sur le maximum

de croissance de la vegétation.

La corrélation temporelle entre les anomalies de pluie et de LAI sur les 10 ans montre
une forte influence des anomalies négatives (phases de sécheresse) avec des
corrélations élevées et une réponse plus rapide sur les sols ferrugineux (2 semaines en
moyenne) que sur les lithosols (réponse aprés 3 semaines en moyenne). Concernant
les anomalies positives, la réponse sur les lithosols n’est pas significative, alors que
les ferrugineux et autres sols ont répondu de facon significative en moyenne apres 2

semaines.

Ainsi, le type de sols joue un role important dans I’étude des relations intra
saisonniéres entre les précipitations et la végétation, les pauses a partir d’une semaine
ont une forte influence sur la dynamique du couvert végétal, mais aussi la quantité de
pluie tombée ou d’humidité en surface contribuent significativement a la croissance

des végétaux dans le Ferlo.

- Variations intra saisonniéres des précipitations avec simulations

Les simulations effectuées avec le modéle de végétation STEP forcé avec les mémes

produits de pluie (TRMM et RFE) et des champs météorologiques issus des
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réanalyses ERA _Interim ont permis de simuler le LAI au cours des années de 2000 a
2010 sur plusieurs entités. Les résultats obtenus avec les observations nous ont
conduit a sélectionner des entités homogénes sur sols ferrugineux et lithosols qui
permettent de comparer les différences en lien avec le gradient climatique et I’impact
du type de sol avec les observations. Sur ces entités qui sont STAA-F, SAA-F2, SAA-
F1 et SAA-L3 sont effectuées I’ensemble des simulations.

D’abord, une comparaison des cycles saisonniers moyens du LAI simulé avec les
deux produits de pluie a été effectuée. Il est apparu qu’avec RFE le cycle de LAI
simulé est plus proche des observations MODIS qu’avec TRMM.

L’ajustement du modeéle avec le parametre €. a montré que sur le STAA-F il faudrait
dépasser les valeurs limites pour atteindre I’amplitude des observations, bien que la
végétation herbacée soit trés dominante sur cette entité. Il est possible que
I’insuffisante résolution des parameétres météorologiques et rayonnement soit la cause

de cette difficulté d’ajustement, qui n’est pas apparue sur les autres entités.

Comme dans les observations, le cumul en période de croissance et les pauses
supérieures ou égales a 7 jours influent significativement sur le maximum de LAI
simulé. Les anomalies négatives de LAI simulé sont bien corrélées avec celles des
précipitations (RFE) avec un délai de 2 semaines en moyenne comme pour les
observations. Par contre la réponse des anomalies positives n’est pas significative

méme pour les entités situées dans le nord.

Cependant ces différentes comparaisons entre les simulations et les observations
montrent la capacité du modéle a reproduire de fagon réaliste la dynamique de la
vegeétation durant la période de croissance. La simulation de la phase de sénescence

est en revanche tres différente des observations, avec une décroissance trop rapide.

Cette étude montre que les variations intra-saisonniéres de la pluie ont une forte
influence sur la croissance de la végétation herbacée, au dela du cumul de pluie. Nous
avons montré qu’a I’échelle d’une petite région, il est possible d’utiliser des
observations satellite pour caractériser cet impact, et le produit d’humidité du sol
apparait comme le plus pertinent. Ainsi I’analyse des anomalies intra-saisonniéres de
SM par rapport a la climatologie permet de « qualifier » aisément la qualité de la
saison des pluies a I’échelle de petites zones suffisamment homogénes.
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Nous proposons comme perspectives :

Tout d’abord, approfondir I’utilisation du modéle STEP sur le Ferlo :

Refaire les simulations avec un ajustement du paramétre . qui tiendra compte
en plus du type de végétation, des différentes especes. En effet, ce paramétre
est fortement dépendant du type de végétation de par la photosynthése qui
peut étre différente d’une espece a I’autre. Pour effectuer ces simulations, des
données de végétation de la FAO et mesures de terrain seront utilisées pour
identifier les différentes espéces sur les différents sols afin de pouvoir ajuster
ce paramétre g en fonction de la combinaison des espéces végétales et de leur
type de photosynthése tout en tenant compte du type de sol.

Refaire les mémes simulations sur le Ferlo avec des données de pluie et
météorologiques mesurées ou analysées avec une meilleure résolution spatiale.
En effet, les simulations sur I’entit¢ STAAF (NO du Ferlo) sont moins
cohérentes avec les observations que sur les zones plus au sud. Il est possible
que les parameétres météorologiques et de rayonnement des réanalyses ERA-
Interim ne soient pas assez précis pour caractériser les différences. Il s’agira
donc d’effectuer des comparaisons entre les simulations avec des données in
situ et simulations avec réanalyses, et comparer I’impact sur les simulations

des différentes réanalyses disponibles.

Les observations satellite ont montré leur intérét pour I’analyse d’une petite région

agro-pastorale comme le Ferlo. Il serait intéressant de :

analyser I’influence de la transhumance (car le Ferlo est une région a élevage
intensif), ainsi que I’impact des feux de brousse sur les résultats dans les
relations pluie végétation ;

De refaire cette analyse sur une région plus fortement anthropisée par
I’occupation humaine telle que la petite cbte sénégalaise, en incluant
I’évolution temporelle de I’occupation du sol. La pertinence des données
satellite, les criteres d’homogénéité des entités, la facon de rechercher les
impacts devraient étre approfondis pour tenir compte des évolutions locales.
C’est a dire prendre en compte I’activité humaine telle que la déforestation.
Faire la méme étude sur le bassin arachidier du Sénégal qui est une région

agro-écologique. Seules les cultures seront considérées pour définir des
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indicateurs permettant de prévoir le rendement dans cette région. Ces résultats
pourront étre comparés avec des sorties de modéle et des mesures de terrain
(en collaboration avec I’ISRA). Cette étude consistera dans un premier temps
a identifier les parameétres définissant les différentes étapes dans le cycle
phénologique de chaque type de culture mais aussi les anomalies au cours de
leur croissance. Il s’agira dans un second temps établir des comparaisons entre
ces parametres et les paramétres dans le cycle saisonnier des précipitations (et
de I’humidité du sol), et enfin établir une relation entre les anomalies de pluie
et la taille des cultures ou les dates de maturation. Cette étude s’effectuera en
tenant compte du type de sol. Prévoir le rendement dans cette région pourrait
permettre a contribuer a I’élaboration d’un plan assurant une meilleure
production.

Appliquer cette étude sur une région plus large du Sahel, voire une autre partie
de I’Afrique non sahélienne puis confronter les résultats. Ceci permettrait de
compléter les travaux antérieurs qui pour beaucoup ne prennent en compte que

le cumul saisonnier a I’échelle du Sahel.
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4. Modélisation de la croissance de la végétation avec STEP

Figure 4.1. Schéma résumant les interactions entre les modules de la croissance de la
plante et du bilan en eau dans le modele STEP et interactions des différents processus

dans chaque module (source. Jarlan et al. 2007).

Figure 4.2. Carte des entités homogenes avec identification de celles choisies pour les

simulations par un triangle rouge
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Figure 4.3. Variations saisonnieres des variables météorologiques d’entrée du modéle
durant I’année 2007 sur les sous-zones STAA-F et SAA-F1.

Figure 4.4. Variations climatologiques du LAI simulé avec (a) RFE 2.0 et (b)
TRMM3BA42 sur 4 entités choisies sur la période 2000 a 2010.

Figure 4-5. Cycle saisonnier du LAI simulé avec le produit RFE 2.0 sans seuil de
pluie s = 0 (pointillés couleur claire) et avec seuil de pluie s = 1 (en traits pleins
couleur foncée) et pour 2 valeurs de I’efficience . = 3.5 (rouge) et & = 6.5 (bleu) sur
I’entité STAA-F.

Figure 4.6. (a) Comparaison entre les climatologies de LAI simulés (couleur fonce)
(@) avec RFE, (b) avec TRMM et LAI observés (couleur clair) sur les 4 entités

considérées. Les indices « s » pour les simulés et « 0 » pour les observes.

Figure 4.7. Comparaison entre les cycles saisonniers de LAI simulé apres ajustement
sur chaque entité et LAI observé MODIS. Les indices « s » et « 0 » sur la Iégende

correspondent respectivement aux simulations et observations.

Figure 4.8. Régression linéaire entre les maxima de LAI simulé (avec RFE) et
observé MODIS

Figure 4.9. Régression linéaire entre LAIs simulés (a) avec RFE; (b) avec TRMM et
LAIs MODIS observés.

Figure 4.10. Régression linéaire entre les moyennes mensuelles de LAIs simulés (a)
avec RFE; (b) avec TRMM et LAIs MODIS observés sur chacune des entités (en
couleur claire vert (SAA-L3) et cyan (SAA-F1) et en couleur sombre rouge (STAA-
F) et bleu (SAA-F2).

Figure 4.11. Variations de la différence entre les maxima de LAI simulé (avec RFE
(@) et avec TRMM (b)) et observé dans chacune des 4 entités homogenes. Les

différents boxplots : la boite en couleur avec tirets horizontaux en haut (maximum) et
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en bas (minimum) correspond & I’amplitude de la dispersion, le trait rouge a

I’intérieur de la boéte représente la médiane

Figure 4.12. Comparaison des coefficients de corrélation entre les variations dans la
disponibilité en eau et le maximum de croissance du LAI simulé (en rouge) et du LAI
observé (en bleu). En trait et pointillé noir, le niveau de significativité des coefficients

pour o = 5 %.

Figure 4.13. Comparaisons (a; b) des coefficients de corrélation entre les anomalies
positives (ou négatives) de pluie (RFE) et les anomalies positives (ou négatives) de
LAI simulé (en rouge) et LAI observé (en bleu); (c; d) entre les décalages

correspondants.

Résume :
Le Sahel est une région caractérisée par une trés forte variabilité intra-saisonniére des

précipitations. Cette variabilité affecte fortement les écosystémes durant la phase de
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croissance de la végétation. L’objectif de cette thése est de caractériser cette variabilité a
échelle locale & partir des relations entre les précipitations et la dynamique de la végétation, et
d’identifier des indicateurs pertinents qui permettraient de mieux décrire cette variabilité dans

chaque saison.

Cette étude est effectuée dans le bassin versant du Ferlo, une région au nord du Sénégal. Une
premiére partie est consacrée a la caractérisation des relations entre anomalies de pluie et
croissance de la végétation a partir des données de télédétection spatiale TRMM3B42, RFE
2.0, SM-ECV (Soil Moisture) et LAl MODIS. Pour cela, le bassin versant du Ferlo est
subdivisé en 9 sous-zones « entités homogenes », de méme classe de couverture végétale et
méme type de sol. Sur chacune sont analysées les données de pluie des deux bases de
données, I’humidité du sol et le LAI sur la période 2000 — 2010. Dans un second temps, a
I’aide d’un modéle de végétation adapté a la région forcé par les pluies satellite, le LAI est
simulé sur plusieurs entités et est comparé au LAl MODIS, en appliquant aux simulations les

mémes méthodologies que pour les observations.

Les résultats de cette étude montrent une cohérence entre les variations des précipitations des
deux bases de données et I’humidité du sol. Les variations du LAI sont plus fortement
corrélées aux variations de I’humidité du sol qu’a celles de la pluie. Sur le Ferlo, on observe
qu’il faut 2 semaines pour que la végétation réponde a une anomalie de pluie au cours de la
saison des pluies. A I’échelle de la saison, la date de démarrage des pluies n’a pas d’incidence
sur le maximum de LAI, contrairement a la durée et I’intensité des pauses de pluie. Les
entités sur sol sableux (ferrugineux) présentent une meilleure sensibilité aux fluctuations de
pluie que celles sur lithosol. De plus, sur les entités situées au Sud-Est, la densité de la
végétation arbustive et arborée induit un cycle phénologique différent de celui des herbacées

(décalage du maximum de LALI).

Le modele STEP, initialisé avec les données de pluie satellite, reproduit apres ajustement la
phase de croissance de la végétation dans les entités ou les herbacées dominent. La réponse
du LAI simulé aux anomalies de pluie est comparable a celles observées, confirmant

I’interprétation des observations.

Cette étude a permis de définir les paramétres les plus pertinents qui affectent la dynamique
de la végétation mais aussi de mettre en évidence les capacités du modéle a décrire le cycle

saisonnier de la végétation.

Mots-clés. Précipitations, végétation, LAl MODIS, SM, Ferlo, Sahel
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Title : Study of rainfall intra seasonal variability in the Sahel : Impacts on
vegéeation (Ferlo’s case in Senegal)

Abstract :

The Sahel is characterized by a strong intra-seasonal variability of rainfall. This variability
strongly affects ecosystems during the vegetation growth. The objective of this thesis is to
characterize this variability at the local scale from the relationship between rainfall and
vegetation dynamics, and to identify relevant indicators to better describe the variability in

each season.

This study is carried out in the Ferlo’s catchment, a basin located in northern Senegal. The
first part is devoted to the characterization of the relationship between rainfall anomalies and
growth of vegetation from remote sensing data TRMM3B42, RFE 2.0 SM-ECV (Soil
Moisture) and MODIS LAI. Aiming that, the Ferlo basin is divided into 9 zones
"homogeneous entity", in terms of vegetation cover class and soil type. For each one are
analyzed the rain data from both databases, soil moisture and LAI over the period 2000-2010.
In a second time, with a vegetation model adapted to the region forced by satellite rain fields,
the LAI is simulated on several entities and is compared to the MODIS LAI, applying on the

simulations the same methodologies as for observations.

The results of this study show consistency between rainfall variations with both databases and
soil moisture. The LAI variations are more strongly correlated with the soil moisture
variations than with the rainfall. On the Ferlo, we observe that vegetation needs two weeks to
respond to rainfall anomalies during the rainy season. At the season scale, the starting date of
the rainy season does not affect the maximum LAI, unlike the duration and intensity of the
dry spells. Entities located on sandy soil (ferruginous) have better sensitivity to rainfall
fluctuations as those located on lithosoils. In addition, on entities located in the Southeast, the
density of the shrub and tree vegetation induces a different phenological cycle than those of

the herbaceous (lag of the maximum LAL).

The model STEP, initialized with satellite rainfall data, reproduces after adjustment the
vegetation growth stage in the entities where grassland dominates. The response of the
simulated LAI to the rain anomalies is consistent with those observed, confirming the

interpretation of observations.

This study allowed to define the most relevant parameters that affect the dynamics of
vegetation but also to highlight the capabilities of the model to describe the seasonal cycle of

vegetation.
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