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Notations

Nombres

|| : partie entiere d’'un nombre réel x.

N(e, F,d) : nombre de e-recouvrement d’une classe de fonctions F pour la métrique
d.

Nj(e, F,d) : nombre de e-crochet d’une classe de fonctions F pour la métrique d.
N(e, F) = supg N(g||F|l2,q, F,dq) : nombre d’entropie uniforme, ot F' est une en-
veloppe de F et dg est la métrique de Lo(Q).

card(A) : le cardinal d’un ensemble A.

Convergences

~+ : convergence en distribution.

K convergence en probabilité.

2% . convergence presque stire.

Normes

|z = 320, |#;] : norme euclidienne dans R,

| flloo = SUpega |f(z)] : norme suprémum d’une fonction f: R? — R, d > 1.

| fllr = sup,er | f(x)] : norme suprémum d’une fonction f: I — R.

|P(f)|lx = supgepra |2(f)] : norme suprémum d’une fonctionnelle @ : F — R.

I fllp0 = ([ 1£[PdQ)'P : norme d’une fonction f dans I'espace L,(Q).

Espaces

C10, 1] : espace des fonctions réelles continues sur [0, 1].

D[0,1] : espace des fonctions réelles continues a droites, avec limite & gauche sur et
définies sur [0, 1].

Cy(R) : espace des fonctions réelles continues et bornées sur R.

[°(T) : espace des fonctions réelles bornées sur 7.

M,(R,[0,1]) : espace des fonctions monotones sur R a valeurs dans [0, 1].



Résumé

Cette these introduit tout d’abord une formule générale qui englobe toutes les
mesures de pauvreté uni-dimensionnelles basées sur le revenu. Nous proposons en-
suite deux types d’estimateurs non-paramétriques (a noyau et de type ”plug-in”)
pour cet indice général de pauvreté, tout en étudiant leurs propriétés asympto-
tiques. Notre méthodologie , basée essentiellement sur la théorie moderne du pro-
cessus empirique indexé des fonctions, offre un cadre global et rigoureux qui permet
d’étudier, avec la méme approche, le comportement asymptotique de tous les indices
de pauvreté encore disponibles jusqu’ici dans la littérature. Nous obtenons la consis-
tance forte uniforme d’une tres large classe de mesures de pauvreté incluant presque
tous les modeles d’indices proposés par les économistes, décomposables comme non-
décomposables. Ce résultat est utilisé pour construire des intervalles de confiance
simultanés, de niveau asymptotiquement optimal (100%). Un théoréeme central li-
mite uniforme fonctionnel est également établi pour cette large classe d’indicateurs
de pauvreté. Comme conséquence, des procédures d’inférence robustes , basées sur le
noyau de covariance et utilisant un test de Wald, sont développées afin de comparer

de fagon non-ambigué deux populations différentes en termes de pauvreté.

English summary

This dissertation first presents a general representation of poverty measures that
concerns all uni-dimensional poverty measures based on the income distribution. We
then, deals with two types of estimators of this general poverty index : a kernel one
and a plug-in one, and analyze their asymptotic properties. Our methodology, essen-
tially based on the modern theory of empirical processes indexed by functions, offers

a general and rigorous framework, which allows to study in the same approach, the
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asymptotic behaviour of all the income-based poverty measures that are still avai-
lable yet in the literature. We obtain the strong and uniform consistency of a very
broad class of poverty measures including almost all the poverty indices proposed
by economists, both decomposable and non-decomposable. This result applies for
building simultaneous and accurate asymptotic confidence bands for the theoritical
poverty index . A uniform functional central limit theorem is also established for
this wide class of poverty measures. As a consequence, robust statistical inference
procedures, based upon the covariance structure, are developped using a Wald test,
in order to compare in a non-ambiguous manner two different populations in terms

of poverty.

Keywords : General poverty index, Kernel estimates, Plug-in estimates, Confi-

dence bands, Empirical process indexed by classes of functions, Weak convergence.



Introduction Générale

Les travaux de I’économiste anglais Amartya Sen en 1976 ont apporté, durant
les trois dernieres décennies, un souffle nouveau dans la maniere d’appréhender la
pauvreté. En effet, un progrés considérable a été noté dans la perception et ’ana-
lyse de celle-ci. De nombreuses approches, complémentaires les unes des autres, ont
été proposées par les économistes et beaucoup de mesures (ou indices) de pauvreté
ont été introduites dans la littérature, en suivant I’approche axiomatique de Sen
(1976). Selon ce dernier, une mesure de pauvreté acceptable doit tenir compte de
trois aspects essentiels de la pauvreté : la proportion d’individus vivant en dessous
du seuil de pauvreté, I’écart entre le revenu moyen des individus pauvres et le seuil
de pauvreté et enfin, 'inégalité de revenu entre les individus pauvres. La prise en
compte de ces trois aspects a permis a Sen (1967) d’établir un certain nombre de
principes normatifs (ou aziomes) quun bon indice de pauvreté doit satisfaire. Pour
une revue détaillée de ces azriomes de pauvreté, nous renvoyons le lecteur a Foster
(1984), Chakravarty (1990) et spécialement a Zheng (1997) qui a fait une synthese
exhaustive de ’ensemble des propriétés souhaitables pour une mesure de pauvreté,

ainsi que leur interaction.

La plupart des études empiriques sur la pauvreté utilisent des mesures discretes se
limitant seulement a la distribution observée. Dans une telle approche, I’évaluation
de la mesure de pauvreté devient considérablement problématique lorsque la taille de
la population a étudier devient importante. De plus, les mesures de pauvreté estimées
avec cette approche sont exactes et non aléatoires. Ce qui ne permet pas de faire
de 'inférence statistique en tenant compte des fluctuations d’échantillonnage. Dans
cette these, nous nous intéressons a un indice de pauvreté général considéré, sous
sa forme continue, comme ’espérance mathématique des formes discretes calculées

a partir d’'un échantillon aléatoire de n revenus tirés dans une population, dont la
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distribution est définie par une fonction de répartition continue G(y). Ainsi, I'indice

de pauvreté que nous voulons introduire est défini sous la forme générale suivante :

J= / “w(G ), C(2) (. 2)AC(y), 1)

ou z est un réel positif appelé seuil de pauvreté ou encore (ligne de pauvreté), c’est
a dire le niveau de revenu en dessous duquel la pauvreté est effective. Si Y est une
variable aléatoire représentant le revenu d’un individu pris au hasard dans la po-
pulation considérée, alors G(y) = P(Y < y),Vy € R. La fonction f(y, z) mesure la
pauvreté d’un individu au revenu y, relativement au seuil de pauvreté z. Autrement
dit, elle exprime la contribution d’un individu ayant un revenu y, a la pauvreté glo-
bale de la population. On 'appelle fonction de déprivation individuelle. Enfin, w(-, -)
est une fonction de pondération qui affecte une importance d’autant plus grande que
I'individu considéré est plus pauvre. Par soucis de cohérence avec I'approche axioma-
tique de Sen, les fonctions w(-,-) et f(,-) seront supposées décroisantes par rapport

a la variable revenu y.

L’estimation asymptotique de l'indice J défini par 1’équation (1) a fait 'objet de
nombreux travaux utilisant des approches différentes et particulieres. Par exemple,
Bishop et al (1997) ont établi la consistance et la normalité asymptotique de la
mesure empirique de Sen (1976) et de ses composantes - le taux de pauvreté, le
déficit moyen de pauvreté et 'indice de Gini pour les pauvres - en se basant sur
la théorie des U-statistiques. Ils ont montré que la mesure empirique de Sen est un

estimateur consistant pour I'indice théorique

s (- 88) (50w

On peut remarquer que cet indice S peut se mettre sous la forme (1) en posant

ulo. Gl =2 (1- G ) e 1) = (22,

Dans la méme veine, Zheng (2001) obtient, sous des conditions tres douces sur
la fonction de répartition G(y) de la distribution du revenu, la normalité asympto-
tique d’une classe d’estimateurs d’indices de pauvreté décomposables (i.e. additive-

ment séparables). En travaillant avec des seuils de pauvreté relatifs, il a également
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montré que la structure de covariance fini-dimensionnelle de ces indices de pauvreté
décomposables peut étre estimée de fagon non-paramétrique, permettant du coup, de
faire de l'inférence statistique avec ces indices. Notons que ces mesures de pauvreté
décomposables forment une classe particuliere englobée par I'indice J et sont obte-
nues en choississant une fonction de déprivation individuelle f(y, z) appropriée et une
fonction de pondération w(+, -) constamment égale a 1,i.e. w|G(y),G(2)] =1, Yy > 0
et z > 0 fixé.

En explorant une méthode non-paramétrique pour l’estimation de l'indice de
pauvreté, Dia (2008) proposa un estimateur a noyau de Parzen-Rosenblatt pour
Iindice de Foster-Greer-Thorbecke (1984) défini par

FGT(a) = /O (Z - y)adG(y), a>0.

z

Cet indice peut se mettre sous la forme (1), en prenant pour tout y > 0,

Y

w|G(y),G(2)] :==1et f(y,2) = ( )a, pour « > 0.

Dia (2008) a également étudié les propriétés asymptotiques de ce nouvel estima-
teur a noyau, notamment les convergences en moyenne quadratique et presque stire
, uniformément en z sur des intervalles compacts. Cet estimateur sera rappelé au

chapitre 2.

On peut remarquer que tous ces travaux et d’autres encore que nous ne cite-
rons pas ici par soucis d’espace, s’appuient sur une démarche individuelle, utilisant
classe spécifique de mesures de pauvreté pour étudier ses propriétés asymptotiques.
L’objectif de cette these, par contre, est d’établir une théorie asymptotique globale
( des estimateurs de pauvreté ) qui unifie toutes ces démarches individuelles en
considérant I'indice général de pauvreté J défini par I’équation (1). Autrement dit,
une théorie qui permet d’étudier a la fois les mesures de pauvreté décomposables
et les mesures de pauvreté non-décomposables (comme celle de Sen) dites aussi
linéaires par rapport au revenu. Pour ce faire, nous nous appuyerons sur deux types
d’approches.

La premiere est basée sur 'estimation par la méthode du noyau. Avec cette
approche, nous étudierons la convergence presque siire d'une suite d’estimateurs a

noyau de l'indice J, uniformément en (z,w, f), ou z varie dans intervalle compact
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et, w et f décrivent des classes de fonctions appropriées. Dans cette approche, notre
méthodologie s’inspire principalement des travaux de Einmahl et Mason (2005) qui
ont élaboré une méthodologie générale basée sur la théorie moderne du processus
empirique, pour établir la consistance uniforme des estimateurs de type noyau avec
des fenetres aléatoires. Les principaux outils de cette méthode consistent en des
inégalités exponentielles et des bornes de moment appropriées que nous rappelerons
en annexe A.3. Nous avons également obtenu, avec cette approche, une loi uniforme
du logarithme en probabilité pour I'indice général de pauvreté J. Une conséquence
immédiate de ce résultat est la possibilté de construire des intervalles de confiance
simultanés, de niveau asymptotiquement optimal.

La seconde approche, quant a elle, utilise un estimateur direct de type ”plug-in”
de l'indice J, obtenu par simple remplacement de la fonction de répartition G(y)
par son équivalent empirique G,,(y) = n~tcard{j : Y; < y}, ou Y1,---,Y,, est une
suite indépendante et identiquement distribuée de variables aléatoires de fonction
de répartion G(y). Avec cette approche, nous discuterons de la normalité asymp-
totique et de la convergence faible uniforme sur des classes de fonctions bornées
d’une suite d’estimateurs convenablement centrés et normalisés de I'indice J. Ici,
également notre méthodologie repose sur des outils du processus empiriques telles
que la notion de classe de Donsker sous des conditions d’entropie métrique uniforme
ou d’entropie crochet. Cette approche nous a permis de décrire la structure de co-
variance globale de tous les indices de pauvreté encore disponibles jusqu’ici dans
la littérature et de pouvoir proposer des tests de comparaison de pauvreté (de do-
minance stochastique) robustes entre deux populations aux distributions de revenu
différentes.

Cette théorie asymptotique globale et unifiée que nous présentons dans cette
these sera articulée en six chapitres.

Au premier chapitre nous rappelons quelques généralités sur les mesures de
pauvreté. Nous insisterons sur la démarche générale d’agrégation qui permet de
construire une mesure de pauvreté synthétique dans une population donnée. Nous
donnerons également quelques exemples de mesures de pauvreté discretes ainsi que

quelques axiomes fondamentaux qui les régissent.

Dans le deuxieme chapitre nous exposerons notre premier résultat qui est la
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consistance forte uniforme d’un estimateur général a noyau pour l'indice de pau-
vreté J. Cet estimateur sera construit avec le noyau de Parzen-Rosenblatt et une
fenétre variable afin de garantir une large applicabilité. Une étude de simulation de

données sera réalisée pour évaluer la performance de ce résultat.

Le chapitre trois sera consacré a 1’étude de lois limites uniformes du logarithme
pour l'estimateur général a noyau de pauvreté étudié¢ au deuxieme chapitre. Nous
déduirons de ce résultat une méthode pour construire des intervalles de confiance
simultanés et asymptotiquement optimaux. Ces intervalles de confiance sont ensuite
utilisés pour tester 'adéquation d’'un modele de loi paramétrique aux données de

revenu afin d’estimer le degré de pauvreté.

Au chapitre quatre nous établirons la normalité asymptotique d’un estimateur
de type "plug-in” pour l'indice général de pauvreté J. Des intervalles de confiance
seront construits en estimant de facon non-paramétrique la variance asymptotique ;
puis, comparés aux intervalles de confiances asymtotiques et simultanés, construits

avec la méthode du noyau au chapitre 3.

Dans le chapitre cing la convergence faible de l'estimateur de type ”plug-in”
de J, introduit au chapitre quatre sera étudiée. Plus précisément, nous montrerons
que cet estimateur convenablement centré et normalisé peut étre considéré comme
un processus stochastique convergeant en distribution, dans un espace de fonctions
réelles bornées, vers un processus limite gaussien, avec une structure de covariance

complétement déterminée.

Enfin, le chapitre six concernera une application de la structure de covariance
obtenue au cinquieme chapitre pour tester des hypotheses de dominance stochas-
tique en termes de pauvreté. Nous illustrerons ce test sur des données sénégalaises

fournies par ’ANSD (Agence Nationale de la Statistique et de la Démographie).

Nos résultats principaux sont les suivants :
— La consistance presque stire uniforme des mesures de pauvreté empiriques, par
rapport au seuil de pauvreté z, a la fonction de pondération w(-, -) et a la fonc-

tion de déprivation individuelle f(-,-). Ce résultat a fait 'objet d’un papier



Introduction Générale 12

soumis a Journal of Nonparametric Statistics.

— La normalité asymptotique d’un estimateur général de pauvreté incluant toutes
les mesures de pauvreté basées sur le revenu et encore disponibles jusqu’ici dans

la littératue. Ce résultat généralise un papier (cf. [35]) publié dans la revue

C.R. Math. Rep. Acad. Sci. Canada. Vol. 31(2) 2009, pp 45-52.

— La convergence faible uniforme des mesures de pauvreté empiriques ainsi que
leur structure de covariance asymptotique. Ce résultat généralise un autre ar-
ticle (cf. [34]) publié dans Communications in Statistics- Theory and Methods,
38, 2009, 3697-3704.

— Une méthodologie générale d’inférence non-paramétrique pour tous les indices
de pauvreté basés sur le revenu. Ce résultat donne un critere de dominance
(ou une relation d’ordre) assez robuste pour classer, en termes de pauvreté,

deux distributions de revenu avec le méme seuil de pauvreté.

Mais avant de revenir a ces résultats, leurs preuves et leurs applications, nous
rappelons au chapitre 1 suivant quelques aspects importants sur ’agrégation de la
pauvreté, a partir de laquelle sont construites toutes les mesures de pauvreté basées
sur le revenu. Les outils techniques qui ont permis de démontrer ces résultats sont

présentés en annexe, afin de faciliter la lecture du document.



Chapitre 1

Généralités sur les indices de

pauvreté

1.1 Introduction

Le phénomene de pauvreté préoccupe aujourd’hui I’humanité toute entiere. Il se
manifeste dans tous les pays du monde. Cependant, sa perception varie d’un pays a
un autre ou d’'une région a une autre. La pauvreté peut étre percue comme absolue
ou relative. Elle peut aussi étre concue comme un déficit de revenus ou une absence
de certaines capacités fonctionnelles élémentaires. Elle est corrélée a la vulnérabilité
et a I'exclusion sociale et atteint aujourd’hui des proportions inquiétantes de par le
monde. Il urge alors de développer des politiques hardies pour son éradication. Pour

cela, il serait nécessaire de pouvoir d’abord quantifier la pauvreté.

Mesurer la pauvreté nécessite, selon les économistes, la résolution de deux ques-
tions fondamentales. La premiere est d’ordre méthodologique et concerne l'iden-
tification des pauvres par la détermination d’un niveau de référence z en-dessous
duquel la pauvreté est effective. La seconde question est plutot technique et, est liée
a la construction d’indicateurs synthétiques aggrégés de pauvreté sur la base des
informations disponibles.

La réponse a ces deux questions se fait en analysant un certain ensemble de
données pertinentes, qui est censé nous donner I'information nécessaire sur la popu-

lation que 'on étudie. Ces données proviennent souvent d’enquéetes dont la nature
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dépend des objectifs de I’étude. Il peut s’agir d’enquétes sur le budget des familles,
sur les habitudes de consommation et de nutrition, sur les conditions de vie des
ménages, sur ’évolution des prix et ’emploi, etc.

Comme la pauvreté est un phénomene qui affecte la vie des gens dans beaucoup
de domaines, il serait logique de travailler avec une grande variété de statistiques
qui refléteraient le niveau de vie des gens qui vivent dans la pauvreté. Par exemple
des statistiques sur ’acces a I’éducation, a la santé et aux autres services publics, les
biens dont dispose un individu (voiture, appareils ménagers, type de logement, etc).
Une étude réalisée avec ce type d’information serait une étude multi-dimensionnelle
de la pauvreté. Une autre facon de faire serait de ne travailler qu’avec un seul type
de donnée qui serait censé indiquer, a lui seul, le niveau de bien-étre des popula-
tions. Il existe en principe deux caracteres (ou variables) globalement acceptés qui
pourraient remplir cette tache : le revenu et les dépenses de consommation. Ce type

d’approche correspond a une étude uni-dimensionnelle de la pauvreté.

De prime abord, I’étude uni-dimensionnelle peut paraitre plus limitée, moins
complete et donc moins pertinente qu'une étude multi-dimensionnelle; mais cela
n’est pas forcément le cas. En effet, si I'on tient compte des biens dont dispose un
individu par exemple, il se peut que quelqu’un ne dispose pas d'un certain bien
par un simple choix personnel et non pas a cause d’une incapacité de ’obtenir. Les
préférences personnelles introduisent donc un biais difficile a corriger dans I’approche
multi-dimensionnelle. Prenons par exemple le cas d’un individu qui décide de ne pas
avoir de voiture a cause de ses convictions écologistes.

L’approche uni-dimensionnelle, en revanche, échappe a ce type de probleme
puisque l'on suppose que le caractere choisi reflete le niveau de bien-étre, et cela
indépendamment des choix que l'individu puisse faire. L’étude uni-dimensionnelle
se révélerait donc préférable pour autant que le revenu ou la consommation soient

de bons indicateurs du bien-étre, ce qui est globalement accepté par les économistes.

Dans cette these nous nous intéressons aux mesures de pauvreté uni-dimensionnelles
basées sur le revenu ou les dépenses de consommation ; mais nous utiliserons le terme
générique de revenu pour faire allusion aux deux caractéres. Cette approche quan-
titative basée sur le revenu, notons-le, est la plus fréquente dans la littérature et

ultilise deux concepts généraux de pauvreté : la pauvreté absolue et la pauvreté
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relative. La distinction entre ces deux concepts se précise au niveau de la fixation
du seuil de pauvreté.

1.2 Seuil de pauvreté

La détermination du seuil de pauvreté est une opération complexe qui dépend
fondamentalement du concept de pauvreté utilisé.

La pauvreté absolue renvoie a un concept absolu qui veut dire que la pauvreté
d’un ménage (ou individu) ne dépend que de sa situation et non de celle du reste
de la société. Sous cet angle, un ménage est dit pauvre s’il n’est pas en mesure de
satisfaire les besoins élémentaires de base tels que le fait de se nourir, de se vétir
ou de disposer d’un toit adéquat. On définit alors le seuil de pauvreté comme le
revenu nécessaire pour satisfaire ces besoins élémentaires de base. Si un ménage dis-
pose de ce revenu, il ne sera pas pauvre meéme si son niveau de vie est tres bas par
rapport au reste de la société. Cette définition du seuil est plus adéquate pour les
pays sous-développés, ou la pauvreté peut impliquer des pénuries alimentaires ou
I'impossibilité d’avoir un logement digne. Le seuil de pauvreté est généralement fixé
par les autorités gouvernementales ou des experts économistes qui estiment alors les
besoins vitaux nécessaires pour la survie d’'un ménage (ou individu).

Concernant la pauvreté relative, le ménage (ou l'individu) est jugé par rapport
au reste de la société. C’est a dire qu’'un ménage est considéré comme pauvre, non
pas parce qu’il n’a pas un certain niveau de vie donné; mais parce que son niveau
de vie est tres bas si on le compare a ceux des autres ménages de la société. Cette
caractérisation de la pauvreté est surtout utilisée pour les pays tres développés,
puisque les ménages pauvres dans ces pays sont en général en mesure de satis-
faire les besoins de base élémentaires; mais sont considérés comme pauvres parce
que leur niveau de vie est tout de méme bien inférieur au niveau de vie moyen du
pays. Le seuil de pauvreté est choisi comme un fractile de la distribution du revenu.
Généralement, on prend un pourcentage du revenu médian ou du revenu moyen du
pays; mais pour accentuer les effets des inégalités dans la distribution, on choisit un

pourcentage du revenu moyen car, la moyenne est plus sensible aux valeurs extrémes.
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1.3 Agrégation de la pauvreté

Lorsque le seuil de pauvreté z > 0 est défini, différentes formules sont pro-
posées par les économistes pour agréger les pauvretés individuelles en une mesure
synthétique qui résume la situation de pauvreté de ’ensemble de la population

étudiée.

Considérons une distribution de revenus positifs y1,- - - , ¥, ot n > 1 est un entier
naturel. Cette distribution peut étre représentée par un vecteur y = (y1,- -, Yn),
avec y; € Ry = [0,00), Vj = 1,--- ,n. y; est le revenu d'un individu j qui est
classé comme pauvre si y; < z. Ainsi, ) = {y € R}, n > 1} est I'ensemble des
distributions de revenu définies sur R, . Pour toute distribution y € ), on note
respectivement n = n(y), u(y) et o(y) la taille, la moyenne et la variance de la
population correspondant a y. On suppose aussi, sans perte de généralité, que les

composantes du vecteur y sont ordonnées, i.e. y; < yp < - < Yy

Définition 1.1. Une mesure de pauvreté (ou encore indice de pauvreté) est une
application
P: YxR,—10,1]
(y,2) = Py, 2),
telle que la valeur P(y, z) indique le degré ou le niveau de pauvreté associé a la

distribution y, ou z € Ry représente le seuil de pauvreté.

Un exemple tres célébre de mesure de pauvreté est [incidence de la pauvreté (ou
"headcount ratio” en anglais), i.e. le pourcentage d’individus vivant en-dessous du

seuil de pauvreté. Cette mesure est définie par le rapport

H(y,2) =, (1.1)

n
ou ¢ = q(y, z) est le nombre de revenus dans la distribution y qui sont inférieurs a
z. La mesure de l'incidence permet d’appréhender 1’étendue de la pauvreté; mais
n’apporte aucune information sur l'intensité de celle-ci. Une mesure qui tient compte
de cet aspect est lintensité moyenne de la pauvreté appelée aussi le déficit moyen
de revenu des pauvres (ou ”income gap ratio” en anglais). Cette mesure est définie

par

Iy, 2) = (2 = y5)- (1.2)

1 q
=1

nz

J
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Ce type d’indice est également critiqué car il est parfois insensible a une redistribu-
tion des revenus au sein du groupe des pauvres. Par exemple, un transfert de revenu
d’un individu pauvre vers un autre individu pauvre sans que ce dernier ne franchisse
la ligne de pauvreté, laisse inchangé la valeur de l'indice I(y, z). C’est pour cette rai-
son que Sen (1976) et d’autres économistes se sont tournés vers d’autres indices qui
traduisent, de fagon plus correcte, le niveau de pauvreté d’une population donnée.
De tels indices, par définition, sont sensibles a la distribution du revenu parmi les
pauvres car leur but est de corriger les défauts que présentent les indices H(y, z) et
I(y, z) donnés ci-dessus. Pour ce faire, Sen s’appuie sur un certain nombre de prin-
cipes normatifs ou aziomes qui doivent régir un bon indice de pauvreté. Ces aziomes
sont largement discutés dans l'article de Zheng (1997). Nous donnons ci-dessous les
trois axiomes qui sont jugés les plus importants.

Soit x = (xy1,--- ,x,) et y = (y1,- -+ ,y,) deux distributions de revenu, et z > 0
le seuil de pauvreté commun aux deux distributions.
- Axiome de focalisation : La mesure de pauvreté reste inchangée, si le revenu

d’un individu non-pauvre augmente, i.e.
P(x,z)=P(y,z) si Fjly; >z Vi#jx, =y et v;=y;+r,

ol r > 0 est un accroissement de revenu.
- Azxiome de monotonie : Une réduction du revenu d’un individu pauvre doit

accroitre la mesure de pauvreté, i.e.
P(x,z) > P(y,z) si Fjlyj <z Vi#£jx =y et x;j=y;—r, r>0.

- Axiome de transfert : Un transfert de revenu d’un individu pauvre vers un

individu moins pauvre doit accroitre la mesure de pauvreté, i.e.
P(z,z) > P(y, 2)
si
F,5/y; < zy; <y VkF# i j,xp =y v;=y;—r et xy=y;+r, r>0.

Fort de ces trois axiomes et d’autres encores moins évidents, Sen (1976) proposa
un indice de pauvreté qui se définit comme une moyenne pondérée des déficits de

revenu des individus pauvres, i.e.

S002) = f s D000+ 1= = ) (1.3
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Cet indice est évidemment sensible a la distribution du revenu parmi les pauvres
car il affecte un poids plus important aux plus pauvres. Sen a aussi montré que
son indice reflétait a la fois l'incidence de la pauwvreté H(y, z), lintensité moyenne
I(y, z) et 'inégalité parmi les pauvres et pouvait s’écrire sous la forme

q

ou
q

. Y
Gly,2)=1-> [2(¢—j) + 1]
| q-p
est le coefficient de Gini correspondant a la distribution du revenu parmi les pauvres,
1\~¢

avec flp = ¢ Qi1 Yj le revenu moyen des pauvres.

1.4 Exemples de mesures agrégées

Apres I'étude de Sen (1976), une tres grande variété de mesures de pauvreté ont
vu le jour en suivant son approche axiomatique. Ces mesures de pauvreté peuvent
étre divisées en deux classes. La premiere classe contient les mesures dites non-
pondérées pami lesquelles, on peut citer la célébre famille d’indices de Foster-Greer-
Thorbecke (FGT) (1984). Ces indices sont définis pour o > 0, par

Py, z,a) = %Xq: (z—_zy]>a (1.5)

j=1
La mesure P(y,z,«) est fréquemment utilisée dans les études empiriques sur la
pauvreté. Pour a = 0, elle est réduite a g/n = H(y,z), qui est lincidence de
pauvreté définie dans la section précédente. Lorsque a = 1, elle est égale a ["intensité
moyenne de la pauvreté I(y, z). Pour a = 2, elle est interprétée comme la sévérité
de la pauvreté.

La famille d’indices de Chakravarty (1983) fait également partie de cette classe

des mesures non-pondérées. Elle est définie par

C’(y,z,ﬁ):%i:[l— (%ﬂ 0<B<l. (1.6)

Jj=1

De méme 'indice de Watts (1968) appartient a cette classe. Il est défini par

Wiy, z) = %ilog (%) : (1.7)
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Ces mesures non-pondérées sont généralement de la forme
1 q
P = — ; 1.8
) = 30 052, (18)

ou f(y;,%) est une fonction qui mesure la pauvreté individuelle; c’est a dire la
contribution de 'individu j a la pauvreté globale de la population. f(y;,2) = 0, si
y; > z, i.e. pour les non-pauvres.

La seconde classe de mesures de pauvreté regroupe les mesures dites pondérées,
dont fait partie I'indice de Sen (1976) défini ci-dessus. Dans cette classe le poids
affecté aux individus varie selon leur rang dans I’échelle des pauvres. Les éléments
de cette classe sont généralement des modifications de la mesure de Sen (1976). Par

exemple, Kakwani (1980) généralise cette mesure de Sen sous la forme

q
q Nk (F Y5
K(y,2,k) = =g 2 _(¢+1-)) ( ) (1.9)
n 23:1 j* ; z
Pour k =1, on a K(y,z,1) = S(y, 2).

Les mesures de pauvreté de Thon et de Shorrocks sont également des modifications

de 'indice de Sen. Thon (1979) proposa la mesure suivante :

T(y,2) = n(%mzmjtl—j) (z;—yﬂ) (1.10)

Tandis que Shorrocks (1995) introduisit la mesure

1 & Z—Y;

Sh(y,z) = — 2n —25+1 7). 1.11

2= 3 2 i (2 (111)

En résumé, on peut remarquer que pour un seuil de pauvreté donné z > 0 et

une distribution finie y = (y1,--+ ,y,) telle que : y; < yo < --- < gy, toutes ces

mesures de pauvreté, pondérées comme non-pondérées, peuvent se mettre sous la
forme générale

I = 23w (1.9) fig.2) (L12)

) n ji na n 7 ) .
ou w(-,-) est une fonction de pondération et f(-,-) une fonction mesurable appro-

priée. L’étude des mesures de pauvreté a souvent été restreinte dans ce cadre des
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distributions discretes finies. Les résultats obtenus sont alors nécessairement limités
par une absence de procédures d’inférence statistique pouvant tenir compte de ’er-
reur d’échantillonnage. Lorsque 1'on considére les revenus (y1,- - ,¥,) comme une
réalisation d’un échantillon aléatoire (Y7,--- ,Y;) provenant d’une population dont
la distribution est définie par une fonction de répartition continue G(y), alors on
peut développer une théorie asymptotique globale et unifiée pour toutes ces me-
sures de pauvreté, en se basant sur l'indice empirique général J(y,z) donné par
(1.12). Cette théorie asymptotique générale des mesures de pauvreté constitue la

principale contribution de ce mémoire et fera 'objet des chapitres suivants.



Chapitre 2

Consistance uniforme de

’estimateur a noyau de pauvreté

2.1 Introduction

Les indices de pauvreté sont utilisés systématiquement par les économistes pour

apprécier le niveau de pauvreté des populations. Leur forme générale est donnée par

J= / "wlGy), G f (. 2)dC (), 2.1)

ol z > 0 est le seuil de pauvreté ; w et f sont des fonctions bi-variables appropriées,
c’est a dire continues et décroissantes par rapport a la variable y en cohérence avec
I’approche axiomatique de Sen sur les mesures de pauvreté. Toutefois, des hypotheses
supplémentaires peuvent étre imposées a w et f pour établir certains résultats.

Dans ce chapitre nous nous intéressons a l’estimation , par la méthode du noyau,
de l'indice J a partir d'un échantillon Yi,--- .Y, de n revenus d’individus pris au
hasard dans une population donnée. Cet indice J, comme on I’a fait remarquer dans
I'introduction générale, couvre une classe tres large de mesures de pauvreté parmi
lesquelles, on peut citer les mesures de Sen, de Shorrocks, de Foster-Greer-Thorbecke
et de Kakwani qui sont fréquemment utilisées dans les études empiriques sur la pau-
vreté.

Ainsi, notre objectif consiste a établir une approche globale pour étudier la
convergence presque sture uniforme de tous les estimateurs de pauvreté basés sur

le revenu. Pour cela, nous travaillerons avec un estimateur général a noyau et nous
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nous appuyerons sur les travaux de Einmahl et Mason (2005) qui ont élaboré une
méthodologie générale basée sur le processus empirique, pour établir la consistance

uniforme des estimateurs de type noyau avec des fenétres aléatoires.

2.2 Construction de I’estimateur a noyau

Soit Y une variable aléatoire (v.a.) correspondant au revenu d’un individu, pris au
hasard au sein d’une population donnée. Supposons que ’on dispose d’un échantillon
indépendant de n v.a. Y7, - -+ ,Y,, de méme loi que la variable Y définie par sa fonction
de répartition G(y) = P(Y < y),Vy € R. On suppose de plus que G(y) possede une
densité de probabilité notée g(y) par rapport a la mesure de Lebesgue. Alors 'indice

de pauvreté J défini en (2.1) peut s’écrire sous la forme

J= / “wlC(y), G (v, g w)dy. (2.2)

Un estimateur bien connu, a noyau K (-) et de fenétre h > 0, de la densité g(y)

R Y, —vy
g h(y) nh = ( h >

Les propriétés asymptotiques de cet estimateur de la densité sont largement étudiées

est

dans la littérature. A titre d’exemples, on peut citer les travaux de Parzen (1962),
Nadaraya (1965), Silverman (1978), Stute (1982b) et les travaux récents de Einmahl
et Mason (2005) traitant avec des fenétres aléatoires du type h = h, (Y1, -+, Y y).

Pour construire un estimateur a noyau de J, nous procédons a un simple rem-
placement de la densité g(y) par son estimateur g, »(y) dans I'expression (2.2). Nous

obtenons ainsi un estimateur a noyau de l'indice de pauvreté J défini par

b= 2 [ GGl (B ) e3)

ou G,(y) = nt Z?Zl Liy,<yy désigne la fonction de répartition empirique corres-
pondant a la suite Y, -+ ,Y,, et 14 désigne la fonction indicatrice de ’ensemble A.

Un estimateur de ce type a été proposé par Dia (2008) dans le cas de I'estimation
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non-paramétrique des indices de Foster-Greer-Thorbecke. Ce dernier estimateur est

SEECRCY). e

ou |-] désigne la partie entiere et h = h,, — 0, lorsque n — co. Dia (2008) a étudié

défini par

les propriétés asymptotiques de l'estimateur (2.4), notamment la convergence uni-
forme presque stire et en moyenne quadratique par rapport a z € [0,b],b > 0. Notre
estimateur .J, ;, donné par (2.3) généralise 'estimateur de Dia donné par (2.4). En
plus de la convergence uniforme presque stre par rapport a z, nous allons étudier la
convergence uniforme presque sure par rapport aux fonctions w et f appartenant a

des classes de fonctions appropriées.

Le noyau K(.) dans les expressions ci-dessus désigne une fonction mesurable
satisfaisant aux conditions (K.1-2-3-4) suivantes :
— (K.1) K(-) est a variation bornée.
(K.2) ()—OSi|t|>a,aveca>0.
- (K.3) [ K(t)dt = 1.
(K.4) IKHoo = supge [ K (t)] < oo.
La fenétre h > 0 est souvent considérée comme une fonction dépendant seulement
de la taille n de I’échantillon. En effet, beaucoup de travaux sur ’estimation par
la méthode du noyau utilisent une séquence de fenétres déterministes, considérée
comme une suite de constantes positives h, tendant vers zéro, lorsque n — oo.
A ce propos, on peut citer par exemple Parzen (1962), Stute (1982b), Silverman
(1986), Devroye (1987), Bosq et Lecoutre (1987), Nadaraya (1989), Wand et Jones
(1995). Comme le choix de la fenétre est crucial pour la convergence des estimateurs
a noyau, par soucis de grande applicabilité, nous présenterons nos résultats avec une
fenétre variable et aléatoire qui peut dépendre aussi bien des données Y7, -- ,Y,, que
du point local y ou 'on veut estimer la densité. Plus précisément, la fenétre h > 0

variera dans un intervalle dont la longueur décroit vers zéro, lorsque la taille n de
I’échantillon augmente.
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2.3 Consistance uniforme presque siire

L’indice théorique J et I'estimateur .J,, , sont considérés ici, comme des fonction-
nelles dépendant de z > 0 et des fonctions w € W et f € F, ou W et F sont des

classes de fonctions appropriées. C’est a dire

Joh ={Inpn(z,w, f) 2> 0,weW, feF}

)

et
J=A{J(z,w, f): 2> 0,weW, feF}

Pour simplifier les notations, introduisons la classe de fonctions suivante :
d={p=(w,fl:rweW, feF}=WxF. (2.5)

Dans la suite on supposera que W et F sont des VC-classes (classe de Vapnik-
Cervonenkis) de fonctions convenablement mesurables possédant chacune une fonc-
tion enveloppe finie. Compte tenu des propriétés d'un indice de pauvreté, on peut
sans perte de généralités, supposer de plus que W et F sont des classes de fonctions
a valeurs dans [0, 1], donc uniformément bornées. Dans 'annexe A.2 nous rappelons
les notions de VC-classe de fonctions et de classe de fonctions convenablement me-
surable ; voir aussi van der Vaart and Wellner (1996) ou Kosorok (2006) pour plus

de détails sur ces notions.

Pour tous z > 0, et ¢ € ® fixés, considérons la suite de fonctions réelles définies

sur R, par
dn,ap(y7 Z) - w[Gn(y>v Gn(z)]f(yv 2)1{y<z}7 n Z 1. (26)

D’apres la loi des grands nombres, G, (y) — G(y) presque strement pour tout réel
y, alors par continuité de la fonction w, on a pour tout y > 0, d,, ,(y, 2) qui converge

presque surement vers

do(y, 2) = w(G(y), G(2)]f (Y, 2)y<zy, (2.7)

lorsque n — oo.
Avec ces notations, J, ; et J dépendent maintenant de 2z et de ¢, d’ott les écritures

suivantes :

J = /0 do(y, 2)9(y)dy =: J(2,¢), (2.8)
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et
Jn,h = / dn,g&(ya Z)gn,h(y)dy = JnJL(Z: (10) (29)
0

Notre premier résultat est donné par le Théoreme 2.1 ci-dessous qui donne la

convergence presque sure et uniforme de I'estimateur a noyau de pauvreté J,, 5.

Théoréme 2.1. Supposons que les conditions (K.1-2-3-4) sont remplies et que g(y)
est une densité continue sur R. Alors pour toutes suites de nombres réels positifs a,,

et b, satisfaisant a
0 < (clogn)/n <a, <b, <1,Yc>0, b,— 0etna,/logn — oo
et pour tout b > 0, nous avons lorsque n — 00,

lim sup sup sup|Jon(z,¢) — J(z,¢)| =0 p.S. (2.10)

"0 4, <h<bp z€[0,b] pEP

Preuve. Nous décomposons la différence J, (2, ¢) — J(z, ) en trois termes.

Jun(z0) — I(mg) = /z[dn¢<y,> 0, 2))gun(v)dy
2)[Egnn(y) — 9(y)ldy

/ ) g () — Egn(v))dy
T Z y P, h) +T2,n(Z7§07 h) +T3,n(27§07 h)

Pour prouver le théoreme, nous devons montrer que chacun des trois termes ci-
dessus converge presque stirement vers 0, uniformément en z, ¢, h, lorsque n — oo.
Le comportement des deux premiers termes 771 ,,(z, ¢, h) et Ty, (2, ¢, h) n’est pas dif-
ficile & controler. Par contre, pour traiter le dernier terme T3 ,(z, ¢, h), nous faisons
recours aux travaux de Einmahl et Mason (2005) qui ont utilisé une approche basée
sur le processus empirique pour établir la convergence uniforme des estimateurs a
noyau indexés par des classes de fonctions. Pour une extension de ces travaux, voir
Mason et Swanepoel (2010).

On peut remarquer que pour tout ¢ € @, la fonction d,(-, z) définie en (2.7) est
tronquée a droite de z puisqu’elle vérifie dy,(y,2) = 0 si y > 2. La continuité des

fonctions w et f implique alors que d, (-, z) est bornée sur 'intervalle compact [0, 2],
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et donc sur R, a cause de cet argument de troncature.
Les classes W et F étant convenablement mesurables par hypothese, donc il en

est de méme pour la classe de fonctions
d={p=(w,fl:rweW, feF}=WxF.
On en déduit que sup,eq |d,(y, 2)| existe et est fini, pour tout y > 0. Donc,

sup ||dy (-, 2) [0 < M, (2.11)
ped

ou M est une constante positive. Cela implique que la classe de fonctions {d, : ¢ €
®} est uniformément bornée.
Pour compléter la preuve du théoreme, nous établissons les trois lemmes sui-

vants :

Lemme 2.1. Nous avons

sup sup sup|Ti.(z,¢,h)] = 0p.s., n— oco. (2.12)
an<h<bn ZG[O,b] ped

Preuve. Pour tout z € [0,b], on a

JSup sup Tin(z, 0, h)] < /O JSup sup [dno(y, 2) = de (Y, 2)lgnn(y)|dy.
Rappelons que la fonction w est continue, donc en appliquant le théoreme de Glivenko-
Cantelli; puis, le lemme de Slutsky, on obtient compte tenu de (2.6) que la suite
de fonctions {d, ,(-, 2)}n>1 converge uniformément sur I'intervalle [0, z] pour tout
z > 0 et tout ¢ € ®. Puisque la densité g(y) est supposée également continue par
hypothese, donc elle est uniformément continue sur [0, z] qui est un intervalle com-
pact. Cela combiné a 'hypothese (K.2) qui stipule que le noyau K (-) est a support
compact, implique (d’apres le Théoreme 1 de Einmahl et Mason (2005)) que

sup  sup |gnn(y) —g(y)| =0, n — oo.
an<h<b, y€[0,z]
On en déduit alors que la suite de fonctions {[d,, (-, 2) —dy (-, 2)|gnn(y) }n>1 converge
uniformément vers 0 sur l'intervalle [0, z], pour tout z > 0 et tout ¢ € . D’ont
Csupsup [ 09) = doly gan(wlldy > 0. oo

On obtient le lemme 2.1 en prenant le suprémum de cette quantité par rapport a
z € [0, b], pour tout b > 0.
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Lemme 2.2. Nous avons

sup sup sup|Ta,(z, ¢, h)| = 0 p.s., n — oco. (2.13)
an<h<bn z€[0,b] PEP

Preuve. Pour tout z € [0, b], on peut écrire grace a un changement de variables

IN

sup Ssup ‘TQ,n(za P, h)‘
an<h<b, pcd

/0 " sup suplds(y, %) (Egunly) — 9(u))ldy

an<h<b, ped
< zx sup suplldy(y, 2)llee sup |[Egnn(y) — g(y)l-

an<h<b, ped y€[0,2]
< zxsup|ldy(y,2)||sc sup sup | K(t)[g(y +th) — g(y)]dt]
ped an<h<bn y€l0,z] J—a
< 2% 20| K |oo sup ||dp(y, 2)[|oo sUP sup l9(x) — g(y)|-
pED an<h<bn |z—y|<ha, z,y€[0,2]

Puisque la densité g(y) est uniformément continue sur [0, z], alors

sup sup l9(z) — g9(y)| = 0, ps., n— o0
an<h<by |z—y|<ha, z,y€[0,2]

car la fenétre h décroit vers 0, quand n — oo. En rappelent la borne (2.11), la
preuve du lemme 2.2 est complétée en prenant le suprémum par rapport a z de

cette quantité sur U'intervalle [0, b], pour tout b > 0.

Lemme 2.3. Nous avons

sup sup sup|Ts.(z, ¢, h)| = 0, p.s., n — 0.
anghgbn ze[O,b] LPE(I)

Pour étudier ce terme T3 ,,(z, ¢, h), nous introduisons la suite de processus indexés
pary € [0,z], pe Pet 0 < h <1,

Won(y, ) zgdw(y, 2) [K (y_h%) _EK (y —hYJH (2.14)

Alors, le comportement asymptotique de T5,(z) découle de la proposition sui-

vante qui est une version du Théoreme 4 de Einmahl et Mason (2005).
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Proposition 2.1. Supposons que les conditions (K.1-2-3-4) du Théoréme 3.1 sont
satisfaites et que la densité g(y) est continue sur R. Alors nous avons pour tout
c>0et0<hy <1, avec probabilité 1,

. Won (o o)lloe)
lim  sup  sup sup =: A(c),
OO clogn ¢y < 2€[0,H] PED v/nh(]log h| V loglogn)

ot A(c) est une constante positive .

Preuve du Lemme 2.3. Soit z € [0, 5], on a

/Oz sup  sup |dy(y, 2)(gnn(y) — Egnn(y))|dy

an<h<b, pcd®

IA

sup sup sup |75, (2)]
anghgbn ZE[O,I)] (,06@

< zx sup sup||dy(-, 2)(9nn — Egnn) .2
an<h<bn @E®

Remarquons que

[Won (s Oloe Vnhllde(s 2)(gnn — Egan)lloz)
\/nh(|logh| Vv loglogn) v/ (Jlog h| Vloglogn)

Donc en appliquant la Proposition 2.1 ci-dessus et en prenant le suprémum sur l'in-

tervalle [0, ], pour tout b > 0, on obtient le lemme 2.3; ce qui acheve la preuve du

théoreme 2.1.

Preuve de la Proposition 2.1. Soit a, le processus empirique basé sur Y7, --- ,Y,

et indexé par une classe de fonctions G, i.e. pour tout n € G, on a
1 n
an(n) =—= > (n(Y;) — En(Yi))

Pour tout y € [0, z], ¢ € ® and h > 0, définissons la fonction

u
ny%h(u) = d@(%z)K (Z/T) ., u€ERT.
Soit
G={ur—nyen(u):yel0,z[ped 0<h<l1}.

D’apres (2.14), on peut écrire que
sup sup [[Won (-, 0)llo.e) = l[Vnanllg.
0<h<1 p€d

Pour établir la Proposition 2.1, la classe G doit satisfaire aux trois conditions (C.1),
(C.2) et (C.3) suivantes :
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- (C].) Sup0<h<1 Supweé Supye[o’z] ||77y,<p,h o < OQ.

= (€.2) 3C > 0,90 < h < 1,8up,cq SUPyepo . By, (V) < Ch.

— (C.3) G est une classe convenablement mesurable vérifiant la condition d’en-
(C.3)

tropie uniforme, i.e.
3Cy > 0,19 > O,N(E,g) < Coe™ 0<e< 1.

Ces conditions nous permettent d’utiliser une borne de moment (voir Proposition
1, Einmahl et Mason (2005)) combinée a une inégalité exponentielle due a Talagrand
(1994), (voir aussi, Ledoux (1996)) pour controler la norme suprémum du processus
empirique indexé par une classe de fonctions. Ces deux résultats (rappelés dans
I'annexe A.3) sont les principaux outils pour établir la Proposition 2.1. Maintenant
nous allons vérifier les trois conditions (C.1), (C.2) et (C.3).

La condition (C.1) découle immédiatement de la borne (2.11), car on a

sup [|gloc < M[|K||oc =: £ < 00
geg

Pour vérifier la condition (C.2), nous écrivons

y—Y y+h/2 y—u
B0 =B [ (0] < i [ () staan
.
1/2
< h [ KAty - e

< ldo (s 2 gl 1 K T3 R-
Ce qui implique que pour tout 0 < h < 1,

sup sup B, (V) < sup sup |d,2) gl | K12 = Ch,
pe® yel0,2] z€[0,b] p€P

ou C' est une contante positive. D’ou la condition (C.2).

La classe de fonctions G peut s’écrire de la maniere suivante :

Q—{dw(-,z):¢€®,z>0}-{[( (y%) yeRY0<h< 1} —D-K (2.15)
Nous pouvons aussi écrire D sous la forme

D:DI'D27
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avec

D, ={y —» w|G(y),G(z)] :weW,z> 0}

et
Dy={yr~ fly,2): f€F,z>0}

Du fait que W et F sont par hypothese des VC-classes convenablement mesurables,
en combinant le lemme 2.6.18, page 147 van der Vaart et Wellner (1996) et le lemme
8.10, page 142 Kosorok (2006), on obtient que D; et Dy sont aussi des VC-classes
de fonctions convenablement mesurables . Donc, D; et Dy possedent chacune un

nombre de recouvrement polynomial, i.e.
ElOl,Vl >0, N(G,Dl) §016_V1,0<6< 1

et
302, vy > 0, N(E,Dg) < CQE_VQ,O <e<l.

Puisque W et F sont uniformément bornées, alors D; et D, sont aussi uniformément
bornées et admettent toutes deux une fonction enveloppe F' = 1. Ainsi, en appliquant
le lemme A.1 de Einmahl et Mason (2000), on en déduit que la classe de fonctions

D possede un nombre de recouvrement polynomial, i.e.
AC,v >0, N(e,D)<Ce” 0<e<]l.

En utilisant encore le lemme 2.6.18 de van der Vaart et Wellner (1996), on montre,
compte tenu du fait que le noyau K (-) est a variation bornée (i.e., K = K; — K,
ou K; et Ky sont des fonctions croissantes), que la classe de fonctions IC est une
V(C-classe convenablement mesurable, donc possede un nombre de recouvrement po-
lynomial.

En appliquant de nouveau le lemme A.1 de Einmahl et Mason (2000) pour les
classes D et K, on en déduit que la classe de fonctions G définie en (2.15) possede un
nombre de recouvrement polynomial. De plus, G est convenablement mesurable, car
c’est le produit de deux classes convenablement mesurables (Lemma 8.10, Kosorok
(2006)). Finalement G satisfait a la condition (C.3).

A partir de cette étape, la preuve suit exactement la méme démarche que celle
de Einmahl et Mason (2005), qui est aussi celle de Mason et Swanepoel (2010).
Nous aurons besoin de la proposition et du corollaire suivants dans la suite de la

preuve.
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Proposition 2.2. (Einmahl et Mason (2005))
Soit G une classe convenablement mesurable de fonctions réelles bornées telles que,
pour des constantes C,v < 1 et 0 < o < [ et pour une enveloppe Gy de G, les
conditions suivantes sont satisfaites :

(i) E[GR(Y)] < 82

(i) N(e,G) < Ce ¥, 0<e<I;

(iii) of = sup,eq E[g*(Y)] < o*;

(iv) sup,eg [|g/loe < ﬁ\/nﬂ/log(clﬁ/a), ot, C; = CYv v 1.
Alors pour une constante positive A, on a

E Z&g(yi) < Ay/vno?log(Ch3/a),
i=1 g
ol €1, ,&, est une suite indépendante de variables aléatoires de Rademacher,

indépendantes de Y, -+ ,Y,.

Le corollaire (2.1) suivant affaiblit la condition (iv) qui est parfois difficile a

manipuler.

Corollaire 2.1. (Einmahl et Mason (2005))
Supposons que G satisfail auz hypothéses de la proposition (2.2), et au lieu (iv) nous

supposons que la condition (v) suivante est vraie :

1
4y/viog C,

(v) sug lgllee U, ot 09 <U < Coy/nfl, et Cop=
g€

Alors, on a

E < A{ \/Vnag log(C18/00) + 2vU log(Csn(B/U)?)},

g

Zé"z’g(Yi)

ou C3 = C?/16v.

Suite de la preuve
Soit j, k < 0 et ¢ > 0, posons ny = 2%, hj; = (2clogny,)/ny et considérons la classe

de fonctions

ngg - {77y,<p,h 1y e [07 Z]a 2 € q)a h],k S h S hj—}—l,k}«
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Alors pour tout hj, < h < hji14, on a

oy = sup E[n*(Y)] < 2Chjy =: 0’]2.’k'
N€G; k
Maintenant nous allons appliquer pour chaque classe G, x, le corollaire 2.1, pour

obtenir une borne supérieure de la quantité

Ef Zem Mg,

D’abord, nous observons que chaque G; satisfait (i) avec G = = k. Ensuite,
puisque G, C G, nous avons ,via (C3) que chaque G, remplit la condition (ii).
En posant 0® = 07, nous remarquons aussi que G; satisfait & la condition (iii).
Finalement, au lieu (iv), nous observons que la condition (v) : sup,c¢ [|7lec < U est
satisfaite avec U = 8 = k. Les conditions (i), (ii), (iii) et (v) du corrolaire 2.1 sont

toutes vérifiées, donc on peut écrire que

E| Zem g, < AyJvmio log(C16/o0) + 24T log(Cani (5/U)?).

ou A, C1, (5 sont des constantes positives. Notons que

2
Clﬁ <= V(i
et que la fonction h +— hlog(h™' VvV C?) est décroissante pour h > 0. En tenant

compte de I'inégalité oy < 0, =: Doh;j, on obtient, pour j,k > 0,

I/nkDohj k

, g2
E| Zem Mg, < Aﬁ\/T log (Dohj,k Vv C? ) + 2AvS log(Cany)

1
S Dl\/nkhj,klog (D A . \/012),
214,

ou Dy = AV/vDy et Dy = Dy/3?. Cela implique que

1
E|| Zem Mg, < Dg\/nkh k log (DthJg v loglognk) =: Dsa; .

Maintenant appliquons l'inégalité de Talagrand (1994) pour chaque classe G; ;. En

choisissant pour tous 7,k > 0,

M =supn € Gixlnlle = &
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et
2 2
og = ()'ngc < Dohj,k:

on a pour tout ¢ > 0,

— Aot? — Aot
P {nkrln<a;zx<nk H\/ﬁO&anM > Al(Dgaj,k + t)} < 2 [exp (Don—W) + exp ( - .

Etant donné p > 0, 7 > 0 and k£ > 1, posons

ng_1<n<ny

pj,k<p>=ﬂ3>{ max  [[vAanle,, 2A1<Dg+p>aj,k},

avec t = pa; . Alors

—Ayp?a?, —Aspa
3 < 2 ]7 7y .
pixle) < {exp ( Donghi ) e ( K )}

Par définition de a;x, nous avons
2
aj’k/nkhj,k > loglog ny,.

Pour k assez grand, cela implique que

—A,0? —A
pik(p) < 2 [GXP < D2p log log nk> +exp ( 2P \/nihjx loglog nk>}

0 K

—Ayp? —A
< 2 {exp ( D2p log log nk) + exp (2—p\/6\/log ny log log nk)} .
K

0

En posant A = g—i A %E, on obtient
pik(p) < 4exp(=Aploglogny) = 4(logny) ™. (2.16)
Soit I, = max{j : hj, < 2hg}. Alors pour tout k assez grand, on a,
I < 2logny. (2.17)

Donc compte tenu de (2.16) et (2.17), nous avons pour k assez grand et p > 0,

Ih—1

Pi(p) = ij,k(p) < 8(logmi)' ™ ~= §( !

P
klog2
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En choisissant p > 3/\ , nous obtenons
STTIP S o
k2
k=1 k=1
Par définition de [, nous remarquons que

2hy ) = hys1 6 > 2ho = hy ) > ho.

Donc pour tout ng_1 < n < ng,

| |
{c ognjho] c {c ognk’hlm} |
ng

n

On en déduit que, pour k assez grand et n,_; < n < ny,

ap) = max sup e WarbOlos oy )
ME-LSPEN clogn (o v/nh(|log h| V loglogn)

ng—1<n<ng

lo—1
C U { max  |[vnanllg,, > A1(Ds +P)aj,k}-
=0

Cela implique que pour p assez grand P(Ax(p)) < Pi(p). Ce qui acheve la preuve en
appliquant le lemme de Borel-Cantelli compte tenu de I'lnégalité (5.11).

2.4 Simulations

Dans cette section nous menons une étude de simulation pour évaluer la bonne
performance de I'estimateur a noyau de pauvreté J,, ; dans les cas particuliers des
mesures de Sen, de Shorrocks et de Foster-Greer-Thorbecke (FGT) de paramétres
a = 1,2. Nous générons des échantillons de loi lognormale de moyenne m = 12 et
d’écart type o = 0.75 et tailles respectives n = 50,100, 1000, 5000. La densité de

probabilité de la loi lognormale est donnée par

1 1 1 logy—m)2
- Sexpl = (YT LS.
9(y) =~ 5y p{ 2( - y

L’indice théorique

- / “wlG(y), G (v )gl)dy
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est calculée avec la méthode d’intégration numérique de Simpson. Tandis que I’esti-

mateur a noyau

1 &< [ Y,—y
Jop = — Gn(y), G, = d
= [ wlt.Gute st () dy
est évalué avec le noyau de Barlett-Epanechnikov donné par

3(1—2?) sifz] <1
{10, 5l
SINOI1l.

Pour un échantillon de taille n = 100, nous obtenons les résultats présentés dans la
Table 2.1 ci-dessous, qui contient les erreurs quadratiques moyennes de 50 échantillons
générés aléatoirement avec le logiciel R. Ces erreurs sont calculées pour plusieurs
valeurs du seuil z, correspondant aux valeurs quantiles suivantes : G71(p), p =
0.15,0.25,0.35,0.45,0.55,0.65,0.75, 0.85.

p 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
Index

FGT(1) 0.00028 0.00023 0.00056 0.00087 0.00068 0.00081 0.00085 0.0011
FGT(2) 0.00005 0.00014 0.00023 0.00031 0.0003 0.00046 0.00061 0.00065
SEN  0.00005 0.00011 0.00012 0.00050 0.00078 0.00284 0.00634 0.0195
SHO  0.00024 0.00043 0.00054 0.00145 0.00115 0.00144 0.0121  0.0137

TABLE 2.1 — Erreurs quadratiques moyennes de l'estimateur J, ; calculées sur 50

échantillons indépendants générés aléatoirement.

La Table 2.1 montre qu’il y a une bonne convergence de I'estimateur .J,j vers
I'indice théorique J dans les cas des indices classiques tels que FGT(1), FGT(2),
SEN, SHORROCKS (SHO). Comme le montrent les Figures 2.1 et 2.2 ci-dessous,
ces résultats sont tres satisfaisants avec des tailles relativement petites de I'ordre de
50 pour les indices FGT. Pour les mesures de SEN et de SHORROCKS des tailles
d’échantillon plus importantes de l'ordre de 1000 sont considérées dans la Figure
2.2.
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FIGURE 2.1 — Courbes de l’estimateur J,, ;(z) et de l'indice théorique J(z) dans le
cas FGT(1).

0.7

SEN
0.4

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

p (percentage of poverty)

0.8

SHORROCKS
0.5

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

p (percentage of poverty)

FIGURE 2.2 — Courbes de estimateur J,, ,(2) et de Uindice théorique J(z) dans les
cas SEN et SHORROCKS.



Chapitre 3

Lois uniformes du logarithme pour

’estimateur a noyau de pauvreté

3.1 Introduction

Tandis que le chapitre 2 établissait la convergence uniforme presque stre de

I’estimateur a noyau de l'indice général de pauvreté

J=J(w, f) = / “w(G ). C(2)f (. 2)dC(y), (3.1)

le présent chapitre est consacré a ’étude de lois limites uniformes du logarithme
pour J. On supposera que la fonction de répartition G(y) = P(Y < y),Vy € R
admet une densité de probabilité notée g(y) par rapport a la mesure de Lebesgue.

Alors lI'indice J peut s’écrire sous la forme

J= Iz, f) = / " w(G ). ) (s 2)a(y)dy. (3:2)

ouz>0,weWet feF, Wet F étant des classes de fonctions appropriées, i.e.

continues et décroissantes par rapport a la variable y.

Stute (1982b) a été le premier a établir une loi uniforme du logarithme pour
I’estimateur a noyau de la densité. En s’appuyant sur le comportement du module

d’oscillation du processus empirique uniforme, il a montré, sous certaines conditions
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de régularité sur la densité g(y) et sur la fenétre h,,, que

: |9n(y) — Egn(y)]
lim +/nh, su =1 p.s., 3.3
e el { V2[Kl[59(y) log(1/hy) } g 33

ol g, est définie pour tout y € R par

guly) = %ZK (51, (3.4)

avec K (+) une fonction noyau a support compact et a variation bornée telle que

0< / K*(t)dt = ||K |2 < oo.
R

Deheuvels et Mason (1992) généralisent les résultats de Stute (1982a) sur le com-
portement du module d’oscillation du processus empirique uniforme et obtiennent
une loi uniforme fonctionnelle du logarithme pour déterminer la vitesse exacte de
convergence presque sure des estimateurs a noyau de la densité g(y). Mais ces
résultats sont basés sur les approximations hongroises Komlds, Major et Tusnady
(KMT, 1975) du processus empirique uniforme qui ne sont pas toujours valables sur
le processus empirique général.

Une méthode plus générale et plus sophistiquée donnant une vitesse précise de
convergence presque siire des estimateurs de type noyau a été développée par Ein-
mahl et Mason (2000). En effet, les résultats de ces derniers améliorent ceux de
Hérdle, Janssen et Serfling (1988), et retrouvent la loi uniforme du logarithme de
Stute (1982b) donnée par (3.3) avec une autre approche basée sur la théorie du
processus empirique indexé par des fonctions.

Dans ce chapitre nous allons utiliser cette derniere méthodologie, qui est aussi
celle de Deheuvels et Mason (2004), pour établir des lois limites uniformes du lo-
garithme en probabilité pour l'estimateur a noyau de pauvreté J,(z,w, f) défini

par
1

nh,,

Jn(z,w, f) =

Z [ wlen. s (B )i 63

ou G,(y) = %Z?:l Liy;<y) est la fonction de répartition empirique d’un échantillon
de variables aléatoires indépendantes Y7, - -+ ,Y,, et 14 désigne la fonction indicatrice

d’un ensemble A.
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Ici, nous supposons que le noyau K (.) est une fonction mesurable vérifiant les condi-
tions (K.1-2-3-4) suivantes :

- (K.1) K(.) est a variation bornée sur R.

- (K.2) K(t) =0si [t| > a, avec a > 0.

- (K.3) [ K(t)dt = 1.

- (K4) [LtK(t)dt =0 et 0 # [ K (t)dt < oo .

Tandis que (hy,)n,>1 est une suite de nombres réels positifs qui satisfait aux hy-
potheses (H.1-2) suivantes :

- (H.1) h,, — 0, lorsque n — oo.

- (H.2) nh,/logn — oo, lorsque n — oo.

- (H.3) log(1/h,)/loglogn — oo lorsque n — oo.

Nous aurons aussi besoin des hypotheses additionnelles sur la densité g(-) notam-
ment que :

- (G.1) g(+) est 2-fois continument dérivable.

- (G.2) ¢"(-) la dérivée seconde de la densité g(-) est bornée.

Pour obtenir une loi limite uniforme en z, nous allons fixer les fonctions w et f
et garder la dépendance en z des quantités J(z,w, f) et J,(z,w, f) de sorte que 'on

notera

J(z) = J(z,w, [) et In(2) = Ju(z, w0, f).

Afin de simplifier les notations, nous introduisons les fonctions 6,(-,z) et (-, z)

ci-dessous, définies pour tout y € [0, z|, z > 0, par

On(y, 2) = w[Gn(y), Gn(2)]f(y,2), n>1 (3.6)

et
0(y, 2) = wlG(y), G(2)]f(y, ). (3.7)

Alors, du fait de la continuité des fonctions w et f, on peut observer en utili-
sant Glivenko-Cantelli, que 6,,(+, z) converge presque surement et uniformément vers
(-, z), lorsque n — oo . D’oui la convergence en probabilité de ,,(+, z) uniformément

sur l'intervalle [0, z], i.e. pour tout € > 0,

0
P | sup "(y’z)—1’25 -0, n— o0 (0.1).
y€[0,2]

0(y, 2)
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Avec ces notations, l'estimateur J,(z) est réduit a

/9 Y, 2)gn(y)dy, (3.8)

et I'indice J(z) s’écrit
J(2) = / 0y, 2)g(y)dy (3.9)
0

pour tout z > 0.

Nous pouvons maintenant énoncer le principal résultat de ce chapitre qui est
une loi faible du logarithme pour 'estimateur de pauvreté J,(z), uniformément en
z € [0, b], pour tout b > 0.

3.2 Lois limites faibles du logarithme

Théoréme 3.1. Supposons que les hypothéses (K.1-2-3-4), (H.1-2) et (G.1-2) sont
satisfaites et que la fonction w : [0,1] x [0,1] — R posséde des dérivées partielles
bornées, notées w', et w!. Si, de plus h, = Cn=%, ot C > 0 et 1/5 < § < 1, alors

pour tout b > 0 fixé, on a lorsque n — oo,

1/2
{—2 logg’;hn)} : s H{T.(2) = J(2)} B oo, (3.10)
ot ,
7= s o(s) = K1 | o219
avec 0(2) = ||Kl|asup.cpy Jo 0y, 2)9"*(y)dy et | K5 = [ K*(t)

C oy Py o s
Ici, ”—" désigne la convergence en probabilité.

Remarque 3.1. En fizant z et en considérant J,(z,w, f) =: J,(w, f) comme une
fonctionnelle ne dépendant que de w et f, on obtient une lov limite uniforme fonc-
tionnelle du logarithme pour l'estimateur J,(w, f) sur la classe de fonctions W X F,
1.€.

h, 1/2 /
{W} ( fs)gyvmi{b’n(w,ﬁ—J(w,f)}io, (3.11)
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on
o = K, sup / W[G(y), G(=)]f (y, 2)g"(y)dy
(waWX]: 0
S / 6y, 2)g"/2(y)dy.
(w,f)eWxF Jo

avec | K3 = [ K?(t)dt.

Preuve. Pour prouver ce théoréeme nous décomposons la différence J,,(z) — J(z)

en trois termes.
Ju(2) = J(z) = /0 On(y, 2)gn(y)dy — /0 0(y, 2)9(y)dy
= /0 On(Y; 2)lgn(y) — Egn(y)ldy + /D [0n(y, 2) — 0(y, 2)|Egn(y)dy

n / 0y, 2)[Ega(y) — 9(»))dy
=:T,(2) + Ru1(2) + Rn2(2).

Nous allons d’abord établir que les termes R, 1(2) et R, 2(z) convergent uniformément

et presque stirement vers 0, avec une vitesse de O(y/nh,/2log(1/h,)). En appliquant

le théoreme de la moyenne, on obtient compte tenu de (3.6) et (3.7) que,

[ R (2)]

IA

/ 6, (y.2) — 60y, 2)|[Ega(y)|dy

< Jw,(n,G(z ))||Gn( ) = G f (v, 2)|Egn(y)], n€[G(y), Gn(y)]
< s w,(t, G(2))| Sup | f(y,2)] Sup Egn(y)] X |Gn — G| oo

AN

On a supy<, <, |Egn(y)| borné car

sup [Egn(y) —g(y)| =0, n— oo

0<y<z

En effet, on a par changement de variable,

a

sup |Egn(y) —g(y)| < sup l9(y — thy) — g(y)| K (t)dt

0<y<= 0<y<zJ_q
< sup suplgly — th) — g(o)] [ Kt
0<y<z|t|<a R
< sup lg(y — thy,) — g(y)| = 0, n = oo,

OS‘T,Z/SZJI*MS“}LH
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puisque la densité g(-) est supposée continue sur R, donc uniformément continue sur
I'intervalle compact [0, z].

De méme supg<, . | f(y, 2)| est borné car la fonction y = f(y, z) est continue sur
[0, z], pour tout z > 0 donné. On en déduit, compte tenu également du fait que w!,
est bornée, que

R (2)] < GGy = Glley V2 >0, (3.12)

ou (] est une constante réelle positive.
G étant continue, en utilisant la loi du logarithme itéré de Chung (1948), I'inégalité

(3.12) implique que

sup |Rn1(2)| = O(y/n1tloglogn/2).
z€[0,b]

De plus, on peut déduire de ’hypothese (H.3) que

nh, < n
log(1/h,) ~ loglogn’

nh,
——— sup |R, —0, n—o0. 3.13
2log(1/hn )zEOb]| 1) (3.13)

Pour le terme R, (%) nous utilisons un développement de Taylor. On a pour tout
y€[0,2]

Eg.(y) —gly) = / K(u)(g9(y — uhyn) — g(y))du

u?h?
= /K [—uh,g (y) + T"g"(y — Auhy)]du, 0< <1
= 2 [ w?¢"(y — Ouh,) K (u)du.
2 R
Cela entraine que
h2
s [Eg,(5) —9(0)| < 3 swplg’ (@) [ K] du—0, oo (314
y€(0,z
Dong, puisque la fonction y — 0(y, z) est bornée, on en déduit que pour tout z > 0

| Ry 2(2)]

IN

/ 160y, 2)||Egaly) — 9(9)ldy

< zx sup |Eg.(y) —g(y)| sup |0(y,2)|
yE[O,Z] yE[O,Z]

Cohy,

IN
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ot Cy est une constante réelle positive. En utilisant I’hypothese h, = Cn=°,1/5 <

0 < 1, on obtient, apres des calculs de routine, que

nhy,
————— sup |R,2(2)] =0, n— oo 3.15
2log(1/hn) ze[o,b]| ) (3.15)
Quant au terme T, (2), il converge uniformément en probabilité sur I'intervalle [0, b],
vers une constante que nous allons déterminer. En combinant la condition (©.1)
établie ci-dessus, avec les hypotheses (K.1-2-3), (H.1-2) et (G.1), alors on obtient,
d’apres le théoreme 1.2 de Deheuvels et Mason (2004), que pour tout y € [0, z]

loa(1/h) log(?;hn) + 0, (y, 2){0n(¥) — Egn()} = IK[120(y, 2)"(v),
donc
|\ s 20009 {on) ~Eg0)}y 5 K2 | 000210y = (2
o\ 2log(1/n,) = W NI tY) BRI 10 2 [ 0, 2)g T y)dy : :
D’ou

z nhn P
su ——— 1+ 0,(y, 2){g.(y) — Eg, dy — sup o(z) := o,
ZE[O%/O \/210g<1/hn) (Y, 2){9a(y) — Egn(y) }dy Sup (2)

c’est a dire ,
P
wpnww+UZHMb/ewme@My (3.16)
0

Les relations (3.13), (3.15) et (3.16) prouvent entierement le théoréeme.

3.3 Intervalles de confiance simultanés

Le théoreme 3.1 précédent nous permet de construire des intervalles de confiance
asymptotiques et uniformes en z € [0, 0], pour I'indice de pauvreté théorique J(z),
avec un niveau de confiance asymptotiquement optimal (100%). Dans la littérature
statistique, on utilise le plus souvent la normalité asymptotique et les lois qui en
découlent pour construire des intervalles de confiance. Mais, il n’est pas tres habituel

de construire des intervalles sur la base d'une loi dégénérée. Dans cette section,
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nous allons remarquer que nos lois limites uniformes du logarihme constituent une

extension des lois asymptotiques normales pour construire de tels intervalles de

confiance, via un mode de convergence plus fort (en probabilité).

Posons

2log(1/hy)
nh,

L,(2) =0(2)

Y

alors, nous pouvons déduire de (3.10) que pour tout b > 0,

() =T 51, n—

+ sup
z€(0,b] Ly,(z)

Donc, pour tout € > 0, on a

P (‘:I:%(Z){Jn(z) _J(=)) - 1‘ S € Vz € [O,b]) 0,

ce qui équivaut a
P (|4{Jn(2) — J(2)} = Ln(2)| < €Ln(2),¥z € [0,0]) — 1.

Cela implique pour tout € > 0 que, lorsque n — oo,

P(J(2) € [Ju(2) + (1 = €)Ln(2), Ju(2) + (1 + ) La(2)], V2 € [0,8]) = 1, (3.17)
et

P(J(2) € [Jo(2) = (1 + €)Ln(2), Ju(z) = (1 — €)Ln(2)],¥z € [0,0]) = 1. (3.18)
En combinant (3.17) et (3.18), on peut écrire que pour tout € > 0, lorsque n — oo,

P(J(2) € [Jn(2) = (14 €)Ln(2), Ju(2) + (1 + ) La(2)], V2 € [0,8]) = 1. (3.19)

Cette derniere relation (3.19) nous permet de construire des intervalles de confiance
simultanés en z € [0,b] et asymptotiquement optimaux pour 'indice de pauvreté
J(z), de la forme

[Jn(2) — Ln(2), Ju(2) + Ln(2)]. (3.20)
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3.3.1 Application : Sélection d’un modele de loi paramétrique

Du fait de leur optimalité asymptotique, nous allons utiliser les intervalles de
confiance établis en (3.20), pour sélectionner un modele de loi paramétrique adéquat
afin d’analyser la pauvreté avec les données de revenu. Pour ce faire, nous considérons
trois modeles paramétriques : la loi Lognormale LN (m, o), la loi Gamma 7(a,b) et
la loi de Singh-Maddala SM(a, §,q). Rappelons que la loi de Singh-Maddala est

définie par la fonction de répartition

1
IS
1+ (8)]

ol « et ¢ sont des paramétres de forme et § un paramétre d’échelle. Elle généralise
les distributions de Paréto et de Weibull.

Les parametres de ces lois sont estimés par la méthode du maximum de vrai-

Gly) =1-

semblance en utilisant des données de revenu annuel des ménages sénégalais. Ces
données ont été recueillies aupres de 3278 ménages choisis au hasard, lors d'une
enquéte b d’envergure nationale, réalisée par I’Agence Nationale de la Statistique et
de la Démographie en 1994. La variable revenu Y qui est étudiée ici, a été standar-
disée suivant 1’échelle d’équivalence-adulte de la FAO. Le seuil de pauvreté annuel
z était fixé a 143080 F CFA pour chaque ménage.

Afin de tester 'adéquation de ces trois modeles paramétriques pour estimer les
indices de pauvreté, nous allons procéder a deux méthodes d’estimation différentes,

pour les indices de Foster-Greer-Thorbecke définis par

FGT(a) :/OZ (Z_y)adG(y), a>0.

z

D’abord, nous calulons les intervalles de confiance construits autour de I'estimateur
a noyau et donnés par (3.20), pour les indices FGT'(0), FGT(1) et FGT(2) en

considérant le noyau d’Epanechnikov donné par

K(x):{ 3(1—a2) sile| <1

0 sinon.

Ensuite, nous estimons ces mémes indices par une méthode d’intégration numérique
(Simpson), en supposant que la loi de la variable revenu Y suit respectivement les dis-

tributions Lognormale, Gamma et Singh-Maddala. La Table 3.1 donne les résultats

1. Enquéte Sénégalaise Aupres des Ménages
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de l'estimation non-paramétrique pour les indices FGT(0), FGT(1) et FGT(2) com-
munément appelés le pourcentage de la pauvreté (o = 0), la profondeur de la pau-

vreté (a = 1) et la sévérité de la pauvreté (a = 2).

Indice  Estimation Borne Inf Borne Sup

FGT(0)  0.316 0.295 0.337
FGT(1)  0.101 0.081 0.122
FGT(2)  0.048 0.027 0.068

TABLE 3.1 — Estimation non-paramétrique de I'indice FGT pour o« = 0, 1, 2.

La Table 3.2 ci-dessous donne les estimations ponctuelles de ces méme indices

pour chacune des trois distributions considérées.

Distribution ~ FGT(0) FGT(1) FGT(2)
Lognormal 0.311 0.106 0.050
Gamma 0.346 0.157 0.096
Singh-Maddala ~ 0.315 0.092 0.039

TABLE 3.2 — Estimation paramétrique de l'indice FGT pour o« = 0, 1, 2.

Sur ces deux tableaux, nous remarquons que les estimations de 'indice FGT
obtenues avec les modeles Lognormal et Singh-Maddala sont plus consistantes avec
I’estimation non-paramétrique. De plus, elles sont comprises entre les bornes des
intervalles de confiance asymptotiquement optimaux donnés par la méthode non-
paramétrique, alors que celles obtenues avec la distribution Gamma ne le sont pas.
Pour mieux visualiser ces remarques, nous représentons dans la Figure 3.1 ci-dessous
les intervalles de confiance simultanés non-paramétriques et les courbes d’évolution
de I'indice FGT(1), par rapport au seuil de pauvreté z, pour chacun des trois modeles
considérés ainsi que l'indice FGT classique.

La Figure 3.1 montre que les modeles Lognormal et Singh-Maddala semblent
adéquats pour estimer 'indice de pauvreté de FGT, car leurs courbes d’évolution
sont entierement dans les limites de confiance optimales établies avec la méthode

non-paramétrique.
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FI1GURE 3.1 — Comparaison des trois modeéles paramétriques.

Par conséquent, nous pouvons dire que, pour ces données de revenu de ménages
sénégalais, I'estimation paramétrique de I'indice de pauvreté conduirait a choisir le
modele de Singh-Maddala ou le modele Lognormal. Ce résultat est en phase avec
les travaux de McDonald (1984) qui disent que dans beaucoup de situations, la
distribution de Singh-Maddala apparait comme le meilleur modele pour ajuster les

données de revenus.



Chapitre 4

Normalité asymptotique des

estimateurs de type plug-in

4.1 Introduction

Dans ce chapitre le seuil de pauvreté z > 0 et les fonctions w et f seront tous

fixés ; et on note J l'indice général de pauvreté défini par

J = / "w(G ), C(2) (. 2)AC(y), (4.1)

ou, rappelons-le;, G(y) = P(Y < y) est la fonction de répartition de la variable
aléatoire Y, représentant le revenu d’'un individu pris au hasard dans la population
étudiée.

Supposons que Y7, Ys, - - - 'Y, est un échantillon de variables aléatoires indépendantes
et identiquement distribuées de méme loi que la variable Y. Notons G, la fonction

de répartition empirique correspondante. Pour tout réel y, on a

1 n
Guly) = n Z Livy <y}
j=1

ou 14 désigne la fonction indicatrice de I'’ensemble A. Introduisons les statistiques

d’ordre correspondant a I’échantillon Y7, Y5, -+ Y, notées
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Alors si ¢ = g, désigne le nombre de pauvres (i.e. card{j : j < n,Y; < z}) dans
I’échantillon de taille n, on a

T = Go2). (4.2)

Au lieu des estimateurs a noyau, ici nous allons travailler avec des estimateurs directs
de type "plug-in”, i.e.
1 q
Jo = =3 w(Gu(Vin), Gu(2)f (Vi 2) (4.3)
J=1

n —
= 5w (8 s050 (44

ou w et f sont des fonctions mesurables appropriées. Cet indice empirique J,, décrit
un ensemble tres vaste de mesures de pauvreté discretes que 'on peut subdiviser
en deux classes. La premiere classe contient les mesures dites non-pondérées pour
lesquelles la fonction poids w(%, 1) est égale a la constante 1. Cette classe contient
toutes les mesures de pauvreté décomposables, en particulier celle de Foster-Greer-
Thorbecke (1984). Celle-ci est définie, pour tout « > 0, par

FGT,(a) = %i (%)a | (4.5)

La mesure FGT(z,a) est fréquemment utilisée dans les études empiriques de pau-
vreté. Pour a = 0, elle est réduite a g/n, le pourcentage empirique d’individus
pauvres. Lorsque a = 1 et o = 2, elle est respectivement interprétée comme l’'inten-

sité de la pauvreté et la sévérité de la pauvreté.

En dehors de cette classe, il y a la classe des mesures dites pondérées pour
lesquelles le poids w(%, 4) varie selon le rang de I'individu j dans I’échelle des per-
sonnes pauvres. Cette seconde classe contient I’ensemble des indices de pauvreté
non-décomposables ou linéaires par rapport au revenu. On y trouve la fameuse me-

sure de Sen (1976) qui peut s’écrire sous la forme
1<~ 2 Go(Yin) 1\ [2-Y;
S, = — S I (R S LA L 4.6
njzlq+1( Gn(2) +q z (46)

La mesure de Kakwani (1980) qui est une généralisation de (4.6) appartient aussi a
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cette seconde classe. Ell est définie pour k£ > 0 par
1 gt Go(Yin) 1\"[z-Y;
K () =-S5 (;_%0in) 2 Fo tin) A7
. n; ?lek( Gz +q) ( z ) (47)

De méme, Shorrocks (1995) propose une mesure pondérée définie par

q

Sh, = %Z 2 (1 — Go(Yin) + %) (#) . (4.8)

=1

Pour plus de détails concernant ces deux classes de mesures de pauvreté, nous
renvoyons le lecteur a Zheng (1997). Notre objectif dans ce chapitre, consiste plutot
a établir la normalité asymptotique de 'estimateur général de pauvreté J,. Nous
montrerons également que la variance asymptotique peut étre estimée de fagon non-

paramétrique afin de construire des intervalles de confiance précis.

4.2 Normalité asymptotique

Soit un réel z > 0 fixé; w et f deux fonctions appropriées définissant une mesure

de pauvreté quelconque donnée par

J= / “w(G ), G(2) (. 2)AC(). (49)

Nous allons d’abord montrer que 'estimateur J,, converge presque surement vers la
quantité J.

Soit (hy)n>1 une suite de fonctions réelles définies sur R par

ha(y) = 0(Cu). Cal2)f (4. )1 gyey. ¥ > 1. (4.10)

et h la fonction réelle définie par

hy) = w(G(y), G(2)f(y, 2)Ly<zy, Yy = 0. (4.11)

En utilisant la loi forte des grands nombres et la continuité de la fonction w, on
montre aisément que, pour tout y > 0, h,(y) converge presque sirement vers h(y),
lorsque n — oc.

Introduisons quelques notations. Soit P la loi de probabilité de Y, ie. P =
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PoY, P, la mesure empirique basée sur I’échantillon Yi,--- .Y, et G,, le processus

empirique associé. Alors pour toute fonction g mesurable, on a
1 n
Po= [9dP=Eg(¥).  Pulg)= 1Y o) Gulg) = VP, - Plg
j=1

Avec ces notations, nous pouvons ré-écrire J,, en fonction de la mesure empirique
Py,

n

Z W(Gn(Yin), Gu(2)) (Yin, 2)1(y; n<zy = Pu(hn)

J=1

Jp =

SRS

et la quantité J en fonction de la loi P,

J= / Cw(Gy), () f(y, 2)AC(y) = / " hy)dG(y) = [ nar = .

Donc
Jn —J =P, (h,) — Ph = [P,(h, — h)] + [P,h — Ph]. (4.12)

Puisque Ph = J < o0, en appliquant de nouveau la loi des grands nombres pour les

deux derniers termes de I’égalité (4.12), on obtient finalement que
J, 25 T n— 0.

Une condition nécessaire pour appliquer le théoréme central limite est que ER?(Y') <
oo. Cette condition est vérifiée ici , puisque

Bn(y) = Pie = | " hy)dcty) = [ w6066 6w < <. (119

car les fonctions w et f sont supposées continues par hypothese donc intégrables sur
I'intervalle compact [0, z] pour tout z > 0 fixé.
Maintenant nous allons décrire la normalité asymptotique de I'estimateur de type

"plug-in” J, dans le Théoreme 4.1 suivant, ou ~ désigne la convergence faible.

Théoreme 4.1. Soit z un réel positif fizé; w: [0,1] x [0,1] = Ry et f: R* - R,
deux fonctions continues et décroissantes chacune par rapport a sa premiere variable.
Si de plus, la fonction w admet des dérivées partielles premiéres w., et w. bornées,

alors lorsque n — oo, on a

Vnl[Jy = J]~ N(0,0%),
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ou N(0,0?) est la loi d’une variable aléatoire normale de variance

2 2 2
o° = 0]+ 03,

avec

2

ot = [ w666 P26 - ([ w6 60w )
et
it = [ [ w226 ) - GGENG G
LG () (1 - G(2)) ( | et z)dG<y>)2
v20- 66 ([ v acwac) ). ([ o e ).

ot p(y,2) = w,(G(y),G(2))f(y,2) et ¢(y, 2) = w,(G(y),G(2))f(y,2).

Remarque 4.1. Avec des choiz appropriés pour les fonctions w(-,-) et f(-,-), ce
théoreme nous permet d’obtenir la normalité asymptotique des mesures empiriques
de Sen, de Shorrocks, de Kakwani, de Foster-Greer-Thorbecke et de beaucoup d’autres

mesures existant dans la littérature.

Preuve. Par décomposition, on obtient

\/E[Jn - J] - \/E[Pnhn - Ph]
= Vn[P,(h, — h) — P(hy, — h)] + V/nP(h, — h) + vVn(P, — P)h
= Gu(hn — h) + G, (k) + v/nP(h, — h),

ou h,, et h sont les fonctions définies précédemment en (4.10) et (4.11).

Pour prouver le théoreme 4.1, nous allons maintenant établir que le premier
terme de cette décomposition G,,(h, — h) tend vers 0 presque strement, alors que
les deuxieme et troisitme termes G, (h) et /nP(h, — h) convergent chacun, en
distribution, vers une variable gaussienne, lorsque n — oo.

Pour toute fonction réelle ¢ définie dans un domaine D, on note

lellp =suple(y)] et ol = [lole-
yeD
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Comme précédemment, une application de la loi des grands nombres implique que
hn(y) converge presque sirement vers h(y), pour tout y > 0. D’apres le théoreme
de Glivenko-Cantelli, cette convergence est uniforme sur R. Donc, pour tout § > 0

et n assez grand, on a
o
hy —hlleo < —, d§>0.
I = bl <

D’ou,

Galhn — B)] < Gllhn — hlloe < Gn%) — (P, — P)(5).

Or (P, — P)(6) — 0, d’apres la loi des grands nombres. Donc le premier terme
G, (h, — h) converge presque surement vers 0, lorsque n — oo.

Pour le second terme, nous appliquons directement le théoréeme central limite
puisque Ph? = Eh?(Y) < oo d’apres (4.13). On obtient

Gn(h) ~ G(h),

ot G(h) est une variable aléatoire gaussienne de variance,

2

ot = PIR—(Pn? = [ WGl GNP )G )~ ( [ wcw. e z>dG<y>) |

Pour le troisieme terme, nous appliquons un développement de Taylor a la fonc-
tion bi-variable w. On peut alors écrire, avec B(-) désignant un pont brownien stan-
dard,

Vi{w(Gn(y), Gu(2)) —w(G(y),G(2))} = w,

ou ¢ =((y,2) = (G(y),G(2)). Posons

oy, 2) = w,(Q) fy, 2) et oy, z) = w,({)f(y, 2).

Alors, rappelant les définitions de h,, et h en (4.10) et (4.11) on obtient, en rajoutant
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et en retranchant une intégrale du pont brownien, que
VP, =) = [ o) Va6, ~ 6l) - BGE)IG)
+ [ ol AGA(2) ~ 6() - BGE))GH)
+ [ ol 2)BOEWHIGH)
+ [ o2 BGEG) + o)

= n1+Rn2+N1+N2+0<1)

Les termes IR, ; et R, convergent presque strement vers 0, lorsque n — oco. En

effet, nous avons

[Rna| = /Ozsﬁ(y,Z){\/ﬁ(Gn(y)—G(y))—B(G(y))}dG(y)
< (G(2) = G(0) sup [e(y, 2)| x [[Vn(Gn — G) = Bo Gl

y€[0,2]

et

Roal — / 5y, ) VI(Ga(2) — G(2)) — B(G(2))}dC(y)
< (G(2) — G(0)) sup [6(y,2)] X |Vit(Ga — G) — B Gl

B y€(0,2]
ou "o désigne I'opérateur de composition de fonctions.

D’apres les approximations hongroises (KMT, 1975), on peut choisir le pont
brownien B(+) de sorte que ||v/n(G, —G) — BoG||~ converge presque stirement vers
0, lorsque n — oo. Alors en combinant la continuité de f avec les dérivées partielles
bornées de w, nous en déduisons que les termes R, et Iz, 2 tendent vers 0 presque
strement, quand n — oo.

Nous remarquons enfin que les deux autres termes /Ny et Ny sont des intégrales du
pont brownien B(-), donc des variables aléatoires gaussiennes car, ils peuvent s’écrire
comme des transformations linéaires d’un vecteur gaussien. La somme N; + Ny
est aussi une intégrale du pont brownien B(-), donc c’est une variable aléatoire

gaussienne. Ainsi, lorsque n — oo, le terme y/nP(h, — h) converge en distribution
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vers une variable aléatoire gaussienne de variance
7 = [ ] e 2e 2166 Ay - G@)GwdG()G )
0o Jo

LG()(1 - G(2)) ( | ot z)dG<y>)2

s20- 66 ([ et acmac ) ([ o ac0)).

Pour avoir la variance asymptotique o2 de \/n[J, — J], on peut remarquer que
la covariance des termes G, (h) et /nP(h, — h) est nulle pour toute fonction h

mesurable. En effet, on a

cov(G,(h),vnP(h, —h)) = cov(v/n(P,h — Ph),/n(Ph, — Ph))
= ncov(P,h — Ph, Ph,, — Ph)
= nlcov(P,h, Ph,) — cov(P,h, Ph) — cov(Ph, Ph,) + cov(Ph, Ph)]

= ncov(P,h, Ph,) carcov(X,a) =0 sia est une constante

_ ncov(% > h(Y). Ehn(¥))

n

= ) _cov(h(Y;),Eh,(Y)) = 0.

J=1

Finalement 0% = 0% + o3.

Remarque 4.2. Lorsque la variance o

est estimée, le théoreme 4.1 nous permet
de calculer des intervalles de confiance asymptotiques pour l'indice de pauvreté J.
Par exemple, pour construire un intervalle de confiance de niveau 100(1 — a)% , il

2

suffit de trouver un estimateur consistant s> de o* et d’appliquer la formule

Sn

%Uka/%

oU U—q/2 (0 < a < 1) désigne le quantile d’ordre (1—a/2) de la loi normale centrée

Jn £ (4.14)

réduite.
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4.3 Simulations

Pour appliquer ce résultat de normalité asymptotique dans l'analyse de la pau-
vreté, il est nécessaire de savoir dans quelles conditions il est vrai. Pour cela, nous
allons procéder a des simulations sur des échantillons de données de tailles n = 100,
n = 500, n = 1000 et n = 50000.

La distribution lognormale est une loi tres connue dans l'ajustement des données
de revenu. Cette loi présente un avantage sur la distribution de Paréto car ses pa-
ramétres sont faciles a estimer et a interpréter. D’autres distributions comme celle
de Singh-Maddala, sont aussi adéquates pour ajuster des données de revenu. Cepen-
dant, pour des raisons d’espace, nous allons conduire nos simulations, en supposant
que la fonction de répartition G suit la loi lognormale LN (m, o) dont la densité de

probabilité est donnée par

) 1 1 l(logy—m)2 =0
g\y - /_271'3/ p B pu Yy

Nous travaillons ici dans le cas de la mesure de Sen o, 'indice théorique J est égal

J= 2/: (1 . gg) (1 - %) g(y)dy.

Cet indice J ainsi que la variance o? dans le théoréme 4.1 sont calculés avec la

méthode d’intégration numérique de Simpson, en prenant G égale a la distribution
lognormale LN (12,0.75).

Nous générons 100 échantillons de taille n selon la loi LN (12,0.75). Pour chaque
échantillon 72, nous effectuons les deux étapes suivantes :

- Calcul de I'indice empirique J,,; dans la cas de Sen qui est égal a :

2 j Y;
Ini = = 1-——— ) (1--2),
=3 () ()

ou ¢ est le nombre de pauvres dans 1’échantillon.
i 2 \/E(JTZ”__J)
- Calcul de la quantité z,; = ———.
Apres ce procédé, nous tragons un graphique quantile-quantile (QQ-plot) pour
comparer la série z,;,7 = 1,---,100 a la loi normale centrée réduite. Les résultats

sont donnés par la figure 4.1 ci-dessous. Sur le graphique nous observons une linéarité
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FIGURE 4.1 — Simulation de la normalité asymptotique de l’estimateur "plug-in” J,

dans le cas de Sen.

des points; ce qui témoigne de la normalité asymptotique de I'estimateur ”plug-in”
In.

4.4 Estimation de la variance asymptotique

Puisque la variance o dépend de la distribution G, on peut utiliser une méthode
non-paramétrique pour ’estimer. Pour cela, nous remplagons la distribution théorique
G par son équivalent empirique G,, partout dans I'expression de 2. En rappelant

les statistiques d’ordre de 1’échantillon Yy, --- Y, :
}/I,ng Sn,n<2§}/¢]+1 S "'SYn,na

on peut définir un estimateur empirique de la variance o2, par

2 .2 2 2 2
Sp = Sl,n + SQ,n + 83,71 + S4,n7

1< J q 1 J q
2 _ 2 J 4 2 : o - J 1 ]
=2 w (M)f (Vi 2) = (2D w2 D (Vi 2) |

Jj=1 Jj=1
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Sous les conditions du Théoreme 4.1, il a été prouvé (cf. Zitikis (2002)) que s2 est
un estimateur fortement consistant pour o2 si la fonction poids w(-,-) est telle que

l'application a : u — a(u) = w(u, G(z)) pour tout z > 0 fixé, vérifie :
la(u)| < cu(1—w)’t, 0<u<l, (4.15)

pour des constantes o, 8 > 0 et 0 < ¢ < 0.

Notons que la condition (4.15) est satisfaite pour la plupart des indices de pau-

vreté. Voici quelques exemples :

Indice FGT. Nous avons a(u) = 1, et la condition (4.15) est vérifiée pour
a=0pf=c=1.
Indice de Shorrocks. a(u) = 2(1 —u), 0 < u < 1. Nous avons
la(u)] < 2(1 —w)*,

et (4.15) est vraie pour a = 1,8 =2 et ¢ = 2.

Indice de Sen. a(u) =2(1 —u/G(z)), 0<s<1. Ona

2
G(2)

et (4.15) est vraie pour a = 1,8 =2 et ¢ = 2/G(2).

ja(u)] < (L —w)*,

Indice de Kakwani. a(u) = (k+1)(1 —u/G(2))k*, 0<s<1.0na

kE+1

_BT L k-1
(0 A

la(u)] <
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et (4.15) est vraie pour « = 1,8 =k + 2 and ¢ = k+ 1/(G(z))*.

Avec cette estimation non-paramétrique de la variance o?

, nous pouvons alors
utiliser la formule (4.14) pour estimer l'indice de pauvreté J a partir d’intervalles de
confiance de niveau 100(1 — )% , avec 0 < a < 1. Travaillant avec les données de
revenu des ménages sénégalais de 1994, nous avons comparé a ’aide de la Figure 4.1
suivante, les intervalles de confiance de niveau 100(1 — )% avec ceux du chapitre
3, ne nécessitant pas de fixer un seuil de signification « et construits autour d'un

estimateur a noyau.

0.30
|

—— ICs (méthode du noyau)
- 99%-ICs (méthode classique

0.20
|

Indice FGT(1)
0.15
!

0.00
1

seuil de pauvreté (z)

FIGURE 4.2 — Intervalles de confiance simultanés de l'indice de pauvreté FGT(1).
Le trait continu représente les intervalles de confiance asymptotiquement optimauz
construits autour de [’estimateur a noyau étudié au chapitre 3; le trait discontinu
représente des intervalles de confiance uniformes de niveau 99% obtenus avec la
normalité asymptotique de l'estimateur "plug-in”. Le trait foncé représente la vraie
courbe.

Nous observons que les intervalles de confiance construits autour de l'estima-
teur a noyau sont plus larges que ceux construits, a ’aide du résultat de normalité
asymptotique, autour de l'estimateur ”plug-in”. Cela parait naturel car le niveau

de confiance est plus élevé avec la méthode du noyau. Cependant, les intervalles de
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confiances issus de la normalité asymptotique sont plus précis comme le montre la

figure 4.1.



Chapitre 5

Convergence faible des

estimateurs de type plug-in

5.1 Introduction et Résultat

La théorie de la convergence faible des processus stochastiques joue un role fon-
damental en statistique asymptotique et, particulierement dans l'approximation des
lois de statistiques de test pour vérifier des hypotheses. Il s’agit de la convergence en
loi d’une suite de variables aléatoires (X,,(w,t)), ¢ variant dans un ensemble T, vers
une fonction aléatoire X, a valeurs dans un méme espace métrique probabilisable.
Lorsque I'ensemble d’indices T' est une classe de fonctions, les processus considérés
sont dits indexés par des fonctions. Un exemple particulierement important est le
processus empirique indexé par une classe de fonctions, dont la convergence en distri-
bution vers le pont brownien est a ’origine de nombreuses applications statistiques.
En effet, le théoreme central limite uniforme permet de controler simultanément le
comportement de la déviation d’une infinité de variables aléatoires par rapport a
leurs espérances et du coup, d’établir des bornes d’approximations ou des intervalles
de confiances uniformes pour un paramétre fonctionnel donné.

L’intérét de 1’étude de la convergence faible pour les mesures de pauvreté réside
dans le fait qu’elle permet d’unifier tous les résultats asymptotiques, établis jusqu’ici
avec des approches différentes, dans un cadre unique global afin de développer des
méthodes d’inférence robustes, pouvant se baser sur n’importe quelle classe d’indices

de pauvreté. Le chapitre 6 suivant traitera de l'inférence. Par contre, dans ce cha-
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pitre nous nous intéressons a la convergence faible uniforme de ’estimateur direct de
type "plug-in” J, introduit au chapitre 4, et considéré ici, pour z > 0 fixé, comme
un processus stochastique indexé par les fonctions w € W et f € F, ou W et F sont
des classes de fonctions appropriées définies ci-dessous. L’estimateur J, est donné

par

Jn = - Z w[Gn(Y;,n)a Gn(z)}f(y;',n; Z)l{Yj,n<z}7

Jj=1

et les classes de fonctions W et F définies comme suit :
W ={w:[0,1] x [0,1] = R*/ w continue, et u > w(u,-) est décroissante},

et
F={f:R* =+ R"/ f continue, et y > f(y,-) est décroissante}.

Pour toutes fonctions w € W et f € F, notons

Ta(w, 1) = o = = S wlGalYi), Galo)f Vi Ny,

et
T f) =T = [ wlG). GO <0G )
Posons
1,6, = W[Gn(y), Ga(2)]f (Y, 2)L{y<z) (5.1)
et
hw,f,G = w[G<y)7 G(Z)]f(y7 Z>1{y<z}' (52)

Alors en utilisant les notations de la section 4.2 du chapitre 4 et une décomposition

similaire a (4.12), on obtient

\/ﬁ[‘]n(wa [ =Jw, f)] = Gp(hwsa, = Pwra) +Gnlhuwra) + \/ﬁp(hwi,Gn —hw ta),
(5.3)
ou G,, désigne le processus empirique et P la loi commune des Y;.
Ainsi, la convergence faible du processus centré normalisé /n[J, (w, f)—J(w, f)]
va dépendre du comportement asymptotique des trois termes du membre de droite
de I'égalité (5.3).
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Théoreme 5.1. Soit z un réel positif fizé et G une fonction de répartition assosiée
a la loi P, admettant une densité de probabilité g. Alors le processus {\/n[J,(w, f)—
J(w, f)] :weW, f € F} converge en distribution dans [°°(W x F) vers un processus

gaussien centré de covariance

(w1, f2); (wa, o) = / “w[Gly), G iy, 2unlC ), G2 faly, 2)dG(y)
- / " wi[Cly), G(2)] 1 (9. 2)AG() / " wslGy), G faly, 2)dC) + 0,

0= [ [ (@) ) + o) + o) <
(Gl A y) — G@)G)AG)AG(y)

avec

ar(r,y) = (w1),[G(2),G(2)]fi(z,2) - (wa),[G(y), G(2)] f2(y, 2)
O (< X e LI

(o) = HELEENIR G )  6). G ol
B wﬂG(:z:),G(z)]% . ‘wg[G(y),G(z)] O fa B

5.2 Preuve

La preuve de ce théoreme sera divisée en trois parties. Dans la premiere partie,
nous montrerons que le processus empirique G,, indexé par la classe de fonctions
H = A{hwrc : w € W, f € F}, oit hy, e est une fonction indexée définie par
I'équation (5.2), converge en distribution vers un processus gaussien G dans [*°(H).
Dans la deuxiéme, nous prouverons que

sup |G (hup.c, — hwgc)| =0, n— oo. (5.4)

WEW,fEF
Et enfin dans la troisieme et derniere partie nous établirons, en utilisant la delta-
méthode fonctionnelle (cf. Annexe A.4) que, le terme /nP(hy t.a, —hw £.c) converge

aussi en distribution vers un processus gaussien W indexé par (w, f) € W x F.
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5.2.1 1°° partie

Pour cette partie, il suffit de montrer que la classe de fonctions H définie par

H = {hmf,G:wGW,fE}"}
= {Z/ — w[G(?/)a G(z)]f(yaz)l{y<z} W e W> f € ‘F}

est P-Donsker, oli rappelons-le, P = PoY est la loi commune des Y;. Nous pouvons

écrire H sous la forme H = H; - Ha, ol
Hi = {y = w[G(y),G(z)] : w € W}

et
Hy = {y — f(y,Z)l{y<z} : f - .7:}

Ainsi, H sera une classe de Donsker si et seulement si H; et Hs sont des classes
de Donsker, car H; et Hs sont constituées de fonctions supposées a valeurs dans
[0, 1], donc uniformément bornées. Pour montrer que #H;,i = 1,2 est P-Donsker
nous allons établir les trois conditions (C.1),(C.2) et (C.3) suivantes :

(C.1) : P*H; < o0, ou H; est une enveloppe mesurable de la classe #H,;. Ici, P*

désigne une mesure extérieure telle que pour toute fonction g mesurable
P'g=Pg= /gdP.

(C.2) : H; est P-mesurable.

(C.3) : H; vérifie la condition d’entropie uniforme, i.e.

1
/sgp\/logN(e||Hi|]27Q,Hi,L2(Q))de<oo, (BU)
0

ou ) décrit ’ensemble des mesures de probabilité sur R et N (e, H;, L2(Q)),i =
1, 2 est le nombre de e— recouvrements de H;, i.e. le nombre minimal de boules,

par rapport a la norme Ly(Q), de rayon € nécessaire pour couvrir H;.

Pour z > 0 fixé, et G une fonction de répartition donnée, les fonctions y >
w[G(y),G(2)] et y = f(y,2)1y<-) sont décroissantes par hypothese, en vertu des
propriétés normatives d’'une mesure de pauvreté. Sans perte de généralité, on peut

les considérer comme prenant leurs valeurs dans [0, 1]. Ainsi, les classes H; et Hs
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possédent une fonction enveloppe commune qui est la constante H = 1.

Nous observons que
Hi={y = w[G(y),-] - we W} C My(R,[0,1]),

ou My(R,[0,1]) est 'ensemble des fonctions monotones bornées sur R a valeurs
dans lintervalle [0, 1]. Donc, en vertu du Théoreme 2.7.5, page 159, van der Vaart

et Wellner (1996), on a pour r = 2, que

sup \/log Ny(e, Hi, L2(Q)) < Ke™', 0<e<]1,
Q

ou le suprémum est pris sur toutes les mesures de probabilité () sur R et K est une
constante positive. L'inégalité (5.5) suivante est bien connue (cf. van der Vaart et
Wellner (1996)). Pour toute classe de fonctions G on a

N(e.G, Lo(Q)) < Ny(2¢,G, Lr(Q)) (5.5)

Alors on en déduit que

sup \/logN(e, Hi, L2(Q)) < sup \/105:{ Nj(2¢, Hy, Lo(Q)).
Q Q

Puisque ||H||2,0 = 1, cela implique que

K
sup \/log N (e[ H |20, 11, L2(Q)) < 5e ', 0<e< 1.
Q 2
D’ou

1 K 1
/ s flog N (el 2. . Lo(@)de < 5 | e = VoK < o
0 0

Donc #H,; satisfait a la condition d’entropie uniforme (C.3). De maniere analogue, on
montre que Hy vérifie aussi cette condition (C.3).

Pour vérifier la P— mesurabilité (condition C.2), nous allons montrer que la
classe H; est convenablement mesurable, i.e. admet une sous-classe H{ dénombrable
et dense (voir Annexe A.2). Pour cela, il suffit de prouver ( voir Exemple 2.3.4,
page 110, van der Vaart et Wellner (1996)) que la classe H; est séparable pour
la norme suprémum. Une condition suffisante pour que H; soit ainsi est que H;

soit totalement bornée pour la norme suprémum. Rappelons que H; est une classe



5.2 Preuve 66

de fonctions décroissantes sur R a valeurs dans [0, 1]. Donc si —H; composée de

fonctions croissantes est totalement bornée, H; sera aussi totalement bornée.
Notons N, le nombre minimal de boules de rayon § > 0, par rapport a la norme

suprémum || - ||, nécessaires pour couvrir une classe de fonctions G, alors log N,

est appelé d-entropie de G pour la norme suprémum.

Proposition 5.1. van de Geer (2000)
Si G est une classe de fonctions croissantes g : R — [0, 1] et F' un sous-ensemble fini

de R de cardinal n, alors

log N (6.6) < | ] log (n+ L%J) W0,

ot |x| désigne la partie entiere d’un nombre réel x.

Remarque 5.1. Cette proposition nous permet d’établir que la 6—entropie de Hy
par rapport a la morme suprémum est finie pour tout 6 > 0. Ce qui entraine

immédiatement que Hy est totalement bornée pour la norme suprémum.

Preuve. La preuve de cette proposition est condensée dans van der Geer (2000).
Nous la détaillons ici pour mettre le lecteur a ’aise. Supposons que les points du
sous-ensemble F' soient ordonnés comme suit : z; < x5 < --- < x,,. Pour tout g € G,

posons

avec ¢ un réel positif donné, et définissons la fonction

Alors on a, pour tout ¢ =1,--- ,n,

) — )| = [ 200y - 29y gy 98y 9 5 gy

Comme g est croissante, on a
0< My <My <--- < M, <|1/6],

car g(z) < 1,Vz € R. Le nombre de fonctions g que 'on peut construire avec ce

procédé est :

ol (n+[1/6]) x---x (n+1)
nHOL 18 x ([1/0) —1) x --- x 1
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donc
s 11/6] 11/6]
log CL/% 5 = > " log(n + j) —log(j) < Y log(n + j) < [1/] log(n + [1/5]).
j=1 j=1

Comme la d—entropie de G pour la norme suprémum est le logarithme du nombre

de boules de centre § et de rayon d, nécessaire pour couvrir G, alors on a
1/6
log Noc(8,G) = log C /{15y < [1/6] log(n + [1/5)).

Ce qui acheve la preuve de la proposition.

On peut donc déduire de cette proposition que pour tous n € N et § > 0, fixés
log N (6,G) < 0.

D’ou G est totalement bornée pour la norme suprémum, donc G est séparable
pour cette norme. Par conséquent, G est convenablement mesurable. En appliquant
cette proposition a —Hy, on en déduit que H; est convenablement mesurable, donc
P—mesurable, i.e. satisfait a la condition (C.2). Avec le méme raisonnement, on

montre que H, satisfait aussi a cette condition (C.2).

La condition (C.1) est immédiate. En effet, comme H; et Hs sont des classes de
fonctions a valeurs dans [0, 1], on peut prendre comme fonction enveloppe commune

la constane H = 1 qui est mesurable, donc
P*H*=PH*=1< c0.

Nous venons de montrer que les classes de fonctions H; et Ho vérifient les conditions
(C.1), C.2) et (C.3), donc H = H;-Hz est P—Donsker, i.e. le processus {G, (hy, f.c)
huw,rc € H} converge en distribution vers un processus gaussien G dans (*°(#), de

fonction de covariance
COV(G(hwl,fl,G)7G(hwmfmG)) = Phwhfl,thz,fz,G - Phwl,fl,GPhwmfmG
- / w[G(y), GENfily, 2wlGy), G(2)] oy, 2)dGly) -
0

/0 "Gy, G2 fi(y, 2)AC() / "Gy, G(2)] foly. 2)AC().

Par construction, la classe H peut étre identifiée a la classe W x F, donc on a

G, ~ G dans (W x F). (5.6)
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5.2.2 27¢ partie

Dans cette partie on note G~! la fonction des quantiles associée & la fonction de
répartition G qui admet une densité, donc G~! est dérivable et on suppose que sa
dérivée est bornée. De méme, on admet aussi que les fonctions bi-variables w et f
possedent des dérivées partielles premieres bornées.

Pour z > 0 fixé, w € W et f € F, considérons la fonction 6 définie par

O(u) = w(u, G(2)) f(G M (u), 2)1{g-1<zy, € [0,1].

Alors
hu,p,a(y) = w(G(Y), G(2)) f (Y, 2)1y<zy = 0(G(y)). (5.7)

Pour simplifier les notations au niveau des indices, on peut identifier le couple de

fonctions (w, f) a la fonction 6 en posant

hoc(y) = hwra(y) = 0(G(y)).
Soit
© = {u > 0(u) = w(u, G F(G (W), g1y sw €W, FEFL (58)
Pour établir (5.4), il suffit de montrer que

sup |G (hoc, — hog)| 20, n — oc. (5.9)
0cO

Pour cela, nous allons utiliser les techniques développées dans 'article de van der
Vaart et Wellner (2007). La classe de fonctions © doit alors satisfaire la condition
d’entropie uniforme pour une fonction enveloppe donnée, mais aussi, elle doit étre
convenablement mesurable.

w et f étant des fonctions a valeurs dans [0, 1], donc la constante H = 1 est une
fonction enveloppe pour les classes W et F. Par définition de la classe ©, H = 1 est
aussi une fonction enveloppe pour 6. Ainsi la décroissance des fonctions u — w(u, )
et u— f(G7(u),-) implique que © est un sous-ensemble de M(R, [0, 1]), ensemble
des fonctions monotones g : R — [0, 1]. Par conséquent, on peut monter comme

dans la partie I de la preuve que, © satisfait a la condition d’entropie uniforme

1
/ sgp \/log N(e||Hl|2,0,0, L2(Q))de < o0 (5.10)
0
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et que O est convenablement mesurable.

Rappelons que si G, désigne la fonction de répartition empirique associée a la
distribution G, alors d’apres le principe d’invariance de Doob-Donsker, /n(G,, — G)
converge en distribution vers B o G dans [*(R), 'ensemble des fonctions réelles
bornées sur R. B étant un pont brownien défini sur C[0, 1], 'espace des fonctions
continues sur [0, 1].

Posons
D=1"R)={d:R =R/ ||d|le < o0}
et
Dy =Cy(R)={d:R—- R/ ||d||c < o0 et d continue}.

Alors comme B est a trajectoires dans C[0, 1], B o G est a trajectoires dans Dy.
Pour tous dy € Dg,0 € © et § > 0 fixés, introduisons la suite de classes de

fonctions
Fn(e, d07 5) == {he’G+n—1/2d - hﬂ,G—‘rTL_l/Qdo . d S D, ||d - dOHOO < (5}7

avec F,(0,dy, ) une fonction enveloppe mesurable de F,,(6, dy, §) pour tout n > 1.

Pour établir (5.9), il suffit de vérifier (cf. Théoreme 2.3, van der Vaart et Wellner

(2007)) les trois conditions (i), (ii) et (iii) suivantes pour la classe de fonctions © :
(i) supgee |Gn(hg.con-1/2a, — hoc)| = 0, n = 00 Vdy € Dy,

(i) suppee |GnFo(6, do, 8)] 0, n — 0o V8 > 0,Vdy € Dy.
(iii) supgee SUPger £ (0, do, 6n) R 0, n—o00 Vi, —0,VK C Dy, K compact.

Vérifions maintenant ces trois conditions pour la classe de fonctions ©. Pour z > 0
fixé, posons
a(u) = w(u, G(2)), uel0,1]

et
b(u) = f(GH(u),2), uel01].

Alors a(-) et b(-) sont des fonctions dérivables car w(-,-) et f(-,-) sont différentiables

par hypothese. En appliquant le théoreme de la moyenne, on obtient compte tenu



5.2 Preuve 70

de la relation (5.7), que pour tout y € [0, z],

1P Gin—124(Y) = Mg gin-1724,(y)| = 10(G(y) + n2d(y)) — 0(G(y) + n~do(y))]

= |w[G(y) +n %d(y), G(2)] f|G~ 1(G(y) +n7 1 2d(y)), 2] —

< a(G(y) +n~2d(y)) — a(G(y) +n~?do(y))] x
b(G(y) +n~d(y))]
+Hb(G(y) + 17 2d(y)) — b(G(y) +n2do(y))| x
|a(G(y) + 1~ 2do(y))]
, d(y) — do(y)
sup |b(u)| sup |a'(u — =
< u€[0p1]| ( )‘ue[ol,)l]‘ (w)] x| Tn |+
: d(y) — do(y)
sup |a(u)| sup |b'(u — 77,
ue[o?l]l ( )Iue[ol?l]l (w)] x| Tn |
Donc pour tout y € [0, 2],
ho Gn—1724(Y) — Mg, Gin-1724,(Y)| < % X ||d — dol|oo, (5.11)

ou

M = sup [b(u)| sup |a'(u)| + sup |a(u)] sup [b'(u)].
u€el0,1] u€(0,1] u€(0,1] u€(0,1]

Ainsi, pour tout n, la classe F, (0, dy, §) admet une fonction enveloppe constante de

la forme

oM
g

Cela implique, en notant ||G,,||e = supycg |G, ()], que, lorsque n — oo

F,(0,dy,0) = (5.12)

oM
sup |G, F,(6,do,0)| < ||G,lle—=
9€g| (0, do,0)| < ||e\/ﬁ

pour tout dy € Dy et tout 6 > 0 car © est une classe de Glivenko-cantelli d’apres
(5.10). D’ou la condition (ii).

La condition (iii) est immédiate, car d’apres (5.12), on a

= 0M|P, — Plle — 0,

VnPE, (0, dy,8,) = 5, M — 0,

quand 6,, — 0. Par contre, la condition (i) nécessite le lemme suivant :
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Lemme 5.1. Supposons que ® est une classe convenablement mesurable de fonctions

mesurables admettant une fonction enveloppe ¢ telle que

1
/ ap /108 N (€ll 6.0 @, La(Q))de < oo, (5.13)
0

P(¢poG)? < o0 (5.14)

et que pour tout dy € Dy,

P(& e} (G + n_l/ng))Q = 0(1)7 P(& ¢) (G + n_l/Qdo))Q1{$O(G+n—1/2d0)26\/ﬁ} — O,
(5.15)
pour tout € > 0. St de plus,

sup P(¢po (G +n"2dy) —poG)? =0, n— o0 (5.16)
ped

pour tout dy € Dy. Alors la condition (i) est vraie.

Preuve. ( voir Lemme 3.1, page 241, van der Vaart et Wellner (2007)).
Précedemment, on a établi que la classe de fonctions © définie en (5.8) satisfait a
la condition d’entropie uniforme et admet une enveloppe constante égale a 1. Donc
les conditions (5.13), (5.14) et (5.15) du lemme 5.1 sont remplies. Pour appliquer
ce lemme a la classe O, il suffit de vérifier la condition (5.16). En appliquant le

théoreme de la moyenne, comme précédemment, on montre que pour tout y € [0, z]

00 (G(y) +n"do(y)) =00 Gy)| < |w[G(y) +n do(y), G(2)] X
FIGTHG(y) +n2do(y)), G(2)]

—ulG(y). GRG0 G, ()]
Mo oe

vn

IN

Donc

PAo(G+n%dy) —00G)? <

—MHdOHOO —0, n—o
n )

pour tout dy € Dy. Dot la relation (5.16). En appliquant le lemme 5.1 a la classe
de fonctions ©, on obtient la condition (i).
Finalement, on déduit de (i), (ii) et (iii) que (5.9) est vraie, i.e.

P
sup  |Gp(hw,f.6, — Puwra)|l = sup |Gu(hoc, — hoc)| = 0, n —o00.  (5.17)
weW, feF 0co
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5.2.3 3°7"¢ partie

Dans cette partie nous appliquons la delta-méthode fonctionnelle (voir Annexe
A.4) a lapplication ¢ : G — ¢(G) = Phyg, ou 0 décrit la classe de fonctions O,
définie en (5.8), i.e.

0(u) = w(u,G(2)) f(GT (u), 2)lig-1(w<zy,  u € [0,1].
Pour tout y > 0, on rappelle que

hoc(y) = 0(G(y)) = w(G(y), G(2)) (Y, 2)1{y<zy = hw r.c(y)- (5.18)

Soit (t,)n>1 une suite de réels et (d,),>1 une suite d’éléments de Dy = C,(R) telles
que
G+ tndn € Do, t, — 0, dn — d(] € DQ.

En rappelant les fonctions a(u) = w(u, G(2)) et b(u) = f(G7'(u), z) définies dans

la deuxieme partie de la preuve, on peut écrire pour tout y € [0, 2], que

ho.Grtndn (Y) — hoc(y) = 0(G(y)

Ainsi, pour n assez grand, nous avons

ho.Gtada (9) = ho6ly) = @' (G)BIGH)tndn(y) +V(G(1)a(G () tadn(y) + oltad(y))
= 0(G))tadn(y) + o(tudn(y)),

ou a'(+),0(:) et 0'(-) désignent respectivement les fonctions dérivées de a(-),b(-) et

6(-). Donc, lorsque n — oo on a

n

Pl ~hoe) = | #(G)GGIGH) = [6(6)- o)

pour tout # € ©.
Puisque v/n(G,, — G) converge en distribution vers le pont brownien B o G, qui
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est séparable et a trajectoires dans Cy(R) = Dy, en appliquant le Théoreme 3.9.4
(Delta-méthode, voir page 374, van der Vaart et Wellner (1996)) pour Iapplication
®(G) = Phy g, on obtient pour tout 6 € O, lorsque n — oo, que

V(o(Gn) — ¢(G)) = Vn(Pheg, — Phec) ~ /0 0'(G(y)B(G(y))dG(y) = W(B).
Considérons maintenant le processus
{W,.(0) = Vn(Phy, — Phog) : 0 € ©}.

Rappelons qu’ on a Phva < 00, VO € ©. Pour montrer que le processus W,, converge
en distribution vers le processus gaussien W, il suffit de prouver que © est une classe
de Donsker; ce qui est le cas. En effet, on a déja montré en (5.10) que O vérifie la

condition d’entropie uniforme

1
/ sgp \/log N(e||Hl|2,0,0, L2(Q))de < o0 (5.19)
0

et que O est convenablement mesurable, donc P-mesurable. De plus, son enveloppe
H =1 satisfait &4 P*H? = PH? =1 < oo. Donc © est P-Donsker, i.e.

W, ~ W dans [*(O).

W est alors un processus gaussien de covariance
con(W(6:) W(ea)) = [ [ OL(G)BGEWIGa Ay) — Ga)GlldG )G (),
(5.20)

D’apres 'égalité (5.18), la fonction 6 peut étre identifiée au couple de fonctions

(w, f). Donc, on peut écrire
W, ~» W dans (W x F), (5.21)

et la covariance en (5.20) s’écrit

cov(W(wn, f2): Wy, f2) = / Z / (ar(e,y) + ar(z,y) + as(r ) + asle,y) x
(G(xz ANy) — G(x)G(y))dG(x)dG(y),



5.2 Preuve 74

ar(z,y) = (01),[G(2),G(2)]fi(z, 2) - (02),[G(y), G(2)] fo(y, 2)
o e Gl PCW).GEN O

as(x,y) = Ty (@ 2) (W) [G(y), G(2)] faly, 2)

9(x)
_ wlG@).GEIoh . wlGy) GR)of,
a4(x,y) - g(x) O ( ) ) g(y) Ay (y7 )

Récapitulation de la preuve :

Nous avons que

Vildo(w, f) = J(w, f)] = Vn(Puhuwsa, — Phu )
= Gulhw,fG0 = hwsc) + V(Pohu o — Phufa)
+VnP(hw,sc,) = hwtc)
= Gulhw,tG, = hw,rc) + Golhw,rc) + Walhe,rc).

On vient d’établir que :
P
— SUPyew, ferF Gn(hw,f,cn - hw,f,G) — 0, en (5.17).

- Gy, ~ G dans [®(W x F), en (5.6).
- W, ~ W dans [*(W x F),  en (5.21).

Donc /nlJZ(w, f) — J*(w, f)] qui est la somme de ces trois processus est asymp-
totiquement tendu dans [*°(W x F). De plus, les marges finies de chaque proces-
sus convergent vers celles d'un processus gaussien, alors les marges de la somme
vont converger aussi vers celles d'un processus gaussien. D’apres le théoreme de
Prohorov (voir Annexe A.1) et compte tenu du lemme 5.2 ci-dessous, le processus
{Vn(J:(w, f) — J*(w, f)) : w € W, f € F} converge faiblement dans [*(W x F)

vers un processus gaussien tendu de covariance

B((wr, f1); (wa, f2)) = cov(G(huwy, 1.6, G My, f2,6)) + cov(W(wy, f1), W(wa, f2)).

La covariance croisée des deux processus est nulle comme on I’a montré dans la

preuve du résultat de normalité asymptotique au chapitre 4.
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Lemme 5.2. Deuz processus tendus X et Y a valeurs dans [*°(T') sont identiques

en loi si toutes leurs distributions marginales finies sont identiques en loi.



Chapitre 6

Inférence avec les indices de

pauvreté

6.1 Test de dominance de pauvreté

L’une des principales raisons pour mesurer la pauvreté est d’établir des compa-
raisons dans le temps et dans l’espace. Dans ce chapitre nous allons présenter un
test de comparaison entre deux distributions, lequel test sera basé sur la structure
de covariance établie au chapitre 5. Rappelons que pour z > 0 fixé, notre indice

général de pauvreté J peut s’exprimer comme une fonctionnelle de w et de f

J = / Cw(G), () fly, 2)AC(y) = T(w, f).

ou w et f appartiennent a des classes de fonctions appropriées. Notons que chaque
couple de fonctions (w, f) définit un indice de pauvreté spécifique, de sorte que la
covariance du processus J pour deux couples différents (wy, f1) et (we, f2) peut étre
assimilée a la covariance entre deux mesures de pauvreté différentes. Cette covariance

est asymptotiquement définie par
S((wn, )i (wa ) = [ 0i(60), G0 2wl G(0), G oty 216G 0)
- [ WG, G0
| 06w, 6 1ty a6 w) +0,
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ou

/O Z / (ar(e,9) + as(e,y) + as(z,y) + asz,y) X
(G(x A y) — G(a)Cly))dC()dCy),

avec

G (@), G fi(z, 2) - (w2),[G(y), G(2)] fa(y, 2)

[
wy[G(y), G(2)] 0f2

as(x,y) = Ty (@ 2) - (02 [Gy), G(2)] faly, 2)

_ of . wlGW).GE)oh,
CL4(37,Z/) - 81’( ) ) g(y) ay (y7 )

ay (:Ea y) - (’LU1

~— \_/
e~

as(xz,y) = (un

Il est donc clair que cette covariance dépend de la distribution G(y). Pour faire de
I'inférence avec, il convient de 'estimer de facon consistante. Cela peut étre réalisé
avec deux types d’approches différentes.

La premiere consiste a choisir la distribution G(y) parmi I'un des modeles pa-
ramétriques connus. Dans ce cas la covariance est une fonction des paramétres incon-
nus du modele choisi. En remplacant ces paramétres inconnus par leurs estimateurs
de maximum de vraisemblance ou d’autres estimateurs consistants, on obtient un
estimateur consistant de la covariance.

L’autre approche qui est celle que nous utilisons ici, correspond au cas non-
paramétrique. Si nous supposons que G(y) admet une densité de probabilité g(y)
par rapport a la mesure de Lebesgue, on peut exprimer la covariance ¥ en fonction
de g(y). En disposant d’un estimateur non-paramétrique consistant de cette densité

g, on peut obtenir facilement un estimateur consistant de la covariance .

Dans la littérature il existe beaucoup de méthodes non-paramétriques pour l’esti-
mation de la densité. Silverman (1986) a fait une revue détaillée de ces méthodes al-
lant des veilles méthodes d’histogramme aux plus sophistiquées telle que la méthode
du noyau. Cette derniere est probablement la mieux connue et la plus populaire car
un nombre tres important de travaux sont consacrés a l'estimation de la densité par

la méthode du noyau. L’estimateur & noyau de la densité de probabilité g(y) est
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généralement défini par

1 & y—Y;
:—§ K J
an(y) nh 2 ( ; >

ou K(-) est une fonction noyau et h est un paramétre de lissage qui dépend de
la taille n de I’échantillon Y7,---,Y,. Sous certaines conditions de régularité sur
K(-), Parzen (1962) a montré que g,(y) converge en probabilité vers ¢g(y), pour tout
réel y. La consistance forte de g,(y) pour g(y) a été également établie (voir par
exemple, Silverman (1978)). Ainsi, chaque terme de la covariance ¥, dépendant de
la seule inconnue g(y), peut étre estimé de maniére consistante. En appliquant le

lemme de Slutsky, on obtient finalement un estimateur consistant de la covariance X.

Les méthodes statistiques pour comparer deux distributions en termes de pau-
vreté, ou Partial poverty orderings en anglais, sont nombreuses et variées dans la
littérature. Ce sont des tests d’hypotheses de dominance ou de non-dominance sto-
chastique.

Considérons deux distributions de revenu F' et G. Soit P une classe d’indices
de pauvreté. On peut définir, a ’aide de ces indices, une relation de dominance ou
d’ordre partiel entre F' et G. On dit que F' domine G si pour tout seuil de pauvreté
z > 0 fixé,

J(F,z) < J(G,2), YJeTP,

ou J(F,z) et J(G,z) sont les mesures de pauvreté correspondant respectivement
aux distributions F' et G.

Beach et Richmond (1985) ont développé une technique pour tester cette hy-
pothese de dominance contre '’hypothese alternative de non-dominance. Cette tech-
nique fut généralisée par Bishop, Formby et Thistle (1992) qui proposérent un
test dit d’union-intersection. Howes (1994) propose une méthode inverse dite test
d’intersection-union pour I’hypothese nulle de dominance contre I’hypothese alterna-
tive de non-dominance. Tous ces deux types de test sont faciles a mettre en oeuvre;
mais comportent des lacunes car ils sont basés sur une grille finie de points choisis
arbitrairement. De plus, ils sont impuissants devant les tests qui utilisent la struc-
ture de covariance des indices de pauvreté considérés. Pour pallier ces défauts, on

peut utiliser le test généralisé de Wald qui a été décrit par Kodde et Palm (1986)
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et Wolak (1989). La procédure de test est la suivante. Supposons que 1'on veuille
comparer deux distributions F' et G en utilisant d indices de pauvreté donnés. On
note par Jr et Jg les vecteurs de R? dont les composantes sont respectivement les d
indices de pauvreté théoriques correspondant a la distribution F' et a la distribution
G. La méthode généralisée de Wald (cf. Zheng (2001)) nous permet de tester les
types d’hypotheses

Hy:Jr=Jg contre H:Jr > Jg

et
Hy: Jp > Jg contre Hy: Jp ¥ Jg

ou Jr > Jg signifie que la population correspondant a la distribution F' est moins
pauvre que celle correspondant a la distribution G, i.e. F' domine G.

Supposons que deux échantillons aléatoires de tailles respectives np et ng sont
tirés indépendamment des deux populations étudiées. Les estimateurs des vecteurs
d’indices Jr et Jg sont notés jF et jG; leurs matrices de covariances respectives

sont estimées par )y F et f]g. Posons
AJ = Jp— Ja,

alors la variance de AJ peut étre estimée par

Pour exprimer les statistiques de test de Wald, il faut résoudre le probleme de

minimisation suivant :

min(AJ — v) S HAT —v). (6.1)

v>0
Si v est une solution de ce probleme de minimisation, alors les statistiques de Wald

sont :
¢ = (AJ)YSHAT) — (AT —0)S7HAT — ),
pour le test de 1'égalité (Hy : Jp = Jg) contre la dominance (H; : Jp = Jg) et,
= (AJ = 0)S7H AT - 9),
pour le test de la dominance (Hy : Jp > Jg) contre la non-dominance (Hi : Jp 7
Ja).
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Il a été prouvé que, sous 'hypothese nulle Hy, ces statistiques sont asympto-
tiquement distribuées suivant une somme pondérée de variables du x? & différents
degrés de liberté. A ce propos, nous référons a Kodde et Palm (1986), Wolak(1989),
Gouriéroux et al. (1982), Kudo6 (1963) et Perlman (1969).

Pour conclure le test, il faudra comparer les valeurs de ¢; ou ¢y avec les bornes
inférieure ¢; et supérieure ¢, de la valeur critique du test considéré pour un seuil de
signification donné 0 < a < 1. Une table de ces valeurs critiques est disponible dans
Kodde et Palm (1986). ¢; est obtenue en choisissant un niveau de signification « et

en posant les degrés de liberté dl =1, i.e.

1

o= QP(XQO) > q).

Pour obtenir g,, on pose les degrés de liberté dl = d, i.e.
Lo oo Lo o
o= §P(X (d—1)>qu) + §P(X (d) > qu)-

La regle de décision du test s’énonce alors comme suit :

- Si ¢1(eg) < qi, alors on accepte H

- Si ¢1(e) > qu, alors on rejette Hy

- Si ¢ < c1(e2) < qu, on ne peut conclure. Des simulations de Monte Carlo sont alors
nécessaires pour compléter l'inférence (voir par exemple page 215, Wolak (1989)
oubien Fisher et al. (1998)).

6.2 Illustration empirique

Maintenant, nous allons appliquer ce test pour comparer la situation de pauvreté
au Sénégal entre deux périodes : 1994 et 2001. Le seuil de pauvreté était supposé le
méme, fixé par les experts de la Banque mondiale & 1 $ US/jour /personne. Pour ces
deux périodes le Sénégal dispose de données de dépenses annuelles récoltées aucours
d’enquétes menées aupres des ménages par I’Agence Nationale de la Statistique et
de la Démographie (ANSD) du Sénégal. Deux échantillons aléatoires simples ont été
recueillis indépendamment durant ces deux périodes. Pour 1994 on a observé 3278
ménages, alors que pour la période 2001, 6594 ménages ont été interrogés.

Considérons maintenant les indices de pauvreté de Kakwani (1980) qui sont de
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la forme

2 k
T (k) = (k + 1)/O (1 - gg) (Z - y) dG(y), k> 0. (6.2)
z > 0, désigne le seuil de pauvreté et G(y) est la distribution du revenu dans la
population étudiée. Cette classe d’indices de pauvreté est certainement la forme
la plus évoluée des indices, 'outil le plus récent et le plus complet. En effet, on y
retrouve la mesure de Foster-Greer-Thorbecke (1984) pour k& = 0 et la célebre mesure
de Sen (1976) pour k£ = 1. Pour k£ > 2, la mesure de Kakwani possede toutes les
propriétés désirables pour un indice de pauvreté. Elle a aussi I’avantage de donner
un poids plus grand aux plus pauvres. Cela implique qu’'une baisse de cet indice
indique, en général, une amélioration significative du bien-étre des plus pauvres.
Pour des raisons d’espace, nous allons travailler avec d = 5 indices de pauvreté de
Kakwani correspondant respectivement aux valeurs de £ = 0, 1,2, 3,4. Notons Jy, le
vecteur constitué de ces 5 indices de pauvreté évalués en 1994 et Jy; celui constitué
de ces 5 indices évalués pour la période 2001. Utilisons la procédure généralisée de
Wald pour tester I’hypothese nulle Hy : Jy; = Jos qui veut dire que le Sénégal est
moins pauvre en 2001 qu’en 1994 contre 'hypothese alternative Hy : Jo1 74 Joa.
C’est a dire,
Hy: Joyg = Joa contre Hi:Jn % Jog.
La statistique de test est alors
e = (AT —0)YS7HAT — o).

La valeur obtenue pour cette statistique, apres résolution du probleme de mini-
misation par la fonction ConstrOptim du logiciel R, est ¢ = —25.78, avec v =
(0.02,0.042,0.04,0.023,2.4¢ — 11). Pour un seuil de signification de o = 1%, la
borne inférieure ¢, de la valeur critique du test est telle que 0.01 = 1P(x*(1) > ¢).
D’apres la table de Kodde et Palm (1986), on a ¢; = 5.412, valeur positive qui est
largement supérieure a ¢y = —25.78. Donc on accepte 'hypothese Hy selon laquelle
le Sénégal est moins pauvre en 2001 qu’en 1994 au seuil de signification de 1%. Si

on effectue le test d’hypotheses
HQ . J()l = J94 contre H1 . J()l i J94.
La statistique utilisée est

A

o = (AJYSHAT) — (AT —3)S7Y (AT —d)
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La valeur obtenue ¢, apres résolution du probleme de minimisation, est ¢; = 143, 78.

La borne supérieure ¢, de la valeur critique, au seuil de 1%, vérifie

001 = SPOCM) > ) + SPOC(L) > g2,

D’apres la table de Kodde et Palm, on a ¢, = 12.483, valeur qui est largement
inférieure a ¢; = 143, 78. Donc ici, on rejette Hy; ce qui confirme la conclusion du

premier test.

Ce test de comparaison multiple peut aussi étre réalisé avec divers types d’indices
de pauvreté. Tout dépend des fonctions w et f qui définissent la forme de I'indice
de pauvreté. Ainsi, la structure de covariance décrite au chapitre 5 permet de tester
la dominance entre deux distributions avec n’importe quelle classe de mesures de
pauvreté. Cela donne un critere de dominance robuste et uniforme, par rapport aux
indices de pauvreté, pour classer des distributions de revenu, pourvu que le seuil de

pauvreté z soit fixe.



Annexes

A.1 Convergence faible et mesures extérieures

Soit (£2,.A,P) un espace de probabilité. Pour toute application U : X — R
mesurable, on pose UT = max(U,0) et U~ = min(U, 0).L’application U est quasi-
intégrable si au moins EUT ou EU™ est finie; on écrit alors EU = EUT — EU .
Soit 7 : © — R une application quelconque. L’intégrale extérieure de T par rapport

a [P est définie par
E*T = inf{EU : U > T, U mesurable et quasi-intégrable}.
De méme, pour toute partie B C {2 on définit la mesure extérieure de B par
P*(B) =inf{P(A): AD B, Ac A} =E*(1p),

ol 15 est la fonction indicatrice de ’ensemble B. Notons que si T est une application
mesurable et quasi-intégrable, alors E*I" = ET. De méme, pour toute partie B
mesurable (i.e. B € A), on a P*(B) = P(B).

De fagon similaire, on définit également les notions d’intégrale intérieure et de
mesure intérieure. Si T :  — R est une application quelconque, I'intégrale intérieure

de T par rapport a P, notée E,T" est définie a partir de la relation suivante :
E. T = —E*(-T),

ie.
E.T = sup{EU : U < T, U mesurable et quasi-intégrable}.

Aussi la mesure intérieure de B C 2 est aussi définie par

P.(B) =sup{P(A): AC B,A € A} = E.(1p).
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Ces notions d’intégrale et de mesure extérieures ou la condition de mesurabi-
lité n’est pas nécessaire sont a la base de la théorie moderne de la convergence
faible (appelée aussi convergence vague). En effet, la théorie classique traitée par
Billingsley (1968) s’appuie sur la mesurabilité des processus considérés ; ce qui limite
considérablement les applications statistiques. Cette nouvelle théorie, en revanche,
donne lieu a de nombreuses applications aussi bien en statistique paramétrique que
non-paramétrique. Par exemple, elle s’est révélée particulierement intéressante pour
I’étude de la convergence faible des processus empiriques qui sont des processus non
mesurables, car ayant souvent leurs trajectoires dans des espaces de Banach non
séparables.

Dans ce qui suit, nous rappelons quelques points essentiels de cette nouvelle
théorie de la convergence faible sans mesurabilité.

Soit {X,,n > 1} une suite de processus non nécessairement mesurables définis
sur des espaces de probabilité (£2,, A,,P,) a valeurs dans un méme espace métrique
(M, Toor, d) équipé de ses boréliens, d étant une métrique. Soit X un processus

mesurable a valeurs dans (M, Ty, d).

Définition 6.1. X, converge faiblement vers X si

lim E*f(X,) =Ef(X), Vf: M — R continue bornée.

n—oo

On dénote ce type de convergence par X,, ~ X.

Beaucoup de résultats établis avec la théorie classique de Billingsley tels que :
le théoreme de portmanteau, le théoreme de 'application continue, le théoreme de
Prohorov, ainsi que les criteres de tension restent encore valables pour la convergence
faible sans mesurabilité. Pour ces résultats, nous renvoyons le lecteur a van der
Vaart et Wellner (1996). Toutefois, signalons que le théoreme de Prohorov nécessite
deux nouveaux concepts dans la nouvelle théorie : la tension et la mesurabilité

asymptotiques.

Définition 6.2. - La suite X,, est dite asymptotiquement mesurable si

lim E*f(X,) —E.f(X,) =0, Vf: M — R continue bornée.

n—oo

- La suite X,, est dite asymptotiquement tendue si pour tout € > 0, il existe un
compact K C M tel que

liminfP, (X, € K°) >1—¢, pour touts > 0,

n—oo
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ou K ={y e M :d(y,K) < &} est une d-extension de K.

Remarque. Cette notion de tension asymptotique est moins forte que celle
utilisée dans la théorie classique. En effet, P, (X, € K°) > 1 — ¢ n’est nécessaire que
quand on va vers la limite, c’est a dire lorsque n — oo ; contrairement a la tension
uniforme, utilisée dans la théorie classique de Billingsley (1968) qui exige que cette

probabilité soit supérieure a > 1 — ¢ pour tout n, i.e.
Ve > 0, 3K compact, P(X, € K) >1—¢, Vn2>1.

Cependant, si les X, sont mesurables et définis dans un espace polonais, les notions
de tension asymptotique et de tension uniforme sont équivalentes car toute mesure
de probabilité dans un espace polonais est tendue (cf. Lemma 1.3.2; van der Vaart
et Wellner (1996)).

Lemme 6.1. i) Si X, ~ X, alors X,, est asymptotiquement mesurable.

ii) Si Xp ~ X, alors X,, est asymptotiquement tendue ssi X est tendue.
La version suivante du théoreme de Prohorov donne la réciproque du lemme 6.1.

Théoreme 6.1. 5@ X, est une suite de processus asymptotiquement tendue et
asymptotiquement mesurable, alors il admet une sous-suite X, qui converge fai-

blement vers un processus X Borel mesurable et tendu.

Sous des conditions de tension et de mesurabilité asymptotiques, le théoreme de
Prohorov montre ’existence d’une limite faible, mesurable et tendue pour une suite
de processus non mesurables. L’unicité de la limite découle du fait qu'une mesure de
Borel L est déterminée de maniére unique par Uapplication f — [ fdL, f € Cp(M).
Pour plus de détails, voir page 25, van der Vaart et Wellner (1996). Le lemme suivant
montre aussi I'unicité de la limite X, si X € [°°(T"), 'ensemble des fonctions réelles

bornées sur 1.

Lemme 6.2. Deuz processus tendus X et Y a valeurs dans [°°(T') sont identiques

en loi si toutes leurs distributions marginales finies sont identiques en loi.
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A.2 Classes de Donsker

Dans cette section, nous rappelons quelques propriétés des classes de Donsker.
Soit X, Xi,---, X, une suite indépendante de variables aléatoires définies dans un
espace probabilisé (2, T, P) a valeurs dans un espace mesurable (X', .A). On définit
la mesure empirique P, associée a cette suite comme une combinaison linéaire de

mesures de Dirac aux points X, i.e.

1 n

Etant donné une classe F de fonctions mesurables f : X — R, la mesure empirique

P,, induit une application de F dans R définie par

f—=P.f.

Pour toute fonction mesurable f et toute mesure signée @, on note Qf = [ fd@. Soit
P =Po X !laloi de probabilité commune des X;. On appelle processus empirique

indexé par F, I'application G,, : F — R définie par
1 n
J = Guf = V(B = P)f = 2= 3 (J(X;) = Pf).
j=1

Cette définition généralise la notion du processus empirique classique indexé par
t € R?, défini par

an(t) = Vn(Ga(t) — G(1)),

ou G,(t) = %Z;;l lix,<¢y est la distribution empirique basée sur Xy, ---, X,,. En

effet, on a
1 n
an(t) = Vn(Gu(t) — G(t)) = Jn Z(l{xjgt} —El{x; <)
ni
ce qui équivaut a
1 n
an(t) = Tn Z(ll—ooyt] (X;) = Elae (X)) = G fi,
7j=1

out fi(x) = 1j—oq(z) pour tout ¢ € R?
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Du fait de ses nombreuses applications, la théorie du processus empirique consti-
tue un outil fondamental en statistique asymptotique. Elle est a la base de nom-
breuses lois limites car beaucoup de statistiques peuvent s’exprimer comme des fonc-
tionnelles de la distribution empirique. Les propriétés asymptotiques du processus
empirique classique sont principalement étudiées dans I'espace D]0, 1] et celles du
processus des sommes partielles de variables aléatoires i.i.d dans C[0, 1]. La théorie
de la convergence faible sans mesurabilité est d’une grande importance dans la me-
sure ou elle permet de considérer des espaces plus adaptés au processus empirique,
qui a naturellement ses trajectoires dans un espace de Banach non-séparable.

L’espace le plus convoité est [*°(T), 'espace des fonctions réelles bornées et
définies sur T'. Si T' = F, ou F est une classe de fonctions mesurables f : X — R,
des versions fonctionnelles de la loi des grands nombres et du théoreme centrale
limite peuvent étre établies sous certaines conditions. Ainsi, une classe de fonctions
F dans laquelle le théoreme central limite a lieu uniformément sera appelée classe
de Donsker.

Soit {>°(F) 'espace des fonctions bornées H : F — R, muni de la norme
|H || 7 = sup [H(f)|.
feF

On suppose que Pf = Ef(X) < oo pour f € F et qu’il existe une fonction enveloppe
F telle que sup;cz | f(z)] < F(x) < 0o, Vo € X. Alors,

sup |f(x) — Pf| < 2F(z) < o0, VzeX.

feF
Ainsi, le processus empirique {G,, f : f € F} sera a trajectoires dans [*(F).
Définition 6.3. Une classe F de fonctions mesurables est dite P-Donsker s’il existe
un processus tendu G : F — R tel que

G, ~ G dans [*°(F).
Une classe F de fonctions mesurables est dite P-Glivenko-Cantelli si
|P, — Pll =0 P*—np.s.

Remarque. Par continuité de la norme, on a G,, ~ G = ||G,,|| ~ ||G]|#. Cela

~12||G,,|| 7 converge en loi vers 0, donc converge en probabilité vers

implique que n
0 et finalement,

n Y?|G,|lF = |Pn— Plls =0 P*—p.s.
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Ainsi, toute classe de Donsker est une classe de Glivenko-Cantelli. Mais la réciproque
est fausse.

Les propriétés de classe de Donsker et de Glivenko-Cantelli dépendent essentiel-
lement de la complexité (taille) des classes de fonctions considérées. En effet, une
classe finie de fonctions de carré intégrable est toujours Donsker, alors que ’espace
L2 constitué de 'ensemble des fonctions de carré intégrable n’est presque jamais une
classe de Donsker. Un moyen simple pour controler la complexité dune classe de
fonctions F est la notion d’entropie qui se définit comme le logarithme du nombre
de boules (ou crochets) de rayon (ou longueur) e, nécessaires pour recouvrir la classe
F.

Supposons que (F,d) est espace muni d'une métrique d.

Définition 6.4. Le nombre de recouvrement, noté N (e, F,d) est le nombre minimal
de boules de rayon €, par rapport a d, nécessaires pour recouvrir JF.

On appelle alors entropie métrique, le logarithme du nombre de recouvrement.

Soit | et u deux fonctions mesurables. On définit un crochet [I,u] comme en-
semble des fonctions f telles que | < f < u. Un e-crochet est un crochet [I,u] tel
que d(l,u) < e.

Définition 6.5. Le nombre de crochet, noté Ny(e,F,d) est le nombre minimal de
e-crochets nécessaires pour recouvrir F.

On appelle alors entropie crochet, le logarithme du nombre de crochet.

Dans les théoremes de caractérisation des classes de Donsker ou de Glivenko-

Cantelli, on utilise souvent les normes L,(Q),r > 1 définies par

1/r
o = ( / \f\’"dQ> |

ol () est une mesure de probabilité quelconque.
On définit 'entropie uniforme, par rapport a la norme L,.(Q)) d'une classe de fonc-

tions F possédant une enveloppe notée F' par le nombre réel noté

N(Ev‘/—:) = SgplOgN(ffHFHr,Q,./—", LT(Q))v

ol le suprémum est pris sur toutes les mesures de probabilité () telles que 0 <
QF? < oo. Notons que pour les résultats relatifs & I'entropie crochet, on n’a besoin
d’aucune hypothese de mesurabilité. Tandis que les résultats relatifs a l’entropie

métrique (uniforme) nécessitent la notion de P-mesurabilité suivante :
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Définition 6.6. Une classe F de fonctions mesurables f définies sur un espace de

probabilité (X, A, P) est dite P-mesurable si lapplication
(X1, Xo) = 1D ef (X7
i=1

est mesurable sur la complétion de lespace produit (X", A™, P") pour tout n > 1 et

pour tout vecteur (eq,--- ,e,) € {—1,1}"

Proposition 6.1. Si F est une classe de fonctions mesurables telle que

/ \/log Ny(z, F, Ly(P))de < 00, (EC)
0
alors F est P-Donsker.

Proposition 6.2. Soit F une classe de fonctions mesurables possédant une enve-
loppe F' telle que

| s floe NPl F L@ <. (EV)
0
et pour tout 0 > 0, la classe de fonctions

Fo={f-g:f,9g€F.|f = gllag < oo}
est P-mesurable. Si de plus, P*F? < oo alors F est P-Donsker.

Remarques.
- Dans la condition d’entropie uniforme (EU), le rayon des boules de recouvrement
dépend de la grosseur de l'enveloppe F' dans Ly(Q) ; donc plus F' y est grosse, plus il
est facile de recouvrir F. Pour € > 1, une seule boule suffit pour recouvrir F, donc
log N(e||F'||2.q: F, L2(Q)) = 0. D’ou la condition (EU) peut étre aussi reformulée de

la maniére suivante :

1
/ sup \/log N(el| Flaig. . L(Q))de < o0,
0 Q

- La condition d’entropie crochet (EC') n’est basée que sur la seule loi de probabilité
P. Contrairement a la condition (EU) qui est basée sur le suprémum d’un grand

nombre d’entropies métriques. Cela est di au fait que le nombre de crochets est bien
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plus grande que le nombre de recouvrement. Par conséquent, les deux conditions ne
sont pas comparables.

Dans les applications la notion de P-mesurabilité introduite ci-dessus n’est pas
étudiée directement. On utilise un concept beaucoup plus fort de classe convenable-

ment mesurable ou pointwise measurable class en anglais.

Définition 6.7. Une classe F de fonctions mesurables est dite convenblement me-
surable s’il existe une sous-classe dénombrable G C F telle que pour tout f € F, il
existe une suite {gm, m > 1} C G, avec g, (z) = f(x), Vo € X.

Conséquence. Si F est convenablement mesurable, alors F est P-mesurable
pour toute loi de probabilité P. En effet, le supremum sur la classe F peut étre
ramené sur une sous-classe dénombrable, d’ou la mesurabilité.

Exemples de classes de fonctions P-mesurables.

- Les fonctions indicatrices d’intervalles ou de boules, les fonctions séparables pour
la norme suprémum sont des classes convenablement mesurables donc P-mesurables
pour toute probabilité P.

- Si F est un espace topologique de Suslin admissible, alors F est P-mesurable pour
toute probabilité P.

Tandis que ’entropie crochet est vérifiée par des classes de fonctions assez régulieres
telles que les fonctions monotones bornées, les fonctions convexes et les indicatrices
d’ensembles fermés convexes, un outil remarquable pour controler 'entropie uni-
forme est la notion de VC-classe ou classe de Vapnik-Cervonenkis.

Soit £ = {1, -+ ,x,} un ensemble quelconque, C une collection de parties de
X. On définit la trace de C sur E par

TEC)={ENC:Cec).

On dit que I'ensemble F est complétement tracé par C si toute partie de E est dans

la trace de C sur F, i.e.

VACE, AcT”(Q).

On appelle indice VC' de la collection d’ensembles C le plus petit entier n tel que

aucun ensemble de cardinal n n’est complétement tracé par C. 11 est noté V(C).
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Définition 6.8. Une collection d’ensembles C est une VC-classe d’ensemble (ou une

classe de Vapnik-C ervonenkis) si son indice V(C) < oc.

Cette notion de VC-classe peut également s’étendre aux classes de fonctions. Soit
une fonction f : X — R. Le sous-graphe de f est défini par

Sr={(z,t) e ¥ xR:t < f(x)}.

Définition 6.9. Soit F = {f : X — R} une classe de fonctions et C = {S; : f € F}
l’ensemble des sous-graphes des fonctions de F. On dit que F est une VC-classe de
fonctions si C est une VC-classe d’ensembles dans F x R. On a lindice VC de F,
noté V(F) =V(C).

Le théoreme suivant montre que les VC-classes de fonctions sont des classes a
recouvrement polynomial dans la mesure ou leur nombre de recouvrement est borné

supérieurement par un polynome en (1/e).

Théoréme 6.2. Soit F une VC-classe de fonctions d’indice V(F) = v et F' une
enveloppe mesurable de F. pour toute mesure de probabilité () telle que 0 < ||F||,.o <
oo, r>1, ona

1 r(v—1)
Nl Fllg F, Lo(@))de < Kv(16e)" <_) |

ou K est une constante positive et 0 < e < 1.

Preuve. (voir page 141, van der Vaart et Wellner (1996)).
Ce théoreme permet de dire que toute VC-classe de fonctions est P-Donsker pour
toute probabilité P si elle est P-mesurable et admet une enveloppe de carré intégrable.
La propriété de classe de Donsker est stable pour certaines opérations. Cela évite
de calculer ’entropie a chaque fois qu’on doit montrer qu’une classe de fonctions F
est Donsker.

Proposition 6.3. Soit F et G deuz classes de fonctions P-Donsker. Alors les classes
sutvantes sont aussi P-Donsker :

i) FUG

W) F+G={f+g:feF,geg}

iii) FVG={fVvg:feF,geGtee FNG={fANg:feF,geg}

w) F-G=A{f-g:f€F,geG} siF etG sont uniformément bornées.
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v)poF ={pof:feF} si¢pestune fonction réelle lipshitzienne et qu’il existe
au moins f € F telle que ||¢p o flla,p < 00
vi) F-g={f-g:f€F} sig est une fonction mesurable bornée et || P||r.

Inégalité exponentiellle et borne de moment

Soit Xy,---, X, une suite i.i.d de variables aléatoires et £1,--- ,€, une suite
indépendante de variables aléatoires de Rademacher indépendantes des X;. L'inégalité

suivante est due a Talagrand (1994).

Proposition 6.4. Soit F une classe convenablement mesurable de fonctions f :
X — R telle que pour tout g € G, || flleo < M. Alors pour tout t >0, on a

Aot? Aot
P{lgggnnﬂamllf <A (EII > oaf(X ||f+t>} <2 {exp(— o) texp(=7)

2
_F
ot Ay > 0 et Ay > 0 sont des constantes universelles et 0% = sup e Var(f(X)).

La borne de moment suivante est aussi crucial dans nos preuves. Elle est due a
Einmahl et Mason (2005).

Proposition 6.5. Soit F une classe convenablement mesurable de fonctions f :
X — R bornées, admettant une fonction enveloppe F' telle qu’il existe des constantes
C,v>1et0<o<f satisfaisant auzr conditions suivantes :

i) E[F2(X)] < 47,

ii) N(e, F) < Ce™”, 0<e<l1

iit) 0 1= super E(f*(X)) < 02,

) sup ez || flloo < ﬁ\/nJQ/log(Clﬁ/U), ou Cy =C" Ve.

Alors

E| Zsz r < A /oo log(B v (1/0)),
ou Az > 0 est une constante universelle.
Proposition 6.6. Soit F et G deux classes de fonctions réelles mesurables sur X

telles que
|f@)| < F(z), feF, wzedX,
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ou F' est une fonction enveloppe finie mesurable sur X et

l9lle <M, g€G,

ou M > 0 est une constante finie. St de plus, pour toute mesure de probabilité ()
telle que 0 < Q(F?) < oo, on a

N(e||F |20, F, L2(Q)) < Cre™, 0<e<l1

et
N(gM’ga LQ(Q)) S 02€_V27 0<e<l

ot vy, v, Ch,Cy sont des constantes positives appropriées. Alors, pour toute mesure
de probabilité Q telle que 0 < Q(F?) < oo, on a

N(EM||Fll2,0,FG, La(Q)) < Cse™ 72, 0<e<1

avec 0 < C3 < 00.

A.4 Delta-méthode

Soient D et E deux espaces topologiques métrisables. Une application ¢ : Dy C
D — E est dite Hadamard-différentiable en 6 € D, s’il existe une application linéaire
continue ¢y : D — FE telle que

¢(0 + tahn) — 6(0)
(2

— ¢y(h),

pour toutes suites ¢, — 0 et h, — h telles que 0 + t,h,, € Dy, pour tout n.
Soit Dy C D, on dit que ¢ est Hadamard-différentiable en 6 tangentiellement a D,

si la suite h,, converge vers h € Dj.

Théoreme 6.3. Soit ¢ : Dy C D — E une application Hadamard-différentiable en 0
tangentiellement a Dy ; X,, : Q@ — Dy une suite d’applications telles que r,(X,,—6) ~»
X, ou X est séparable et prend ses valeurs dans Dy. Alors ry, (¢(X,)—¢(0)) ~ ¢p(X).
Si de plus, @) est définie et continue sur D, alors la suite m,(p(X,) — ¢(0)) —

Op(rn( X, — 0)) converge en probabilité (extérieure) vers 0.



Conclusion et Perspectives

L’analyse de la pauvreté est une étape importante pour les pouvoirs publics
nationaux et les organismes internationaux dans l'élaboration de leurs politiques
de réduction de la pauvreté. Dans ce travail nous avons proposé un indice général
de pauvreté qui inclut toutes les mesures de pauvreté basées sur le revenu et dis-
ponibles jusqu’ici dans la littérature. Nous avons d’abord établi la consistance, uni-
forme sur des classes de fonctions appropriées, d'un estimateur a noyau de cet indice
général ; puis, un théoreme central limite fonctionnel uniforme pour un estimateur de
type "plug-in” de ce méme indice général. Des études concluantes de simulations de
données ont été réalisées pour illustrer ces résultats. Des applications ont également
été fournies notamment, 1'utilisation de la structure de covariance établie dans le
théoreme central limite fonctionnel, pour tester la dominance en temes de pauvreté
entre deux distributions de revenu. Cette procédure d’inférence pour comparer deux
distributions est applicable a toutes les mesures de pauvreté, décomposables comme
non-décomposables (du type de Sen). Cependant, elle requiert 'utilisation d’un seuil
de pauvreté fixe pour les distributions a comparer ; ce qui est un point de faiblesse
pour ces résultats car le seuil de pauvreté peut dépendre de la distribution, en en
étant une fonctionnelle par exemple.

Si G représente la distribution étudiée, alors le seuil de pauvreté pourrait s’écrire
z = z(G). Un estimateur de z est z, = z2(G,), ou G, est la distribution empirique
associée a (G. Donc une perspective intéressante est I’extension de ces résultats en
faisant estimer z par une fonctionnelle de la distribution et en reconsidérant les

estimateurs de l'indice général de pauvreté introduit dans cette these.
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