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Le professeur Gane Samb Lô a été mon mâıtre durant tout mon cursis universi-

taire. Il a su m’inculquer par son enthousiasme, sa rigueur et sa disponiblité, le goût
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thèse est l’aboutissement de ces travaux, dont il est le principal précurseur. Qu’il
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contribué à l’aboutissement de ce travail ou ont manifesté leur sympathie ; qu’ils
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Notations

Nombres

⌊x⌋ : partie entière d’un nombre réel x.

N(ε,F , d) : nombre de ε-recouvrement d’une classe de fonctions F pour la métrique

d.

N[](ε,F , d) : nombre de ε-crochet d’une classe de fonctions F pour la métrique d.

N(ε,F) = supQN(ε∥F∥2,Q,F , dQ) : nombre d’entropie uniforme, où F est une en-

veloppe de F et dQ est la métrique de L2(Q).

card(A) : le cardinal d’un ensemble A.

Convergences

 : convergence en distribution.
P→ : convergence en probabilité.
p.s.→ : convergence presque sûre.

Normes

∥x∥ =
∑d

i=1 |xi| : norme euclidienne dans Rd.

∥f∥∞ = supx∈Rd |f(x)| : norme suprémum d’une fonction f : Rd → R, d ≥ 1.

∥f∥I = supx∈I |f(x)| : norme suprémum d’une fonction f : I → R.
∥Φ(f)∥F = supx∈Rd |Φ(f)| : norme suprémum d’une fonctionnelle Φ : F → R.
∥f∥p,Q = (

∫
|f |pdQ)1/p : norme d’une fonction f dans l’espace Lp(Q).

Espaces

C[0, 1] : espace des fonctions réelles continues sur [0, 1].

D[0, 1] : espace des fonctions réelles continues à droites, avec limite à gauche sur et

définies sur [0, 1].

Cb(R) : espace des fonctions réelles continues et bornées sur R.
l∞(T ) : espace des fonctions réelles bornées sur T .

Mb(R, [0, 1]) : espace des fonctions monotones sur R à valeurs dans [0, 1].



Résumé

Cette thèse introduit tout d’abord une formule générale qui englobe toutes les

mesures de pauvreté uni-dimensionnelles basées sur le revenu. Nous proposons en-

suite deux types d’estimateurs non-paramétriques (à noyau et de type ”plug-in”)

pour cet indice général de pauvreté, tout en étudiant leurs propriétés asympto-

tiques. Notre méthodologie , basée essentiellement sur la théorie moderne du pro-

cessus empirique indexé des fonctions, offre un cadre global et rigoureux qui permet

d’étudier, avec la même approche, le comportement asymptotique de tous les indices

de pauvreté encore disponibles jusqu’ici dans la littérature. Nous obtenons la consis-

tance forte uniforme d’une très large classe de mesures de pauvreté incluant presque

tous les modèles d’indices proposés par les économistes, décomposables comme non-

décomposables. Ce résultat est utilisé pour construire des intervalles de confiance

simultanés, de niveau asymptotiquement optimal (100%). Un théorème central li-

mite uniforme fonctionnel est également établi pour cette large classe d’indicateurs

de pauvreté. Comme conséquence, des procédures d’inférence robustes , basées sur le

noyau de covariance et utilisant un test de Wald, sont développées afin de comparer

de façon non-ambiguë deux populations différentes en termes de pauvreté.

English summary

This dissertation first presents a general representation of poverty measures that

concerns all uni-dimensional poverty measures based on the income distribution. We

then, deals with two types of estimators of this general poverty index : a kernel one

and a plug-in one, and analyze their asymptotic properties. Our methodology, essen-

tially based on the modern theory of empirical processes indexed by functions, offers

a general and rigorous framework, which allows to study in the same approach, the
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asymptotic behaviour of all the income-based poverty measures that are still avai-

lable yet in the literature. We obtain the strong and uniform consistency of a very

broad class of poverty measures including almost all the poverty indices proposed

by economists, both decomposable and non-decomposable. This result applies for

building simultaneous and accurate asymptotic confidence bands for the theoritical

poverty index . A uniform functional central limit theorem is also established for

this wide class of poverty measures. As a consequence, robust statistical inference

procedures, based upon the covariance structure, are developped using a Wald test,

in order to compare in a non-ambiguous manner two different populations in terms

of poverty.

Keywords : General poverty index, Kernel estimates, Plug-in estimates, Confi-

dence bands, Empirical process indexed by classes of functions, Weak convergence.



Introduction Générale

Les travaux de l’économiste anglais Amartya Sen en 1976 ont apporté, durant

les trois dernières décennies, un souffle nouveau dans la manière d’appréhender la

pauvreté. En effet, un progrés considérable a été noté dans la perception et l’ana-

lyse de celle-ci. De nombreuses approches, complémentaires les unes des autres, ont

été proposées par les économistes et beaucoup de mesures (ou indices) de pauvreté

ont été introduites dans la littérature, en suivant l’approche axiomatique de Sen

(1976). Selon ce dernier, une mesure de pauvreté acceptable doit tenir compte de

trois aspects essentiels de la pauvreté : la proportion d’individus vivant en dessous

du seuil de pauvreté, l’écart entre le revenu moyen des individus pauvres et le seuil

de pauvreté et enfin, l’inégalité de revenu entre les individus pauvres. La prise en

compte de ces trois aspects a permis à Sen (1967) d’établir un certain nombre de

principes normatifs (ou axiomes) qu’un bon indice de pauvreté doit satisfaire. Pour

une revue détaillée de ces axiomes de pauvreté, nous renvoyons le lecteur à Foster

(1984), Chakravarty (1990) et spécialement à Zheng (1997) qui a fait une synthèse

exhaustive de l’ensemble des propriétés souhaitables pour une mesure de pauvreté,

ainsi que leur interaction.

La plupart des études empiriques sur la pauvreté utilisent des mesures discrètes se

limitant seulement à la distribution observée. Dans une telle approche, l’évaluation

de la mesure de pauvreté devient considérablement problématique lorsque la taille de

la population à étudier devient importante. De plus, les mesures de pauvreté estimées

avec cette approche sont exactes et non aléatoires. Ce qui ne permet pas de faire

de l’inférence statistique en tenant compte des fluctuations d’échantillonnage. Dans

cette thèse, nous nous intéressons à un indice de pauvreté général considéré, sous

sa forme continue, comme l’espérance mathématique des formes discrètes calculées

à partir d’un échantillon aléatoire de n revenus tirés dans une population, dont la
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distribution est définie par une fonction de répartition continue G(y). Ainsi, l’indice

de pauvreté que nous voulons introduire est défini sous la forme générale suivante :

J =

∫ z

0

w(G(y), G(z))f(y, z)dG(y), (1)

où z est un réel positif appelé seuil de pauvreté ou encore (ligne de pauvreté), c’est

à dire le niveau de revenu en dessous duquel la pauvreté est effective. Si Y est une

variable aléatoire représentant le revenu d’un individu pris au hasard dans la po-

pulation considérée, alors G(y) = P(Y ≤ y),∀y ∈ R. La fonction f(y, z) mesure la

pauvreté d’un individu au revenu y, relativement au seuil de pauvreté z. Autrement

dit, elle exprime la contribution d’un individu ayant un revenu y, à la pauvreté glo-

bale de la population. On l’appelle fonction de déprivation individuelle. Enfin, w(·, ·)
est une fonction de pondération qui affecte une importance d’autant plus grande que

l’individu considéré est plus pauvre. Par soucis de cohérence avec l’approche axioma-

tique de Sen, les fonctions w(·, ·) et f(·, ·) seront supposées décroisantes par rapport
à la variable revenu y.

L’estimation asymptotique de l’indice J défini par l’équation (1) a fait l’objet de

nombreux travaux utilisant des approches différentes et particulières. Par exemple,

Bishop et al (1997) ont établi la consistance et la normalité asymptotique de la

mesure empirique de Sen (1976) et de ses composantes - le taux de pauvreté, le

déficit moyen de pauvreté et l’indice de Gini pour les pauvres - en se basant sur

la théorie des U-statistiques. Ils ont montré que la mesure empirique de Sen est un

estimateur consistant pour l’indice théorique

S = 2

∫ z

0

(
1− G(y)

G(z)

)(
z − y

z

)
dG(y).

On peut remarquer que cet indice S peut se mettre sous la forme (1) en posant

w[G(y), G(z)] = 2

(
1− G(y)

G(z)

)
, et f(y, z) =

(
z − y

z

)
.

Dans la même veine, Zheng (2001) obtient, sous des conditions très douces sur

la fonction de répartition G(y) de la distribution du revenu, la normalité asympto-

tique d’une classe d’estimateurs d’indices de pauvreté décomposables (i.e. additive-

ment séparables). En travaillant avec des seuils de pauvreté relatifs, il a également
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montré que la structure de covariance fini-dimensionnelle de ces indices de pauvreté

décomposables peut être estimée de façon non-paramétrique, permettant du coup, de

faire de l’inférence statistique avec ces indices. Notons que ces mesures de pauvreté

décomposables forment une classe particulière englobée par l’indice J et sont obte-

nues en choississant une fonction de déprivation individuelle f(y, z) appropriée et une

fonction de pondération w(·, ·) constamment égale à 1, i.e. w[G(y), G(z)] = 1, ∀y ≥ 0

et z > 0 fixé.

En explorant une méthode non-paramétrique pour l’estimation de l’indice de

pauvreté, Dia (2008) proposa un estimateur à noyau de Parzen-Rosenblatt pour

l’indice de Foster-Greer-Thorbecke (1984) défini par

FGT (α) =

∫ z

0

(
z − y

z

)α

dG(y), α ≥ 0.

Cet indice peut se mettre sous la forme (1), en prenant pour tout y ≥ 0,

w[G(y), G(z)] := 1 et f(y, z) =

(
z − y

z

)α

, pour α ≥ 0.

Dia (2008) a également étudié les propriétés asymptotiques de ce nouvel estima-

teur à noyau, notamment les convergences en moyenne quadratique et presque sûre

, uniformément en z sur des intervalles compacts. Cet estimateur sera rappelé au

chapitre 2.

On peut remarquer que tous ces travaux et d’autres encore que nous ne cite-

rons pas ici par soucis d’espace, s’appuient sur une démarche individuelle, utilisant

classe spécifique de mesures de pauvreté pour étudier ses propriétés asymptotiques.

L’objectif de cette thèse, par contre, est d’établir une théorie asymptotique globale

( des estimateurs de pauvreté ) qui unifie toutes ces démarches individuelles en

considérant l’indice général de pauvreté J défini par l’équation (1). Autrement dit,

une théorie qui permet d’étudier à la fois les mesures de pauvreté décomposables

et les mesures de pauvreté non-décomposables (comme celle de Sen) dites aussi

linéaires par rapport au revenu. Pour ce faire, nous nous appuyerons sur deux types

d’approches.

La première est basée sur l’estimation par la méthode du noyau. Avec cette

approche, nous étudierons la convergence presque sûre d’une suite d’estimateurs à

noyau de l’indice J , uniformément en (z, w, f), où z varie dans intervalle compact
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et, w et f décrivent des classes de fonctions appropriées. Dans cette approche, notre

méthodologie s’inspire principalement des travaux de Einmahl et Mason (2005) qui

ont élaboré une méthodologie générale basée sur la théorie moderne du processus

empirique, pour établir la consistance uniforme des estimateurs de type noyau avec

des fenêtres aléatoires. Les principaux outils de cette méthode consistent en des

inégalités exponentielles et des bornes de moment appropriées que nous rappelerons

en annexe A.3. Nous avons également obtenu, avec cette approche, une loi uniforme

du logarithme en probabilité pour l’indice général de pauvreté J . Une conséquence

immédiate de ce résultat est la possibilté de construire des intervalles de confiance

simultanés, de niveau asymptotiquement optimal.

La seconde approche, quant à elle, utilise un estimateur direct de type ”plug-in”

de l’indice J , obtenu par simple remplacement de la fonction de répartition G(y)

par son équivalent empirique Gn(y) = n−1card{j : Yj ≤ y}, où Y1, · · · , Yn est une

suite indépendante et identiquement distribuée de variables aléatoires de fonction

de répartion G(y). Avec cette approche, nous discuterons de la normalité asymp-

totique et de la convergence faible uniforme sur des classes de fonctions bornées

d’une suite d’estimateurs convenablement centrés et normalisés de l’indice J . Ici,

également notre méthodologie repose sur des outils du processus empiriques telles

que la notion de classe de Donsker sous des conditions d’entropie métrique uniforme

ou d’entropie crochet. Cette approche nous a permis de décrire la structure de co-

variance globale de tous les indices de pauvreté encore disponibles jusqu’ici dans

la littérature et de pouvoir proposer des tests de comparaison de pauvreté (de do-

minance stochastique) robustes entre deux populations aux distributions de revenu

différentes.

Cette théorie asymptotique globale et unifiée que nous présentons dans cette

thèse sera articulée en six chapitres.

Au premier chapitre nous rappelons quelques généralités sur les mesures de

pauvreté. Nous insisterons sur la démarche générale d’agrégation qui permet de

construire une mesure de pauvreté synthétique dans une population donnée. Nous

donnerons également quelques exemples de mesures de pauvreté discrètes ainsi que

quelques axiomes fondamentaux qui les régissent.

Dans le deuxième chapitre nous exposerons notre premier résultat qui est la



Introduction Générale 11

consistance forte uniforme d’un estimateur général à noyau pour l’indice de pau-

vreté J . Cet estimateur sera construit avec le noyau de Parzen-Rosenblatt et une

fenêtre variable afin de garantir une large applicabilité. Une étude de simulation de

données sera réalisée pour évaluer la performance de ce résultat.

Le chapitre trois sera consacré à l’étude de lois limites uniformes du logarithme

pour l’estimateur général à noyau de pauvreté étudié au deuxième chapitre. Nous

déduirons de ce résultat une méthode pour construire des intervalles de confiance

simultanés et asymptotiquement optimaux. Ces intervalles de confiance sont ensuite

utilisés pour tester l’adéquation d’un modèle de loi paramétrique aux données de

revenu afin d’estimer le degré de pauvreté.

Au chapitre quatre nous établirons la normalité asymptotique d’un estimateur

de type ”plug-in” pour l’indice général de pauvreté J . Des intervalles de confiance

seront construits en estimant de façon non-paramétrique la variance asymptotique ;

puis, comparés aux intervalles de confiances asymtotiques et simultanés, construits

avec la méthode du noyau au chapitre 3.

Dans le chapitre cinq la convergence faible de l’estimateur de type ”plug-in”

de J , introduit au chapitre quatre sera étudiée. Plus précisément, nous montrerons

que cet estimateur convenablement centré et normalisé peut être considéré comme

un processus stochastique convergeant en distribution, dans un espace de fonctions

réelles bornées, vers un processus limite gaussien, avec une structure de covariance

complétement déterminée.

Enfin, le chapitre six concernera une application de la structure de covariance

obtenue au cinquième chapitre pour tester des hypothèses de dominance stochas-

tique en termes de pauvreté. Nous illustrerons ce test sur des données sénégalaises

fournies par l’ANSD (Agence Nationale de la Statistique et de la Démographie).

Nos résultats principaux sont les suivants :

– La consistance presque sûre uniforme des mesures de pauvreté empiriques, par

rapport au seuil de pauvreté z, à la fonction de pondération w(·, ·) et à la fonc-

tion de déprivation individuelle f(·, ·). Ce résultat a fait l’objet d’un papier
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soumis à Journal of Nonparametric Statistics.

– La normalité asymptotique d’un estimateur général de pauvreté incluant toutes

les mesures de pauvreté basées sur le revenu et encore disponibles jusqu’ici dans

la littératue. Ce résultat généralise un papier (cf. [35]) publié dans la revue

C.R. Math. Rep. Acad. Sci. Canada. Vol. 31(2) 2009, pp 45-52.

– La convergence faible uniforme des mesures de pauvreté empiriques ainsi que

leur structure de covariance asymptotique. Ce résultat généralise un autre ar-

ticle (cf. [34]) publié dans Communications in Statistics- Theory and Methods,

38, 2009, 3697-3704.

– Une méthodologie générale d’inférence non-paramétrique pour tous les indices

de pauvreté basés sur le revenu. Ce résultat donne un critère de dominance

(ou une relation d’ordre) assez robuste pour classer, en termes de pauvreté,

deux distributions de revenu avec le même seuil de pauvreté.

Mais avant de revenir à ces résultats, leurs preuves et leurs applications, nous

rappelons au chapitre 1 suivant quelques aspects importants sur l’agrégation de la

pauvreté, à partir de laquelle sont construites toutes les mesures de pauvreté basées

sur le revenu. Les outils techniques qui ont permis de démontrer ces résultats sont

présentés en annexe, afin de faciliter la lecture du document.



Chapitre 1

Généralités sur les indices de

pauvreté

1.1 Introduction

Le phénomène de pauvreté préoccupe aujourd’hui l’humanité toute entière. Il se

manifeste dans tous les pays du monde. Cependant, sa perception varie d’un pays à

un autre ou d’une région à une autre. La pauvreté peut être perçue comme absolue

ou relative. Elle peut aussi être conçue comme un déficit de revenus ou une absence

de certaines capacités fonctionnelles élémentaires. Elle est corrélée à la vulnérabilité

et à l’exclusion sociale et atteint aujourd’hui des proportions inquiétantes de par le

monde. Il urge alors de développer des politiques hardies pour son éradication. Pour

cela, il serait nécessaire de pouvoir d’abord quantifier la pauvreté.

Mesurer la pauvreté nécessite, selon les économistes, la résolution de deux ques-

tions fondamentales. La première est d’ordre méthodologique et concerne l’iden-

tification des pauvres par la détermination d’un niveau de référence z en-dessous

duquel la pauvreté est effective. La seconde question est plutôt technique et, est liée

à la construction d’indicateurs synthétiques aggrégés de pauvreté sur la base des

informations disponibles.

La réponse à ces deux questions se fait en analysant un certain ensemble de

données pertinentes, qui est censé nous donner l’information nécessaire sur la popu-

lation que l’on étudie. Ces données proviennent souvent d’enquêtes dont la nature
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dépend des objectifs de l’étude. Il peut s’agir d’enquêtes sur le budget des familles,

sur les habitudes de consommation et de nutrition, sur les conditions de vie des

ménages, sur l’évolution des prix et l’emploi, etc.

Comme la pauvreté est un phénomène qui affecte la vie des gens dans beaucoup

de domaines, il serait logique de travailler avec une grande variété de statistiques

qui refléteraient le niveau de vie des gens qui vivent dans la pauvreté. Par exemple

des statistiques sur l’accès à l’éducation, à la santé et aux autres services publics, les

biens dont dispose un individu (voiture, appareils ménagers, type de logement, etc).

Une étude réalisée avec ce type d’information serait une étude multi-dimensionnelle

de la pauvreté. Une autre façon de faire serait de ne travailler qu’avec un seul type

de donnée qui serait censé indiquer, à lui seul, le niveau de bien-être des popula-

tions. Il existe en principe deux caractères (ou variables) globalement acceptés qui

pourraient remplir cette tâche : le revenu et les dépenses de consommation. Ce type

d’approche correspond à une étude uni-dimensionnelle de la pauvreté.

De prime abord, l’étude uni-dimensionnelle peut parâıtre plus limitée, moins

complète et donc moins pertinente qu’une étude multi-dimensionnelle ; mais cela

n’est pas forcément le cas. En effet, si l’on tient compte des biens dont dispose un

individu par exemple, il se peut que quelqu’un ne dispose pas d’un certain bien

par un simple choix personnel et non pas à cause d’une incapacité de l’obtenir. Les

préférences personnelles introduisent donc un biais difficile à corriger dans l’approche

multi-dimensionnelle. Prenons par exemple le cas d’un individu qui décide de ne pas

avoir de voiture à cause de ses convictions écologistes.

L’approche uni-dimensionnelle, en revanche, échappe à ce type de problème

puisque l’on suppose que le caractère choisi reflète le niveau de bien-être, et cela

indépendamment des choix que l’individu puisse faire. L’étude uni-dimensionnelle

se révélerait donc préférable pour autant que le revenu ou la consommation soient

de bons indicateurs du bien-être, ce qui est globalement accepté par les économistes.

Dans cette thèse nous nous intéressons aux mesures de pauvreté uni-dimensionnelles

basées sur le revenu ou les dépenses de consommation ; mais nous utiliserons le terme

générique de revenu pour faire allusion aux deux caractéres. Cette approche quan-

titative basée sur le revenu, notons-le, est la plus fréquente dans la littérature et

ultilise deux concepts généraux de pauvreté : la pauvreté absolue et la pauvreté
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relative. La distinction entre ces deux concepts se précise au niveau de la fixation

du seuil de pauvreté.

1.2 Seuil de pauvreté

La détermination du seuil de pauvreté est une opération complexe qui dépend

fondamentalement du concept de pauvreté utilisé.

La pauvreté absolue renvoie à un concept absolu qui veut dire que la pauvreté

d’un ménage (ou individu) ne dépend que de sa situation et non de celle du reste

de la société. Sous cet angle, un ménage est dit pauvre s’il n’est pas en mesure de

satisfaire les besoins élémentaires de base tels que le fait de se nourir, de se vêtir

ou de disposer d’un toit adéquat. On définit alors le seuil de pauvreté comme le

revenu nécessaire pour satisfaire ces besoins élémentaires de base. Si un ménage dis-

pose de ce revenu, il ne sera pas pauvre même si son niveau de vie est très bas par

rapport au reste de la société. Cette définition du seuil est plus adéquate pour les

pays sous-développés, où la pauvreté peut impliquer des pénuries alimentaires ou

l’impossibilité d’avoir un logement digne. Le seuil de pauvreté est généralement fixé

par les autorités gouvernementales ou des experts économistes qui estiment alors les

besoins vitaux nécessaires pour la survie d’un ménage (ou individu).

Concernant la pauvreté relative, le ménage (ou l’individu) est jugé par rapport

au reste de la société. C’est à dire qu’un ménage est considéré comme pauvre, non

pas parce qu’il n’a pas un certain niveau de vie donné ; mais parce que son niveau

de vie est très bas si on le compare à ceux des autres ménages de la société. Cette

caractérisation de la pauvreté est surtout utilisée pour les pays très développés,

puisque les ménages pauvres dans ces pays sont en général en mesure de satis-

faire les besoins de base élémentaires ; mais sont considérés comme pauvres parce

que leur niveau de vie est tout de même bien inférieur au niveau de vie moyen du

pays. Le seuil de pauvreté est choisi comme un fractile de la distribution du revenu.

Généralement, on prend un pourcentage du revenu médian ou du revenu moyen du

pays ; mais pour accentuer les effets des inégalités dans la distribution, on choisit un

pourcentage du revenu moyen car, la moyenne est plus sensible aux valeurs extrêmes.
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1.3 Agrégation de la pauvreté

Lorsque le seuil de pauvreté z > 0 est défini, différentes formules sont pro-

posées par les économistes pour agréger les pauvretés individuelles en une mesure

synthétique qui résume la situation de pauvreté de l’ensemble de la population

étudiée.

Considérons une distribution de revenus positifs y1, · · · , yn, où n ≥ 1 est un entier

naturel. Cette distribution peut être représentée par un vecteur y = (y1, · · · , yn),
avec yj ∈ R+ = [0,∞), ∀j = 1, · · · , n. yj est le revenu d’un individu j qui est

classé comme pauvre si yj < z. Ainsi, Y = {y ∈ Rn
+, n ≥ 1} est l’ensemble des

distributions de revenu définies sur R+. Pour toute distribution y ∈ Y , on note

respectivement n = n(y), µ(y) et σ2(y) la taille, la moyenne et la variance de la

population correspondant à y. On suppose aussi, sans perte de généralité, que les

composantes du vecteur y sont ordonnées, i.e. y1 ≤ y2 ≤ · · · ≤ yn.

Définition 1.1. Une mesure de pauvreté (ou encore indice de pauvreté) est une

application

P : Y × R+ → [0, 1]

(y, z) 7→ P (y, z),

telle que la valeur P (y, z) indique le degré ou le niveau de pauvreté associé à la

distribution y, où z ∈ R+ représente le seuil de pauvreté.

Un exemple très célébre de mesure de pauvreté est l’incidence de la pauvreté (ou

”headcount ratio” en anglais), i.e. le pourcentage d’individus vivant en-dessous du

seuil de pauvreté. Cette mesure est définie par le rapport

H(y, z) =
q

n
, (1.1)

où q = q(y, z) est le nombre de revenus dans la distribution y qui sont inférieurs à

z. La mesure de l’incidence permet d’appréhender l’étendue de la pauvreté ; mais

n’apporte aucune information sur l’intensité de celle-ci. Une mesure qui tient compte

de cet aspect est l’intensité moyenne de la pauvreté appelée aussi le déficit moyen

de revenu des pauvres (ou ”income gap ratio” en anglais). Cette mesure est définie

par

I(y, z) =
1

nz

q∑
j=1

(z − yj). (1.2)
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Ce type d’indice est également critiqué car il est parfois insensible à une redistribu-

tion des revenus au sein du groupe des pauvres. Par exemple, un transfert de revenu

d’un individu pauvre vers un autre individu pauvre sans que ce dernier ne franchisse

la ligne de pauvreté, laisse inchangé la valeur de l’indice I(y, z). C’est pour cette rai-

son que Sen (1976) et d’autres économistes se sont tournés vers d’autres indices qui

traduisent, de façon plus correcte, le niveau de pauvreté d’une population donnée.

De tels indices, par définition, sont sensibles à la distribution du revenu parmi les

pauvres car leur but est de corriger les défauts que présentent les indices H(y, z) et

I(y, z) donnés ci-dessus. Pour ce faire, Sen s’appuie sur un certain nombre de prin-

cipes normatifs ou axiomes qui doivent régir un bon indice de pauvreté. Ces axiomes

sont largement discutés dans l’article de Zheng (1997). Nous donnons ci-dessous les

trois axiomes qui sont jugés les plus importants.

Soit x = (x1, · · · , xn) et y = (y1, · · · , yn) deux distributions de revenu, et z > 0

le seuil de pauvreté commun aux deux distributions.

- Axiome de focalisation : La mesure de pauvreté reste inchangée, si le revenu

d’un individu non-pauvre augmente, i.e.

P (x, z) = P (y, z) si ∃j/yj > z, ∀i ̸= j, xi = yi et xj = yj + r,

où r > 0 est un accroissement de revenu.

- Axiome de monotonie : Une réduction du revenu d’un individu pauvre doit

accrôıtre la mesure de pauvreté, i.e.

P (x, z) > P (y, z) si ∃j/yj < z, ∀i ̸= j, xi = yi et xj = yj − r, r > 0.

- Axiome de transfert : Un transfert de revenu d’un individu pauvre vers un

individu moins pauvre doit accrôıtre la mesure de pauvreté, i.e.

P (x, z) > P (y, z)

si

∃i, j/yj < z, yj < yi ∀k ̸= i, j, xk = yk xj = yj − r et xi = yi + r, r > 0.

Fort de ces trois axiomes et d’autres encores moins évidents, Sen (1976) proposa

un indice de pauvreté qui se définit comme une moyenne pondérée des déficits de

revenu des individus pauvres, i.e.

S(y, z) =
2

(q + 1)nz

q∑
j=1

(q + 1− j)(z − yj). (1.3)
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Cet indice est évidemment sensible à la distribution du revenu parmi les pauvres

car il affecte un poids plus important aux plus pauvres. Sen a aussi montré que

son indice reflétait à la fois l’incidence de la pauvreté H(y, z), l’intensité moyenne

I(y, z) et l’inégalité parmi les pauvres et pouvait s’écrire sous la forme

S(y, z) = H(y, z)[I(y, z) +
q

q + 1
(1− I(y, z))G(y, z)], (1.4)

où

G(y, z) = 1−
q∑

j=1

[2(q − j) + 1]
yj

q2µp

est le coefficient de Gini correspondant à la distribution du revenu parmi les pauvres,

avec µp =
1
q

∑q
j=1 yj le revenu moyen des pauvres.

1.4 Exemples de mesures agrégées

Après l’étude de Sen (1976), une très grande variété de mesures de pauvreté ont

vu le jour en suivant son approche axiomatique. Ces mesures de pauvreté peuvent

être divisées en deux classes. La première classe contient les mesures dites non-

pondérées pami lesquelles, on peut citer la célébre famille d’indices de Foster-Greer-

Thorbecke (FGT) (1984). Ces indices sont définis pour α ≥ 0, par

P (y, z, α) =
1

n

q∑
j=1

(
z − yj

z

)α

. (1.5)

La mesure P (y, z, α) est fréquemment utilisée dans les études empiriques sur la

pauvreté. Pour α = 0, elle est réduite à q/n = H(y, z), qui est l’incidence de

pauvreté définie dans la section précédente. Lorsque α = 1 , elle est égale à l’intensité

moyenne de la pauvreté I(y, z). Pour α = 2, elle est interprétée comme la sévérité

de la pauvreté.

La famille d’indices de Chakravarty (1983) fait également partie de cette classe

des mesures non-pondérées. Elle est définie par

C(y, z, β) =
1

n

q∑
j=1

[
1−

(yj
z

)β]
, 0 < β < 1. (1.6)

De même l’indice de Watts (1968) appartient à cette classe. Il est défini par

W (y, z) =
1

n

q∑
j=1

log
(yj
z

)
. (1.7)
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Ces mesures non-pondérées sont généralement de la forme

P (y, z) =
1

n

q∑
j=1

f(yj, z), (1.8)

où f(yj, z) est une fonction qui mesure la pauvreté individuelle ; c’est à dire la

contribution de l’individu j à la pauvreté globale de la population. f(yj, z) = 0, si

yj ≥ z, i.e. pour les non-pauvres.

La seconde classe de mesures de pauvreté regroupe les mesures dites pondérées,

dont fait partie l’indice de Sen (1976) défini ci-dessus. Dans cette classe le poids

affecté aux individus varie selon leur rang dans l’échelle des pauvres. Les éléments

de cette classe sont généralement des modifications de la mesure de Sen (1976). Par

exemple, Kakwani (1980) généralise cette mesure de Sen sous la forme

K(y, z, k) =
q

n
∑q

j=1 j
k

q∑
j=1

(q + 1− j)k
(
z − yj

z

)
. (1.9)

Pour k = 1, on a K(y, z, 1) = S(y, z).

Les mesures de pauvreté de Thon et de Shorrocks sont également des modifications

de l’indice de Sen. Thon (1979) proposa la mesure suivante :

T (y, z) =
2

n(n+ 1)

q∑
j=1

(n+ 1− j)

(
z − yj

z

)
. (1.10)

Tandis que Shorrocks (1995) introduisit la mesure

Sh(y, z) =
1

n2

q∑
j=1

(2n− 2j + 1)

(
z − yj

z

)
. (1.11)

En résumé, on peut remarquer que pour un seuil de pauvreté donné z > 0 et

une distribution finie y = (y1, · · · , yn) telle que : y1 ≤ y2 ≤ · · · ≤ yn, toutes ces

mesures de pauvreté, pondérées comme non-pondérées, peuvent se mettre sous la

forme générale

J(y, z) =
1

n

q∑
j=1

w

(
j

n
,
q

n

)
f(yj, z), (1.12)

où w(·, ·) est une fonction de pondération et f(·, ·) une fonction mesurable appro-

priée. L’étude des mesures de pauvreté a souvent été restreinte dans ce cadre des
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distributions discrètes finies. Les résultats obtenus sont alors nécessairement limités

par une absence de procédures d’inférence statistique pouvant tenir compte de l’er-

reur d’échantillonnage. Lorsque l’on considére les revenus (y1, · · · , yn) comme une

réalisation d’un échantillon aléatoire (Y1, · · · , Yn) provenant d’une population dont

la distribution est définie par une fonction de répartition continue G(y), alors on

peut développer une théorie asymptotique globale et unifiée pour toutes ces me-

sures de pauvreté, en se basant sur l’indice empirique général J(y, z) donné par

(1.12). Cette théorie asymptotique générale des mesures de pauvreté constitue la

principale contribution de ce mémoire et fera l’objet des chapitres suivants.



Chapitre 2

Consistance uniforme de

l’estimateur à noyau de pauvreté

2.1 Introduction

Les indices de pauvreté sont utilisés systématiquement par les économistes pour

apprécier le niveau de pauvreté des populations. Leur forme générale est donnée par

J =

∫ z

0

w[G(y), G(z)]f(y, z)dG(y), (2.1)

où z > 0 est le seuil de pauvreté ; w et f sont des fonctions bi-variables appropriées,

c’est à dire continues et décroissantes par rapport à la variable y en cohérence avec

l’approche axiomatique de Sen sur les mesures de pauvreté. Toutefois, des hypothèses

supplémentaires peuvent être imposées à w et f pour établir certains résultats.

Dans ce chapitre nous nous intéressons à l’estimation , par la méthode du noyau,

de l’indice J à partir d’un échantillon Y1, · · · , Yn de n revenus d’individus pris au

hasard dans une population donnée. Cet indice J , comme on l’a fait remarquer dans

l’introduction générale, couvre une classe très large de mesures de pauvreté parmi

lesquelles, on peut citer les mesures de Sen, de Shorrocks, de Foster-Greer-Thorbecke

et de Kakwani qui sont fréquemment utilisées dans les études empiriques sur la pau-

vreté.

Ainsi, notre objectif consiste à établir une approche globale pour étudier la

convergence presque sûre uniforme de tous les estimateurs de pauvreté basés sur

le revenu. Pour cela, nous travaillerons avec un estimateur général à noyau et nous
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nous appuyerons sur les travaux de Einmahl et Mason (2005) qui ont élaboré une

méthodologie générale basée sur le processus empirique, pour établir la consistance

uniforme des estimateurs de type noyau avec des fenêtres aléatoires.

2.2 Construction de l’estimateur à noyau

Soit Y une variable aléatoire (v.a.) correspondant au revenu d’un individu, pris au

hasard au sein d’une population donnée. Supposons que l’on dispose d’un échantillon

indépendant de n v.a. Y1, · · · , Yn de même loi que la variable Y définie par sa fonction

de répartition G(y) = P(Y ≤ y),∀y ∈ R. On suppose de plus que G(y) possède une

densité de probabilité notée g(y) par rapport à la mesure de Lebesgue. Alors l’indice

de pauvreté J défini en (2.1) peut s’écrire sous la forme

J =

∫ z

0

w[G(y), G(z)]f(y, z)g(y)dy. (2.2)

Un estimateur bien connu, à noyau K(·) et de fenêtre h > 0, de la densité g(y)

est

gn,h(y) =
1

nh

n∑
j=1

K

(
Yj − y

h

)
.

Les propriétés asymptotiques de cet estimateur de la densité sont largement étudiées

dans la littérature. A titre d’exemples, on peut citer les travaux de Parzen (1962),

Nadaraya (1965), Silverman (1978), Stute (1982b) et les travaux récents de Einmahl

et Mason (2005) traitant avec des fenêtres aléatoires du type h = hn(Y1, · · · , Yn; y).

Pour construire un estimateur à noyau de J , nous procédons à un simple rem-

placement de la densité g(y) par son estimateur gn,h(y) dans l’expression (2.2). Nous

obtenons ainsi un estimateur à noyau de l’indice de pauvreté J défini par

Jn,h =
1

nh

n∑
j=1

∫ z

0

w[Gn(y), Gn(z)]f(y, z)K

(
Yj − y

h

)
dy, (2.3)

où Gn(y) = n−1
∑n

j=1 1{Yj≤y} désigne la fonction de répartition empirique corres-

pondant à la suite Y1, · · · , Yn et 1A désigne la fonction indicatrice de l’ensemble A.

Un estimateur de ce type a été proposé par Dia (2008) dans le cas de l’estimation
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non-paramétrique des indices de Foster-Greer-Thorbecke. Ce dernier estimateur est

défini par

Pn(z, α) =
1

n

n∑
j=1

⌊ z
h
⌋∑

i=1

(
1− ih

z

)α

K

(
Yj − ih

h

)
, (2.4)

où ⌊·⌋ désigne la partie entière et h = hn → 0, lorsque n → ∞. Dia (2008) a étudié

les propriétés asymptotiques de l’estimateur (2.4), notamment la convergence uni-

forme presque sûre et en moyenne quadratique par rapport à z ∈ [0, b], b > 0. Notre

estimateur Jn,h donné par (2.3) généralise l’estimateur de Dia donné par (2.4). En

plus de la convergence uniforme presque sûre par rapport à z, nous allons étudier la

convergence uniforme presque sûre par rapport aux fonctions w et f appartenant à

des classes de fonctions appropriées.

Le noyau K(.) dans les expressions ci-dessus désigne une fonction mesurable

satisfaisant aux conditions (K.1-2-3-4) suivantes :

– (K.1) K(·) est à variation bornée.

– (K.2) K(t) = 0 si |t| ≥ a, avec a > 0.

– (K.3)
∫
RK(t)dt = 1.

– (K.4) ∥K∥∞ := supt∈R |K(t)| < ∞.

La fenêtre h > 0 est souvent considérée comme une fonction dépendant seulement

de la taille n de l’échantillon. En effet, beaucoup de travaux sur l’estimation par

la méthode du noyau utilisent une séquence de fenêtres déterministes, considérée

comme une suite de constantes positives hn tendant vers zéro, lorsque n → ∞.

A ce propos, on peut citer par exemple Parzen (1962), Stute (1982b), Silverman

(1986), Devroye (1987), Bosq et Lecoutre (1987), Nadaraya (1989), Wand et Jones

(1995). Comme le choix de la fenêtre est crucial pour la convergence des estimateurs

à noyau, par soucis de grande applicabilité, nous présenterons nos résultats avec une

fenêtre variable et aléatoire qui peut dépendre aussi bien des données Y1, · · · , Yn que

du point local y où l’on veut estimer la densité. Plus précisément, la fenêtre h > 0

variera dans un intervalle dont la longueur décrôıt vers zéro, lorsque la taille n de

l’échantillon augmente.
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2.3 Consistance uniforme presque sûre

L’indice théorique J et l’estimateur Jn,h sont considérés ici, comme des fonction-

nelles dépendant de z > 0 et des fonctions w ∈ W et f ∈ F , où W et F sont des

classes de fonctions appropriées. C’est à dire

Jn,h = {Jn,h(z, w, f) : z > 0, w ∈ W , f ∈ F}

et

J = {J(z, w, f) : z > 0, w ∈ W , f ∈ F}.

Pour simplifier les notations, introduisons la classe de fonctions suivante :

Φ = {φ = (w, f) : w ∈ W , f ∈ F} = W ×F . (2.5)

Dans la suite on supposera que W et F sont des VC-classes (classe de Vapnik-

Červonenkis) de fonctions convenablement mesurables possédant chacune une fonc-

tion enveloppe finie. Compte tenu des propriétés d’un indice de pauvreté, on peut

sans perte de généralités, supposer de plus que W et F sont des classes de fonctions

à valeurs dans [0, 1], donc uniformément bornées. Dans l’annexe A.2 nous rappelons

les notions de VC-classe de fonctions et de classe de fonctions convenablement me-

surable ; voir aussi van der Vaart and Wellner (1996) ou Kosorok (2006) pour plus

de détails sur ces notions.

Pour tous z > 0, et φ ∈ Φ fixés, considérons la suite de fonctions réelles définies

sur R+ par

dn,φ(y, z) = w[Gn(y), Gn(z)]f(y, z)1{y<z}, ∀n ≥ 1. (2.6)

D’après la loi des grands nombres, Gn(y) → G(y) presque sûrement pour tout réel

y, alors par continuité de la fonction w, on a pour tout y ≥ 0, dn,φ(y, z) qui converge

presque sûrement vers

dφ(y, z) = w[G(y), G(z)]f(y, z)1{y<z}, (2.7)

lorsque n → ∞.

Avec ces notations, Jn,h et J dépendent maintenant de z et de φ, d’où les écritures

suivantes :

J =

∫ z

0

dφ(y, z)g(y)dy =: J(z, φ), (2.8)
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et

Jn,h =

∫ z

0

dn,φ(y, z)gn,h(y)dy =: Jn,h(z, φ). (2.9)

Notre premier résultat est donné par le Théorème 2.1 ci-dessous qui donne la

convergence presque sûre et uniforme de l’estimateur à noyau de pauvreté Jn,h.

Théorème 2.1. Supposons que les conditions (K.1-2-3-4) sont remplies et que g(y)

est une densité continue sur R. Alors pour toutes suites de nombres réels positifs an

et bn satisfaisant à

0 < (c log n)/n ≤ an < bn < 1, ∀c > 0, bn → 0etnan/ log n → ∞

et pour tout b > 0, nous avons lorsque n → ∞,

lim
n→∞

sup
an≤h≤bn

sup
z∈[0,b]

sup
φ∈Φ

|Jn,h(z, φ)− J(z, φ)| = 0 p.s. (2.10)

Preuve. Nous décomposons la différence Jn,h(z, φ)− J(z, φ) en trois termes.

Jn,h(z, φ)− J(z, φ) =

∫ z

0

[dn,φ(y, z)− dφ(y, z)]gn,h(y)dy

+

∫ z

0

dφ(y, z)[Egn,h(y)− g(y)]dy

+

∫ z

0

dφ(y, z)[gn,h(y)− Egn,h(y)]dy

=: T1,n(z, φ, h) + T2,n(z, φ, h) + T3,n(z, φ, h).

Pour prouver le théorème, nous devons montrer que chacun des trois termes ci-

dessus converge presque sûrement vers 0, uniformément en z, φ, h, lorsque n → ∞.

Le comportement des deux premiers termes T1,n(z, φ, h) et T2,n(z, φ, h) n’est pas dif-

ficile à contrôler. Par contre, pour traiter le dernier terme T3,n(z, φ, h), nous faisons

recours aux travaux de Einmahl et Mason (2005) qui ont utilisé une approche basée

sur le processus empirique pour établir la convergence uniforme des estimateurs à

noyau indexés par des classes de fonctions. Pour une extension de ces travaux, voir

Mason et Swanepoel (2010).

On peut remarquer que pour tout φ ∈ Φ, la fonction dφ(·, z) définie en (2.7) est

tronquée à droite de z puisqu’elle vérifie dφ(y, z) = 0 si y ≥ z. La continuité des

fonctions w et f implique alors que dφ(·, z) est bornée sur l’intervalle compact [0, z],
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et donc sur R+ à cause de cet argument de troncature.

Les classes W et F étant convenablement mesurables par hypothèse, donc il en

est de même pour la classe de fonctions

Φ = {φ = (w, f) : w ∈ W , f ∈ F} = W ×F .

On en déduit que supφ∈Φ |dφ(y, z)| existe et est fini, pour tout y ≥ 0. Donc,

sup
φ∈Φ

||dφ(·, z)||∞ ≤ M, (2.11)

où M est une constante positive. Cela implique que la classe de fonctions {dφ : φ ∈
Φ} est uniformément bornée.

Pour compléter la preuve du théorème, nous établissons les trois lemmes sui-

vants :

Lemme 2.1. Nous avons

sup
an≤h≤bn

sup
z∈[0,b]

sup
φ∈Φ

|T1,n(z, φ, h)| → 0 p.s., n → ∞. (2.12)

Preuve. Pour tout z ∈ [0, b], on a

sup
an≤h≤bn

sup
φ∈Φ

|T1,n(z, φ, h)| ≤
∫ z

0

sup
an≤h≤bn

sup
φ∈Φ

|[dn,φ(y, z)− dφ(y, z)]gn,h(y)|dy.

Rappelons que la fonction w est continue, donc en appliquant le théorème de Glivenko-

Cantelli ; puis, le lemme de Slutsky, on obtient compte tenu de (2.6) que la suite

de fonctions {dn,φ(·, z)}n≥1 converge uniformément sur l’intervalle [0, z] pour tout

z > 0 et tout φ ∈ Φ. Puisque la densité g(y) est supposée également continue par

hypothèse, donc elle est uniformément continue sur [0, z] qui est un intervalle com-

pact. Cela combiné à l’hypothèse (K.2) qui stipule que le noyau K(·) est à support

compact, implique (d’après le Théorème 1 de Einmahl et Mason (2005)) que

sup
an≤h≤bn

sup
y∈[0,z]

|gn,h(y)− g(y)| → 0, n → ∞.

On en déduit alors que la suite de fonctions {[dn,φ(·, z)−dφ(·, z)]gn,h(y)}n≥1 converge

uniformément vers 0 sur l’intervalle [0, z], pour tout z > 0 et tout φ ∈ Φ. D’où

sup
an≤h≤bn

sup
φ∈Φ

∫ z

0

|[dn,φ(y, z)− dφ(y, z)]gn,h(y)|dy → 0, n → ∞.

On obtient le lemme 2.1 en prenant le suprémum de cette quantité par rapport à

z ∈ [0, b], pour tout b > 0.
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Lemme 2.2. Nous avons

sup
an≤h≤bn

sup
z∈[0,b]

sup
φ∈Φ

|T2,n(z, φ, h)| → 0 p.s., n → ∞. (2.13)

Preuve. Pour tout z ∈ [0, b], on peut écrire grâce à un changement de variables

t = (u− y)/h,

sup
an≤h≤bn

sup
φ∈Φ

|T2,n(z, φ, h)| ≤
∫ z

0

sup
an≤h≤bn

sup
φ∈Φ

|dφ(y, z)(Egn,h(y)− g(y))|dy

≤ z × sup
an≤h≤bn

sup
φ∈Φ

∥dφ(y, z)∥∞ sup
y∈[0,z]

|Egn,h(y)− g(y)|.

≤ z × sup
φ∈Φ

∥dφ(y, z)∥∞ sup
an≤h≤bn

sup
y∈[0,z]

|
∫ a

−a

K(t)[g(y + th)− g(y)]dt|

≤ z × 2a∥K∥∞ sup
φ∈Φ

∥dφ(y, z)∥∞ sup
an≤h≤bn

sup
|x−y|<ha, x,y∈[0,z]

|g(x)− g(y)|.

Puisque la densité g(y) est uniformément continue sur [0, z], alors

sup
an≤h≤bn

sup
|x−y|<ha, x,y∈[0,z]

|g(x)− g(y)| → 0, p.s., n → ∞

car la fenêtre h décrôıt vers 0, quand n → ∞. En rappelent la borne (2.11), la

preuve du lemme 2.2 est complétée en prenant le suprémum par rapport à z de

cette quantité sur l’intervalle [0, b], pour tout b > 0.

Lemme 2.3. Nous avons

sup
an≤h≤bn

sup
z∈[0,b]

sup
φ∈Φ

|T3,n(z, φ, h)| → 0, p.s., n → ∞.

Pour étudier ce terme T3,n(z, φ, h), nous introduisons la suite de processus indexés

par y ∈ [0, z], φ ∈ Φ et 0 < h < 1,

Wn,h(y, φ) =
n∑

j=1

dφ(y, z)

[
K

(
y − Yj

h

)
− EK

(
y − Yj

h

)]
. (2.14)

Alors, le comportement asymptotique de T3,n(z) découle de la proposition sui-

vante qui est une version du Théorème 4 de Einmahl et Mason (2005).
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Proposition 2.1. Supposons que les conditions (K.1-2-3-4) du Théorème 3.1 sont

satisfaites et que la densité g(y) est continue sur R. Alors nous avons pour tout

c > 0 et 0 < h0 < 1, avec probabilité 1,

lim
n→∞

sup
c logn

n
≤h≤h0

sup
z∈[0,b]

sup
φ∈Φ

||Wn,h(·, φ)||[0,z]√
nh(| log h| ∨ log log n)

=: A(c),

où A(c) est une constante positive .

Preuve du Lemme 2.3. Soit z ∈ [0, b], on a

sup
an≤h≤bn

sup
z∈[0,b]

sup
φ∈Φ

|T3,n(z)| ≤
∫ z

0

sup
an≤h≤bn

sup
φ∈Φ

|dφ(y, z)(gn,h(y)− Egn,h(y))|dy

≤ z × sup
an≤h≤bn

sup
φ∈Φ

∥dφ(·, z)(gn,h − Egn,h)∥[0,z].

Remarquons que

||Wn,h(·, φ)||[0,z]√
nh(| log h| ∨ log log n)

=

√
nh||dφ(·, z)(gn,h − Egn,h)||[0,z]√

(| log h| ∨ log log n)
.

Donc en appliquant la Proposition 2.1 ci-dessus et en prenant le suprémum sur l’in-

tervalle [0, b], pour tout b > 0, on obtient le lemme 2.3 ; ce qui achève la preuve du

théorème 2.1.

Preuve de la Proposition 2.1. Soit αn le processus empirique basé sur Y1, · · · , Yn

et indexé par une classe de fonctions G, i.e. pour tout η ∈ G, on a

αn(η) =
1√
n

n∑
i=1

(η(Yi)− Eη(Yi))

Pour tout y ∈ [0, z], φ ∈ Φ and h > 0, définissons la fonction

ηy,φ,h(u) = dφ(y, z)K

(
y − u

h

)
, u ∈ R+.

Soit

G = {u 7→ ηy,φ,h(u) : y ∈ [0, z[, φ ∈ Φ, 0 < h < 1} .

D’après (2.14), on peut écrire que

sup
0<h<1

sup
φ∈Φ

∥Wn,h(·, φ)∥[0,z] = ∥
√
nαn∥G.

Pour établir la Proposition 2.1, la classe G doit satisfaire aux trois conditions (C.1),

(C.2) et (C.3) suivantes :
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– (C.1) sup0<h<1 supφ∈Φ supy∈[0,z] ∥ηy,φ,h∥∞ < ∞.

– (C.2) ∃C > 0,∀0 < h < 1, supφ∈Φ supy∈[0,z] Eη2y,φ,h(Y ) ≤ Ch.

– (C.3) G est une classe convenablement mesurable vérifiant la condition d’en-

tropie uniforme, i.e.

∃C0 > 0, ν0 ≥ 0, N(ϵ,G) ≤ C0ϵ
−ν0 , 0 < ϵ < 1.

Ces conditions nous permettent d’utiliser une borne de moment (voir Proposition

1, Einmahl et Mason (2005)) combinée à une inégalité exponentielle due à Talagrand

(1994), (voir aussi, Ledoux (1996)) pour contrôler la norme suprémum du processus

empirique indexé par une classe de fonctions. Ces deux résultats (rappelés dans

l’annexe A.3) sont les principaux outils pour établir la Proposition 2.1. Maintenant

nous allons vérifier les trois conditions (C.1), (C.2) et (C.3).

La condition (C.1) découle immédiatement de la borne (2.11), car on a

sup
g∈G

∥g∥∞ ≤ M∥K∥∞ =: κ < ∞.

Pour vérifier la condition (C.2), nous écrivons

Eη2y,φ,h(Y ) = E
[
d2φ(y, z)K

2

(
y − Y

h

)]
≤ ∥dφ(·, z)∥2∞

∫ y+h/2

y−h/2

K2

(
y − u

h

)
g(u)du

≤ ∥dφ(·, z)∥2∞h

∫ 1/2

−1/2

K2(t)g(y − th)dt

≤ ∥dφ(·, z)∥2∞∥g∥∞∥K∥22h.

Ce qui implique que pour tout 0 < h < 1,

sup
φ∈Φ

sup
y∈[0,z]

Eη2y,φ,h(Y ) ≤ sup
z∈[0,b]

sup
φ∈Φ

∥dφ(·, z)∥2∞∥g∥∞∥K∥22h =: Ch,

où C est une contante positive. D’où la condition (C.2).

La classe de fonctions G peut s’écrire de la manière suivante :

G = {dφ(·, z) : φ ∈ Φ, z > 0} ·
{
K

(
y − ·
h

)
: y ∈ R+, 0 < h < 1

}
=: D · K (2.15)

Nous pouvons aussi écrire D sous la forme

D = D1 · D2,
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avec

D1 = {y 7→ w[G(y), G(z)] : w ∈ W , z > 0}

et

D2 = {y 7→ f(y, z) : f ∈ F , z > 0}.

Du fait que W et F sont par hypothèse des VC-classes convenablement mesurables,

en combinant le lemme 2.6.18, page 147 van der Vaart et Wellner (1996) et le lemme

8.10, page 142 Kosorok (2006), on obtient que D1 et D2 sont aussi des VC-classes

de fonctions convenablement mesurables . Donc, D1 et D2 possèdent chacune un

nombre de recouvrement polynomial, i.e.

∃C1, ν1 > 0, N(ϵ,D1) ≤ C1ϵ
−ν1 , 0 < ϵ < 1

et

∃C2, ν2 > 0, N(ϵ,D2) ≤ C2ϵ
−ν2 , 0 < ϵ < 1.

Puisque W et F sont uniformément bornées, alors D1 et D2 sont aussi uniformément

bornées et admettent toutes deux une fonction enveloppe F = 1. Ainsi, en appliquant

le lemme A.1 de Einmahl et Mason (2000), on en déduit que la classe de fonctions

D possède un nombre de recouvrement polynomial, i.e.

∃C, ν > 0, N(ϵ,D) ≤ Cϵ−ν , 0 < ϵ < 1.

En utilisant encore le lemme 2.6.18 de van der Vaart et Wellner (1996), on montre,

compte tenu du fait que le noyau K(·) est à variation bornée (i.e., K = K1 − K2,

où K1 et K2 sont des fonctions croissantes), que la classe de fonctions K est une

VC-classe convenablement mesurable, donc possède un nombre de recouvrement po-

lynomial.

En appliquant de nouveau le lemme A.1 de Einmahl et Mason (2000) pour les

classes D et K, on en déduit que la classe de fonctions G définie en (2.15) possède un

nombre de recouvrement polynomial. De plus, G est convenablement mesurable, car

c’est le produit de deux classes convenablement mesurables (Lemma 8.10, Kosorok

(2006)). Finalement G satisfait à la condition (C.3).

A partir de cette étape, la preuve suit exactement la même démarche que celle

de Einmahl et Mason (2005), qui est aussi celle de Mason et Swanepoel (2010).

Nous aurons besoin de la proposition et du corollaire suivants dans la suite de la

preuve.
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Proposition 2.2. (Einmahl et Mason (2005))

Soit G une classe convenablement mesurable de fonctions réelles bornées telles que,

pour des constantes C, ν ≤ 1 et 0 < σ ≤ β et pour une enveloppe G0 de G, les
conditions suivantes sont satisfaites :

(i) E[G2
0(Y )] ≤ β2;

(ii) N(ϵ,G) ≤ Cϵ−ν , 0 < ϵ < 1;

(iii) σ2
0 := supg∈G E[g2(Y )] ≤ σ2;

(iv) supg∈G ∥g∥∞ ≤ 1
4
√
ν

√
nσ2/ log(C1β/σ), où C1 = C1/ν ∨ 1.

Alors pour une constante positive A, on a

E

∥∥∥∥∥
n∑

i=1

εig(Yi)

∥∥∥∥∥
G

≤ A
√

νnσ2 log(C1β/σ),

où ε1, · · · , εn est une suite indépendante de variables aléatoires de Rademacher,

indépendantes de Y1, · · · , Yn.

Le corollaire (2.1) suivant affaiblit la condition (iv) qui est parfois difficile à

manipuler.

Corollaire 2.1. (Einmahl et Mason (2005))

Supposons que G satisfait aux hypothèses de la proposition (2.2), et au lieu (iv) nous

supposons que la condition (v) suivante est vraie :

(v) sup
g∈G

∥g∥∞ ≤ U, où σ0 ≤ U ≤ C2

√
nβ, et C2 =

1

4
√
ν logC1

.

Alors, on a

E

∥∥∥∥∥
n∑

i=1

εig(Yi)

∥∥∥∥∥
G

≤ A{
√

νnσ2
0 log(C1β/σ0) + 2νU log(C3n(β/U)2)},

où C3 = C2
1/16ν.

Suite de la preuve

Soit j, k ≤ 0 et c > 0, posons nk = 2k, hj,k = (2jc log nk)/nk et considérons la classe

de fonctions

Gj,k = {ηy,φ,h : y ∈ [0, z], φ ∈ Φ, hj,k ≤ h ≤ hj+1,k}.
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Alors pour tout hj,k ≤ h ≤ hj+1,k, on a

σ2
0 := sup

η∈Gj,k

E[η2(Y )] ≤ 2Chj,k =: σ2
j,k.

Maintenant nous allons appliquer pour chaque classe Gj,k, le corollaire 2.1, pour

obtenir une borne supérieure de la quantité

E∥
nk∑
i=1

ϵiη(Yi)∥Gj,k
.

D’abord, nous observons que chaque Gj,k satisfait (i) avec G = β = κ. Ensuite,

puisque Gj,k ⊂ G, nous avons ,via (C3) que chaque Gj,k remplit la condition (ii).

En posant σ2 = σ2
j,k, nous remarquons aussi que Gj,k satisfait à la condition (iii).

Finalement, au lieu (iv), nous observons que la condition (v) : supη∈G ∥η∥∞ ≤ U est

satisfaite avec U = β = κ. Les conditions (i), (ii), (iii) et (v) du corrolaire 2.1 sont

toutes vérifiées, donc on peut écrire que

E∥
nk∑
i=1

ϵiη(Yi)∥Gj,k
≤ A

√
νnkσ2

0 log(C1β/σ0) + 2AνU log(C2nk(β/U)2),

où A,C1, C2 sont des constantes positives. Notons que

C1
β

σ0

≤ β2

σ2
0

∨ C2
1

et que la fonction h 7→ h log(h−1 ∨ C2
1) est décroissante pour h ≥ 0. En tenant

compte de l’inégalité σ0 ≤ σj,k =: D0hj,k, on obtient, pour j, k ≥ 0,

E∥
nk∑
i=1

ϵiη(Yi)∥Gj,k
≤ Aβ

√
νnkD0hj,k

β2
log

(
β2

D0hj,k

∨ C2
1

)
+ 2Aνβ log(C2nk)

≤ D1

√
nkhj,k log

(
1

D2hj,k

∨ C2
1

)
,

où D1 = A
√
νD0 et D2 = D0/β

2. Cela implique que

E∥
nk∑
i=1

ϵiη(Yi)∥Gj,k
≤ D3

√
nkhj,k log

(
1

D2hj,k

∨ log log nk

)
=: D3aj,k.

Maintenant appliquons l’inégalité de Talagrand (1994) pour chaque classe Gj,k. En

choisissant pour tous j, k ≥ 0,

M = sup η ∈ Gj,k∥η∥∞ = κ
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et

σ2
G = σ2

Gj,k
≤ D0hj,k,

on a pour tout t > 0,

P
{

max
nk−1≤n≤nk

∥
√
nαn∥Gj,k

≥ A1(D3aj,k + t)

}
≤ 2

[
exp

(
−A2t

2

D0nkhj,k

)
+ exp

(
−A2t

κ

)]
.

Etant donné ρ > 0, j ≥ 0 and k ≥ 1, posons

pj,k(ρ) = P
{

max
nk−1≤n≤nk

∥
√
nαn∥Gj,k

≥ A1(D3 + ρ)aj,k

}
,

avec t = ρaj,k. Alors

pj,k(ρ) ≤ 2

[
exp

(−A2ρ
2a2j,k

D0nkhj,k

)
+ exp

(
−A2ρaj,k

κ

)]
.

Par définition de aj,k, nous avons

a2j,k/nkhj,k ≥ log log nk.

Pour k assez grand, cela implique que

pj,k(ρ) ≤ 2

[
exp

(
−A2ρ

2

D0

log log nk

)
+ exp

(
−A2ρ

κ

√
nkhj,k log log nk

)]
≤ 2

[
exp

(
−A2ρ

2

D0

log log nk

)
+ exp

(
−A2ρ

√
c

κ

√
log nk log log nk

)]
.

En posant λ = A2

D0
∧ A2

√
c

κ
, on obtient

pj,k(ρ) ≤ 4 exp(−λρ log log nk) = 4(log nk)
−λρ. (2.16)

Soit lk = max{j : hj,k ≤ 2h0}. Alors pour tout k assez grand, on a,

lk ≤ 2 log nk. (2.17)

Donc compte tenu de (2.16) et (2.17), nous avons pour k assez grand et ρ ≥ 0,

Pk(ρ) :=

lk−1∑
j=1

pj,k(ρ) ≤ 8(log nk)
1−λρ ≃ 8(

1

k log 2
)λρ.
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En choisissant ρ > 3/λ , nous obtenons

∞∑
k=1

Pk(ρ) ≤
∞∑
k=1

1

k2
< ∞. (2.18)

Par définition de lk nous remarquons que

2hlk,k = hlk+1,k ≥ 2h0 ⇒ hlk,k ≥ h0.

Donc pour tout nk−1 ≤ n ≤ nk,[
c log n

n
, h0

]
⊂
[
c log nk

nk

, hlk,k

]
.

On en déduit que, pour k assez grand et nk−1 ≤ n ≤ nk,

Ak(ρ) :=

{
max

nk−1≤n≤nk

sup
c logn

n
≤h≤h0

supφ∈Φ ||Wn,h(·, φ)||[0,z]√
nh(| log h| ∨ log log n)

> 2A1(D3 + ρ)

}

⊂
lk−1∪
j=0

{
max

nk−1≤n≤nk

∥
√
nαn∥Gj,k

≥ A1(D3 + ρ)aj,k

}
.

Cela implique que pour ρ assez grand P(Ak(ρ)) ≤ Pk(ρ). Ce qui achève la preuve en

appliquant le lemme de Borel-Cantelli compte tenu de l’lnégalité (5.11).

2.4 Simulations

Dans cette section nous menons une étude de simulation pour évaluer la bonne

performance de l’estimateur à noyau de pauvreté Jn,h dans les cas particuliers des

mesures de Sen, de Shorrocks et de Foster-Greer-Thorbecke (FGT) de paramétres

α = 1, 2. Nous générons des échantillons de loi lognormale de moyenne m = 12 et

d’écart type σ = 0.75 et tailles respectives n = 50, 100, 1000, 5000. La densité de

probabilité de la loi lognormale est donnée par

g(y) =
1

σ
√
2π

1

y
exp

{
−1

2

(
log y −m

σ

)2
}
, y > 0.

L’indice théorique

J =

∫ z

0

w[G(y), G(z)]f(y, z)g(y)dy
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est calculée avec la méthode d’intégration numérique de Simpson. Tandis que l’esti-

mateur à noyau

Jn,h =
1

nh

n∑
j=1

∫ z

0

w[Gn(y), Gn(z)]f(y, z)K

(
Yj − y

h

)
dy

est évalué avec le noyau de Barlett-Epanechnikov donné par

K(x) =

{
3
4
(1− x2) si |x| ≤ 1

0 sinon.

Pour un échantillon de taille n = 100, nous obtenons les résultats présentés dans la

Table 2.1 ci-dessous, qui contient les erreurs quadratiques moyennes de 50 échantillons

générés aléatoirement avec le logiciel R. Ces erreurs sont calculées pour plusieurs

valeurs du seuil z, correspondant aux valeurs quantiles suivantes : G−1(p), p =

0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85.

p 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

Index

FGT(1) 0.00028 0.00023 0.00056 0.00087 0.00068 0.00081 0.00085 0.0011

FGT(2) 0.00005 0.00014 0.00023 0.00031 0.0003 0.00046 0.00061 0.00065

SEN 0.00005 0.00011 0.00012 0.00050 0.00078 0.00284 0.00634 0.0195

SHO 0.00024 0.00043 0.00054 0.00145 0.00115 0.00144 0.0121 0.0137

Table 2.1 – Erreurs quadratiques moyennes de l’estimateur Jn,h calculées sur 50

échantillons indépendants générés aléatoirement.

La Table 2.1 montre qu’il y a une bonne convergence de l’estimateur Jn,h vers

l’indice théorique J dans les cas des indices classiques tels que FGT(1), FGT(2),

SEN, SHORROCKS (SHO). Comme le montrent les Figures 2.1 et 2.2 ci-dessous,

ces résultats sont très satisfaisants avec des tailles relativement petites de l’ordre de

50 pour les indices FGT. Pour les mesures de SEN et de SHORROCKS des tailles

d’échantillon plus importantes de l’ordre de 1000 sont considérées dans la Figure

2.2.
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Figure 2.1 – Courbes de l’estimateur Jn,h(z) et de l’indice théorique J(z) dans le

cas FGT(1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
1

0.
4

0.
7

 p (percentage of poverty)

S
E

N
 

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
2

0.
5

0.
8

 p (percentage of poverty)

S
H

O
R

R
O

C
K

S

Figure 2.2 – Courbes de l’estimateur Jn,h(z) et de l’indice théorique J(z) dans les

cas SEN et SHORROCKS.



Chapitre 3

Lois uniformes du logarithme pour

l’estimateur à noyau de pauvreté

3.1 Introduction

Tandis que le chapitre 2 établissait la convergence uniforme presque sûre de

l’estimateur à noyau de l’indice général de pauvreté

J = J(z, w, f) =

∫ z

0

w(G(y), G(z))f(y, z)dG(y), (3.1)

le présent chapitre est consacré à l’étude de lois limites uniformes du logarithme

pour J . On supposera que la fonction de répartition G(y) = P(Y ≤ y),∀y ∈ R
admet une densité de probabilité notée g(y) par rapport à la mesure de Lebesgue.

Alors l’indice J peut s’écrire sous la forme

J = J(z, w, f) =

∫ z

0

w(G(y), G(z))f(y, z)g(y)dy, (3.2)

où z > 0, w ∈ W et f ∈ F , W et F étant des classes de fonctions appropriées, i.e.

continues et décroissantes par rapport à la variable y.

Stute (1982b) a été le premier à établir une loi uniforme du logarithme pour

l’estimateur à noyau de la densité. En s’appuyant sur le comportement du module

d’oscillation du processus empirique uniforme, il a montré, sous certaines conditions
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de régularité sur la densité g(y) et sur la fenêtre hn, que

lim
n→∞

√
nhn sup

y∈I

{
|gn(y)− Egn(y)|√
2∥K∥22g(y) log(1/hn)

}
= 1 p.s., (3.3)

où gn est définie pour tout y ∈ R par

gn(y) =
1

nhn

n∑
j=1

K

(
Yj − y

hn

)
, (3.4)

avec K(·) une fonction noyau à support compact et à variation bornée telle que

0 <

∫
R
K2(t)dt = ∥K∥22 < ∞.

Deheuvels et Mason (1992) généralisent les résultats de Stute (1982a) sur le com-

portement du module d’oscillation du processus empirique uniforme et obtiennent

une loi uniforme fonctionnelle du logarithme pour déterminer la vitesse exacte de

convergence presque sûre des estimateurs à noyau de la densité g(y). Mais ces

résultats sont basés sur les approximations hongroises Komlós, Major et Tusnády

(KMT, 1975) du processus empirique uniforme qui ne sont pas toujours valables sur

le processus empirique général.

Une méthode plus générale et plus sophistiquée donnant une vitesse précise de

convergence presque sûre des estimateurs de type noyau a été développée par Ein-

mahl et Mason (2000). En effet, les résultats de ces derniers améliorent ceux de

Härdle, Janssen et Serfling (1988), et retrouvent la loi uniforme du logarithme de

Stute (1982b) donnée par (3.3) avec une autre approche basée sur la théorie du

processus empirique indexé par des fonctions.

Dans ce chapitre nous allons utiliser cette dernière méthodologie, qui est aussi

celle de Deheuvels et Mason (2004), pour établir des lois limites uniformes du lo-

garithme en probabilité pour l’estimateur à noyau de pauvreté Jn(z, w, f) défini

par

Jn(z, w, f) =
1

nhn

n∑
j=1

∫ z

0

w[Gn(y), Gn(z)]f(y, z)K

(
Yj − y

hn

)
dy, (3.5)

où Gn(y) =
1
n

∑n
j=1 1{Yj≤y} est la fonction de répartition empirique d’un échantillon

de variables aléatoires indépendantes Y1, · · · , Yn et 1A désigne la fonction indicatrice

d’un ensemble A.



3.1 Introduction 39

Ici, nous supposons que le noyau K(.) est une fonction mesurable vérifiant les condi-

tions (K.1-2-3-4) suivantes :

- (K.1) K(.) est à variation bornée sur R.
- (K.2) K(t) = 0 si |t| ≥ a, avec a > 0.

- (K.3)
∫
RK(t)dt = 1.

- (K.4)
∫
R tK(t)dt = 0 et 0 ̸=

∫
R t

2K(t)dt < ∞ .

Tandis que (hn)n≥1 est une suite de nombres réels positifs qui satisfait aux hy-

pothèses (H.1-2) suivantes :

- (H.1) hn → 0, lorsque n → ∞.

- (H.2) nhn/ log n → ∞, lorsque n → ∞.

- (H.3) log(1/hn)/ log log n → ∞ lorsque n → ∞.

Nous aurons aussi besoin des hypothèses additionnelles sur la densité g(·) notam-

ment que :

- (G.1) g(·) est 2-fois continûment dérivable.

- (G.2) g′′(·) la dérivée seconde de la densité g(·) est bornée.

Pour obtenir une loi limite uniforme en z, nous allons fixer les fonctions w et f

et garder la dépendance en z des quantités J(z, w, f) et Jn(z, w, f) de sorte que l’on

notera

J(z) := J(z, w, f) et Jn(z) := Jn(z, w, f).

Afin de simplifier les notations, nous introduisons les fonctions θn(·, z) et θ(·, z)
ci-dessous, définies pour tout y ∈ [0, z], z > 0, par

θn(y, z) = w[Gn(y), Gn(z)]f(y, z), n ≥ 1 (3.6)

et

θ(y, z) = w[G(y), G(z)]f(y, z). (3.7)

Alors, du fait de la continuité des fonctions w et f , on peut observer en utili-

sant Glivenko-Cantelli, que θn(·, z) converge presque sûrement et uniformément vers

θ(·, z), lorsque n → ∞ . D’où la convergence en probabilité de θn(·, z) uniformément

sur l’intervalle [0, z], i.e. pour tout ε > 0,

P

(
sup

y∈[0,z]

∣∣∣∣θn(y, z)θ(y, z)
− 1

∣∣∣∣ ≥ ε

)
→ 0, n → ∞ (Θ.1).
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Avec ces notations, l’estimateur Jn(z) est réduit à

Jn(z) =

∫ z

0

θn(y, z)gn(y)dy, (3.8)

et l’indice J(z) s’écrit

J(z) =

∫ z

0

θ(y, z)g(y)dy (3.9)

pour tout z > 0.

Nous pouvons maintenant énoncer le principal résultat de ce chapitre qui est

une loi faible du logarithme pour l’estimateur de pauvreté Jn(z), uniformément en

z ∈ [0, b], pour tout b > 0.

3.2 Lois limites faibles du logarithme

Théorème 3.1. Supposons que les hypothèses (K.1-2-3-4), (H.1-2) et (G.1-2) sont

satisfaites et que la fonction w : [0, 1] × [0, 1] → R possède des dérivées partielles

bornées, notées w′
u et w′

v. Si, de plus hn = Cn−δ, où C > 0 et 1/5 ≤ δ < 1, alors

pour tout b > 0 fixé, on a lorsque n → ∞,{
nhn

2 log(1/hn)

}1/2

sup
z∈[0,b]

±{Jn(z)− J(z)} P→ σ, (3.10)

où

σ = sup
z∈[0,b]

σ(z) = ∥K∥2
∫ b

0

θ(y, z)g1/2(y)dy,

avec σ(z) := ∥K∥2 supz∈[0,b]
∫ z

0
θ(y, z)g1/2(y)dy et ∥K∥22 =

∫
R K

2(t)dt.

Ici, ”
P→” désigne la convergence en probabilité.

Remarque 3.1. En fixant z et en considérant Jn(z, w, f) =: Jn(w, f) comme une

fonctionnelle ne dépendant que de w et f , on obtient une loi limite uniforme fonc-

tionnelle du logarithme pour l’estimateur Jn(w, f) sur la classe de fonctions W×F ,

i.e. {
nhn

2 log(1/hn)

}1/2

sup
(w,f)∈W×F

±{Jn(w, f)− J(w, f)} P→ σ′, (3.11)
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où

σ′ = ∥K∥2 sup
(w,f)∈W×F

∫ z

0

w[G(y), G(z)]f(y, z)g1/2(y)dy

= ∥K∥2 sup
(w,f)∈W×F

∫ z

0

θ(y, z)g1/2(y)dy,

avec ∥K∥22 =
∫
RK

2(t)dt.

Preuve. Pour prouver ce théorème nous décomposons la différence Jn(z)−J(z)

en trois termes.

Jn(z)− J(z) =

∫ z

0

θn(y, z)gn(y)dy −
∫ z

0

θ(y, z)g(y)dy

=

∫ z

0

θn(y, z)[gn(y)− Egn(y)]dy +
∫ z

0

[θn(y, z)− θ(y, z)]Egn(y)dy

+

∫ z

0

θ(y, z)[Egn(y)− g(y)]dy

=: Tn(z) +Rn,1(z) +Rn,2(z).

Nous allons d’abord établir que les termesRn,1(z) etRn,2(z) convergent uniformément

et presque sûrement vers 0, avec une vitesse de O(
√
nhn/2 log(1/hn)). En appliquant

le théorème de la moyenne, on obtient compte tenu de (3.6) et (3.7) que,

|Rn,1(z)| ≤
∫ z

0

|θn(y, z)− θ(y, z)||Egn(y)|dy

≤ |w′
u(η,G(z))||Gn(y)−G(y)||f(y, z)||Egn(y)|, η ∈ [G(y), Gn(y)]

≤ sup
0≤t≤1

|w′
u(t, G(z))| sup

0≤y≤z
|f(y, z)| sup

0≤y≤z
|Egn(y)| × ∥Gn −G∥∞.

On a sup0≤y≤z |Egn(y)| borné car

sup
0≤y≤z

|Egn(y)− g(y)| → 0, n → ∞.

En effet, on a par changement de variable,

sup
0≤y≤z

|Egn(y)− g(y)| ≤ sup
0≤y≤z

∫ a

−a

|g(y − thn)− g(y)|K(t)dt

≤ sup
0≤y≤z

sup
|t|≤a

|g(y − thn)− g(y)|
∫
R
K(t)dt

≤ sup
0≤x,y≤z,|x−y|≤ahn

|g(y − thn)− g(y)| → 0, n → ∞,
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puisque la densité g(·) est supposée continue sur R, donc uniformément continue sur

l’intervalle compact [0, z].

De même sup0≤y≤z |f(y, z)| est borné car la fonction y 7→ f(y, z) est continue sur

[0, z], pour tout z > 0 donné. On en déduit, compte tenu également du fait que w′
u

est bornée, que

|Rn,1(z)| ≤ C1∥Gn −G∥∞, ∀z > 0, (3.12)

où C1 est une constante réelle positive.

G étant continue, en utilisant la loi du logarithme itéré de Chung (1948), l’inégalité

(3.12) implique que

sup
z∈[0,b]

|Rn,1(z)| = O(
√
n−1 log log n/2).

De plus, on peut déduire de l’hypothèse (H.3) que

nhn

log(1/hn)
≤ n

log log n
.

D’où √
nhn

2 log(1/hn)
sup
z∈[0,b]

|Rn,1(z)| → 0, n → ∞. (3.13)

Pour le terme Rn,2(z) nous utilisons un développement de Taylor. On a pour tout

y ∈ [0, z]

Egn(y)− g(y) =

∫
R
K(u)(g(y − uhn)− g(y))du

=

∫
R
K(u)[−uhng

′(y) +
u2h2

n

2
g′′(y − λuhn)]du, 0 < λ < 1

=
h2
n

2

∫
R
u2g′′(y − θuhn)K(u)du.

Cela entrâıne que

sup
y∈[0,z]

|Egn(y)− g(y)| ≤ h2
n

2
sup
x∈R

|g′′(x)|
∫
R

∣∣u2K(u)
∣∣ du → 0, n → ∞. (3.14)

Donc, puisque la fonction y 7→ θ(y, z) est bornée, on en déduit que pour tout z > 0

|Rn,2(z)| ≤
∫ z

0

|θ(y, z)||Egn(y)− g(y)|dy

≤ z × sup
y∈[0,z]

|Egn(y)− g(y)| sup
y∈[0,z]

|θ(y, z)|

≤ C2h
2
n,
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où C2 est une constante réelle positive. En utilisant l’hypothèse hn = Cn−δ, 1/5 ≤
δ < 1, on obtient, après des calculs de routine, que√

nhn

2 log(1/hn)
sup
z∈[0,b]

|Rn,2(z)| → 0, n → ∞. (3.15)

Quant au terme Tn(z), il converge uniformément en probabilité sur l’intervalle [0, b],

vers une constante que nous allons déterminer. En combinant la condition (Θ.1)

établie ci-dessus, avec les hypothèses (K.1-2-3), (H.1-2) et (G.1), alors on obtient,

d’après le théorème 1.2 de Deheuvels et Mason (2004), que pour tout y ∈ [0, z]√
nhn

2 log(1/hn)
± θn(y, z){gn(y)− Egn(y)}

P→ ∥K∥2θ(y, z)g1/2(y),

donc∫ z

0

√
nhn

2 log(1/hn)
±θn(y, z){gn(y)−Egn(y)}dy

P→ ∥K∥2
∫ z

0

θ(y, z)g1/2(y)dy := σ(z).

D’où

sup
z∈[0,b]

∫ z

0

√
nhn

2 log(1/hn)
± θn(y, z){gn(y)− Egn(y)}dy

P→ sup
z∈[0,b]

σ(z) := σ,

c’est à dire

sup
z∈[0,b]

Tn(z)
P→ σ = ∥K∥2

∫ b

0

θ(y, z)g1/2(y)dy. (3.16)

Les relations (3.13), (3.15) et (3.16) prouvent entièrement le théorème.

3.3 Intervalles de confiance simultanés

Le théorème 3.1 précédent nous permet de construire des intervalles de confiance

asymptotiques et uniformes en z ∈ [0, b], pour l’indice de pauvreté théorique J(z),

avec un niveau de confiance asymptotiquement optimal (100%). Dans la littérature

statistique, on utilise le plus souvent la normalité asymptotique et les lois qui en

découlent pour construire des intervalles de confiance. Mais, il n’est pas très habituel

de construire des intervalles sur la base d’une loi dégénérée. Dans cette section,
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nous allons remarquer que nos lois limites uniformes du logarihme constituent une

extension des lois asymptotiques normales pour construire de tels intervalles de

confiance, via un mode de convergence plus fort (en probabilité).

Posons

Ln(z) = σ(z)

√
2 log(1/hn)

nhn

,

alors, nous pouvons déduire de (3.10) que pour tout b > 0,

± sup
z∈[0,b]

1

Ln(z)
{Jn(z)− J(z)} P→ 1, n → ∞.

Donc, pour tout ϵ > 0, on a

P
(∣∣∣∣± 1

Ln(z)
{Jn(z)− J(z)} − 1

∣∣∣∣ > ϵ,∀z ∈ [0, b]

)
→ 0,

ce qui équivaut à

P (|±{Jn(z)− J(z)} − Ln(z)| ≤ ϵLn(z), ∀z ∈ [0, b]) → 1.

Cela implique pour tout ϵ > 0 que, lorsque n → ∞,

P(J(z) ∈ [Jn(z) + (1− ϵ)Ln(z), Jn(z) + (1 + ϵ)Ln(z)],∀z ∈ [0, b]) → 1, (3.17)

et

P(J(z) ∈ [Jn(z)− (1 + ϵ)Ln(z), Jn(z)− (1− ϵ)Ln(z)],∀z ∈ [0, b]) → 1. (3.18)

En combinant (3.17) et (3.18), on peut écrire que pour tout ϵ > 0, lorsque n → ∞,

P(J(z) ∈ [Jn(z)− (1 + ϵ)Ln(z), Jn(z) + (1 + ϵ)Ln(z)],∀z ∈ [0, b]) → 1. (3.19)

Cette dernière relation (3.19) nous permet de construire des intervalles de confiance

simultanés en z ∈ [0, b] et asymptotiquement optimaux pour l’indice de pauvreté

J(z), de la forme

[Jn(z)− Ln(z), Jn(z) + Ln(z)]. (3.20)
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3.3.1 Application : Sélection d’un modèle de loi paramétrique

Du fait de leur optimalité asymptotique, nous allons utiliser les intervalles de

confiance établis en (3.20), pour sélectionner un modèle de loi paramétrique adéquat

afin d’analyser la pauvreté avec les données de revenu. Pour ce faire, nous considérons

trois modèles paramétriques : la loi Lognormale LN(m,σ), la loi Gamma γ(a, b) et

la loi de Singh-Maddala SM(α, β, q). Rappelons que la loi de Singh-Maddala est

définie par la fonction de répartition

G(y) = 1− 1[
1 +

(
y
β

)α]q ,
où α et q sont des paramétres de forme et β un paramétre d’échelle. Elle généralise

les distributions de Paréto et de Weibull.

Les paramètres de ces lois sont estimés par la méthode du maximum de vrai-

semblance en utilisant des données de revenu annuel des ménages sénégalais. Ces

données ont été recueillies auprès de 3278 ménages choisis au hasard, lors d’une

enquête 1 d’envergure nationale, réalisée par l’Agence Nationale de la Statistique et

de la Démographie en 1994. La variable revenu Y qui est étudiée ici, a été standar-

disée suivant l’échelle d’équivalence-adulte de la FAO. Le seuil de pauvreté annuel

z était fixé à 143080 F CFA pour chaque ménage.

Afin de tester l’adéquation de ces trois modèles paramétriques pour estimer les

indices de pauvreté, nous allons procéder à deux méthodes d’estimation différentes,

pour les indices de Foster-Greer-Thorbecke définis par

FGT (α) =

∫ z

0

(
z − y

z

)α

dG(y), α ≥ 0.

D’abord, nous calulons les intervalles de confiance construits autour de l’estimateur

à noyau et donnés par (3.20), pour les indices FGT (0), FGT (1) et FGT (2) en

considérant le noyau d’Epanechnikov donné par

K(x) =

{
3
4
(1− x2) si |x| ≤ 1

0 sinon.

Ensuite, nous estimons ces mêmes indices par une méthode d’intégration numérique

(Simpson), en supposant que la loi de la variable revenu Y suit respectivement les dis-

tributions Lognormale, Gamma et Singh-Maddala. La Table 3.1 donne les résultats

1. Enquête Sénégalaise Auprès des Ménages
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de l’estimation non-paramétrique pour les indices FGT(0), FGT(1) et FGT(2) com-

munément appelés le pourcentage de la pauvreté (α = 0), la profondeur de la pau-

vreté (α = 1) et la sévérité de la pauvreté (α = 2).

Indice Estimation Borne Inf Borne Sup

FGT(0) 0.316 0.295 0.337

FGT(1) 0.101 0.081 0.122

FGT(2) 0.048 0.027 0.068

Table 3.1 – Estimation non-paramétrique de l’indice FGT pour α = 0, 1, 2.

La Table 3.2 ci-dessous donne les estimations ponctuelles de ces même indices

pour chacune des trois distributions considérées.

Distribution FGT(0) FGT(1) FGT(2)

Lognormal 0.311 0.106 0.050

Gamma 0.346 0.157 0.096

Singh-Maddala 0.315 0.092 0.039

Table 3.2 – Estimation paramétrique de l’indice FGT pour α = 0, 1, 2.

Sur ces deux tableaux, nous remarquons que les estimations de l’indice FGT

obtenues avec les modèles Lognormal et Singh-Maddala sont plus consistantes avec

l’estimation non-paramétrique. De plus, elles sont comprises entre les bornes des

intervalles de confiance asymptotiquement optimaux donnés par la méthode non-

paramétrique, alors que celles obtenues avec la distribution Gamma ne le sont pas.

Pour mieux visualiser ces remarques, nous représentons dans la Figure 3.1 ci-dessous

les intervalles de confiance simultanés non-paramétriques et les courbes d’évolution

de l’indice FGT(1), par rapport au seuil de pauvreté z, pour chacun des trois modèles

considérés ainsi que l’indice FGT classique.

La Figure 3.1 montre que les modèles Lognormal et Singh-Maddala semblent

adéquats pour estimer l’indice de pauvreté de FGT, car leurs courbes d’évolution

sont entièrement dans les limites de confiance optimales établies avec la méthode

non-paramétrique.
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Figure 3.1 – Comparaison des trois modèles paramétriques.

Par conséquent, nous pouvons dire que, pour ces données de revenu de ménages

sénégalais, l’estimation paramétrique de l’indice de pauvreté conduirait à choisir le

modèle de Singh-Maddala ou le modèle Lognormal. Ce résultat est en phase avec

les travaux de McDonald (1984) qui disent que dans beaucoup de situations, la

distribution de Singh-Maddala apparâıt comme le meilleur modèle pour ajuster les

données de revenus.



Chapitre 4

Normalité asymptotique des

estimateurs de type plug-in

4.1 Introduction

Dans ce chapitre le seuil de pauvreté z > 0 et les fonctions w et f seront tous

fixés ; et on note J l’indice général de pauvreté défini par

J =

∫ z

0

w(G(y), G(z))f(y, z)dG(y), (4.1)

où, rappelons-le, G(y) = P(Y ≤ y) est la fonction de répartition de la variable

aléatoire Y , représentant le revenu d’un individu pris au hasard dans la population

étudiée.

Supposons que Y1, Y2, · · · , Yn est un échantillon de variables aléatoires indépendantes

et identiquement distribuées de même loi que la variable Y . Notons Gn la fonction

de répartition empirique correspondante. Pour tout réel y, on a

Gn(y) =
1

n

n∑
j=1

1{Yj≤y},

où 1A désigne la fonction indicatrice de l’ensemble A. Introduisons les statistiques

d’ordre correspondant à l’échantillon Y1, Y2, · · · , Yn, notées

0 ≤ Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n ≤ ∞.
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Alors si q = qn désigne le nombre de pauvres (i.e. card{j : j ≤ n, Yj < z}) dans

l’échantillon de taille n, on a
q

n
= Gn(z). (4.2)

Au lieu des estimateurs à noyau, ici nous allons travailler avec des estimateurs directs

de type ”plug-in”, i.e.

Jn =
1

n

q∑
j=1

w(Gn(Yj,n), Gn(z))f(Yj,n, z) (4.3)

=
1

n

q∑
j=1

w

(
j

n
,
q

n

)
f(Yj,n, z), (4.4)

où w et f sont des fonctions mesurables appropriées. Cet indice empirique Jn décrit

un ensemble très vaste de mesures de pauvreté discrètes que l’on peut subdiviser

en deux classes. La première classe contient les mesures dites non-pondérées pour

lesquelles la fonction poids w( j
n
, q
n
) est égale à la constante 1. Cette classe contient

toutes les mesures de pauvreté décomposables, en particulier celle de Foster-Greer-

Thorbecke (1984). Celle-ci est définie, pour tout α ≥ 0, par

FGTn(α) =
1

n

q∑
j=1

(
z − Yj,n

z

)α

. (4.5)

La mesure FGT (z, α) est fréquemment utilisée dans les études empiriques de pau-

vreté. Pour α = 0, elle est réduite à q/n, le pourcentage empirique d’individus

pauvres. Lorsque α = 1 et α = 2, elle est respectivement interprétée comme l’inten-

sité de la pauvreté et la sévérité de la pauvreté.

En dehors de cette classe, il y a la classe des mesures dites pondérées pour

lesquelles le poids w( j
n
, q
n
) varie selon le rang de l’individu j dans l’échelle des per-

sonnes pauvres. Cette seconde classe contient l’ensemble des indices de pauvreté

non-décomposables ou linéaires par rapport au revenu. On y trouve la fameuse me-

sure de Sen (1976) qui peut s’écrire sous la forme

Sn =
1

n

q∑
j=1

2q

q + 1

(
1− Gn(Yj,n)

Gn(z)
+

1

q

)(
z − Yj,n

z

)
. (4.6)

La mesure de Kakwani (1980) qui est une généralisation de (4.6) appartient aussi à
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cette seconde classe. Ell est définie pour k ≥ 0 par

Kn(k) =
1

n

q∑
j=1

qk+1∑q
j=1 j

k

(
1− Gn(Yj,n)

Gn(z)
+

1

q

)k (
z − Yj,n

z

)
. (4.7)

De même, Shorrocks (1995) propose une mesure pondérée définie par

Shn =
1

n

q∑
j=1

2

(
1−Gn(Yj,n) +

1

2n

)(
z − Yj,n

z

)
. (4.8)

Pour plus de détails concernant ces deux classes de mesures de pauvreté, nous

renvoyons le lecteur à Zheng (1997). Notre objectif dans ce chapitre, consiste plutôt

à établir la normalité asymptotique de l’estimateur général de pauvreté Jn. Nous

montrerons également que la variance asymptotique peut être estimée de façon non-

paramétrique afin de construire des intervalles de confiance précis.

4.2 Normalité asymptotique

Soit un réel z > 0 fixé ; w et f deux fonctions appropriées définissant une mesure

de pauvreté quelconque donnée par

J =

∫ z

0

w(G(y), G(z))f(y, z)dG(y). (4.9)

Nous allons d’abord montrer que l’estimateur Jn converge presque sûrement vers la

quantité J .

Soit (hn)n≥1 une suite de fonctions réelles définies sur R+ par

hn(y) = w(Gn(y), Gn(z))f(y, z)1{y<z}, ∀n ≥ 1. (4.10)

et h la fonction réelle définie par

h(y) = w(G(y), G(z))f(y, z)1{y<z}, ∀y ≥ 0. (4.11)

En utilisant la loi forte des grands nombres et la continuité de la fonction w, on

montre aisément que, pour tout y ≥ 0, hn(y) converge presque sûrement vers h(y),

lorsque n → ∞.

Introduisons quelques notations. Soit P la loi de probabilité de Y, i.e. P =
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P ◦ Y , Pn la mesure empirique basée sur l’échantillon Y1, · · · , Yn et Gn le processus

empirique associé. Alors pour toute fonction g mesurable, on a

Pg =

∫
gdP = Eg(Y ), Pn(g) =

1

n

n∑
j=1

g(Yj), Gn(g) =
√
n(Pn − P )g.

Avec ces notations, nous pouvons ré-écrire Jn en fonction de la mesure empirique

Pn,

Jn =
1

n

n∑
j=1

w(Gn(Yj,n), Gn(z))f(Yj,n, z)1{Yj,n≤z} = Pn(hn)

et la quantité J en fonction de la loi P ,

J =

∫ z

0

w(G(y), G(z))f(y, z)dG(y) =

∫ ∞

0

h(y)dG(y) =

∫
hdP = Ph.

Donc

Jn − J = Pn(hn)− Ph = [Pn(hn − h)] + [Pnh− Ph]. (4.12)

Puisque Ph = J < ∞, en appliquant de nouveau la loi des grands nombres pour les

deux derniers termes de l’égalité (4.12), on obtient finalement que

Jn
p.s.−→ J, n → ∞.

Une condition nécessaire pour appliquer le théorème central limite est que Eh2(Y ) <

∞. Cette condition est vérifiée ici , puisque

Eh2(Y ) = Ph2 =

∫ +∞

0

h(y)dG(y) =

∫ z

0

w2(G(y), G(z))f 2(y, z)dG(y) < ∞, (4.13)

car les fonctions w et f sont supposées continues par hypothèse donc intégrables sur

l’intervalle compact [0, z] pour tout z > 0 fixé.

Maintenant nous allons décrire la normalité asymptotique de l’estimateur de type

”plug-in” Jn dans le Théorème 4.1 suivant, où  désigne la convergence faible.

Théorème 4.1. Soit z un réel positif fixé ; w : [0, 1]× [0, 1] → R+ et f : R2 → R+

deux fonctions continues et décroissantes chacune par rapport à sa première variable.

Si de plus, la fonction w admet des dérivées partielles premières w′
u et w′

v bornées,

alors lorsque n → ∞, on a

√
n[Jn − J ] N(0, σ2),
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où N(0, σ2) est la loi d’une variable aléatoire normale de variance

σ2 = σ2
1 + σ2

2,

avec

σ2
1 =

∫ z

0

w2(G(y), G(z))f 2(y, z)dG(y)−
(∫ z

0

w(G(y), G(z))f(y, z)dG(y)

)2

et

σ2
2 =

∫ z

0

∫ z

0

φ(x, z)φ(y, z)[G(x ∧ y)−G(x)G(y)]dG(x)dG(y)

+G(z)(1−G(z))

(∫ z

0

ϕ(y, z)dG(y)

)2

+2(1−G(z))

(∫ z

0

φ(y, z)G(y)dG(y)

)
.

(∫ z

0

ϕ(y, z)dG(y)

)
.

où φ(y, z) = w′
u(G(y), G(z))f(y, z) et ϕ(y, z) = w′

v(G(y), G(z))f(y, z).

Remarque 4.1. Avec des choix appropriés pour les fonctions w(·, ·) et f(·, ·), ce
théorème nous permet d’obtenir la normalité asymptotique des mesures empiriques

de Sen, de Shorrocks, de Kakwani, de Foster-Greer-Thorbecke et de beaucoup d’autres

mesures existant dans la littérature.

Preuve. Par décomposition, on obtient

√
n[Jn − J ] =

√
n[Pnhn − Ph]

=
√
n[Pn(hn − h)− P (hn − h)] +

√
nP (hn − h) +

√
n(Pn − P )h

= Gn(hn − h) +Gn(h) +
√
nP (hn − h),

où hn et h sont les fonctions définies précédemment en (4.10) et (4.11).

Pour prouver le théorème 4.1, nous allons maintenant établir que le premier

terme de cette décomposition Gn(hn − h) tend vers 0 presque sûrement, alors que

les deuxième et troisième termes Gn(h) et
√
nP (hn − h) convergent chacun, en

distribution, vers une variable gaussienne, lorsque n → ∞.

Pour toute fonction réelle φ définie dans un domaine D, on note

∥φ∥D = sup
y∈D

|φ(y)| et ∥φ∥∞ = ∥φ∥R.
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Comme précédemment, une application de la loi des grands nombres implique que

hn(y) converge presque sûrement vers h(y), pour tout y ≥ 0. D’après le théorème

de Glivenko-Cantelli, cette convergence est uniforme sur R. Donc, pour tout δ > 0

et n assez grand, on a

∥hn − h∥∞ ≤ δ√
n
, δ > 0.

D’où,

|Gn(hn − h)| ≤ Gn∥hn − h∥∞ ≤ Gn(
δ√
n
) = (Pn − P )(δ).

Or (Pn − P )(δ) → 0, d’après la loi des grands nombres. Donc le premier terme

Gn(hn − h) converge presque sûrement vers 0, lorsque n → ∞.

Pour le second terme, nous appliquons directement le théorème central limite

puisque Ph2 = Eh2(Y ) < ∞ d’après (4.13). On obtient

Gn(h) G(h),

où G(h) est une variable aléatoire gaussienne de variance,

σ2
1 = Ph2−(Ph)2 =

∫ z

0

w2(G(y), G(z))f2(y, z)dG(y)−
(∫ z

0

w(G(y), G(z))f(y, z)dG(y)

)2

.

Pour le troisième terme, nous appliquons un développement de Taylor à la fonc-

tion bi-variable w. On peut alors écrire, avec B(·) désignant un pont brownien stan-

dard,

√
n {w(Gn(y), Gn(z))− w(G(y), G(z))} = w′

u(ζ)
√
n(Gn(y)−G(y)) + w′

v(ζ)
√
n(Gn(z)−G(z))

= w′
u(ζ){

√
n(Gn(y)−G(y))−B(G(y))}

+w′
v(ζ){

√
n(Gn(z)−G(z))−B(G(z))}

+w′
u(ζ)B(G(y)) + w′

v(ζ)B(G(z))

+o(|Gn(y)−G(y)|) + o(|Gn(z)−G(z)|),

où ζ = ζ(y, z) = (G(y), G(z)). Posons

φ(y, z) = w′
u(ζ)f(y, z) et ϕ(y, z) = w′

v(ζ)f(y, z).

Alors, rappelant les définitions de hn et h en (4.10) et (4.11) on obtient, en rajoutant
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et en retranchant une intégrale du pont brownien, que

√
nP (hn − h) =

∫ z

0

φ(y, z){
√
n(Gn(y)−G(y))−B(G(y))}dG(y)

+

∫ z

0

ϕ(y, z){
√
n(Gn(z)−G(z))−B(G(z))}dG(y)

+

∫ z

0

φ(y, z)B(G(y))dG(y)

+

∫ z

0

ϕ(y, z)B(G(z)dG(y) + o(1)

=: Rn,1 +Rn,2 +N1 +N2 + o(1).

Les termes Rn,1 et Rn,2 convergent presque sûrement vers 0, lorsque n → ∞. En

effet, nous avons

|Rn,1| =

∫ z

0

φ(y, z){
√
n(Gn(y)−G(y))−B(G(y))}dG(y)

≤ (G(z)−G(0)) sup
y∈[0,z]

|φ(y, z)| × ∥
√
n(Gn −G)−B ◦G∥∞

et

|Rn,2| =

∫ z

0

ϕ(y, z){
√
n(Gn(z)−G(z))−B(G(z))}dG(y)

≤ (G(z)−G(0)) sup
y∈[0,z]

|ϕ(y, z)| × ∥
√
n(Gn −G)−B ◦G∥∞,

où ′′◦′′ désigne l’opérateur de composition de fonctions.

D’après les approximations hongroises (KMT, 1975), on peut choisir le pont

brownien B(·) de sorte que ∥
√
n(Gn−G)−B ◦G∥∞ converge presque sûrement vers

0, lorsque n → ∞. Alors en combinant la continuité de f avec les dérivées partielles

bornées de w, nous en déduisons que les termes Rn,1 et Rn,2 tendent vers 0 presque

sûrement, quand n → ∞.

Nous remarquons enfin que les deux autres termes N1 et N2 sont des intégrales du

pont brownien B(·), donc des variables aléatoires gaussiennes car, ils peuvent s’écrire
comme des transformations linéaires d’un vecteur gaussien. La somme N1 + N2

est aussi une intégrale du pont brownien B(·), donc c’est une variable aléatoire

gaussienne. Ainsi, lorsque n → ∞, le terme
√
nP (hn − h) converge en distribution
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vers une variable aléatoire gaussienne de variance

σ2
2 =

∫ z

0

∫ z

0

φ(x, z)φ(y, z)[G(x ∧ y)−G(x)G(y)]dG(x)dG(y)

+G(z)(1−G(z))

(∫ z

0

ϕ(y, z)dG(y)

)2

+2(1−G(z))

(∫ z

0

φ(y, z)G(y)dG(y)

)(∫ z

0

ϕ(y, z)dG(y)

)
.

Pour avoir la variance asymptotique σ2 de
√
n[Jn − J ], on peut remarquer que

la covariance des termes Gn(h) et
√
nP (hn − h) est nulle pour toute fonction h

mesurable. En effet, on a

cov(Gn(h),
√
nP (hn − h)) = cov(

√
n(Pnh− Ph),

√
n(Phn − Ph))

= ncov(Pnh− Ph, Phn − Ph)

= n[cov(Pnh, Phn)− cov(Pnh, Ph)− cov(Ph, Phn) + cov(Ph, Ph)]

= ncov(Pnh, Phn) car cov(X, a) = 0 si a est une constante

= ncov(
1

n

n∑
j=1

h(Yj),Ehn(Y ))

=
n∑

j=1

cov(h(Yj),Ehn(Y )) = 0.

Finalement σ2 = σ2
1 + σ2

2.

Remarque 4.2. Lorsque la variance σ2 est estimée, le théorème 4.1 nous permet

de calculer des intervalles de confiance asymptotiques pour l’indice de pauvreté J .

Par exemple, pour construire un intervalle de confiance de niveau 100(1− α)% , il

suffit de trouver un estimateur consistant s2n de σ2 et d’appliquer la formule

Jn ±
sn√
n
u1−α/2, (4.14)

où u1−α/2 (0 < α < 1) désigne le quantile d’ordre (1−α/2) de la loi normale centrée

réduite.
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4.3 Simulations

Pour appliquer ce résultat de normalité asymptotique dans l’analyse de la pau-

vreté, il est nécessaire de savoir dans quelles conditions il est vrai. Pour cela, nous

allons procéder à des simulations sur des échantillons de données de tailles n = 100,

n = 500, n = 1000 et n = 50000.

La distribution lognormale est une loi très connue dans l’ajustement des données

de revenu. Cette loi présente un avantage sur la distribution de Paréto car ses pa-

ramétres sont faciles à estimer et à interpréter. D’autres distributions comme celle

de Singh-Maddala, sont aussi adéquates pour ajuster des données de revenu. Cepen-

dant, pour des raisons d’espace, nous allons conduire nos simulations, en supposant

que la fonction de répartition G suit la loi lognormale LN(m,σ) dont la densité de

probabilité est donnée par

g(y) =
1

σ
√
2π

1

y
exp

{
−1

2

(
log y −m

σ

)2
}

y > 0.

Nous travaillons ici dans le cas de la mesure de Sen où, l’indice théorique J est égal

à

J = 2

∫ z

0

(
1− G(y)

G(z)

)(
1− y

z

)
g(y)dy.

Cet indice J ainsi que la variance σ2 dans le théorème 4.1 sont calculés avec la

méthode d’intégration numérique de Simpson, en prenant G égale à la distribution

lognormale LN(12, 0.75).

Nous générons 100 échantillons de taille n selon la loi LN(12, 0.75). Pour chaque

échantillon i, nous effectuons les deux étapes suivantes :

- Calcul de l’indice empirique Jn,i dans la cas de Sen qui est égal à :

Jn,i =
2

n

q∑
j=1

(
1− j

q + 1

)(
1− Yj,n

z

)
,

où q est le nombre de pauvres dans l’échantillon.

- Calcul de la quantité zn,i =
√
n(Jz

n,i−J)

σ
.

Après ce procédé, nous traçons un graphique quantile-quantile (QQ-plot) pour

comparer la série zn,i, i = 1, · · · , 100 à la loi normale centrée réduite. Les résultats

sont donnés par la figure 4.1 ci-dessous. Sur le graphique nous observons une linéarité
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Figure 4.1 – Simulation de la normalité asymptotique de l’estimateur ”plug-in” Jn

dans le cas de Sen.

des points ; ce qui témoigne de la normalité asymptotique de l’estimateur ”plug-in”

Jn.

4.4 Estimation de la variance asymptotique

Puisque la variance σ2 dépend de la distribution G, on peut utiliser une méthode

non-paramétrique pour l’estimer. Pour cela, nous remplaçons la distribution théorique

G par son équivalent empirique Gn partout dans l’expression de σ2. En rappelant

les statistiques d’ordre de l’échantillon Y1, · · · , Yn :

Y1,n ≤ · · · ≤ Yq,n < z ≤ Yq+1 ≤ · · · ≤ Yn,n,

on peut définir un estimateur empirique de la variance σ2, par

s2n = s21,n + s22,n + s23,n + s24,n,

où

s21,n =
1

n

q∑
j=1

w2

(
j

n
,
q

n

)
f 2(Yj,n, z)−

(
1

n

q∑
j=1

w(
j

n
,
q

n
)f(Yj,n, z)

)
,
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s22,n =
1

n2

q∑
i=1

q∑
j=1

φ(Yi,n)φ(Yj,n)(
i

n
∧ j

n
− i

n

j

n
),

s23,n =
q

n

(
1− q

n

)( 1

n

q∑
j=1

ϕ(Yj,n, z)

)2

,

s24,n = 2
(
1− q

n

)( 1

n

q∑
j=1

φ(Yj,n, z)

)(
1

n

q∑
j=1

ϕ(Yj,n, z)

)
.

Sous les conditions du Théorème 4.1, il a été prouvé (cf. Zitikis (2002)) que s2n est

un estimateur fortement consistant pour σ2 si la fonction poids w(·, ·) est telle que

l’application a : u 7→ a(u) = w(u,G(z)) pour tout z > 0 fixé, vérifie :

|a(u)| ≤ cuα−1(1− u)β−1, 0 < u < 1, (4.15)

pour des constantes α, β > 0 et 0 < c < ∞.

Notons que la condition (4.15) est satisfaite pour la plupart des indices de pau-

vreté. Voici quelques exemples :

Indice FGT. Nous avons a(u) = 1, et la condition (4.15) est vérifiée pour

α = β = c = 1.

Indice de Shorrocks. a(u) = 2(1− u), 0 < u < 1. Nous avons

|a(u)| ≤ 2(1− u)2−1,

et (4.15) est vraie pour α = 1, β = 2 et c = 2.

Indice de Sen. a(u) = 2(1− u/G(z)), 0 < s < 1. On a

|a(u)| ≤ 2

G(z)
(1− u)2−1,

et (4.15) est vraie pour α = 1, β = 2 et c = 2/G(z).

Indice de Kakwani. a(u) = (k + 1)(1− u/G(z))k+1, 0 < s < 1. On a

|a(u)| ≤ k + 1

(G(z))k+1
(1− u)(k+2)−1,
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et (4.15) est vraie pour α = 1, β = k + 2 and c = k + 1/(G(z))k+1.

Avec cette estimation non-paramétrique de la variance σ2, nous pouvons alors

utiliser la formule (4.14) pour estimer l’indice de pauvreté J à partir d’intervalles de

confiance de niveau 100(1 − α)% , avec 0 < α < 1. Travaillant avec les données de

revenu des ménages sénégalais de 1994, nous avons comparé à l’aide de la Figure 4.1

suivante, les intervalles de confiance de niveau 100(1 − α)% avec ceux du chapitre

3, ne nécessitant pas de fixer un seuil de signification α et construits autour d’un

estimateur à noyau.
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Figure 4.2 – Intervalles de confiance simultanés de l’indice de pauvreté FGT(1).

Le trait continu représente les intervalles de confiance asymptotiquement optimaux

construits autour de l’estimateur à noyau étudié au chapitre 3 ; le trait discontinu

représente des intervalles de confiance uniformes de niveau 99% obtenus avec la

normalité asymptotique de l’estimateur ”plug-in”. Le trait foncé représente la vraie

courbe.

Nous observons que les intervalles de confiance construits autour de l’estima-

teur à noyau sont plus larges que ceux construits, à l’aide du résultat de normalité

asymptotique, autour de l’estimateur ”plug-in”. Cela parâıt naturel car le niveau

de confiance est plus élevé avec la méthode du noyau. Cependant, les intervalles de
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confiances issus de la normalité asymptotique sont plus précis comme le montre la

figure 4.1.



Chapitre 5

Convergence faible des

estimateurs de type plug-in

5.1 Introduction et Résultat

La théorie de la convergence faible des processus stochastiques joue un rôle fon-

damental en statistique asymptotique et, particulièrement dans l’approximation des

lois de statistiques de test pour vérifier des hypothèses. Il s’agit de la convergence en

loi d’une suite de variables aléatoires (Xn(ω, t)), t variant dans un ensemble T, vers

une fonction aléatoire X, à valeurs dans un même espace métrique probabilisable.

Lorsque l’ensemble d’indices T est une classe de fonctions, les processus considérés

sont dits indexés par des fonctions. Un exemple particulièrement important est le

processus empirique indexé par une classe de fonctions, dont la convergence en distri-

bution vers le pont brownien est à l’origine de nombreuses applications statistiques.

En effet, le théorème central limite uniforme permet de contrôler simultanément le

comportement de la déviation d’une infinité de variables aléatoires par rapport à

leurs espérances et du coup, d’établir des bornes d’approximations ou des intervalles

de confiances uniformes pour un paramétre fonctionnel donné.

L’intérêt de l’étude de la convergence faible pour les mesures de pauvreté réside

dans le fait qu’elle permet d’unifier tous les résultats asymptotiques, établis jusqu’ici

avec des approches différentes, dans un cadre unique global afin de développer des

méthodes d’inférence robustes, pouvant se baser sur n’importe quelle classe d’indices

de pauvreté. Le chapitre 6 suivant traitera de l’inférence. Par contre, dans ce cha-
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pitre nous nous intéressons à la convergence faible uniforme de l’estimateur direct de

type ”plug-in” Jn introduit au chapitre 4, et considéré ici, pour z > 0 fixé, comme

un processus stochastique indexé par les fonctions w ∈ W et f ∈ F , où W et F sont

des classes de fonctions appropriées définies ci-dessous. L’estimateur Jn est donné

par

Jn =
1

n

n∑
j=1

w[Gn(Yj,n), Gn(z)]f(Yj,n, z)1{Yj,n<z},

et les classes de fonctions W et F définies comme suit :

W = {w : [0, 1]× [0, 1] → R+/ w continue, et u 7→ w(u, ·) est décroissante},

et

F = {f : R2 → R+/ f continue, et y 7→ f(y, ·) est décroissante}.

Pour toutes fonctions w ∈ W et f ∈ F , notons

Jn(w, f) := Jn =
1

n

n∑
j=1

w[Gn(Yj,n), Gn(z)]f(Yj,n, z)1{Yj,n<z}

et

J(w, f) := J =

∫ ∞

0

w[G(y), G(z)]f(y, z)1{y<z}dG(y).

Posons

hw,f,Gn = w[Gn(y), Gn(z)]f(y, z)1{y<z} (5.1)

et

hw,f,G = w[G(y), G(z)]f(y, z)1{y<z}. (5.2)

Alors en utilisant les notations de la section 4.2 du chapitre 4 et une décomposition

similaire à (4.12), on obtient

√
n[Jn(w, f)−J(w, f)] = Gn(hw,f,Gn −hw,f,G)+Gn(hw,f,G)+

√
nP (hw,f,Gn −hw,f,G),

(5.3)

où Gn désigne le processus empirique et P la loi commune des Yj.

Ainsi, la convergence faible du processus centré normalisé
√
n[Jn(w, f)−J(w, f)]

va dépendre du comportement asymptotique des trois termes du membre de droite

de l’égalité (5.3).
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Théorème 5.1. Soit z un réel positif fixé et G une fonction de répartition assosiée

à la loi P , admettant une densité de probabilité g. Alors le processus {
√
n[Jn(w, f)−

J(w, f)] : w ∈ W , f ∈ F} converge en distribution dans l∞(W×F) vers un processus

gaussien centré de covariance

Σ((w1, f1); (w2, f2)) =

∫ z

0

w1[G(y), G(z)]f1(y, z)w2[G(y), G(z)]f2(y, z)dG(y)

−
∫ z

0

w1[G(y), G(z)]f1(y, z)dG(y)

∫ z

0

w2[G(y), G(z)]f2(y, z)dG(y) + ϑ,

où

ϑ =

∫ z

0

∫ z

0

(a1(x, y) + a2(x, y) + a3(x, y) + a4(x, y))×

(G(x ∧ y)−G(x)G(y))dG(x)dG(y),

avec

a1(x, y) = (w1)
′
u[G(x), G(z)]f1(x, z) · (w2)

′
u[G(y), G(z)]f2(y, z)

a2(x, y) = (w1)
′
u[G(x), G(z)]f1(x, z) ·

w2[G(y), G(z)]

g(y)

∂f2
∂y

(y, z)

a3(x, y) =
w1[G(x), G(z)]

g(x)

∂f1
∂x

(x, z) · (w2)
′
u[G(y), G(z)]f2(y, z)

a4(x, y) =
w1[G(x), G(z)]

g(x)

∂f1
∂x

(x, z) · w2[G(y), G(z)]

g(y)

∂f2
∂y

(y, z).

5.2 Preuve

La preuve de ce théorème sera divisée en trois parties. Dans la première partie,

nous montrerons que le processus empirique Gn indexé par la classe de fonctions

H = {hw,f,G : w ∈ W , f ∈ F}, où hw,f,G est une fonction indexée définie par

l’équation (5.2), converge en distribution vers un processus gaussien G dans l∞(H).

Dans la deuxième, nous prouverons que

sup
w∈W,f∈F

|Gn(hw,f,Gn − hw,f,G)|
P→ 0, n → ∞. (5.4)

Et enfin dans la troisième et dernière partie nous établirons, en utilisant la delta-

méthode fonctionnelle (cf. Annexe A.4) que, le terme
√
nP (hw,f,Gn−hw,f,G) converge

aussi en distribution vers un processus gaussien W indexé par (w, f) ∈ W ×F .
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5.2.1 1ere partie

Pour cette partie, il suffit de montrer que la classe de fonctions H définie par

H = {hw,f,G : w ∈ W , f ∈ F}
= {y 7→ w[G(y), G(z)]f(y, z)1{y<z} : w ∈ W , f ∈ F}

est P -Donsker, où rappelons-le, P = P ◦Y est la loi commune des Yj. Nous pouvons

écrire H sous la forme H = H1 · H2, où

H1 = {y 7→ w[G(y), G(z)] : w ∈ W}

et

H2 = {y 7→ f(y, z)1{y<z} : f ∈ F}.

Ainsi, H sera une classe de Donsker si et seulement si H1 et H2 sont des classes

de Donsker, car H1 et H2 sont constituées de fonctions supposées à valeurs dans

[0, 1], donc uniformément bornées. Pour montrer que Hi, i = 1, 2 est P -Donsker

nous allons établir les trois conditions (C.1),(C.2) et (C.3) suivantes :

(C.1) : P ∗Hi < ∞, où Hi est une enveloppe mesurable de la classe Hi. Ici, P
∗

désigne une mesure extérieure telle que pour toute fonction g mesurable

P ∗g = Pg =

∫
gdP.

(C.2) : Hi est P -mesurable.

(C.3) : Hi vérifie la condition d’entropie uniforme, i.e.∫ 1

0

sup
Q

√
logN(ϵ ∥Hi∥2,Q ,Hi, L2(Q))dϵ < ∞, (EU)

où Q décrit l’ensemble des mesures de probabilité sur R et N(ϵ,Hi, L2(Q)), i =

1, 2 est le nombre de ϵ− recouvrements deHi, i.e. le nombre minimal de boules,

par rapport à la norme L2(Q), de rayon ϵ nécessaire pour couvrir Hi.

Pour z > 0 fixé, et G une fonction de répartition donnée, les fonctions y 7→
w[G(y), G(z)] et y 7→ f(y, z)1{y<z} sont décroissantes par hypothèse, en vertu des

propriétés normatives d’une mesure de pauvreté. Sans perte de généralité, on peut

les considérer comme prenant leurs valeurs dans [0, 1]. Ainsi, les classes H1 et H2
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possédent une fonction enveloppe commune qui est la constante H = 1.

Nous observons que

H1 = {y 7→ w[G(y), ·] : w ∈ W} ⊂ Mb(R, [0, 1]),

où Mb(R, [0, 1]) est l’ensemble des fonctions monotones bornées sur R à valeurs

dans l’intervalle [0, 1]. Donc, en vertu du Théorème 2.7.5, page 159, van der Vaart

et Wellner (1996), on a pour r = 2, que

sup
Q

√
logN[](ϵ,H1, L2(Q)) < Kϵ−1, 0 < ϵ < 1,

où le suprémum est pris sur toutes les mesures de probabilité Q sur R et K est une

constante positive. L’inégalité (5.5) suivante est bien connue (cf. van der Vaart et

Wellner (1996)). Pour toute classe de fonctions G on a

N(ϵ,G, L2(Q)) ≤ N[](2ϵ,G, L2(Q)) (5.5)

Alors on en déduit que

sup
Q

√
logN(ϵ,H1, L2(Q)) < sup

Q

√
logN[](2ϵ,H1, L2(Q)).

Puisque ∥H∥2,Q = 1, cela implique que

sup
Q

√
logN(ϵ∥H∥2,Q,H1, L2(Q)) <

K

2
ϵ−1, 0 < ϵ < 1.

D’où ∫ 1

0

sup
Q

√
logN(ϵ∥H∥2,Q,H1, L2(Q))dϵ ≤

√
K

2

∫ 1

0

ϵ−1/2dϵ =
√
2K < ∞.

Donc H1 satisfait à la condition d’entropie uniforme (C.3). De manière analogue, on

montre que H2 vérifie aussi cette condition (C.3).

Pour vérifier la P− mesurabilité (condition C.2), nous allons montrer que la

classe H1 est convenablement mesurable, i.e. admet une sous-classe H0
1 dénombrable

et dense (voir Annexe A.2). Pour cela, il suffit de prouver ( voir Exemple 2.3.4,

page 110, van der Vaart et Wellner (1996)) que la classe H1 est séparable pour

la norme suprémum. Une condition suffisante pour que H1 soit ainsi est que H1

soit totalement bornée pour la norme suprémum. Rappelons que H1 est une classe
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de fonctions décroissantes sur R à valeurs dans [0, 1]. Donc si −H1 composée de

fonctions croissantes est totalement bornée, H1 sera aussi totalement bornée.

Notons N∞ le nombre minimal de boules de rayon δ > 0, par rapport à la norme

suprémum ∥ · ∥∞, nécessaires pour couvrir une classe de fonctions G, alors logN∞

est appelé δ-entropie de G pour la norme suprémum.

Proposition 5.1. van de Geer (2000)

Si G est une classe de fonctions croissantes g : R → [0, 1] et F un sous-ensemble fini

de R de cardinal n, alors

logN∞(δ,G) ≤ ⌊1
δ
⌋ log

(
n+ ⌊1

δ
⌋
)
, ∀δ > 0,

où ⌊x⌋ désigne la partie entière d’un nombre réel x.

Remarque 5.1. Cette proposition nous permet d’établir que la δ−entropie de H1

par rapport à la norme suprémum est finie pour tout δ > 0. Ce qui entrâıne

immédiatement que H1 est totalement bornée pour la norme suprémum.

Preuve. La preuve de cette proposition est condensée dans van der Geer (2000).

Nous la détaillons ici pour mettre le lecteur à l’aise. Supposons que les points du

sous-ensemble F soient ordonnés comme suit : x1 ≤ x2 ≤ · · · ≤ xn. Pour tout g ∈ G,
posons

Mi = ⌊g(xi)

δ
⌋, i = 1, · · · , n

avec δ un réel positif donné, et définissons la fonction

g̃(xi) = δMi, i = 1, · · · , n.

Alors on a, pour tout i = 1, · · · , n,

|g̃(xi)− g(xi)| = |δ⌊g(xi)

δ
⌋ − δg(xi)

δ
| = δ|⌊g(xi)

δ
⌋ − g(xi)

δ
| ≤ δ, ∀δ > 0.

Comme g est croissante, on a

0 ≤ M1 ≤ M2 ≤ · · · ≤ Mn ≤ ⌊1/δ⌋,

car g(x) ≤ 1,∀x ∈ R. Le nombre de fonctions g̃ que l’on peut construire avec ce

procédé est :

C
⌊1/δ⌋
n+⌊1/δ⌋ =

(n+ ⌊1/δ⌋)× · · · × (n+ 1)

⌊1/δ⌋ × (⌊1/δ⌋ − 1)× · · · × 1
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donc

logC
⌊1/δ⌋
n+⌊1/δ⌋ =

⌊1/δ⌋∑
j=1

log(n+ j)− log(j) ≤
⌊1/δ⌋∑
j=1

log(n+ j) ≤ ⌊1/δ⌋ log(n+ ⌊1/δ⌋).

Comme la δ−entropie de G pour la norme suprémum est le logarithme du nombre

de boules de centre g̃ et de rayon δ, nécessaire pour couvrir G, alors on a

logN∞(δ,G) = logC
⌊1/δ⌋
n+⌊1/δ⌋ ≤ ⌊1/δ⌋ log(n+ ⌊1/δ⌋).

Ce qui achève la preuve de la proposition.

On peut donc déduire de cette proposition que pour tous n ∈ N et δ > 0, fixés

logN∞(δ,G) < ∞.

D’où G est totalement bornée pour la norme suprémum, donc G est séparable

pour cette norme. Par conséquent, G est convenablement mesurable. En appliquant

cette proposition à −H1, on en déduit que H1 est convenablement mesurable, donc

P−mesurable, i.e. satisfait à la condition (C.2). Avec le même raisonnement, on

montre que H2 satisfait aussi à cette condition (C.2).

La condition (C.1) est immédiate. En effet, comme H1 et H2 sont des classes de

fonctions à valeurs dans [0, 1], on peut prendre comme fonction enveloppe commune

la constane H = 1 qui est mesurable, donc

P ∗H2 = PH2 = 1 < ∞.

Nous venons de montrer que les classes de fonctions H1 et H2 vérifient les conditions

(C.1), C.2) et (C.3), donc H = H1 ·H2 est P−Donsker, i.e. le processus {Gn(hw,f,G) :

hw,f,G ∈ H} converge en distribution vers un processus gaussien G dans l∞(H), de

fonction de covariance

cov(G(hw1,f1,G),G(hw2,f2,G)) = Phw1,f1,Ghw2,f2,G − Phw1,f1,GPhw2,f2,G

=

∫ z

0

w1[G(y), G(z)]f1(y, z)w2[G(y), G(z)]f2(y, z)dG(y)−∫ z

0

w1[G(y), G(z)]f1(y, z)dG(y)

∫ z

0

w2[G(y), G(z)]f2(y, z)dG(y).

Par construction, la classe H peut être identifiée à la classe W ×F , donc on a

Gn  G dans l∞(W ×F). (5.6)
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5.2.2 2ème partie

Dans cette partie on note G−1 la fonction des quantiles associée à la fonction de

répartition G qui admet une densité, donc G−1 est dérivable et on suppose que sa

dérivée est bornée. De même, on admet aussi que les fonctions bi-variables w et f

possèdent des dérivées partielles premières bornées.

Pour z > 0 fixé, w ∈ W et f ∈ F , considérons la fonction θ définie par

θ(u) = w(u,G(z))f(G−1(u), z)1{G−1(u)<z}, u ∈ [0, 1].

Alors

hw,f,G(y) = w(G(y), G(z))f(y, z)1{y<z} = θ(G(y)). (5.7)

Pour simplifier les notations au niveau des indices, on peut identifier le couple de

fonctions (w, f) à la fonction θ en posant

hθ,G(y) := hw,f,G(y) = θ(G(y)).

Soit

Θ = {u 7→ θ(u) = w(u,G(z))f(G−1(u), z)1{G−1(u)<z} : w ∈ W , f ∈ F}. (5.8)

Pour établir (5.4), il suffit de montrer que

sup
θ∈Θ

|Gn(hθ,Gn − hθ,G)|
P→ 0, n → ∞. (5.9)

Pour cela, nous allons utiliser les techniques développées dans l’article de van der

Vaart et Wellner (2007). La classe de fonctions Θ doit alors satisfaire la condition

d’entropie uniforme pour une fonction enveloppe donnée, mais aussi, elle doit être

convenablement mesurable.

w et f étant des fonctions à valeurs dans [0, 1], donc la constante H = 1 est une

fonction enveloppe pour les classes W et F . Par définition de la classe Θ, H = 1 est

aussi une fonction enveloppe pour Θ. Ainsi la décroissance des fonctions u 7→ w(u, ·)
et u 7→ f(G−1(u), ·) implique que Θ est un sous-ensemble de M(R, [0, 1]), ensemble

des fonctions monotones g : R → [0, 1]. Par conséquent, on peut monter comme

dans la partie I de la preuve que, Θ satisfait à la condition d’entropie uniforme∫ 1

0

sup
Q

√
logN(ϵ∥H∥2,Q,Θ, L2(Q))dϵ < ∞ (5.10)
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et que Θ est convenablement mesurable.

Rappelons que si Gn désigne la fonction de répartition empirique associée à la

distribution G, alors d’après le principe d’invariance de Doob-Donsker,
√
n(Gn−G)

converge en distribution vers B ◦ G dans l∞(R), l’ensemble des fonctions réelles

bornées sur R. B étant un pont brownien défini sur C[0, 1], l’espace des fonctions

continues sur [0, 1].

Posons

D = l∞(R) = {d : R → R/ ∥d∥∞ < ∞}

et

D0 = Cb(R) = {d : R → R/ ∥d∥∞ < ∞ et d continue}.

Alors comme B est à trajectoires dans C[0, 1], B ◦G est à trajectoires dans D0.

Pour tous d0 ∈ D0, θ ∈ Θ et δ > 0 fixés, introduisons la suite de classes de

fonctions

Fn(θ, d0, δ) = {hθ,G+n−1/2d − hθ,G+n−1/2d0 : d ∈ D, ∥d− d0∥∞ < δ},

avec Fn(θ, d0, δ) une fonction enveloppe mesurable de Fn(θ, d0, δ) pour tout n ≥ 1.

Pour établir (5.9), il suffit de vérifier (cf. Théorème 2.3, van der Vaart et Wellner

(2007)) les trois conditions (i), (ii) et (iii) suivantes pour la classe de fonctions Θ :

(i) supθ∈Θ |Gn(hθ,G+n−1/2d0 − hθ,G)|
P→ 0, n → ∞ ∀d0 ∈ D0.

(ii) supθ∈Θ |GnFn(θ, d0, δ)|
P→ 0, n → ∞ ∀δ > 0, ∀d0 ∈ D0.

(iii) supθ∈Θ supd0∈K Fn(θ, d0, δn)
P→ 0, n → ∞ ∀δn → 0,∀K ⊂ D0, K compact.

Vérifions maintenant ces trois conditions pour la classe de fonctions Θ. Pour z > 0

fixé, posons

a(u) = w(u,G(z)), u ∈ [0, 1]

et

b(u) = f(G−1(u), z), u ∈ [0, 1].

Alors a(·) et b(·) sont des fonctions dérivables car w(·, ·) et f(·, ·) sont différentiables
par hypothèse. En appliquant le théorème de la moyenne, on obtient compte tenu
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de la relation (5.7), que pour tout y ∈ [0, z],

|hθ,G+n−1/2d(y)− hθ,G+n−1/2d0(y)| = |θ(G(y) + n−1/2d(y))− θ(G(y) + n−1/2d0(y))|
= |w[G(y) + n−1/2d(y), G(z)]f [G−1(G(y) + n−1/2d(y)), z]−

w[G(y) + n−1/2d0(y), G(z)]f [G−1(G(y) + n−1/2d0(y)), z]|
≤ |a(G(y) + n−1/2d(y))− a(G(y) + n−1/2d0(y))| ×

|b(G(y) + n−1/2d(y))|
+|b(G(y) + n−1/2d(y))− b(G(y) + n−1/2d0(y))| ×
|a(G(y) + n−1/2d0(y))|

≤ sup
u∈[0,1]

|b(u)| sup
u∈[0,1]

|a′(u)| × |d(y)− d0(y)√
n

|+

sup
u∈[0,1]

|a(u)| sup
u∈[0,1]

|b′(u)| × |d(y)− d0(y)√
n

|.

Donc pour tout y ∈ [0, z],

|hθ,G+n−1/2d(y)− hθ,G+n−1/2d0(y)| ≤
M√
n
× ∥d− d0∥∞, (5.11)

où

M = sup
u∈[0,1]

|b(u)| sup
u∈[0,1]

|a′(u)|+ sup
u∈[0,1]

|a(u)| sup
u∈[0,1]

|b′(u)|.

Ainsi, pour tout n, la classe Fn(θ, d0, δ) admet une fonction enveloppe constante de

la forme

Fn(θ, d0, δ) =
δM√
n
. (5.12)

Cela implique, en notant ∥Gn∥Θ = supθ∈Θ |Gn(θ)|, que, lorsque n → ∞

sup
θ∈Θ

|GnFn(θ, d0, δ)| ≤ ∥Gn∥Θ
δM√
n

= δM∥Pn − P∥Θ → 0,

pour tout d0 ∈ D0 et tout δ > 0 car Θ est une classe de Glivenko-cantelli d’après

(5.10). D’où la condition (ii).

La condition (iii) est immédiate, car d’après (5.12), on a

√
nPFn(θ, d0, δn) = δnM → 0,

quand δn → 0. Par contre, la condition (i) nécessite le lemme suivant :
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Lemme 5.1. Supposons que Φ est une classe convenablement mesurable de fonctions

mesurables admettant une fonction enveloppe ϕ̄ telle que∫ 1

0

sup
Q

√
logN(ϵ∥ϕ̄∥2,Q,Φ, L2(Q))dϵ < ∞, (5.13)

P (ϕ̄ ◦G)2 < ∞ (5.14)

et que pour tout d0 ∈ D0,

P (ϕ̄ ◦ (G+ n−1/2d0))
2 = O(1), P (ϕ̄ ◦ (G+ n−1/2d0))

21{ϕ̄◦(G+n−1/2d0)≥ϵ
√
n} → 0,

(5.15)

pour tout ϵ > 0. Si de plus,

sup
ϕ∈Φ

P (ϕ ◦ (G+ n−1/2d0)− ϕ ◦G)2 → 0, n → ∞ (5.16)

pour tout d0 ∈ D0. Alors la condition (i) est vraie.

Preuve. ( voir Lemme 3.1, page 241, van der Vaart et Wellner (2007)).

Précèdemment, on a établi que la classe de fonctions Θ définie en (5.8) satisfait à

la condition d’entropie uniforme et admet une enveloppe constante égale à 1. Donc

les conditions (5.13), (5.14) et (5.15) du lemme 5.1 sont remplies. Pour appliquer

ce lemme à la classe Θ, il suffit de vérifier la condition (5.16). En appliquant le

théorème de la moyenne, comme précédemment, on montre que pour tout y ∈ [0, z]

|θ ◦ (G(y) + n−1/2d0(y))− θ ◦G(y)| ≤ |w[G(y) + n−1/2d0(y), G(z)]×
f [G−1(G(y) + n−1/2d0(y)), G(z)]

−w[G(y), G(z)]f [G−1 ◦G(y), G(z)]|

≤ M∥d0∥∞√
n

.

Donc

P (θ ◦ (G+ n−1/2d0)− θ ◦G)2 ≤ M∥d0∥∞
n

→ 0, n → ∞

pour tout d0 ∈ D0. D’où la relation (5.16). En appliquant le lemme 5.1 à la classe

de fonctions Θ, on obtient la condition (i).

Finalement, on déduit de (i), (ii) et (iii) que (5.9) est vraie, i.e.

sup
w∈W,f∈F

|Gn(hw,f,Gn − hw,f,G)| = sup
θ∈θ

|Gn(hθ,Gn − hθ,G)|
P→ 0, n → ∞. (5.17)
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5.2.3 3ème partie

Dans cette partie nous appliquons la delta-méthode fonctionnelle (voir Annexe

A.4) à l’application ϕ : G 7→ ϕ(G) = Phθ,G, où θ décrit la classe de fonctions Θ,

définie en (5.8), i.e.

θ(u) = w(u,G(z))f(G−1(u), z)1{G−1(u)<z}, u ∈ [0, 1].

Pour tout y ≥ 0, on rappelle que

hθ,G(y) = θ(G(y)) = w(G(y), G(z))f(y, z)1{y<z} = hw,f,G(y). (5.18)

Soit (tn)n≥1 une suite de réels et (dn)n≥1 une suite d’éléments de D0 = Cb(R) telles
que

G+ tndn ∈ D0, tn → 0, dn → d0 ∈ D0.

En rappelant les fonctions a(u) = w(u,G(z)) et b(u) = f(G−1(u), z) définies dans

la deuxième partie de la preuve, on peut écrire pour tout y ∈ [0, z], que

hθ,G+tndn(y)− hθ,G(y) = θ(G(y) + tndn(y))− θ(G(y))

= w[G(y) + tndn(y), G(z)]f [G−1(G(y) + tndn(y)), z]

−w[G(y), G(z)]f [G−1(G(y)), z]

= a[G(y) + tndn(y)]b[G(y) + tndn(y)]− a[G(y)]b[G(y)]

= {a[G(y) + tndn(y)]− a[G(y)]}b[G(y) + tndn(y)]

+a[G(y)]{b[G(y) + tndn(y)]− b[G(y)]}.

Ainsi, pour n assez grand, nous avons

hθ,G+tndn(y)− hθ,G(y) = a′(G(y))b(G(y))tndn(y) + b′(G(y))a(G(y))tndn(y) + o(tndn(y))

= θ′(G(y))tndn(y) + o(tndn(y)),

où a′(·), b′(·) et θ′(·) désignent respectivement les fonctions dérivées de a(·), b(·) et

θ(·). Donc, lorsque n → ∞ on a

1

tn
P (hθ,G+tndn − hθ,G) →

∫ z

0

θ′(G(y))d0(y)dG(y) =: [ϕ′(G) · d0](θ),

pour tout θ ∈ Θ.

Puisque
√
n(Gn −G) converge en distribution vers le pont brownien B ◦G, qui
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est séparable et à trajectoires dans Cb(R) = D0, en appliquant le Théorème 3.9.4

(Delta-méthode, voir page 374, van der Vaart et Wellner (1996)) pour l’application

ϕ(G) = Phθ,G, on obtient pour tout θ ∈ Θ, lorsque n → ∞, que

√
n(ϕ(Gn)− ϕ(G)) =

√
n(Phθ,Gn − Phθ,G) 

∫ z

0

θ′(G(y))B(G(y))dG(y) =: W(θ).

Considérons maintenant le processus

{Wn(θ) =
√
n(Phθ,Gn − Phθ,G) : θ ∈ Θ}.

Rappelons qu’ on a Ph2
θ,G < ∞, ∀θ ∈ Θ. Pour montrer que le processusWn converge

en distribution vers le processus gaussien W, il suffit de prouver que Θ est une classe

de Donsker ; ce qui est le cas. En effet, on a déjà montré en (5.10) que Θ vérifie la

condition d’entropie uniforme∫ 1

0

sup
Q

√
logN(ϵ∥H∥2,Q,Θ, L2(Q))dϵ < ∞ (5.19)

et que Θ est convenablement mesurable, donc P -mesurable. De plus, son enveloppe

H = 1 satisfait à P ∗H2 = PH2 = 1 < ∞. Donc Θ est P -Donsker, i.e.

Wn  W dans l∞(Θ).

W est alors un processus gaussien de covariance

cov(W(θ1),W(θ2)) =

∫ z

0

∫ z

0

θ′1(G(x))θ′2(G(y))[G(x ∧ y)−G(x)G(y)]dG(x)dG(y).

(5.20)

D’après l’égalité (5.18), la fonction θ peut être identifiée au couple de fonctions

(w, f). Donc, on peut écrire

Wn  W dans l∞(W ×F), (5.21)

et la covariance en (5.20) s’écrit

cov(W(w1, f1);W(w2, f2)) =

∫ z

0

∫ z

0

(a1(x, y) + a2(x, y) + a3(x, y) + a4(x, y))×

(G(x ∧ y)−G(x)G(y))dG(x)dG(y),
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avec

a1(x, y) = (w1)
′
u[G(x), G(z)]f1(x, z) · (w2)

′
u[G(y), G(z)]f2(y, z)

a2(x, y) = (w1)
′
u[G(x), G(z)]f1(x, z) ·

w2[G(y), G(z)]

g(y)

∂f2
∂y

(y, z)

a3(x, y) =
w1[G(x), G(z)]

g(x)

∂f1
∂x

(x, z) · (w2)
′
u[G(y), G(z)]f2(y, z)

a4(x, y) =
w1[G(x), G(z)]

g(x)

∂f1
∂x

(x, z) · w2[G(y), G(z)]

g(y)

∂f2
∂y

(y, z).

Récapitulation de la preuve :

Nous avons que

√
n[Jn(w, f)− J(w, f)] =

√
n(Pnhw,f,Gn − Phw,f,G)

= Gn(hw,f,Gn − hw,f,G) +
√
n(Pnhw,f,G − Phw,f,G)

+
√
nP (hw,f,Gn)− hw,f,G)

= Gn(hw,f,Gn − hw,f,G) +Gn(hw,f,G) +Wn(hw,f,G).

On vient d’établir que :

– supw∈W,f∈F Gn(hw,f,Gn − hw,f,G)
P→ 0, en (5.17).

– Gn  G dans l∞(W ×F), en (5.6).

– Wn  W dans l∞(W ×F), en (5.21).

Donc
√
n[Jz

n(w, f) − Jz(w, f)] qui est la somme de ces trois processus est asymp-

totiquement tendu dans l∞(W × F). De plus, les marges finies de chaque proces-

sus convergent vers celles d’un processus gaussien, alors les marges de la somme

vont converger aussi vers celles d’un processus gaussien. D’après le théorème de

Prohorov (voir Annexe A.1) et compte tenu du lemme 5.2 ci-dessous, le processus

{
√
n(Jz

n(w, f) − Jz(w, f)) : w ∈ W , f ∈ F} converge faiblement dans l∞(W × F)

vers un processus gaussien tendu de covariance

Σ((w1, f1); (w2, f2)) = cov(G(hw1,f1,G,G(hw2,f2,G)) + cov(W(w1, f1),W(w2, f2)).

La covariance croisée des deux processus est nulle comme on l’a montré dans la

preuve du résultat de normalité asymptotique au chapitre 4.
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Lemme 5.2. Deux processus tendus X et Y à valeurs dans l∞(T ) sont identiques

en loi si toutes leurs distributions marginales finies sont identiques en loi.



Chapitre 6

Inférence avec les indices de

pauvreté

6.1 Test de dominance de pauvreté

L’une des principales raisons pour mesurer la pauvreté est d’établir des compa-

raisons dans le temps et dans l’espace. Dans ce chapitre nous allons présenter un

test de comparaison entre deux distributions, lequel test sera basé sur la structure

de covariance établie au chapitre 5. Rappelons que pour z > 0 fixé, notre indice

général de pauvreté J peut s’exprimer comme une fonctionnelle de w et de f

J =

∫ z

0

w(G(y), G(z))f(y, z)dG(y) =: J(w, f),

où w et f appartiennent à des classes de fonctions appropriées. Notons que chaque

couple de fonctions (w, f) définit un indice de pauvreté spécifique, de sorte que la

covariance du processus J pour deux couples différents (w1, f1) et (w2, f2) peut être

assimilée à la covariance entre deux mesures de pauvreté différentes. Cette covariance

est asymptotiquement définie par

Σ((w1, f1); (w2, f2)) =

∫ z

0

w1(G(y), G(z))f1(y, z)w2(G(y), G(z))f2(y, z)dG(y)

−
∫ z

0

w1(G(y), G(z))f1(y, z)dG(y)×∫ z

0

w2(G(y), G(z))f2(y, z)dG(y) + ϑ,
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où

ϑ =

∫ z

0

∫ z

0

(a1(x, y) + a2(x, y) + a3(x, y) + a4(x, y))×

(G(x ∧ y)−G(x)G(y))dG(x)dG(y),

avec

a1(x, y) = (w1)
′
u[G(x), G(z)]f1(x, z) · (w2)

′
u[G(y), G(z)]f2(y, z)

a2(x, y) = (w1)
′
u[G(x), G(z)]f1(x, z) ·

w2[G(y), G(z)]

g(y)

∂f2
∂y

(y, z)

a3(x, y) =
w1[G(x), G(z)]

g(x)

∂f1
∂x

(x, z) · (w2)
′
u[G(y), G(z)]f2(y, z)

a4(x, y) =
w1[G(x), G(z)]

g(x)

∂f1
∂x

(x, z) · w2[G(y), G(z)]

g(y)

∂f2
∂y

(y, z).

Il est donc clair que cette covariance dépend de la distribution G(y). Pour faire de

l’inférence avec, il convient de l’estimer de façon consistante. Cela peut être réalisé

avec deux types d’approches différentes.

La première consiste à choisir la distribution G(y) parmi l’un des modèles pa-

ramétriques connus. Dans ce cas la covariance est une fonction des paramétres incon-

nus du modèle choisi. En remplaçant ces paramétres inconnus par leurs estimateurs

de maximum de vraisemblance ou d’autres estimateurs consistants, on obtient un

estimateur consistant de la covariance.

L’autre approche qui est celle que nous utilisons ici, correspond au cas non-

paramétrique. Si nous supposons que G(y) admet une densité de probabilité g(y)

par rapport à la mesure de Lebesgue, on peut exprimer la covariance Σ en fonction

de g(y). En disposant d’un estimateur non-paramétrique consistant de cette densité

g, on peut obtenir facilement un estimateur consistant de la covariance Σ.

Dans la littérature il existe beaucoup de méthodes non-paramétriques pour l’esti-

mation de la densité. Silverman (1986) a fait une revue détaillée de ces méthodes al-

lant des veilles méthodes d’histogramme aux plus sophistiquées telle que la méthode

du noyau. Cette dernière est probablement la mieux connue et la plus populaire car

un nombre très important de travaux sont consacrés à l’estimation de la densité par

la méthode du noyau. L’estimateur à noyau de la densité de probabilité g(y) est
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généralement défini par

gn(y) =
1

nh

n∑
j=1

K

(
y − Yj

h

)
,

où K(·) est une fonction noyau et h est un paramétre de lissage qui dépend de

la taille n de l’échantillon Y1, · · · , Yn. Sous certaines conditions de régularité sur

K(·), Parzen (1962) a montré que gn(y) converge en probabilité vers g(y), pour tout

réel y. La consistance forte de gn(y) pour g(y) a été également établie (voir par

exemple, Silverman (1978)). Ainsi, chaque terme de la covariance Σ, dépendant de

la seule inconnue g(y), peut être estimé de manière consistante. En appliquant le

lemme de Slutsky, on obtient finalement un estimateur consistant de la covariance Σ.

Les méthodes statistiques pour comparer deux distributions en termes de pau-

vreté, ou Partial poverty orderings en anglais, sont nombreuses et variées dans la

littérature. Ce sont des tests d’hypothèses de dominance ou de non-dominance sto-

chastique.

Considérons deux distributions de revenu F et G. Soit P une classe d’indices

de pauvreté. On peut définir, à l’aide de ces indices, une relation de dominance ou

d’ordre partiel entre F et G. On dit que F domine G si pour tout seuil de pauvreté

z > 0 fixé,

J(F, z) ≤ J(G, z), ∀J ∈ P ,

où J(F, z) et J(G, z) sont les mesures de pauvreté correspondant respectivement

aux distributions F et G.

Beach et Richmond (1985) ont développé une technique pour tester cette hy-

pothèse de dominance contre l’hypothèse alternative de non-dominance. Cette tech-

nique fut généralisée par Bishop, Formby et Thistle (1992) qui proposèrent un

test dit d’union-intersection. Howes (1994) propose une méthode inverse dite test

d’intersection-union pour l’hypothèse nulle de dominance contre l’hypothèse alterna-

tive de non-dominance. Tous ces deux types de test sont faciles à mettre en oeuvre ;

mais comportent des lacunes car ils sont basés sur une grille finie de points choisis

arbitrairement. De plus, ils sont impuissants devant les tests qui utilisent la struc-

ture de covariance des indices de pauvreté considérés. Pour pallier ces défauts, on

peut utiliser le test généralisé de Wald qui a été décrit par Kodde et Palm (1986)
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et Wolak (1989). La procédure de test est la suivante. Supposons que l’on veuille

comparer deux distributions F et G en utilisant d indices de pauvreté donnés. On

note par JF et JG les vecteurs de Rd dont les composantes sont respectivement les d

indices de pauvreté théoriques correspondant à la distribution F et à la distribution

G. La méthode généralisée de Wald (cf. Zheng (2001)) nous permet de tester les

types d’hypothèses

H0 : JF = JG contre H1 : JF ≽ JG

et

H0 : JF ≽ JG contre H1 : JF � JG

où JF ≽ JG signifie que la population correspondant à la distribution F est moins

pauvre que celle correspondant à la distribution G, i.e. F domine G.

Supposons que deux échantillons aléatoires de tailles respectives nF et nG sont

tirés indépendamment des deux populations étudiées. Les estimateurs des vecteurs

d’indices JF et JG sont notés ĴF et ĴG ; leurs matrices de covariances respectives

sont estimées par Σ̂F et Σ̂G. Posons

∆Ĵ = JF − JG,

alors la variance de ∆Ĵ peut être estimée par

Σ̂ =
1

nF

Σ̂F +
1

nG

Σ̂G.

Pour exprimer les statistiques de test de Wald, il faut résoudre le problème de

minimisation suivant :

min
v≥0

(∆Ĵ − v)′Σ̂−1(∆Ĵ − v). (6.1)

Si ṽ est une solution de ce problème de minimisation, alors les statistiques de Wald

sont :

c1 = (∆Ĵ)′Σ̂−1(∆Ĵ)− (∆Ĵ − ṽ)′Σ̂−1(∆Ĵ − ṽ),

pour le test de l’égalité (H0 : JF = JG) contre la dominance (H1 : JF ≽ JG) et,

c2 = (∆Ĵ − ṽ)′Σ̂−1(∆Ĵ − ṽ),

pour le test de la dominance (H0 : JF ≽ JG) contre la non-dominance (H1 : JF �
JG).
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Il a été prouvé que, sous l’hypothèse nulle H0, ces statistiques sont asympto-

tiquement distribuées suivant une somme pondérée de variables du χ2 à différents

degrés de liberté. A ce propos, nous référons à Kodde et Palm (1986), Wolak(1989),

Gouriéroux et al. (1982), Kudô (1963) et Perlman (1969).

Pour conclure le test, il faudra comparer les valeurs de c1 ou c2 avec les bornes

inférieure ql et supérieure qu de la valeur critique du test considéré pour un seuil de

signification donné 0 < α < 1. Une table de ces valeurs critiques est disponible dans

Kodde et Palm (1986). ql est obtenue en choisissant un niveau de signification α et

en posant les degrés de liberté dl = 1, i.e.

α =
1

2
P(χ2(1) ≥ ql).

Pour obtenir qu, on pose les degrés de liberté dl = d, i.e.

α =
1

2
P(χ2(d− 1) ≥ qu) +

1

2
P(χ2(d) ≥ qu).

La règle de décision du test s’énonce alors comme suit :

- Si c1(c2) < ql, alors on accepte H0

- Si c1(c2) > qu, alors on rejette H0

- Si ql < c1(c2) < qu, on ne peut conclure. Des simulations de Monte Carlo sont alors

nécessaires pour compléter l’inférence (voir par exemple page 215, Wolak (1989)

oubien Fisher et al. (1998)).

6.2 Illustration empirique

Maintenant, nous allons appliquer ce test pour comparer la situation de pauvreté

au Sénégal entre deux périodes : 1994 et 2001. Le seuil de pauvreté était supposé le

même, fixé par les experts de la Banque mondiale à 1 $ US/jour/personne. Pour ces

deux périodes le Sénégal dispose de données de dépenses annuelles récoltées aucours

d’enquêtes menées auprès des ménages par l’Agence Nationale de la Statistique et

de la Démographie (ANSD) du Sénégal. Deux échantillons aléatoires simples ont été

recueillis indépendamment durant ces deux périodes. Pour 1994 on a observé 3278

ménages, alors que pour la période 2001, 6594 ménages ont été interrogés.

Considérons maintenant les indices de pauvreté de Kakwani (1980) qui sont de
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la forme

Jz(k) = (k + 1)

∫ z

0

(
1− G(y)

G(z)

)k (
z − y

z

)
dG(y), k ≥ 0. (6.2)

z > 0, désigne le seuil de pauvreté et G(y) est la distribution du revenu dans la

population étudiée. Cette classe d’indices de pauvreté est certainement la forme

la plus évoluée des indices, l’outil le plus récent et le plus complet. En effet, on y

retrouve la mesure de Foster-Greer-Thorbecke (1984) pour k = 0 et la célèbre mesure

de Sen (1976) pour k = 1. Pour k ≥ 2, la mesure de Kakwani possède toutes les

propriétés désirables pour un indice de pauvreté. Elle a aussi l’avantage de donner

un poids plus grand aux plus pauvres. Cela implique qu’une baisse de cet indice

indique, en général, une amélioration significative du bien-être des plus pauvres.

Pour des raisons d’espace, nous allons travailler avec d = 5 indices de pauvreté de

Kakwani correspondant respectivement aux valeurs de k = 0, 1, 2, 3, 4. Notons J94 le

vecteur constitué de ces 5 indices de pauvreté évalués en 1994 et J01 celui constitué

de ces 5 indices évalués pour la période 2001. Utilisons la procédure généralisée de

Wald pour tester l’hypothèse nulle H0 : J01 ≽ J94 qui veut dire que le Sénégal est

moins pauvre en 2001 qu’en 1994 contre l’hypothèse alternative H1 : J01 � J94.

C’est à dire,

H0 : J01 ≽ J94 contre H1 : J01 � J94.

La statistique de test est alors

c2 = (∆Ĵ − ṽ)′Σ̂−1(∆Ĵ − ṽ).

La valeur obtenue pour cette statistique, après résolution du problème de mini-

misation par la fonction ConstrOptim du logiciel R, est c2 = −25.78, avec ṽ =

(0.02, 0.042, 0.04, 0.023, 2.4e − 11). Pour un seuil de signification de α = 1%, la

borne inférieure ql de la valeur critique du test est telle que 0.01 = 1
2
P(χ2(1) ≥ ql).

D’après la table de Kodde et Palm (1986), on a ql = 5.412, valeur positive qui est

largement supérieure à c2 = −25.78. Donc on accepte l’hypothèse H0 selon laquelle

le Sénégal est moins pauvre en 2001 qu’en 1994 au seuil de signification de 1%. Si

on effectue le test d’hypothèses

H0 : J01 = J94 contre H1 : J01 ≽ J94.

La statistique utilisée est

c1 = (∆Ĵ)′Σ̂−1(∆Ĵ)− (∆Ĵ − ṽ)′Σ̂−1(∆Ĵ − ṽ)
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La valeur obtenue c1, après résolution du problème de minimisation, est c1 = 143, 78.

La borne supérieure qu de la valeur critique, au seuil de 1%, vérifie

0.01 =
1

2
P(χ2(4) ≥ qu) +

1

2
P(χ2(1) ≥ qu).

D’après la table de Kodde et Palm, on a qu = 12.483, valeur qui est largement

inférieure à c1 = 143, 78. Donc ici, on rejette H0 ; ce qui confirme la conclusion du

premier test.

Ce test de comparaison multiple peut aussi être réalisé avec divers types d’indices

de pauvreté. Tout dépend des fonctions w et f qui définissent la forme de l’indice

de pauvreté. Ainsi, la structure de covariance décrite au chapitre 5 permet de tester

la dominance entre deux distributions avec n’importe quelle classe de mesures de

pauvreté. Cela donne un critère de dominance robuste et uniforme, par rapport aux

indices de pauvreté, pour classer des distributions de revenu, pourvu que le seuil de

pauvreté z soit fixe.



Annexes

A.1 Convergence faible et mesures extérieures

Soit (Ω,A,P) un espace de probabilité. Pour toute application U : X → R̄
mesurable, on pose U+ = max(U, 0) et U− = min(U, 0).L’application U est quasi-

intégrable si au moins EU+ ou EU− est finie ; on écrit alors EU = EU+ − EU−.

Soit T : Ω → R̄ une application quelconque. L’intégrale extérieure de T par rapport

à P est définie par

E∗T = inf{EU : U ≥ T, U mesurable et quasi-intégrable}.

De même, pour toute partie B ⊂ Ω on définit la mesure extérieure de B par

P∗(B) = inf{P(A) : A ⊃ B, A ∈ A} = E∗(1B),

où 1B est la fonction indicatrice de l’ensemble B. Notons que si T est une application

mesurable et quasi-intégrable, alors E∗T = ET . De même, pour toute partie B

mesurable (i.e. B ∈ A), on a P∗(B) = P(B).

De façon similaire, on définit également les notions d’intégrale intérieure et de

mesure intérieure. Si T : Ω → R̄ est une application quelconque, l’intégrale intérieure

de T par rapport à P, notée E∗T est définie à partir de la relation suivante :

E∗T = −E∗(−T ),

i.e.

E∗T = sup{EU : U ≤ T, U mesurable et quasi-intégrable}.

Aussi la mesure intérieure de B ⊂ Ω est aussi définie par

P∗(B) = sup{P(A) : A ⊂ B,A ∈ A} = E∗(1B).
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Ces notions d’intégrale et de mesure extérieures où la condition de mesurabi-

lité n’est pas nécessaire sont à la base de la théorie moderne de la convergence

faible (appelée aussi convergence vague). En effet, la théorie classique traitée par

Billingsley (1968) s’appuie sur la mesurabilité des processus considérés ; ce qui limite

considérablement les applications statistiques. Cette nouvelle théorie, en revanche,

donne lieu à de nombreuses applications aussi bien en statistique paramétrique que

non-paramétrique. Par exemple, elle s’est révélée particulièrement intéressante pour

l’étude de la convergence faible des processus empiriques qui sont des processus non

mesurables, car ayant souvent leurs trajectoires dans des espaces de Banach non

séparables.

Dans ce qui suit, nous rappelons quelques points essentiels de cette nouvelle

théorie de la convergence faible sans mesurabilité.

Soit {Xn, n ≥ 1} une suite de processus non nécessairement mesurables définis

sur des espaces de probabilité (Ωn,An,Pn) à valeurs dans un même espace métrique

(M, Tbor, d) équipé de ses boréliens, d étant une métrique. Soit X un processus

mesurable à valeurs dans (M, Tbor, d).

Définition 6.1. Xn converge faiblement vers X si

lim
n→∞

E∗f(Xn) = Ef(X), ∀f : M → R continue bornée.

On dénote ce type de convergence par Xn  X.

Beaucoup de résultats établis avec la théorie classique de Billingsley tels que :

le théorème de portmanteau, le théorème de l’application continue, le théorème de

Prohorov, ainsi que les critères de tension restent encore valables pour la convergence

faible sans mesurabilité. Pour ces résultats, nous renvoyons le lecteur à van der

Vaart et Wellner (1996). Toutefois, signalons que le théorème de Prohorov nécessite

deux nouveaux concepts dans la nouvelle théorie : la tension et la mesurabilité

asymptotiques.

Définition 6.2. - La suite Xn est dite asymptotiquement mesurable si

lim
n→∞

E∗f(Xn)− E∗f(Xn) = 0, ∀f : M → R continue bornée.

- La suite Xn est dite asymptotiquement tendue si pour tout ε > 0, il existe un

compact K ⊂ M tel que

lim inf
n→∞

P∗(Xn ∈ Kδ) ≥ 1− ε, pour tout δ > 0,
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où Kδ = {y ∈ M : d(y,K) < δ} est une δ-extension de K.

Remarque. Cette notion de tension asymptotique est moins forte que celle

utilisée dans la théorie classique. En effet, P∗(Xn ∈ Kδ) ≥ 1− ε n’est nécessaire que

quand on va vers la limite, c’est à dire lorsque n → ∞ ; contrairement à la tension

uniforme, utilisée dans la théorie classique de Billingsley (1968) qui exige que cette

probabilité soit supérieure à ≥ 1− ε pour tout n, i.e.

∀ε > 0, ∃K compact, P(Xn ∈ K) ≥ 1− ε, ∀n ≥ 1.

Cependant, si les Xn sont mesurables et définis dans un espace polonais, les notions

de tension asymptotique et de tension uniforme sont équivalentes car toute mesure

de probabilité dans un espace polonais est tendue (cf. Lemma 1.3.2, van der Vaart

et Wellner (1996)).

Lemme 6.1. i) Si Xn  X, alors Xn est asymptotiquement mesurable.

ii) Si Xn  X, alors Xn est asymptotiquement tendue ssi X est tendue.

La version suivante du théorème de Prohorov donne la réciproque du lemme 6.1.

Théorème 6.1. Si Xn est une suite de processus asymptotiquement tendue et

asymptotiquement mesurable, alors il admet une sous-suite Xnk
qui converge fai-

blement vers un processus X Borel mesurable et tendu.

Sous des conditions de tension et de mesurabilité asymptotiques, le théorème de

Prohorov montre l’existence d’une limite faible, mesurable et tendue pour une suite

de processus non mesurables. L’unicité de la limite découle du fait qu’une mesure de

Borel L est déterminée de manière unique par l’application f 7→
∫
fdL, f ∈ Cb(M).

Pour plus de détails, voir page 25, van der Vaart et Wellner (1996). Le lemme suivant

montre aussi l’unicité de la limite X, si X ∈ l∞(T ), l’ensemble des fonctions réelles

bornées sur T .

Lemme 6.2. Deux processus tendus X et Y à valeurs dans l∞(T ) sont identiques

en loi si toutes leurs distributions marginales finies sont identiques en loi.
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A.2 Classes de Donsker

Dans cette section, nous rappelons quelques propriétés des classes de Donsker.

Soit X,X1, · · · , Xn une suite indépendante de variables aléatoires définies dans un

espace probabilisé (Ω, T ,P) à valeurs dans un espace mesurable (X ,A). On définit

la mesure empirique Pn associée à cette suite comme une combinaison linéaire de

mesures de Dirac aux points Xi, i.e.

Pn =
1

n

n∑
j=1

δXj
.

Etant donné une classe F de fonctions mesurables f : X → R, la mesure empirique

Pn induit une application de F dans R définie par

f 7→ Pnf.

Pour toute fonction mesurable f et toute mesure signée Q, on note Qf =
∫
fdQ. Soit

P = P ◦X−1 la loi de probabilité commune des Xj. On appelle processus empirique

indexé par F , l’application Gn : F 7→ R définie par

f 7→ Gnf =
√
n(Pn − P )f =

1√
n

n∑
j=1

(f(Xj)− Pf).

Cette définition généralise la notion du processus empirique classique indexé par

t ∈ Rd, défini par

αn(t) =
√
n(Gn(t)−G(t)),

où Gn(t) =
1
n

∑n
j=1 1{Xj≤t} est la distribution empirique basée sur X1, · · · , Xn. En

effet, on a

αn(t) =
√
n(Gn(t)−G(t)) =

1√
n

n∑
j=1

(1{Xj≤t} − E1{Xj≤t})

ce qui équivaut à

αn(t) =
1√
n

n∑
j=1

(1]−∞,t](Xj)− E1]−∞,t](Xj)) = Gnft,

où ft(x) = 1]−∞,t](x) pour tout t ∈ Rd.
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Du fait de ses nombreuses applications, la théorie du processus empirique consti-

tue un outil fondamental en statistique asymptotique. Elle est à la base de nom-

breuses lois limites car beaucoup de statistiques peuvent s’exprimer comme des fonc-

tionnelles de la distribution empirique. Les propriétés asymptotiques du processus

empirique classique sont principalement étudiées dans l’espace D[0, 1] et celles du

processus des sommes partielles de variables aléatoires i.i.d dans C[0, 1]. La théorie

de la convergence faible sans mesurabilité est d’une grande importance dans la me-

sure où elle permet de considérer des espaces plus adaptés au processus empirique,

qui a naturellement ses trajectoires dans un espace de Banach non-séparable.

L’espace le plus convoité est l∞(T ), l’espace des fonctions réelles bornées et

définies sur T . Si T = F , où F est une classe de fonctions mesurables f : X → R,
des versions fonctionnelles de la loi des grands nombres et du théorème centrale

limite peuvent être établies sous certaines conditions. Ainsi, une classe de fonctions

F dans laquelle le théorème central limite a lieu uniformément sera appelée classe

de Donsker.

Soit l∞(F) l’espace des fonctions bornées H : F → R, muni de la norme

∥H∥F = sup
f∈F

|H(f)|.

On suppose que Pf = Ef(X) < ∞ pour f ∈ F et qu’il existe une fonction enveloppe

F telle que supf∈F |f(x)| ≤ F (x) < ∞, ∀x ∈ X . Alors,

sup
f∈F

|f(x)− Pf | < 2F (x) < ∞, ∀x ∈ X .

Ainsi, le processus empirique {Gnf : f ∈ F} sera à trajectoires dans l∞(F).

Définition 6.3. Une classe F de fonctions mesurables est dite P -Donsker s’il existe

un processus tendu G : F → R tel que

Gn  G dans l∞(F).

Une classe F de fonctions mesurables est dite P -Glivenko-Cantelli si

∥Pn − P∥F → 0 P∗ − p.s.

Remarque. Par continuité de la norme, on a Gn  G ⇒ ∥Gn∥F  ∥G∥F . Cela
implique que n−1/2∥Gn∥F converge en loi vers 0, donc converge en probabilité vers

0 et finalement,

n−1/2∥Gn∥F = ∥Pn − P∥F → 0 P∗ − p.s.
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Ainsi, toute classe de Donsker est une classe de Glivenko-Cantelli. Mais la réciproque

est fausse.

Les propriétés de classe de Donsker et de Glivenko-Cantelli dépendent essentiel-

lement de la complexité (taille) des classes de fonctions considérées. En effet, une

classe finie de fonctions de carré intégrable est toujours Donsker, alors que l’espace

L2 constitué de l’ensemble des fonctions de carré intégrable n’est presque jamais une

classe de Donsker. Un moyen simple pour contrôler la complexité d’une classe de

fonctions F est la notion d’entropie qui se définit comme le logarithme du nombre

de boules (ou crochets) de rayon (ou longueur) ε, nécessaires pour recouvrir la classe

F .

Supposons que (F , d) est espace muni d’une métrique d.

Définition 6.4. Le nombre de recouvrement, noté N(ε,F , d) est le nombre minimal

de boules de rayon ε, par rapport à d, nécessaires pour recouvrir F .

On appelle alors entropie métrique, le logarithme du nombre de recouvrement.

Soit l et u deux fonctions mesurables. On définit un crochet [l, u] comme l’en-

semble des fonctions f telles que l ≤ f ≤ u. Un ε-crochet est un crochet [l, u] tel

que d(l, u) < ε.

Définition 6.5. Le nombre de crochet, noté N[](ε,F , d) est le nombre minimal de

ε-crochets nécessaires pour recouvrir F .

On appelle alors entropie crochet, le logarithme du nombre de crochet.

Dans les théorèmes de caractérisation des classes de Donsker ou de Glivenko-

Cantelli, on utilise souvent les normes Lr(Q), r ≥ 1 définies par

∥f∥r,Q =

(∫
|f |rdQ

)1/r

,

où Q est une mesure de probabilité quelconque.

On définit l’entropie uniforme, par rapport à la norme Lr(Q) d’une classe de fonc-

tions F possédant une enveloppe notée F par le nombre réel noté

N(ε,F) = sup
Q

logN(ε∥F∥r,Q,F , Lr(Q)),

où le suprémum est pris sur toutes les mesures de probabilité Q telles que 0 <

QF 2 < ∞. Notons que pour les résultats relatifs à l’entropie crochet, on n’a besoin

d’aucune hypothèse de mesurabilité. Tandis que les résultats relatifs à l’entropie

métrique (uniforme) nécessitent la notion de P -mesurabilité suivante :
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Définition 6.6. Une classe F de fonctions mesurables f définies sur un espace de

probabilité (X ,A, P ) est dite P -mesurable si l’application

(X1, · · · , Xn) 7→ ∥
n∑

i=1

eif(Xi)∥F

est mesurable sur la complétion de l’espace produit (X n,An, P n) pour tout n ≥ 1 et

pour tout vecteur (e1, · · · , en) ∈ {−1, 1}n.

Proposition 6.1. Si F est une classe de fonctions mesurables telle que∫ ∞

0

√
logN[](ε,F , L2(P ))dε < ∞, (EC)

alors F est P -Donsker.

Proposition 6.2. Soit F une classe de fonctions mesurables possédant une enve-

loppe F telle que∫ ∞

0

sup
Q

√
logN(ε∥F∥2,Q,F , L2(Q))dε < ∞, (EU)

et pour tout δ > 0, la classe de fonctions

Fδ = {f − g : f, g ∈ F , ∥f − g∥2,Q < ∞}

est P -mesurable. Si de plus, P ∗F 2 < ∞ alors F est P -Donsker.

Remarques.

- Dans la condition d’entropie uniforme (EU), le rayon des boules de recouvrement

dépend de la grosseur de l’enveloppe F dans L2(Q) ; donc plus F y est grosse, plus il

est facile de recouvrir F . Pour ε ≥ 1, une seule boule suffit pour recouvrir F , donc

logN(ε∥F∥2,Q,F , L2(Q)) = 0. D’où la condition (EU) peut être aussi reformulée de

la manière suivante :∫ 1

0

sup
Q

√
logN(ε∥F∥2,Q,F , L2(Q))dε < ∞,

- La condition d’entropie crochet (EC) n’est basée que sur la seule loi de probabilité

P . Contrairement à la condition (EU) qui est basée sur le suprémum d’un grand

nombre d’entropies métriques. Cela est dû au fait que le nombre de crochets est bien
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plus grande que le nombre de recouvrement. Par conséquent, les deux conditions ne

sont pas comparables.

Dans les applications la notion de P -mesurabilité introduite ci-dessus n’est pas

étudiée directement. On utilise un concept beaucoup plus fort de classe convenable-

ment mesurable ou pointwise measurable class en anglais.

Définition 6.7. Une classe F de fonctions mesurables est dite convenblement me-

surable s’il existe une sous-classe dénombrable G ⊂ F telle que pour tout f ∈ F , il

existe une suite {gm,m ≥ 1} ⊂ G, avec gm(x) → f(x), ∀x ∈ X .

Conséquence. Si F est convenablement mesurable, alors F est P -mesurable

pour toute loi de probabilité P . En effet, le supremum sur la classe F peut être

ramené sur une sous-classe dénombrable, d’où la mesurabilité.

Exemples de classes de fonctions P -mesurables.

- Les fonctions indicatrices d’intervalles ou de boules, les fonctions séparables pour

la norme suprémum sont des classes convenablement mesurables donc P -mesurables

pour toute probabilité P.

- Si F est un espace topologique de Suslin admissible, alors F est P -mesurable pour

toute probabilité P .

Tandis que l’entropie crochet est vérifiée par des classes de fonctions assez régulières

telles que les fonctions monotones bornées, les fonctions convexes et les indicatrices

d’ensembles fermés convexes, un outil remarquable pour contrôler l’entropie uni-

forme est la notion de VC-classe ou classe de Vapnik-Červonenkis.

Soit E = {x1, · · · , xn} un ensemble quelconque, C une collection de parties de

X . On définit la trace de C sur E par

T E(C) = {E ∩ C : C ∈ C}.

On dit que l’ensemble E est complètement tracé par C si toute partie de E est dans

la trace de C sur E, i.e.

∀A ⊂ E, A ∈ T E(C).

On appelle indice VC de la collection d’ensembles C le plus petit entier n tel que

aucun ensemble de cardinal n n’est complètement tracé par C. Il est noté V(C).



6.2 Illustration empirique 91

Définition 6.8. Une collection d’ensembles C est une VC-classe d’ensemble (ou une

classe de Vapnik-Červonenkis) si son indice V(C) < ∞.

Cette notion de VC-classe peut également s’étendre aux classes de fonctions. Soit

une fonction f : X → R. Le sous-graphe de f est défini par

Sf = {(x, t) ∈ X × R : t < f(x)}.

Définition 6.9. Soit F = {f : X → R} une classe de fonctions et C = {Sf : f ∈ F}
l’ensemble des sous-graphes des fonctions de F . On dit que F est une VC-classe de

fonctions si C est une VC-classe d’ensembles dans F × R. On a l’indice VC de F ,

noté V(F) = V(C).

Le théorème suivant montre que les VC-classes de fonctions sont des classes à

recouvrement polynomial dans la mesure où leur nombre de recouvrement est borné

supérieurement par un polynôme en (1/ε).

Théorème 6.2. Soit F une VC-classe de fonctions d’indice V(F) = ν et F une

enveloppe mesurable de F . pour toute mesure de probabilité Q telle que 0 < ∥F∥r,Q <

∞, r ≥ 1, on a

N(ε∥F∥r,Q,F , Lr(Q))dε < Kν(16e)ν
(
1

ε

)r(ν−1)

,

où K est une constante positive et 0 < ε < 1.

Preuve. (voir page 141, van der Vaart et Wellner (1996)).

Ce théorème permet de dire que toute VC-classe de fonctions est P -Donsker pour

toute probabilité P si elle est P -mesurable et admet une enveloppe de carré intégrable.

La propriété de classe de Donsker est stable pour certaines opérations. Cela évite

de calculer l’entropie à chaque fois qu’on doit montrer qu’une classe de fonctions F
est Donsker.

Proposition 6.3. Soit F et G deux classes de fonctions P -Donsker. Alors les classes

suivantes sont aussi P -Donsker :

i) F ∪ G
ii) F + G = {f + g : f ∈ F , g ∈ G}
iii) F ∨ G = {f ∨ g : f ∈ F , g ∈ G} et F ∧ G = {f ∧ g : f ∈ F , g ∈ G}
iv) F · G = {f · g : f ∈ F , g ∈ G} si F et G sont uniformément bornées.
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v) ϕ ◦ F = {ϕ ◦ f : f ∈ F} si ϕ est une fonction réelle lipshitzienne et qu’il existe

au moins f ∈ F telle que ∥ϕ ◦ f∥2,P < ∞
vi) F · g = {f · g : f ∈ F} si g est une fonction mesurable bornée et ∥P∥F .

Inégalité exponentiellle et borne de moment

Soit X1, · · · , Xn une suite i.i.d de variables aléatoires et ε1, · · · , εn une suite

indépendante de variables aléatoires de Rademacher indépendantes desXi. L’inégalité

suivante est due à Talagrand (1994).

Proposition 6.4. Soit F une classe convenablement mesurable de fonctions f :

X → R telle que pour tout g ∈ G, ∥f∥∞ ≤ M . Alors pour tout t > 0, on a

P

{
max

1≤m≤n
∥
√
mαm∥F ≤ A1

(
E∥

n∑
i=1

εif(Xi)∥F + t

)}
≤ 2

[
exp(−A2t

2

nσ2
F
) + exp(−A2t

M
)

]
,

où A1 > 0 et A2 > 0 sont des constantes universelles et σ2
F = supf∈F V ar(f(X)).

La borne de moment suivante est aussi crucial dans nos preuves. Elle est due à

Einmahl et Mason (2005).

Proposition 6.5. Soit F une classe convenablement mesurable de fonctions f :

X → R bornées, admettant une fonction enveloppe F telle qu’il existe des constantes

C, ν > 1 et 0 < σ < β satisfaisant aux conditions suivantes :

i) E[F 2(X)] ≤ β2,

ii) N(ε,F) ≤ Cε−ν , 0 < ε < 1

iii) σ2
0 := supf∈F E(f2(X)) ≤ σ2,

iv) supf∈F ∥f∥∞ ≤ 1
4
√
ν

√
nσ2/ log(C1β/σ), où C1 = Cν ∨ e.

Alors

E∥
n∑

i=1

εif(Xi)∥F ≤ A3

√
νnσ2 log(β ∨ (1/σ)),

où A3 > 0 est une constante universelle.

Proposition 6.6. Soit F et G deux classes de fonctions réelles mesurables sur X
telles que

|f(x)| ≤ F (x), f ∈ F , x ∈ X ,
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où F est une fonction enveloppe finie mesurable sur X et

∥g∥∞ ≤ M, g ∈ G,

où M > 0 est une constante finie. Si de plus, pour toute mesure de probabilité Q

telle que 0 < Q(F 2) < ∞, on a

N(ε∥F∥2,Q,F , L2(Q)) ≤ C1ε
−ν1 , 0 < ε < 1

et

N(εM,G, L2(Q)) ≤ C2ε
−ν2 , 0 < ε < 1

où ν1, ν2, C1, C2 sont des constantes positives appropriées. Alors, pour toute mesure

de probabilité Q telle que 0 < Q(F 2) < ∞, on a

N(εM∥F∥2,Q,FG, L2(Q)) ≤ C3ε
−ν1−ν2 , 0 < ε < 1

avec 0 < C3 < ∞.

A.4 Delta-méthode

Soient D et E deux espaces topologiques métrisables. Une application ϕ : Dϕ ⊂
D 7→ E est dite Hadamard-différentiable en θ ∈ Dϕ s’il existe une application linéaire

continue ϕ′
θ : D 7→ E telle que

ϕ(θ + tnhn)− ϕ(θ)

tn
→ ϕ′

θ(h),

pour toutes suites tn → 0 et hn → h telles que θ + tnhn ∈ Dϕ, pour tout n.

Soit D0 ⊂ D, on dit que ϕ est Hadamard-différentiable en θ tangentiellement à D0

si la suite hn converge vers h ∈ D0.

Théorème 6.3. Soit ϕ : Dϕ ⊂ D 7→ E une application Hadamard-différentiable en θ

tangentiellement à D0 ; Xn : Ω 7→ Dϕ une suite d’applications telles que rn(Xn−θ) 
X, où X est séparable et prend ses valeurs dans D0. Alors rn(ϕ(Xn)−ϕ(θ)) ϕ′

θ(X).

Si de plus, ϕ′
θ est définie et continue sur D, alors la suite rn(ϕ(Xn) − ϕ(θ)) −

ϕ′
θ(rn(Xn − θ)) converge en probabilité (extérieure) vers 0.



Conclusion et Perspectives

L’analyse de la pauvreté est une étape importante pour les pouvoirs publics

nationaux et les organismes internationaux dans l’élaboration de leurs politiques

de réduction de la pauvreté. Dans ce travail nous avons proposé un indice général

de pauvreté qui inclut toutes les mesures de pauvreté basées sur le revenu et dis-

ponibles jusqu’ici dans la littérature. Nous avons d’abord établi la consistance, uni-

forme sur des classes de fonctions appropriées, d’un estimateur à noyau de cet indice

général ; puis, un théorème central limite fonctionnel uniforme pour un estimateur de

type ”plug-in” de ce même indice général. Des études concluantes de simulations de

données ont été réalisées pour illustrer ces résultats. Des applications ont également

été fournies notamment, l’utilisation de la structure de covariance établie dans le

théorème central limite fonctionnel, pour tester la dominance en temes de pauvreté

entre deux distributions de revenu. Cette procédure d’inférence pour comparer deux

distributions est applicable à toutes les mesures de pauvreté, décomposables comme

non-décomposables (du type de Sen). Cependant, elle requiert l’utilisation d’un seuil

de pauvreté fixe pour les distributions à comparer ; ce qui est un point de faiblesse

pour ces résultats car le seuil de pauvreté peut dépendre de la distribution, en en

étant une fonctionnelle par exemple.

Si G représente la distribution étudiée, alors le seuil de pauvreté pourrait s’écrire

z = z(G). Un estimateur de z est zn = z(Gn), où Gn est la distribution empirique

associée à G. Donc une perspective intéressante est l’extension de ces résultats en

faisant estimer z par une fonctionnelle de la distribution et en reconsidérant les

estimateurs de l’indice général de pauvreté introduit dans cette thèse.
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