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Résumé

Les modéles linéaires généralisés sont une généralisation des modeéles de régres-
sion linéaire, et sont trés utilisés dans le domaine du vivant. Le modéle de régression
logistique, 'un des modéles de cette classe, trés souvent utilisé dans les études biomé-
dicales demeure le modéle de régression le plus approprié quand il s’agit de modéliser
une variable discréte de nature binaire. Dans cette thése, nous nous intéressons au
probléme de l'inférence statistique dans le modéle de régression logistique, en pré-

sence d’individus immunes dans la population d’étude.

Dans un premier temps, nous considérons le probléme de I'estimation dans le
modeéle de régression logistique en présence d’individus immunes, qui entre dans
le cadre des modeéles de régression a excés de zéros (ou zéro-inflatés). Un individu
est dit immune s’il n’est pas exposé a 'événement d’intérét. Le statut d’immunité
est inconnu sauf si ’événement d’intérét a été observé. Nous développons une mé-
thode d’estimation par maximum de vraisemblance en proposant une modélisation
conjointe de I'immunité et des risques d’infection. Nous établissons d’abord I'iden-
tifiabilité du modeéle proposé. Puis, nous montrons l'existence de 'estimateur du
maximum de vraisemblance des paramétres de ce modéle. Nous montrons ensuite,
la consistance de cet estimateur, et nous établissons sa normalité asymptotique. En-
fin, nous étudions, au moyen de simulations, leur comportement sur des échantillons

de taille finie.

Dans un deuxiéme temps, nous nous intéressons a la construction de bandes de
confiance simultanées pour la probabilité d’infection, dans le modéle de régression

logistique avec fraction immune. Nous proposons trois méthodes de constructions de



xii

bandes de confiance pour la fonction de régression. La premiére méthode (méthode
de Scheffé) utilise la propriété de normalité asymptotique de P'estimateur du maxi-
mum de vraisemblance, et une approximation par une loi du khi deux pour appro-
cher le quantile nécessaire a la construction des bandes. La deuxiéme méthode utilise
également la propriété de normalité asymptotique de I'estimateur du maximum de
vraisemblance et est basée sur une égalité classique de (Landau & Sheep 1970). La
troisiéme méthode (méthode bootstrap) repose sur des simulations, pour estimer
le quantile approprié de la loi du supremum d’un processus gaussien. Enfin, nous

évaluons, au moyen de simulations, leurs propriétés sur des échantillons de taille finie.

Enfin, nous appliquons les résultats de modélisation & des données réelles sur
la dengue. Il s’agit d’'une maladie vectorielle tropicale a transmission strictement
inter-humaine. Les résultats montrent que les probabilités d’infection estimées a
partir de notre approche de modélisation sont plus élevées que celles obtenues a
partir d'un modéle de régression logistique standard qui ne tient pas compte d'une
possible immunité. En particulier, les estimations fournies par notre approche sug-
gérent que le sous-poids constitue un facteur de risque majeur de 'infection par la

dengue, indépendamment de 1’age.

Mots clés

Régression logistique, Fraction immune, Maximum de vraisemblance, Identifiabilité,
Consistance, Normalité asymptotique, Bandes de confiance, Bootstrap, Simulations,

Dengue.



Abstract

Generalized linear models are a generalization of linear regression models, and
are widely used in the field of life. The logistic regression model, one of this class of
models, widely used in biomedical studies remains the most appropriate regression
model when it comes to model discrete variable, binary in nature. In this thesis, we
investigate the problem of statistical inference in the logistic regression model, in

the presence of immune individuals in the study population.

At first, we consider the problem of estimation in the logistic regression mo-
del in the presence of immune individuals that enters in the case of zero-inflated
regression models. A subject is said to be immune if he cannot experience the out-
come of interest. The immune status is unknown unless the event of interest has
been observed. We develop a maximum likelihood estimation procedure for this pro-
blem, based on the joint modeling of the binary response of interest and the cure
status. We investigate the identifiability of the resulting model. Then, we establish
the existence, consistency and asymptotic normality of the proposed estimator, and

we conduct a simulation study to investigate its finite-sample behavior.

In a second time, we focus on the construction of simultaneous confidence bands
for the probability of infection in the logistic regression model with immune frac-
tion. We propose three methods of construction of confidence bands for the regres-
sion function. The first method (Scheffe’s method) uses the asymptotic normality
of the maximum likelihood estimator, and an approximation by the chi-squared dis-
tribution to approximate the necessary quantile for the construction of bands. The

second method uses also the asymptotic normality of the maximum likelihood es-



xiv

timator and is based on a classical equality by (Landau & Sheep 1970). The third
method (bootstrap method) is based on simulations, to estimate the appropriate
quantile of the law of a supremum of a Gaussian process. Finally, we conduct a

simulation study to investigate its finite-sample properties.

Finally, we consider a study of dengue fever, which is a tropical mosquito-borne
viral human disease, strictly inter-human. The results show that, the estimated pro-
babilities of infection obtained from our approach are larger than the ones derived
from a standard analysis that does not take account of the possible immunity. In
particular, the estimates provided by our approach suggest that underweight consti-

tutes a major risk factor for dengue infection, irrespectively of age.

Key words
Logistic regression, Immune fraction, Maximum likelihood, Identifiability, Consis-

tancy, Asymptotic normality, Confidance Bands, Bootstrap, Simulations, Dengue.



Abréviations et Notations

i.i.d.
A (n X p)

EMV
71B
71P
ZINB
ZIPO

: La probabilité de I’événement A.

: L’espérance mathématique de la variable aléatoire X.

: La variance de la variable aléatoire X.

: La covariance des variables aléatoires X et Y.

: La suite de variables aléatoires (Xn)nZO converge faiblement vers Y.

: La suite de variables aléatoires (Xj,),,~, converge presque srement vers Y.
: Ensemble des entiers naturels.

: Ensemble des entiers naturels non nuls.

: Ensemble des réels et R =R x ... x R .
—_——

d fois

: Transposée du vecteur X.

: indépendantes et identiquement distribuées.

: L’ensemble des matrices réelles de n lignes et p colonnes.
: matrice identité d’ordre p.

: Estimateur du maximum de vraisemblance.

: Zero-Inflated Binomial.

: Zero-Inflated Poisson.

: Zero-Inflated Negative Binomial.

: Zero-Inflated Proportional Odds.






CHAPITRE 1

Introduction générale

L’analyse statistique des données constitue aujourd’hui un outil fondamental
dans le domaine du vivant, et repose trés souvent sur l'utilisation de modéles de ré-
gression. L'une de ces classes de modéles, parmi les plus utilisées, demeure la classe
des modéles linéaires généralisés qui sont une généralisation bien connue des modéles
de régression linéaire en termes de loi. Elle permet 'analyse de données discrétes
mais aussi de données continues pour lesquelles la loi normale n’est pas trés adaptée.
(McCullagh & Nelder 1989) en font une présentation détaillée.

L’utilisation des modéles linéaires généralisés est trés courante en santé publique
pour la résolution de problémes réels. En particulier, les épidémiologistes, lors de
Iexploitation de données médicales, décrivent souvent un événement ou un phéno-
meéne lui-méme influencé par la survenue d’autres événements ou phénomeénes appe-
lés facteurs d’exposition. La survenue d’une infection représentée par une variable
dichotomique (1 pour infecté et 0 pour non infecté) peut en effet étre ce phéno-
meéne étudié par les épidémiologistes en présence de certains facteurs d’exposition.
Cependant il peut exister dans la population d’étude une proportion d’individus
non susceptibles a l'infection qui peut étre du & une immunité naturelle ou a une
action préventive. En effet,I'immunité innée constitue la premiére ligne de défense
et d’interaction entre 'hote humain et les pathogénes. Ce phénoméne entraine ainsi
la présence de beaucoup de zéros dans la variable dichotomique; ce qui entraine
I’apparition d’un biais net sur 'estimation des paramétres du modeéle et qui pour-
rait ainsi étre a l'origine d’une mauvaise interprétation des résultats attendus. Ce

2N

phénomeéne connu sous le nom de "zero-inflated" a été a 'origine de I'extension des



modéles de régression de comptage de Poison et Binomiale Négative, du modéle de
régression Binomiale et du modéle de régression & Odds Proportionnels.

Le modéle de régression logistique standard est naturellement utilisé en épidémio-
logie lorsqu’il s’agit de modéliser une variable dépendante binaire. L’objectif dans
cette thése est d’étendre ce modéle classique en prenant en compte la présence de
cette fraction immune dans la population d’étude tout en proposant une modélisa-

tion conjointe de la probabilité d’infection et de la probabilité d’'immunité.

Le premier chapitre de ce manuscrit est consacré a de brefs rappels sur le modéle
linéaire, et a des rappels détaillés sur le modéle de régression logistique. Nous nous
intéressons en particulier a I'identifiabilité de ce modéle, et a I’estimation de ses pa-
rameétres. Puis, nous rappelons les résultats d’existence d’estimateurs du maximum
de vraisemblance dans ces modéles. Dans le chapitre 2, nous définissons les modéles
zéro-inflatés existant : ZIP, ZINB, ZIB et ZIPO. Puis, nous présentons les résultats
d’existence d’estimateur du maximum de vraisemblance et les propriétés asympto-
tiques de ces estimateurs.

Les parties 2 et 3 de ce manuscrit contiennent les contributions originales de cette
thése. Dans la deuxiéme partie de cette thése, nous nous intéressons au probléme de
I'inférence statistique dans le modéle de régression logistique avec fraction immune.
Dans le chapitre 3, nous commencons par décrire le modéle de régression logistique
avec fraction immune, qui entre dans la famille des modéles zéro-inflatés, puis, nous
proposons des estimateurs par maximum de vraisemblance pour ce modéle. Nous pré-
sentons enfin, les résultats asymptotiques obtenus pour ces estimateurs du maximum
de vraisemblance. Dans le chapitre 4, nous utiliserons ces résultats asymptotiques
pour construire des bandes de confiance simultanées pour la probabilité d’infection.
Dans ce chapitre, nous présentons trois méthodes pour la construction des bandes
de confiance pour la fonction réponse.

Dans la troisiéme partie de cette thése, nous appliquons le modéle conjoint défini

dans le chapitre 3 sur un jeu de données réelles. Nous commencons par une étude



épidémiologique de la dengue dans le chapitre 5, ot nous détaillons les caractéris-
tiques de cette infection virale et présentons des résultats d’analyses statistiques
univariées et multivariées. Dans le chapitre 6, nous appliquons le modéle conjoint a
I’analyse statistique des données de dengue.

La derniére partie, est constituée des différentes annexes : des rappels mathéma-
tiques, des résultats complémentaires concernant certains lemmes énoncés dans la

thése, de tableaux des résultats de simulation.






Premiére partie

Rappels sur quelques modéles






CHAPITRE 2
Rappels sur le modéle de régression

logistique

Sommaire
2.1 Le modéle linéaire . . . . ... ... ... 0oL 5
2.2 Le modéle de régression logistique . . ... ... .. .. ... 7
2.2.1 Imtroduction. . . . . . . . ... 7
2.2.2  Identifiabilité du modéle . . . . . .. ... 8
2.2.3 Estimation du modéle . . . . . . .. ... 9
2.2.4 Rappel sur 'algorithme de Newton-Raphson . . . . . . . . .. 11
2.2.5 Propriétés asymptotiques du modéle . . . . . . ..o L. 12
2.2.6 Interprétation des coefficients de régression et odds ratio . . . 13

Notons y le vecteur des observations de taille n, réalisation du vecteur aléatoire
Y, variable a expliquer. Un modéle linéaire généralisé se caractérise par les trois

hypothéses suivantes :

— On suppose que les composantes Y; (i = 1,...,n) de Y sont indépendantes
et distribuées selon une loi appartenant a la famille exponentielle au sens

de (Nelder & Wedderburn 1972), c’est-a-dire que la fonction de densité de la



variable aléatoire Y; s’écrit :

0 = ex yi0; — b(0;)
in(y1702> € p{ CLZ<¢)

ol #; est un paramétre canonique et ¢ un paramétre de dispersion. Les fonc-

ol |

tions b et ¢ sont spécifiques a chaque distribution et la fonction a; est donnée

par : a;(¢) = S o w; est un poids connu associé a la réalisation y;.

_wi,

L’espérance et la variance de la variable Y; s’exprime comme suit a l’aide

des fonctions a; et b :

Le prédicteur linéaire est définit comme suit :
n=p4"X,

ou (3 est un vecteur de paramétres inconnus de taille p et X le vecteur des p

variables explicatives.

— Le lien entre 'espérance de Y; et la i composante du prédicteur linéaire est

réalisé par la fonction g (monotone et différentiable) appelée fonction de lien :

i = g(E(Yi)).

Une fonction de lien pour laquelle n; = 6; est appelée fonction de lien cano-

nique.

Les modéles gaussiens (linéaires ou non) a variance constante (a(¢) = o?), les mo-
déles logistiques binaires ou polytomiques, les modéles de régression Poisson ou
Gamma sont des exemples de modéles linéaires généralisés. Parmi ces modéles nous

nous intéresserons particulierement dans la suite au modéle de régression logistique.
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2.1 Le modéle linéaire

Le modéle linéaire est souvent le premier outil de statistique inférentielle mis
en oeuvre. Il permet d’expliquer une variable Y (appelée variable dépendante) par
p variables explicatives X = (X, Xy, ..., X,). Pour ce faire, nous disposons de n
réalisations indépendantes (X1,Y7),...,(X,,Y,) du couple (X,Y’). Le but est de
modéliser la dépendance de la variable réponse Y par rapport aux variables explica-
tives X1, Xo, ..., X,. Des études diverses et détaillées ont été effectuées sur le modeéle
linéaire. Pour plus de détails on peut se référer a (Azais & Bardet 2006).

Le modeéle linéaire standard traduit la dépendance linéaire de l'espérance en 3 =

(B1,...,53,)", un paramétre inconnu non-contraint de R? et il s’écrit :
Y;=08"X;+¢, i=1,..,n (2.1)

Le modéle linéaire est caractérisé par les hypothéses suivantes :
E(g;|X;) =0, pour i = 1,...,n (les erreurs sont centrées);

— var(g;) = 02, pour i = 1, ...,n (la variance des erreurs est constante : hypothése

d’homoscédasticité) ;
les variables €;,7 = 1, ..., n sont indépendantes et de loi gaussienne.

Plagons nous maintenant dans le cas ou la variable a expliquer Y est qualitative ou
de type facteur (sexe, couleur, présence ou absence d’une maladie...). Cette variable
posséde un nombre fini de modalités g¢y,...,g,. Le probléme consiste a expliquer
I’appartenance d’un individu & un groupe a partir des p variables explicatives, on

parlera alors de discrimination au lieu de régression.

Il est bien entendu impossible de modéliser directement la variable Y par une rela-

tion linéaire (imaginons que Y soit le sexe d'une personne ou son état de santé).
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Afin de pallier a cette difficulté, on va s’intéresser aux probabilités P(Y = ¢;|X = z).
Supposons pour simplifier que la variable Y prenne uniquement deux valeurs :
0 (groupe 0) ou 1 (groupe 1). La connaissance de P(Y = 1|X = z) implique
celle de P(Y = 0|X = ) : il suffit par conséquent de modéliser la probabilité

p(z) = P(Y = 1|X = z). On peut par exemple envisager une relation de la forme

p(x) = Bo + Brzrt, ..., +Bpx, = B 2. (2.2)

Cette approche posséde plusieurs caractéristiques :

— Remarquons tout d’abord que la variance de Y|X = z vaut p(z)(1 — p(x)).
Contrairement au modéle linéaire classique, cette variance n’est pas constante
et par conséquent I'hypothése classique d’homoscédasticité des résidus ne sera

pas vérifiée.

— Le fait qu’aucune restriction ne soit effectuée sur les 3 implique que 5’z
peut prendre n’importe quelle valeur sur R. Ce qui peut étre génant pour

I'estimation d’une probabilité.

Pour ces raisons, nous devons étendre le modéle linéaire classique aux cas ot :
— Y peut étre une variable qualitative (par exemple, présence ou absence d’une

maladie, appartenance a une catégorie...) ;

— les erreurs peuvent ne pas avoir la méme variance (s’affranchir de ’hypothése

d’homoscédasticité).
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2.2 Le modéle de régression logistique

2.2.1 Introduction

Le modéle de régression logistique est généralement utilisé pour modéliser une ré-
ponse binaire dans le cadre de données médicales. Un exemple de réponse binaire est
le statut d’infection (infecté vs non infecté) a I’égard de certaines maladies. Un mo-
déle de régression logistique peut étre utilisé pour étudier la relation entre le statut
d’infection et les différentes covariables qui peuvent étre par contre soit qualitatives,
soit quantitatives (voir (Hosmer & Lemeshow 2000) et (Aminot & Damon 2002)).
Si Y; représente le statut d’infection pour le ™ individu dans 1’échantillon de taille
n (Y; = 1 si l'individu est infecté, et Y; = 0 sinon), et X; représente le vecteur
de prédicteur linéaire de dimension p correspondant, le modéle de régression logis-
tique traduit la relation entre Y; et X; = (X, X5,..., X)) en terme de probabilité

conditionnelle P(Y; = 1|X;) pour le statut d’infection, comme suit :

log ( P(Y = 1]X,) ) = 87X,, (2.3)

1-P(Y; = 1X;)

ot B € RP est un paramétre inconnu (& estimer). Une littérature détaillée a été
consacrée jusqu’ici a I'inférence statistique des modéles de régression logistique. Les
procédures d’estimation et de tests pour cette catégorie de modéles sont maintenant
bien établies et sont disponibles dans les logiciels standards de statistique. En par-
ticulier, I’estimateur du maximum de vraisemblance de [ est obtenu en résolvant
I’équation du score. Les résultats asymptotiques pour cet estimateur sont donnés
dans (Gouriéroux & Monfort 1981) et (Fahrmeir & Kaufmann 1985), entre autres.
Le lecteur pourra se référer a (Hosmer & Lemeshow 2000) et (Hilbe 2009) pour des

études détaillées et de nombreux exemples.

La fonction de lien logit est la plus généralement utilisée. L’intérét de cette fonction

réside dans la simplicité de passage a I'estimation d’un odds-ratio (OR) ou rapport
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des cotes qui mesure la force de I'association entre la variable endogéne et une va-
riable exogéne. En particulier, en épidémiologie, les résultats peuvent étre aisément
interprétés. Les coefficients estimés par le modéle sont en effet liés mathématique-
ment a P'odds-ratio, bien qu’il ne soit qu'une approximation du risque relatif. La
méthode de régression logistique est donc la méthode multivariable de choix pour

rechercher des facteurs de risque ou des facteurs protecteurs de maladie.
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F1G. 2.1 — Fonction de régression logistique

2.2.2 Identifiabilité du modéle

On rappelle que le modeéle est identifiable si pour 3 # 3, les lois de {(Yi|xy), 1 =
1,...,n} associées a (3 et 3 sont différentes. Tout comme pour le modeéle linéaire
(Guyon 2001), une condition nécessaire pour pouvoir estimer les paramétres est que
I'échantillon rende le modéle identifiable : les lois de {(Y;|X; = x;),i = 1,...,n}
associées a ( et B sont différentes. Comme Y;|X; = z; suit une loi de Bernoulli de

paramétre p(x;) et que la fonction logit est strictement croissante, cette condition
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équivaut a l'existence d'un z; tel que 3'x; # BT x;. Ce qui, comme pour le modéle
linéaire, équivaut a rang(X) = p. On supposera par la suite que cette condition est

vérifiée.

2.2.3 Estimation du modéle

Nous allons utiliser I'échantillon (Xy,Y7),...,(X,,Y,) pour l'estimation des pa-
ramétres 3 par la méthode du maximum de vraisemblance. Rappelons que Y;|X; = z;

suit une loi de Bernoulli de paramétre

plz;) = PYi|Xi =)
eﬁTxi

1+efa
Pour trouver I'estimateur du maximum de vraisemblance de 3, nous définissons

la vraisemblance comme suit

Lu(®) = [Ip)"(—ple)™

n GYzﬂTwi

- Hl—l—eﬁwi'

=1

Maintenant, nous définissons 'estimateur du maximum de vraisemblance, 3, de
(£ en maximisant la fonction de log-vraisemblance des valeurs observées Y; et z;,

1 =1,...,n. Elle est donnée par

n

I(B) =log Ly(8) = > _[Vi3 2 — log(1 + exp(3 " z;)].

i=1

En dérivant une fois par rapport au paramétre 3 on obtient

= D) S i — )L (24)

i=1

in(8)
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Une condition nécessaire d’existence de solution sur RP est I'annulation de (2.4).

Nous obtenons alors 1'équation suivante (appelée équation du score)

s(3) = 22

En dérivant une seconde fois par rapport au paramétre 3, on obtient

~0. (2.5)

%1, - ‘
35l]5()§2>]k - ;p(%’)(l —p(z:))wii, 1<,k <p, (2.6)

(8) = (

la valeur x5 représente I'observation k de l'individu j.

Nous pouvons ré-écrire de maniére vectorielle et matricielle les équations (2.5) et

(2.6) comme suit
n(B) = [XT(Y —p)] et [,(8) = =X TWX,

ot p = (p(x1),...,p(,))" et

p(x1)(1 = p(z1)) 0
W = 0 p(z2)(1 — p(x2))

Nous allons maintenant montrer que ln(ﬁ) est semi-définie négative pour tout g €

RP. Nous avons :

n

uTln(ﬁ)u —u' X"TWXu=-— Z(x:u)Q(p(xz)(l — p(x3))),

i=1

Nous remarquons que p(z;)(1 — p(x;)) est toujours positif, nous avons donc

uw' I, (B)u<0, YueRPetYj3eRP.
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Comme ln(ﬁ) est semi-définie négative, la fonction de log-vraisemblance, [,,, est donc
concave. La recherche d’une solution explicite pour I'équation (2.5) est une tache déli-
cate. Plusieurs techniques d’optimisation (méthodes itératives) sont disponible pour
résoudre ce probléme (voir par exemple (Mak 1993) et (Givens & Hoeting 2005)).

Nous utilisons 'algorithme de Newton Raphson pour maximiser [,,.

2.2.4 Rappel sur l'algorithme de Newton-Raphson

La méthode de Newton-Raphson permet une résolution numérique des équations
du score du type (2.5). On part tout d’abord d’une valeur initiale arbitraire de [,
notée 5°. On note 8! = 3%+ h une valeur candidate pour étre solution de S(3) = 0,
c’est-a-dire S(3° + h) = 0. Par un développement limité a 'ordre un de la fonction

S, on obtient 'approximation suivante
S(5° + h) = S(5°) + hs'(5).
Comme S(S° + h) = 0, on obtient pour h la valeur suivante
b= —[S'(3)] 'S (8").
Il vient
Bl =3 = [n(B)]) ().
On itére le processus. La procédure se résume de la maniére suivante

1. Choix d'un point de départ 3°;

2. Calculer 51 = g% — [1,,(6%)] 1, (3%).

Algorithme 2.2.1 Choisir 3°
k=1

Répéter

B = 38— (1 (%)) (8Y)
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k=k+1
Jusqu’a

B~ BF et /ou L,(B5Y) ~ L,(5%).

2.2.5 Propriétés asymptotiques du modéle

Dans cette partie nous présentons les résultats d’existence, de consistance et
de normalité asymptotique de I'estimateur du maximum de vraisemblance du pa-
rameétre 5 dans le modéle de régression logistique. Nous supposons que les hypothéses
suivantes définies dans (Gouriéroux & Monfort 1981) et (Fahrmeir & Kaufmann 1985)

sont vérifiées :

1. H1 : Les variables explicatives sont uniformément bornées, i.e., 3 C < 00 :

X[l < C.

2. H2 : Soit Ay, et Ay, les valeurs propres respectivement minimale et maximale

de la matrice X "D(5;)X. Alors il existe une constante K < oo telle que

Apn

" < K, pour tout n.

Théoréme 2.2.2 (Eristence et consistance)
Sous les hypothéses H1 et H2, '’EMV noté Bn de B existe presque sirement quand
n tend vers +oo, et En converge presque sirement quand n tend vers +oo vers la

vraie valeur By si et seulement si lim,, ., o A, = +00.

Théoréme 2.2.3 (Normalité asymptotique)

Sous les hypotheéses H1 et H2, et si 'EMV est consistant, alors

V(B — Bo) — A(0,.7(Bo)7Y),  quand n — +o0

ol
1 ()
0posT

J(0) = —E[

est la matrice d’information de Fisher.

]
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Le Théoréme 2.2.3 nous permet facilement de déduire un estimateur de la variance
de Bn Ce qui nous permet de donner des intervalles de confiance de niveau 1 — «
pour B, j = 1,...,p. Il est également possible de tester I'impact des variables

explicatives par
Hy:01=0y=...=0,=0, contre Hy:3je{l,....,p}:05;#0.

Pour cela trois tests sont généralement utilisés :
— Le test de Wald ;
Le test du score;

— Le test du rapport de vraisemblance ou de la déviance.

2.2.6 Interprétation des coefficients de régression et odds ra-
tio

En général 'interprétation des coefficients [ s’effectue en terme d’odds ratio. Les

odds ratio sont des outils souvent appréciés dans le domaine de 1’épidémiologie. Ils

servent & mesurer 'effet d’une variable continue ou le contraste entre les effets d’une

variable qualitative. L’idée générale est de raisonner en terme de probabilités ou de

rapport de cotes (odds).

Définition 2.2.4 L’odds (chance) pour un individu = d’obtenir la réponse Y = 1 est

définie par

odds(x) = 1£<—;()x)’ ot p(x) =P =1|X =x).

L’odds ratio (rapport des chances) entre deuz individus x et z' est

odds(x)

OR(z,x") = odds(2)’

Les odds ratio peuvent étre utilisés de différentes manieéres :
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OR(z,2') >1 <= p(x) > p(a)
OR(z,2') =1 <= p(z) =p(z)

OR(z,2") <1 <= p(x)<p(z’)

TAB. 2.1 — Regles d’interprétation des odds ratio

1. Comparaison de probabilités de succés entre deux individus (voir

tableau 2.1)

2. Interprétation en terme de risque relatif : dans le cas ou p(z) et p(z') sont
trés petits par rapport a 1, comme dans le cas d’'une maladie trés rare, alors
on peut approximer 'odds ratio comme OR(x,z’) =~ p(z)/p(x’) et interpréter

simplement.

3. Mesure de I'impact d’une variable : pour le modéle de régression logistique

logit(p(x)) - 50 + ﬁlxl + ...+ ﬁpmpv

il est facile de vérifier que :
OR(2,2/) = exp(By (21 — 24)) ... exp(By(z, — 1),

Pour étudier I'influence d’une variable sur ’odds ratio, il suffit de considérer
deux observations x et 2’ qui différent uniquement par la j-éme composante.

On obtient alors :
OR(z,2") = exp(fi(z; — x;))

Ainsi une variation de la j-éme variable d’une unité (sur I’échelle de cette
variable) correspond & un odds ratio exp(f;) qui est uniquement fonction du
coefficient (3;. Le coefficient permet de mesurer I'influence de la j-éme variable
sur le rapport p(x)/(1 — p(x)) lorsque z; varie d’une unité, et ceux indépen-
damment de la valeur de z;. Une telle analyse peut se révéler intéressante pour

étudier I'influence d’un changement d’état d’une variable qualitative.
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Remarque 2.2.5
La variable dépendante Y peut prendre plusieurs valeurs (ordinales ou non) : nous
parlerons dans ce cas de régression polytomique. (Fahrmeir & Tutz 2001) ont fait

une étude détaillée de ce modéle.
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La modélisation de données de comptage est une problématique trés répandue
dans divers domaines comme la banque, les assurances, I’économétrie, la médecine
ou encore le marketing. Aussi, les méthodes de modélisation adaptées a ce type de
données ont été largement explorées dans la littérature. La régression de Poisson est
et reste le premier modéle auquel les utilisateurs font référence dans ce genre de situa-

tion. Cependant, des applications a des données réelles ont amené les gens a réfléchir



18

a des solutions alternatives au probléme de sur-dispersion ou au probléme d’excés de
zéros induits par les mécanismes du phénomeéne étudié. Parmi celles-ci nous avons
les modéles avec inflation de zéros introduits par (Lambert 1992) qui répondent
de maniére trés claire au probléme d’excés de zéros. On pourra également consul-
ter a ce propos (Yip 1988), (Yip 1991), (Fong & Yip 1993), et (Fong & Yip 1995).
La présence d’exces de zéros dans les données de comptage constitue un phéno-
meéne commun dans beaucoup d’applications parmi lesquelles nous pouvons citer
la médecine (Bohning et al. 1999), la santé publique (Zhou & Tu 2000), les sciences
environnementales (Agarwal et al. 2002), 'agriculture (Hall 2000) et le secteur des
applications industrielles (Lambert 1992). Les travaux de recherche sur la générali-
sation de ces modéles ainsi que leurs mises en application sont nombreux.

(Consul & Famoye 1992) proposent une régression de Poisson généralisée avec l'in-
troduction d’un nouveau paramétre dans le modéle standard pour modéliser la dis-
persion.

Récemment, (Famoye & Singh 2006) développent une régression de Poisson généra-
lisée avec inflation de zéros pour modéliser les violences domestiques.

(Kelley & Anderson 2008) ont également utilisé les modéles avec inflation de zéros
pour modéliser des données ordinales avec une présence excessive de zéros. Plus gé-
néralement, dans un modele avec inflation de zéros, d'une part, un modeéle logistique
est utilisé pour déterminer si le statut de I'individu est dans le groupe des zéros ou
non, et d’autre part un modeéle Binomial, & Odds proportionnels ou de comptage
(Poisson ou Binomial Négatif) est utilisé pour modéliser la survenue de I’événement

d’intérét dans le groupe des non zéros.
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3.1 Modeéles de régression ZIP et ZINB

3.1.1 Modéles de régression de Poisson et Binomial Négatif

Le modéle de régression de Poisson (régression log-linéaire) (Hilbe 2007) est le
modéle de base qui prend explicitement en compte ’aspect entier positif des valeurs
de la variable dépendante de comptage Y. Dans ce modéle, la probabilité d'un
événement de comptage y;, étant donné le vecteur de covariables X;, est donnée par

la distribution de Poisson :

exp(—pu) p1t*

Y
avec
E(yi|X; = @) = i = exp(6 ),
ot 8= (0o, 51,-..,0p) est le vecteur inconnu des parameétres.

Prendre I'exponentiel de 3"z, assure que la moyenne conditionnelle j; est positive.
Le nom de modéle de régression log-linéaire est également utilisé pour le modéle
de régression de Poisson, car le logarithme de la moyenne conditionnelle est une

fonction linéaire des paramétres :

log[E(y;| X = ;)] = log(;) = 8" ;.

Le modéle de régression de Poisson suppose que les données sont dispersées de
maniére égale, c’est-a-dire, que la variance conditionnelle est égale a la moyenne
conditionnelle. Ce qui n’est pas toujours le cas. Les données réelles sont souvent
caractérisées par une sur-dispersion c’est-a-dire que la variance dépasse la moyenne.
Dans ce cas un modéle de mélange Gamma-Poisson est proposé. Ce qui conduit au
modéle de régression Binomiale Négative (Hilbe 2007) qui permet de généraliser le
modéle de régression de Poisson en prenant en compte cette sur-dispersion des don-

nées par l'introduction d’un terme d’hétérogénéité non observée chez 1'observation
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7. On a
E(yz|Xz =T, T) = WiTi = eXP(ﬁT%‘)Ti’

ou 7; suit une loi Gamma de moyenne 1 et de variance «. Conditionnellement a X;
et 7;, la variable dépendante de comptage Y; est toujours distribuée selon une loi de

Poisson :

— T . \Yi
P(Y; = yZ’X’L = SUi,Ti) = exp( Msz)(Msz) ;o ¥ =0,1,2,...

Yi!

Conditionnellement & X;, Y; est distribuée selon une loi binomiale négative :

P(Y; = .‘X4_x')_lj(yi—|—1/a)< 1 )l/a( 05 )y"
PR )T TP ) \ T+ o Lo+ 1

ol « est un paramétre auxiliaire mesurant le degré de sur-dispersion. Cette loi a

une moyenne conditionnelle y; et une variance conditionnelle ;(1 + au;). La loi

Binomiale Négative tend vers la loi de Poisson lorsque « tend vers zéro.

3.1.2 Modéles de régression ZIP et ZINB

Les premiérs types de données sur lesquelles une inflation de zéros a été ob-
servée sont les données de comptage. D’ou l'utilisation des modéles de régression
Poisson et Binomial Négatif et la naissance des modéles de régression ZIP et ZINB
((Lambert 1992), (Greene 1994) et (Aldo et al. 2011)).

Soit Y;,i = 1,...,n une variable dépendante de comptage positive. La probabi-

lité pour qu'un individu ¢ soit dans le groupe des zéros est notée ;.

La variable Y; est modélisée par un ZIP si :

mi+ (1 —m)exp(—p;) siy; =0

exp(—u; i
(1_7TZ.)I)(—_!)/~%

m siy; >0
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avec
E(Yi|Xi,Z;) = (1 —m)Ai et var(Y[Xi, Z;) = (1 — mi) (1 + mipss)-
La variable aléatoire Y; est modélisée par un ZINB si

7ri+(1—7ri)(%wi)o‘ si Y =0

Pyit1/o) (aws \U'( 1\
(1 N ﬂ-i) F(yl/a)yi! <1+ZM> (1+a/—Li> sy >0

avec
E(Y;| X, Z;) = (1 —m)pi et var(Yy| Xy, Z;) = (1 — ) (1 + (o + m3) i),

ol « est un paramétre de sur-dispersion. Comme pour les modéles de Poisson et
Binomial Négatif, le modele ZINB tend vers le modéle ZIP lorsque o tend vers
zéro. Pour ces deux modéles (3.1)-(3.2), on suppose que la probabilité m; et la
moyenne conditionnelle u; sont respectivement modélisées par logit(m;) = V1 Z; et
par log(u;) = 87 X;. X; € RP et Z; € R? représentent les covariables. 3 € RP et
0 € RY représentent les vecteurs des paramétres inconnus. Les covariables X; et Z;

peuvent ou non avoir des composantes communes (Pradhan & Leung 2006).

3.1.3 Propriétés asymptotiques du modéle ZIP

Nous nous intéressons dans cette partie aux propriétés asymptotiques de 'esti-
mateur du maximum de vraisemblance de (3 et v du modéle (3.1). Nous considérons
également que tous les individus ont la méme probabilité m d’appartenir au groupe
des zéros. Nous nous plagons dans les mémes conditions que (Czado et al. 2007) avec
les hypothéses suivantes :

— HI1: #(Fn) < (7 Vn>1,ou (] est une constante positive, F,, la matrice

d’information de Fisher et \,,;, sa plus petite valeur propre.

H2 : Les variables explicatives sont uniformément bornées, i.e., 3 Cy < 00 :

1 X < Ca.
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H3 : soit B un ensemble ouvert de R? et 6y = (3, ,m)" la vraie valeur de

6= (B",7)" un point intérieur de B x [0, 1].

Sous ces conditions, (Czado et al. 2007) ont montré le résultat suivant :

Théoréme 3.1.1 Il existe une suite de variables aléatoires é\n telles que

(i) P(s,(6,) =0) — 1 quand n — oo (ezistence asymptotique),

(ii) 0, = 0y quand n — oo (consistance),

(iii) \/ﬁ(é\n — ) N N (0,F1(6y)) quand n — oo (normalité asymptotique).

ou

5n(0) 90 90007

ou L, représente ici la vraisemblance du modéle ZIP considéré.

_ 0Olog Ly,(0) o Fe & [82 logLn(G)}

(Hall & Shen 2010) se sont appuyés sur le fait que 'EMV est sensible aux valeurs
aberrantes pour utiliser une nouvelle procédure d’estimation du modéle 3.1 dite "ro-
bust expectation-solution (RES) estimation" reliée a la méthode de M-estimation
qu’ils ont précisément appelée expectation-solution ou algorithme ES. Cet algo-
rithme est une modification de I’algorithme expectation-maximization (EM) avec la
propriété de robustesse. Dans les modéles ZIP, comme dans bien d’autres modéles
de mélange, 'algorithme EM constitue une approche pratique pour le calcul de
I'estimateur du maximum de vraisemblance (voir (Lambert 1992)). Cet algorithme
tient compte de la présence de données manquantes dans le probléme. En particulier
supposons observer la variable v telle que v; = 1 si y; provient de I'ensemble des

zéros (distribution dégénérée) et v; = 0 si y; provient de 1’ensembles des non zéros
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(distribution non dégénérée). Ainsi la log-vraisemblance pour les données complétes

(v,7) est donnée par

(y,v,8,7) = i {UWTZz' — log(1+ evTZi)}

=1
+ D (w) {MTX@- — P X log(y!)}
i=1
= 15(v,y,0) +15(8.y,v), (3.3)

ot v = (v, ...,0,) "
Avec Talgorithme EM (Dempster et al. 1977), la log-vraisemblance est maximisée
de maniére itérative en commencant par une valeur initiale (B(O)T,W(O)T)T et en

alternant les étapes 1 et 2 suivantes :

)

1. Etape E : estimer la variable v; par son espérance conditionnelle vi(r sous les

estimations courantes des paramétre 3 et ("),

2. Etape M : trouver U1 et 4"*+1) en maximisant respectivement les fonctions
1£(y,y,0")) et 15(8,y,v™). (Hall & Shen 2010) ont montré que maximiser ces

deux fonctions revient a résoudre respectivement les deux équations suivantes

1 n
n i=1

1 n
=y -u - X =0, (3.5)
n

i=1

Dans I'approche RES, (Hall & Shen 2010) proposent de remplacer les équations

(3.4) et (3.5) par des estimations de fonctions robustes. Essentiellement, ils proposent

de pondérer les observations qui se situent dans la queue extréme supérieure et
inférieure de la distribution de Poisson dans la fonction d’estimation.

Sous des conditions de régularité de (Rosen et al. 2000) liées a I'algorithme ES et de

(Carroll et al. 1995), (Hall & Shen 2010) ont montré le résultat suivant plus général

(dans le sens on = (B7,7")T € RPT) que le théoréme précédent :
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Théoréme 3.1.2 Sil’algorithme RES converge, alors il existe une suite de variables

aléatoires én telles que
i) 6, L. 0y quand n — oo (consistance),
(ii) /7n(6, — 6o) =, A0, V(0o)) quand n — oo (normalité asymptotique).

ou l'expression de la variance asymptotique est donnée dans (Hall & Shen 2010).
Des extensions du modéle ZIP ont été étudiées dans le cadre semi-paramétrique et
doublement semi-paramétrique et des résultats de convergence ont été également

démontrés respectivement pour ces deux types de modeéles par (Lam et al. 2006) et

(He et al. 2010).

3.2 Modéle de régression ZIB

3.2.1 Modéle binomial

On considére, pour ¢ = 1..., I, différentes valeurs fixées z;y, ..., z;, des variables

explicatives X1,...,X,. Ces derniéres pouvant étre des variables quantitatives ou
encore des variables qualitatives.
Pour chaque groupe, c¢’est-a-dire pour chacune des combinaisons de valeurs ou fac-
teurs, on réalise n; observations (n = >_+_, n;) de la variable réponse binaire Y qui
se mettent sous la forme y;/n;,...,y;/n; ou y; désigne le nombre de "succés" ob-
servés lors des n; essais. On suppose que toutes les observations sont indépendantes
et qu’a l'intérieur d'un méme groupe, tous les individus ont la méme probabilité
de succes. Alors, la variable Y; suit une loi binomiale %(n;, ;) dont la fonction de
densité s’écrit

P(Y =y) = <”) TV (1 — ),

Yi
ol la probabilité m; est modélisée par une fonction de lien logit :

logit(my)) = B a;, i=1,...,1,
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ce qui s’écrit encore
eﬂ—rl'i
T = ————.
14 e

Le vecteur des paramétres est estimé par maximisation de la log-vraisemblance. Il
n’y a pas de solution analytique, celle-ci est obtenue par des méthodes numériques
itératives (par exemple Newton Raphson) dont certaines reviennent a itérer des
estimations de modéles de régression par moindres carrés généralisés avec des poids
et des métriques adaptés a chaque itération.

[’optimisation fournit une estimation Bn de (3, il est alors facile d’en déduire les

estimations ou prévisions 7; de m; et celles des effectifs 7; de y; :

~

i = T A Yi = 14T
1+ ebnai

3.2.2 Définition du modéle ZIB

Le modéle de régression Binomial zéro-inflaté (ZIB) a été introduit en premier
par (Kemp & Kemp 1988), mais ils I'ont seulement utilisé pour mettre en valeur
quelques aspects importants de I'estimation de la fonction génératrice de probabilité
empirique. (Hall 2000) a étudié et étendu le modéle ZIB a un modéle avec et sans
effet aléatoire et a donné quelques applications détaillées dans le cadre de données
réelles. En considérant les mémes notations que (Hall 2000), nous définissons le

modéle ZIB comme suit :

0 avec une probabilité p;
Y; ~ (3.6)
Binomiale(n;, m;) avec une probabilité 1 — p;.

Ce qui implique que

0 avec une probabilité p; + (1 — p;)(1 — m;)™
v p pi+ (L=p)(1 = m) .

k avec une probabilité (1 — p;) () m" (1 — m)™F k =1,2,...,n;,



3.2. Modéle de régression ZIB 26

avec
E(Y;) = (1 — p)ngm, et var(Y;) = (1 — p,-)nim(l (- pmi)>.

Les deux probabilités peuvent également étre exprimées conjointement comme une
distribution de Bernoulli généralisée donnant la vraisemblance compléte suivante :
n
N n; . kNl
a(30) = L+ (= ot =m0 = (3 ) (L= m e (38)
i=1
Les paramétres p = (p1,...,p,) et m = (7, ..., m,) sont respectivement modélisés
via une fonction de lien logit, logit(p) = v Z et logit(r) = f'X ou Z € R? et
X € RP sont les vecteurs de covariables, n étant le nombre d’individu, p et g sont
respectivement le nombre de covariables dans le modéle de régression binomial et le
nombre de covariables dans la partie inflation de zéros, v € R? et 3 € RP sont les
parameétres de régression. La log-vraisemblance de ce modéle ZIB est alors donnée

par

(1) = 3 {uslog(e + (1+¢* ) ™) —log(1+¢7) + (1 - w)
=1

X

(18" X; — m;log(1 + e’ %) + log (Il?) )} (3.9)

3.2.3 Identifiabilité de modéle de régression ZIB

(Teicher 1960), (Teicher 1963), (Blischke 1978) et (Margolin et al. 1989) ont donné
des conditions nécessaires et suffisantes pour l'identifiabilité d’un mélange d’un
nombre fini & de modéles binomiaux.

k
P = om0 00 ). (3.10)

i=1
ou Ay = {0,1,..., N}, 6; et m; sont modélisés par des modeéles de régression lo-
gistiques. Leurs résultats peuvent étre résumés comme suit. L.e modéle de mélange

(3.10) est identifiable si et seulement si

k< Z(N+1). (3.11)

N |
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(Wang 1994) a étudié l'identifiabilité d’une collection de modéles de régression
logistique. (Follmann & Lambert 1991a) ont établi des conditions suffisantes pour
montrer I'identifiabilité de (3.10) dans le cas ot les proportions de mélange ne sont
pas fonction des covariables et que les paramétres de régression des composantes
logistique différent seulement de par leurs intercepts. Ils ont montré que pour une
réponse binaire, le nombre de composantes k dans le mélange doit étre borné par
une fonction du nombre de vecteurs de covariables qui convient ; et pour une réponse

binomiale, k£ doit satisfaire la méme condition de bornitude.

Des exemples d’application des modéles de mélange de modéles de régression lo-
gistiques standard & des jeux de données réelles biologiques peuvent étre trouvés
dans (Follmann & Lambert 1991a) et (Wang 1994). (Farewell & Sprott 1988) ont

également donné un exemple d’application de modéle de mélange binomial.

3.3 Modéle de régression ZIPO

Lorsque la variable dépendante discréte a K (K > 2) catégories, le modéle de ré-
gression est dit polytomique. Si les catégories sont ordonnées (par exemple la tension
artérielle : faible, moyenne et élevée) on parle de régression ordinale. (Agresti 2002) a
fait une étude détaillée de ce modéle. (Kelley & Anderson 2008) ont développé le mo-
dele ZIPO qui fournit une méthode permettant de modéliser des données en présence
d’une inflation de zéros. La spécification du modéle est similaire a celles étudiées en
haut (ZIP, ZINB et ZIB). Soit ¥;,1 < ¢ < n une variable ordinale avec J niveaux.
Les probabilités cumulatives sont données par v; =P(Y; <), =0,1,...,J. On a

0 avec p;

Y, ~ (3.12)
Multinomiale(1,v9,...,7s:) avec 1 — p;,.
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Ce qui donne
0 avec p; + (1 — pi)vo.
Y; _ | p ( p )70, (313)
g avec (L —pi) (v — Vj—14)s

ou p=(p1,...,pn) et v = (Y0,...,7s) sont modélisés respectivement par

logit(p) =0'Z et logit(r) = 5 X.
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Abstract
Logistic regression is widely used in medical studies to investigate the
relationship between a binary response variable Y and a set of potential
predictors X. The binary response may represent, for example, the oc-
currence of some outcome of interest (Y =1 if the outcome occurred and
Y = 0 otherwise). In this paper, we consider the problem of estimating the
logistic regression model with a cure fraction. A sample of observations
is said to contain a cure fraction when a proportion of the study subjects
(the so-called cured individuals, as opposed to the susceptibles) cannot
experience the outcome of interest. One problem arising then is that it
is usually unknown who are the cured and the susceptible subjects, un-
less the outcome of interest has been observed. In this setting, a logistic
regression analysis of the relationship between X and Y among the sus-
ceptibles is no more straightforward. We develop a maximum likelihood
estimation procedure for this problem, based on the joint modeling of
the binary response of interest and the cure status. We investigate the
identifiability of the resulting model. Then, we establish the consistency
and asymptotic normality of the proposed estimator, and we conduct a

simulation study to investigate its finite-sample behavior.

keywords : Zero-inflation, Maximum likelihood estimation, Consistency,
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Asymptotic normality, Simulations

4.1 Introduction

Logistic regression is widely used to model binary response data in medical stu-
dies. An example of a binary response variable is the infection status (infected ws
uninfected) with respect to some disease. A logistic regression model can be used
to investigate the relationship between the infection status and various potential
predictors. If Y; denotes the infection status for the ¢-th individual in a sample of
size n (Y; = 1 if the individual is infected, and Y; = 0 otherwise), and X; denotes
the corresponding (p-dimensional, say) predictor, the logistic regression model ex-
presses the relationship between Y; and X, in term of the conditional probability
P(Y; = 1|X;) of infection, as :

P(Y; = 1|1X;) _ AT
1°g<1—1fﬂm—1|xi>)_ﬁx“

where § € R? is an unknown parameter to be estimated. An extensive literature has
been devoted so far to statistical inference in logistic regression models. Estimation
and testing procedures for this class of models are now well established and are
available in standard statistical softwares. In particular, the maximum likelihood

estimator of 3 is obtained by solving the following score equation :

n e/gTXi
2X\ Vi | =0

Asymptotic results (consistency and asymptotic normality) for this estimator were
given by (Gouriéroux & Monfort 1981) and (Fahrmeir & Kaufmann 1985), among
others. We refer the reader to (Hosmer & Lemeshow 2000) and (Hilbe 2009) for
detailed treatments and numerous examples.

In this paper, we consider the problem of estimation in the logistic regression

model with a cure fraction. In medical studies, it often arises that a proportion of
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the study subjects cannot experience the outcome of interest. Such individuals are
said to be cured, or immune. The population under study can then be considered as
a mixture of cured and susceptible subjects, where a subject is said to be susceptible
if he would eventually experience the outcome of interest. One problem arising in
this setting is that it is usually unknown who are the susceptible, and the cured
subjects (unless the outcome of interest has been observed). Consider, for example,
the occurrence of infection from some disease to be the outcome of interest. Then, if
a subject is uninfected, the investigator usually does not know whether this subject
is immune to the infection, or susceptible albeit still uninfected.

Estimating a regression model with a cure fraction can be viewed as a zero-
inflated regression problem. Zero-inflation occurs in the analysis of count data when
the observations contain more zeros than expected. Failure to account for these extra
zeros is known to result in biased parameter estimates and inferences. The regres-
sion analysis of count data with excess zeros has attracted much attention so far.
For example, (Lambert 1992) proposed the zero-inflated Poisson (ZIP) regression
model for count data with many zeros. This was further extended to a semiparame-
tric ZIP regression model by (Lam et al. 2006). We refer to (Dietz & Bohning 2000)
and (Xiang et al. 2007) for a review of various other extensions of the ZIP model.
Other popular models are the zero-inflated binomial (ZIB) regression model (see,
for example, (Hall 2000)), and the zero-inflated negative binomial (ZINB) regression
model (see, for example, (Ridout et al. 2001)). Recently, (Kelley & Anderson 2008)
proposed a zero-inflated proportional odds model (ZIPO) for ordinal outcomes, when
some individuals are not susceptible to the phenomenon being measured. Various
other models and numerous references can be found in (Famoye & Singh 2006) and
(Lee et al. 2006).

In our paper, we consider the problem of estimating a logistic regression mo-
del from binary response data with a cure fraction, when the cure probability is
modeled by a logistic regression. This can be viewed as a zero-inflated Bernoulli re-

gression problem, where logistic link functions are used for both the binary response
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of interest (the probability of infection, say) and the zero-inflation probability (the
probability of being cured). The literature on zero-inflated models is extensive but
to the best of our knowledge, the theoretical and numerical issues related to the
statistical inference in this model have not been yet investigated. In this paper, we
intend to fill this gap. We first investigate the identifiability question in this model.
Then, we turn to the problem of estimation. The estimator we propose is obtai-
ned by maximizing the joint likelihood for the binary response of interest and the
cure indicator. We prove the almost sure asymptotic existence, the consistency, and
the asymptotic normality of this estimator. Then, we investigate its finite-sample
properties via simulations.

The rest of this paper is organized as follows. In Section 4.2, we describe the
problem of logistic regression with a cure fraction, and we propose an estimation
method adapted to this setting. The proposed procedure is based on a joint regres-
sion model for the binary response of interest and the cure indicator. In Section 4.3,
we investigate the identifiability of this model, and we state some regularity condi-
tions. In Section 4.4, we derive the asymptotic properties of the resulting estimator.
Section 4.5 describes a simulation study, where we numerically investigate the small
to large sample properties of this estimator. A real data example illustrates the

methodology. A discussion and some perspectives are given in Section 4.6.

4.2 Logistic regression with a cure fraction

4.2.1 Notations and the model set-up

Let (Y1,51,X1,Z1),...,(Y,,Sn, X0, Z,) be independent and identically distri-
buted copies of the random vector (Y,S,X,Z) defined on the probability space
(Q, o/, P). For every individual ¢ = 1,...,n, Y; is a binary response variable in-
dicating say, the infection status with respect to some disease (that is, Y; = 1 if

the i-th individual is infected, and Y; = 0 otherwise), and S; is a binary variable
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indicating whether individual i is susceptible to the infection (S; = 1) or immune
(S; = 0). If Y; = 0, then the value of S; is unknown. Let X; = (1, X2, ..., X;,)" and
Z,=(1,%Zp,...,Zy) berandom vectors of predictors or covariates (both categorical
and continuous predictors are allowed). We shall assume in the following that the
X,’s are related to the infection status, while the Z,’s are related to immunity. X;
and Z; are allowed to share some components.

The logistic regression model for the infection status assumes that the conditional

probability P(Y = 1]X;,S;) of infection is given by

N ( P(Y = 11X, 5;)

= » AT
1 _P(Y: 1|Xi78i>> =B+ Fo X + +ﬂPX2p =03 X, (4.1)

if {S; =1}, and by

if {S; = 0}, where 3 = (B1,...,0,)" € R” is an unknown regression parameter
measuring the association between potential predictors and the risk of infection (for
a susceptible individual).

The statistical analysis of infection data with model (4.1) includes estimation
and testing for . Without immunity (that is, if S; = 1 for every i = 1,...,n),
inference on 3 from the sample (Y1,Xy,Z),...,(Y,,X,,Z,) can be based on the
maximum likelihood principle. When immunity is present, deriving the maximum
likelihood estimator of 3 is no longer straightforward : if Y; = 0, we do not know
whether {S; = 1}, so that (4.1) applies, or whether {S; = 0}, so that (4.2) applies.

One solution is to consider every individual ¢ such that {Y; = 0} as being sus-
ceptible that is, to ignore a possible immunity of this individual. We may however
expect this method to produce biased estimates of the association of interest (such
a method will be evaluated in the simulation study described in section 4.5). The-
refore in this paper, we aim at providing an alternative estimation procedure for f3.
This can be achieved if a model for immunity is available, as is explained in the next

section.
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4.2.2 The proposed estimation procedure

A model for the immunity status is defined through the conditional probability
P(S = 1|Z;) of being susceptible to the infection. A common choice for this is the
logistic model (see, for example, (Fang et al. 2005) and (Lu 2008; Lu 2010) who

considered estimation in various survival regression models with a cure fraction) :

P(S = 12,) .
Og<1—19>(5:1yzi)> 1 g P (4:3)
where 0 = (0y,...,0,)" € R? is an unknown regression parameter.

Remark 4.2.1 We note that the model defined by (4.1)-(4.2)-(4.3) can be viewed
as a zero-inflated Bernoulli regression model, with logit links for both the binary
response of interest and the zero-inflation component. As far as we know, no theo-
retical investigation of this model has been undertaken yet. Such a work is carried

out in the following.

From (4.1), (4.2), and (4.3). a straightforward calculation vields that

(4.1), (4.2), : g y
eﬁTXiJreTzi

(1+ eﬁTXi)(l + eeTZi)'

Let v := (37,07)" denote the unknown k-dimensional (k = p + ¢) parameter in

the conditional distribution of Y given X; and Z;. ¢ includes both ( (considered
as the parameter of interest) and € (considered as a nuisance parameter). Now, the
likelihood for ¢ from the independent sample (Y;, S;, X;,Z;) (i = 1,...,n) (where
S; is unknown when Y; = 0) is as follows :

1-Y;

n B Xi+07Z; Yi B Xi+07Z;
L,(v) = —
) H (1+ePTXi)(1+ el 2%i) (14 P X)) (1 + el %)

=1

We define the maximum likelihood estimator @n = (ﬁr aT)T of 1 as the solution

n»’n

(if it exists) of the k-dimensional score equation

_ OlL(Y)
-5

I (1) =0, (4.4)
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where [,,(¢) := log L, (¢) is the log-likelihood function. In the following, we shall be
interested in the asymptotic properties of the maximum likelihood estimator Bn of
[, considered as a sub-component of {D\n. We will however obtain consistency and
asymptotic normality results for the whole Jn Before proceeding, we need to set

some further notations.

4.2.3 Some further notations

Define first the (p x n) and (¢ x n) matrices

1 1 - 1 1 1 - 1
Xig Xoo -+ X, Zia Zog -+ Zn

X — .12 .22 ‘ . 2 and 7 — '12 .22 ‘ ‘ 2 7
X1, Xop -+ Xnp Zhg Zog -+ Zng

and let W be the (k x 2n) block-matrix defined as

X Oy
O Z

W:

where 0,, denotes the (a x b) matrix whose components are all equal to zero (for
any positive integer values a, b). Let also C'(¢)) be the 2n-dimensional column vector

defined as
C() = (A°(e) — B ()T, (A%(¥) — B'(y)T) ",
where A%(¢)) = (A7 (¢))1i<n, B(¥) = (B (¥))1zizn, A(¥)) = (AY(¥))1<i<n, and

BY(¢)) = (BY(1))1<i<n are n-dimensional column vectors with respective elements

8 1+ GGTZi 3 eﬁTXH-@TZi
Ai (dj) - ,@TX- gTz.}/;7 B’L (¢) = BTX- /ng. OTZ:\’
1+ el Xit el Z (14 ef X)) (1+eb Xi 4 ef Zi)
14+ eﬁTxi eﬁTX¢+9TZ¢
A7 () Y, Bl(y)=

Tl LXK 12 (L+e" Z)(1+ e Xi el Zi)

Then, simple algebra shows that the score equation can be rewritten as

() = WC(¢) = 0.
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column (j = 1,...,b) that is, My; = (My;,..., M,;)". Then, it will be useful to

rewrite the score vector as
2n
(V) = WyCi(1).
j=1

We shall further note [,(¢)) the (k x k) matrix of second derivatives of I,,(1)) that is,
L(1) = 021, (1) /9T . Let D(1h) = (D (1)) 1<, j<an be the (2n x 2n) block matrix
defined as

Di(y) Ds(y)

D3 () Da(e)

where Dy (), Dy(10), and D3(¢) are (n x n) diagonal matrices, with i-th diagonal

D(¢) =

elements (i = 1,...,n) respectively given by
eﬁTXH-@TZi
DY) = ’
1, (@Z)) (1 + eﬁTXi>2(1 L eBTXi eeTZi)
BT Xi+07Z;
Dg i = ?
2, (w) (1 + GgTZi)2(1 + eﬂTXz’ + GOTZi)
( ) eﬁTXi+9TZ¢
D?;,ii V) =

(14 eBTXi) (1 +efT2i) (1 4 ePTXi 4 ef72i)
Then, some algebra shows that I, (1)) can be expressed as
In(¥) = —~WD()W'.

Note that the size of C'(¢), W, and D(¢)) depends on n. However, in order to simplify
notations, n will not be used as a lower index for these vector and matrices. In the

next section, we investigate the question of parameter identifiability in model (4.1)-

(4.2)-(4.3).

4.3 Identifiability and regularity conditions

We first state some regularity conditions that will be needed to ensure identifia-

bility and the asymptotic results in Section 4.4 :
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C1 The covariates are bounded that is, there exist compact sets F' C R and G C R
such that X; € F and Z; € G for every i = 1,2,... For every i = 1,2,.. .,
J=2,....p, k=2,...,q, var[X;;| > 0 and var[Z;;] > 0. For every i = 1,2, ..,
the X;; (j = 1,...,p) are linearly independent, and the Z;, (k=1,...,q) are

linearly independent.

C2 Let ¥y = (8,07 )" denote the true parameter value. 3, and 6y lie in the interior

of known compact sets # C RP and 4 C R respectively.

C3 The Hessian matrix [,,(¢) is negative definite and of full rank, for every n =
1,2,... Let \, and A,, be respectively the smallest and largest eigenvalues of
WD(o)WT. There exists a finite positive constant cy such that A,/\, < c

for every n =1,2,...

C4 There exists a continuous covariate V' which is in X but not in Z that is, if
By and Oy denote the coefficients of V' in the linear predictors (4.1) and (4.3)
respectively, then By # 0 and 0y = 0. At a model-building stage, it is known
that V is in X.

The conditions C1, C2, C3 are classical conditions for identifiability and asymptotic
results in standard logistic regression (see, for example, (Gouriéroux & Monfort 1981)
and (Guyon 2001)). The condition C4, which imposes some restrictions on the co-
variates, is required for identifiability of + in the joint model (4.1)-(4.2)-(4.3) (we
may alternatively assume that the continuous covariate V' is in Z but not in X). In
the following, we will assume that V' is in X but not in Z, with gy := [, for some
I €{2,...,p}, and for the i-th individual, we will denote V; by X;. The condition

(4 is discussed in greater details in the following two remarks.

Remark 4.3.1 We may relate the identifiability issue in model (4.1)-(4.2)-(4.3) to
the problem of identifiability of mixtures of logistic regression models, which was
investigated by (Follmann & Lambert 1991b). (Follmann & Lambert 1991b) consi-

dered the case where there is a finite number ¢ of components in the mixture (we
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consider here the case where ¢ = 2, with one degenerate component) and the mixing
probabilities are constant (here, the mixing probabilities given by (4.3) are allowed
to depend on covariates). The authors have shown that finite mixtures of logistic re-
gressions are identifiable provided that the number of unique covariate combinations
values is sufficiently large. C4 can be viewed as a sufficient condition for achieving the
same kind of requirement. A similar condition appears in (Kelley & Anderson 2008).

To understand C4, note that if X; = Z;, then exchanging the parameters $ and
0 in (4.1) and (4.3) yields the same likelihood value L, (1)), which is a cause of model
non-identifiability. A similar remark holds if we invert the linear predictors 37X,
and 6"Z;. The condition C4 evacuates these problems.

First, by asking one of the covariates to be significant in one and only one linear
predictor, C4 prevents ' X and #'Z from being of the same form, and the parame-
ters are thus not exchangeable. Secondly, by assuming that we know, prior to model
fitting, that there exists a covariate V' which is in X but not in Z, C4 will force each
linear predictor to be attached to the correct corresponding model (4.1) or (4.3).

These facts are illustrated in a supplementary document available on annex B.
There, we provide the results of a simulation study which investigates numerically
the identifiability of model (4.1)-(4.2)-(4.3). For each of the models considered in
this study, we assume that C4 is satisfied : the linear predictors 3" X; and 6" Z; share
three covariates (one is continuous, two are discrete), and an additional continuous
covariate is included in X;. Using the procedure described in Section 4.2, maximum
likelihood estimates are obtained for # and 6, and are averaged over N = 1000
samples (we considered several combinations of sample size, proportion of immunes,
proportion of infected among the susceptibles). Both parameters 3 and 6 appear to

be identifiable (the averaged estimates appear to be close to the true parameters,
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including those corresponding to the three shared covariates).

Remark 4.3.2 The condition C4 does not appear to be too restrictive in practice.
Consider the example of the transmission of some disease by breastfeeding. If every
child in the sample is breastfeeded, it can be expected that the length (in days, say)
of the breastfeeding period (a continuous covariate) will influence the probability of
infection, while the susceptibility probability will rather depend on risk factors such
as say, the mother’s infection status. It is also worth noting that the consequences of
C4, in terms of model-building, are rather mild. At a model-building stage, we may
be tempted to incorporate all available covariates in both linear predictors (4.1) and
(4.3), and to remove irrelevant factors by using backward elimination. The condition
(4 slightly restricts this fitting strategy, by imposing that one relevant continuous
covariate is incorporated in one (and only one) linear predictor. This should often
be doable in practice, since the statistician often gets some prior knowledge (from

the clinicians, epidemiologists, ...) about the dataset to be analyzed.

We are now in position to prove the following result :

Theorem 4.3.3 (Identifiability) Under the conditions C1-C/, the model (4.1)-
(4.2)-(4.3) is identifiable ; that is, Ly(v) = L1(¥*) almost surely implies ¢ = ™.

Proof of Theorem 4.3.3

Suppose that Li(¢) = Ly (1*) almost surely. Under C1 and C2, there exists a positive
constant ¢y such that forevery x € F,ze G, and p € Zx Y. c; <P(Y =1|x,2) <
1 — ¢;. Thus we can find a w € Q, outside the negligible set where Li(v¢)) # L1(¢"),
and such that Y(w) = 1 when X = x and Z = z. For this w, Li(¢)) = Ly(¢*)
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becomes

eﬁTx+0Tz eﬁ*Tere*Tz

T+ )1+ (It ) (1+e =)

This can be rewritten as

1+ e BTx B 1+ etz
Tted ™ Tqels

(4.5)

Now, under the condition C4, taking the partial derivative of both sides of (4.5)

with respect to the [-th component of x (X is a continuous covariate) yields

_ﬁlefﬁTX(l _}_efﬁ*Tx) _}_ﬂl*efﬁ”x(l _i_e*BTx)

=0
(1 + e 0 Tx)2

since the right-hand-side of (4.5) does not depend on x. Thus, it follows that

B 1+e'x

T
Differentiating both sides of this equality with respect to the [-th component of x
further yields (8 — 8*)'x = 0, which implies that 3 = 3* under C1. It remains
to show that # = 6*, which reduces to the identifiability problem in the standard
logistic regression model. We have that § = 6* under C1 (see (Guyon 2001) for
example), which concludes the proof.

We now turn to the asymptotic theory for the proposed estimator.

4.4 Asymptotic theory

In this section, we establish rigorously the existence, consistency and asymptotic

normality of the maximum likelihood estimator B\n of 5 in model (4.1), obtained
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from a sample of binary response data with a cure fraction. In the sequel, the space
R* of k-dimensional (column) vectors will be provided with the Euclidean norm,
and the space R*** of (k x k) real matrices will be provided with the spectral norm

(we will use the same notation ||-|| for both). We first prove the following result :

Theorem 4.4.1 (Existence and consistency) Under the conditions C1-C3, the
mazimum likelihood estimator IZn exists almost surely as n — oo, and converges

almost surely to Vg, if and only if A\, tends to infinity as n — oo.

Proof of Theorem 4.4.1
The principle of the proof is similar to (Gouriéroux & Monfort 1981) but the tech-
nical details are different. Three lemmas are needed. The first lemma essentially

provides an intermediate technical result. Its proof is postponed to the appendix.
Lemma 4.4.2 Let ¢, : R¥ — R* be defined as

Dn(¥0) = ¥ + (WD (o) WT) i, (1))

Then there exists an open ball B(g,r) (with v > 0) such that ¢, satisfies the

Lipschitz condition on B(1g, 1) that is,
[Pn (V1) = Dn(Wa) || < cllthr — aba| for all ¥y, 95 € B(yy, 1), (4.6)
and 0 < ¢ < 1.

Lemma 4.4.3 The maximum likelihood estimator @n exists almost surely as n —
00, and converges almost surely to o, if and only if (WD ()W) =1, (1) converges

almost surely to 0.
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Proof of Lemma 4.4.3

We first prove that the condition is sufficient. Thus, we assume that (WD ()W) ~1i,, (1)
converges almost surely to 0. Define 1, (1)) = 1 — ¢, (1)) = —(WD(1o)W )11, (1)

and let € be an arbitrary positive value. Then for almost every w € (2, there exists

an integer value n(e,w) such that for any n > n(e,w), ||n.(¢o)|| < € or equivalently,

0 € B(n,(1o),€). In particular, let ¢ = (1 — ¢)s with 0 < ¢ < 1 such as in Lemma
4.4.2. Since ¢, satisfies the Lipschitz condition (4.6) (by Lemma 4.4.2), the lemma

2 of (Gouriéroux & Monfort 1981) ensures that there exists an element of B(ty, s)

(let denote this element by @n) such that ’f]n(l/b\n) = 0 that is,
(WD(o) W)~ (n) = 0.

The condition C3 implies that ln({/;n) = (0 and that @n is the unique maximizer of
l,. To summarize, we have shown that for almost every w € ) and for every s > 0,
there exists an integer value n(s,w) such that if n > n(s,w), then the maximum
likelihood estimator 121\” exists, and Wn — || < s (that is, @n converges almost
surely to 1g). We now prove that the condition that 7n,(1y) converges almost surely
to 0 is necessary. We use a proof by contradiction.

Assume that as n — oo, {Z)\n exists and converges almost surely to 1o, but 7, ()
does not converge almost surely to 0. Then there exists a set € C Q with IP’((Z) > 0,
such that if w € @, there exists € > 0 such that for every m € N, there exists n > m

with ||[9,(¢o)| > €. Now, let t = <

ﬁ, with d > 1 sufficiently large so that ¢t < r,

where 7 is such as in Lemma 4.4.2. Then for every ¢ € B(1)y,t), the following holds :

17 (o) = (V)| = b0 — @n(tho) — & + dn ()|l
< o = ¥l + lon(¥) — dn (W)

< Hl+o) =1,
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where the second to third line follows by Lemma 4.4.2. Therefore, for every v €
B(¢07t)=

e < [lmm (o)l < llmn (o) = ()| + lInn (W) < lina (¥l +§

and we conclude that for every ¢ € B(y,t), [|7,(¥)]| > e(1—1%) > 0. Since M (U) =
0, z/ﬂ\n cannot belong to B(to,t) for large n, which implies that @n does not converge

almost surely to 1. This is the desired contradiction.

Lemma 4.4.4 (WD(wO)WT)_Iln(wO) converges almost surely to 0 if and only if \,

tends to infinity as n — oo.

Proof of Lemma 4.4.4

We first prove that the condition is sufficient that is, we assume that A, tends to
infinity as n — oo. Define the (2n x k) matrix V = (D(¢))2WT and the 2n-
dimensional vector U = (D(¢)g))~2C(¢)y). Then

E[U] = 0 and var[U] = I, (4.7)
where I, denotes the identity matrix of order 2n. To see this, note that
E[U] = E[E[(D(0)) 2C(s)[X, Z]
= E[(D(¢0)) 2E[C(¢0)[X, Z]
= E[(D(0) E[((A" () — B (w0))T. (A°(who) — B (w))") " |, ZI].
For every i = 1,...,n, B[A} (%) — B/ (¥0)[X, Z]] = E[A] (o) — B ()| X, Z]] by

independence between the individuals, and

1+ efo %
E[A? (o) — BP (v0)|X;, Zs]] = P(Y; = 1|X;,Z;) — B’
[A7 (Y0) — B (1o)X, Zy]] Lo X 4 it ( X3, Zi) — By (1)

= B%G(%) - Bz'ﬁ(?/)o)
= 0.
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Similarly, E[A% () — BY(v0)|X,Z]] = 0 for every i = 1,...,n and thus, E[C ()|
X,Z]] = 0 and E[U] = 0.
Next, var[U] = E[var[U|X, Z]] since E[U|X,Z] = 0. Moreover,

N|=

var[U[X, Z] = (D))~ 2var[C (1) |X, Z)(D(v)) "2,

with var[C(v)|X, Z] = var[(A° (o) T, Ag(wO)T)T IX,Z] a (2n x 2n) block-matrix of

the form
VvV, V3
Vs Vy
where V;,Vy, and V3 are (n x n) matrices. The i-th diagonal elements (i = 1,

_.,n) of Vi, Vs, and Vs are var[A? (10)|X, Z], var[A?(10)|X, Z], and cov[A?(v),
A?(19)|X, Z] respectively. Similar calculations as above yield : var[A? ()X, Z] =
Dy i (o), var[A9 (1) X, Z] = Dy is (o), and cov[A7 (), A? (o)X, Z] =Dy ;i(tho). Note
also that V{,V,, and V3 are diagonal matrices, by independence between the indi-
viduals. It follows that var[C(v¢y)|X,Z] = D(¢y) and thus, var[U|X,Z] = I, and
var[U] = Iy,.

By (Gouriéroux & Monfort 1981) (proof of Lemma 4), if (4.7) holds, A,,/\, < ¢z

for every n =1,2,..., and A, tends to infinity as n — oo, then
(VIV)'VTU 2% 0 as n — oo

that is, (WD (o)W T) i, (1) converges almost surely to 0.

We now prove that the condition is necessary. Assume that \,, does not tend to in-
finity as n — oo. By (Gouriéroux & Monfort 1981) (proof of Lemma 4), (VTV)=1VTU
(and therefore (WID(tpo)WT) i, (1)) cannot converge to 0, which concludes the
proof.

Finally, Theorem 4.4.1 follows by Lemma 4.4.3 and Lemma 4.4.4.
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We now turn to the convergence in distribution of the proposed estimator, which is

stated by the following theorem :

Theorem 4.4.5 (Asymptotic normality) Assume that the conditions C1-C3 hold
and that @n converges almost surely to 1. Let i\]n = WD(IEH)WT and Iy, denote the

~1 ~
identity matriz of order k. Then L2 (1, — ) converges in distribution to the Gaus-

sian vector A (0, I},).

Proof of Theorem 4.4.5

A Taylor expansion of the score function is as

0= ln({z)\n) - ln<¢0) + ln(&ﬂ)(&n - 1/)0)
where {/;n lies between @n and 1)y, and thus Zn(¢0) = —ln(qzn)(z/ﬁ\n — ). Let in =

~l(n) = WD (), )W and 5,0 := WD(tho)WT. Now,

-~

(= v0) = [Si5H] [Sat k] 20k (Sala — o). (48)

Sol=

5
The two terms in brackets in (4.8) converge almost surely to Ij. To see this, we show
~_1 1
for example that HEn X0~ Ik” 2% 0 as n — oo. First, note that

| )

~_ 1

5,2

A (x5
n n,0

Sl

~_1 1 1
sty <

) , (4.9)
and

A = A"

‘Zn,o - in

W(D(o) — D($))W||.

Note also that Jn converges almost surely to ¢y (that is, for every w € Q, where
Q c Qand P(Q) = 1). Let w € Q. By the same arguments as in the proof of Lemma
4.4.2, for every £ > 0, there exists a positive n(e,w) € N such that if n > n(e,w),

then A,‘LlHW(D(wo)—D(&n))WTH < . Hence A;l“W(D(qﬁo)—D(zZn))WT” converges
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1,1 ~1
almost surely to 0. By continuity of the map z — x%, HA" 2 (ZfL,O — E%) H converges
also almost surely to 0. Moreover, for n sufficiently large, there exists a positive

§;§|| < ey 2. Tt follows from (4.9) and

constant ¢4 < oo such that almost surely,
the condition C3 that ||§]7_L%Z%70 — [kH converges almost surely to 0. The almost sure
convergence to 0 of Hié i;% — IkH follows by similar arguments.

It remains for us to show that E;%(in(ﬁn — 1)p)) converges in distribution to
N (0, 1), or equivalently, that (VTV)~2VTU converges in distribution to .4 (0, I,).
Following (Eicker 1966), this convergence holds if we can check the following condi-
tions : 1) maxi<ij<on Vie X, oV, — 0 as n — 00, ii) sup; <;<y, E[UZ1{ju,15a3] — 0 as
a — 00, iii) infi<i<o, E[UZ] > 0, where V;, and U; respectively denote the i-th raw

of V and the i-th component of U, i = 1,...,2n. Condition i) follows by noting that

- _ 1
0 < max Vi¥ Vi, < max [[Vi|* [[S55]| = max Vi,

1<i<2n 1<i<2n \,,

and that ||V,.|| is bounded above, by C1 and C2. Moreover, ﬁ tends to 0 as n — oo,
since @n converges almost surely to 1. Condition ii) follows by noting that the
components U; of U are bounded under C1 and C2. Finally, for every i = 1,...,2n,
E[U?] = var[U;] since U is centered. We have proved (see Lemma 4.4.4) that var [U] =
Iy, thus for every i = 1,...,2n, var[U;] = 1, and finally, inf,<;<o, E[U?] = 1 > 0.
To summarize, we have proved that Z;%(in(”@n — 1y)) converges in distribution to
(0, I;). This result, combined with Slutsky’s theorem and equation (4.8), implies
that ié ({D\n — 1bp) converges in distribution to .47(0, I).

The asymptotic distribution of the maximum likelihood estimator Bn of the pa-
rameter of interest ( in the model is given by the following corollary (the proof is

done in Appendix B) :
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Corollary 4.4.6 Let M be the (p x (p+q)) block-matriz [I,,0,,], where 0,4 is the
(p X q) matriz whose components are all equal to 0. Then \/E(Bn — () converges

in distribution to a zero-mean Gaussian vector with covariance matriz Mfw_lMT,

which is the upper-left (p x p) block of F~1(x).

The convergence in distribution of Bn can be used to make statistical inference about
(. For example, if one wishes to test the null hypothesis Hy : 5, = 0 against the
alternative Hy : 3, # 0 (for some 1 <[ < p), one can use a Wald-type test, which

rejects Hy at the asymptotic level a (0 < o < 1) if

671[
\/ (M.7- wn VM),

where u;_a is the quantile of order (1 — §) of the standard normal distribution,

> ul*%)

2
anl is the [-th component of En, and (Mﬁl({ﬁ\n)MT)u denotes the [-th diagonal

component of M.7 (¢, )M T

In logistic regression, it is also of interest to estimate the probability p(x) =
P(Y = 1|X =x,5 = 1) of infection for a given value x of the covariate. An obvious
estimator of p(x) is p,(x) := exp(@{x)/(l + exp(ﬂ?rx)). Its asymptotic properties

are summarized in the theorem below. It’s proof is postponed in Appendix A

Theorem 4.4.7 Let x be a given value of the covariate X. As n tends to infinity,

VN (Pn(x) —p(x)) converges in distribution to a zero-mean Gaussian random variable

with variance exp(207x).x" M7, "M x/(1 + exp(87x))*.
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4.5 A simulation study

4.5.1 Study design

In this section, we investigate the numerical properties of the maximum likelihood
estimator @\n, under various conditions. The simulation setting is as follows. We

consider the following models for the infection status :

log (Zriteogy) = At AaXe S =1
P(Y =1X,,5,) =0 if S, =0

and the immunity status :

P(S = 1|Z)
1%(1—MS=H&>

) =01+ 022,

where X5 is normally distributed with mean 0 and variance 1, and Z;5 is normally
distributed with mean 1 and variance 1. An i.i.d. sample of size n of the vector
(Y, S,X,Z) is generated from this model, and for each individual i, we get a rea-
lization (y;, S;,X;,2;), where s; is considered as unknown if y; = 0. A maximum
likelihood estimator Bn of 5 = (B1,2) is obtained from this incomplete dataset by
solving the score equation (4.4), using the optim function of the software R. An esti-
mate is also obtained for § = (61, 65), but 6 is not the primary parameter of interest
hence we only focus on the simulation results for Bn

The finite-sample behavior of the maximum likelihood estimator En was assessed
for several sample sizes (n = 100,500, 1000, 1500) and various values for the percen-
tage of immunes in the sample, namely 25%, 50%, and 75%. The case where it is
known that there are no immunes in the sample was also considered. In this case,
there is no missing information about the infection status and therefore, this case

provides a benchmark for evaluating the performance of the proposed estimation
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method. We also considered different values for the proportion of infected indivi-
duals among the susceptibles. The desired proportions of immunes and infected
were obtained by choosing appropriate values for the parameters § (the parameter
of interest) and 6 (the nuisance parameter). The following values were considered
for B : 1) model 4, : = (—.8,1) (using these values, approximately 30% of the
susceptibles are infected), ii) model .#5 : f = (1,.7) (approximately 70% of the
susceptibles are infected), iii) model .#; : § = (—.8,0) (approximately 30% of the
susceptibles are infected), iv) model .Z,; : § = (1,0) (approximately 70% of the

susceptibles are infected).

4.5.2 Results

For each configuration (sample size, percentage of immunes, percentage of in-
fected among susceptibles) of the design parameters, N = 1500 samples were ob-
tained. Based on these 1500 repetitions, we obtain averaged values for the esti-
mates of 4, and (3, which are calculated as N~! Zjvzl B{j% and N1 Zjvzl Aéf;)b, where
@(Lj) = (Zi\ﬁ)” Aéj,)l) is the estimate obtained from the j-th simulated sample. For each
of the parameters ; and 35, we also obtain the empirical root mean square and
mean absolute errors, based on the N samples. When (5 # 0 (respectively G = 0),
we obtain the empirical power (respectively the empirical size) of the Wald test
at the 5% level for testing Hy : § = 0 (models .#) and .#5, see Tables 4.1 and
4.2) (respectively models .#3 and .#,, see Tables 4.1 and 4.2). The null hypothesis
Hy : 85 = 0 is the hypothesis that the predictor X, does not influence the risk of
infection of susceptible individuals. The results are summarized in Tables 4.2 and
4.3.

From these tables, it appears that the proposed maximum likelihood estimator
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Bn provides a reasonable approximation of the true parameter value, even when the
percentage of immunes is high. While the bias of Bn stays limited, its variability
increases with the immune fraction, sometimes drastically when the sample size is
small. Consequently, when the sample size is small (n = 100) and/or the immune
proportion is very high (75%), the power of the Wald test for nullity of the regression
coefficient (35 can be low, compared to the case where there are no immunes. But
we note that for moderately large to large sample sizes (n > 500), the dispersion
indicators and the power of the Wald test indicate good performance of the maximum
likelihood estimate, even when the immune proportion is up to 50%. The level of the
Wald test for nullity of (3, is globally respected except, for every immune proportion,
when the sample size is small (n = 100).

We compare these results to the ones obtained from a "naive" method where : i)
we consider every individual ¢ such that {Y; = 0} as being susceptible but uninfected,
that is we ignore the eventual immunity of this individual, ii) we apply a usual logistic
regression analysis to the resulting dataset. The results of such "naive" analysis for
model .7, are given in Table 4.3 (the results for models .#, #5, #, yield similar
observations and thus, they are not given here. However, the complete simulation
study is available from the web-based supplementary document mentioned above).

From this table, it appears that ignoring the immunity present in the sample re-
sults in strongly biased estimates of 3. The bias of the intercept estimate increases
with the immune proportion. At the same time, the estimate of the regression co-
efficient (3, is biased towards 0 for all values of the immune percentage and sample
size. This results in a very low power for the Wald test of nullity of (5, and in a
wrong interpretation of the relationship between the covariate X5 and the binary

response Y.
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The quality of the Gaussian approximation to the large-sample distribution of
Bg’n was also investigated. For each configuration of the design parameters, histo-
grams of the B\éj% (j = 1,...,N) are obtained, along with the corresponding QQ-
plots. The plots for the model .# are pictured on Figures 4.1 to 4.4 (the plots for
the models .45, 45, ./ are given in the web-based file).

From these figures, it appears that the normal approximation stated in Theorem
4.4.5 is reasonably satisfied when the proportion of immunes is moderate (25%),
provided that the sample size is sufficiently large (n > 500, say). Consider the case

when (35 # 0. When the immune fraction is large (50%), the normal approximation
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F1G. 4.1 — Histograms and Q-Q plots for B\Q,n in model .#,, with no immunes in the
sample (the percentage of immunes is given in brackets). n is the sample size. All

results are based on 1500 simulated datasets.
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F1G. 4.2 — Histograms and Q-Q plots for Bg’n in model .;, with 25% of immunes.
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F1G. 4.3 — Histograms and Q-Q plots for B\Qm in model ., with 50% of immunes.
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Fi1G. 4.4 — Histograms and Q-Q plots for Bg’n in model .#;, with 75% of immunes.

still appears reasonable, provided that the sample size is at least 1000, or eventually
1500. When the immune proportion is very large (75%), the distribution of Bgm can
be highly skewed, in particular when the sample size is small. Consider the case
when (3, = 0. Then the finite-sample distribution of Bgm appears to be symmetric,
with heavy tails however, especially when the sample size is small. When the im-
mune fraction is about 50% and the sample size is greater than or equal to 500, the
normal distribution appears to fit reasonably well the distribution of Bg,n.

Overall, these results indicate that a reliable statistical inference on the regression
effect in the model (5.1) with a cure fraction should be based on a sample having, at
least, a moderately large size (n > 500, say) when the immune fraction is moderate

(25%), or a large size (n > 1000, say) when the immune proportion is large (50%).
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4.6 Discussion and perspectives

In this paper, we have considered the problem of estimating the logistic regression
model from a sample of binary response data with a cure fraction. The estimator
we propose is obtained by maximizing a likelihood function, which is derived from
a joint regression model for the binary response of interest and the cure indica-
tor, considered as a random variable whose distribution is modeled by a logistic
regression (the proposed joint model can thus be viewed as a zero-inflated Ber-
noulli regression model, with logit links for both the binary response of interest and
the zero-inflation component). We have established the existence, consistency, and
asymptotic normality of this estimator, and we have investigated its finite-sample
properties via simulations.

Several open questions now deserve attention. The estimation approach propo-
sed here relies on our ability to correctly specify the model for the binary immunity
status. It is therefore of interest to investigate the effect of a misspecification of
this model (and in particular, of the link function). The techniques and results by
(Czado & Santner 1992) may be useful for that purpose. Another issue of interest
deals with the inference in the logistic regression model with a cure fraction, in a
high-dimensional setting. We have established the theoretical properties of our esti-
mator in a low-dimensional setting that is, when a small number of potential predic-
tors are involved. Several recent contributions (see for example (Huang et al. 2008)
and (Meier et al. 2008)) have considered the problem of estimation in the logistic
model (without cure fraction) when the predictor dimension is much larger than
the sample size (this problem arises, for example, in genetic studies where high-
dimensional data are generated using microarray technologies). Extending our me-

thodology to this setting constitutes another topic for further research.
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Appendix

Proof of Lemma 4.4.2. Recall that [, denotes the identity matrix of order k.

Then we write :

O (¥
%7

|7 — (WD(%)WT)”WD(WWTH
= |l(w W(D(o) — D(v))W'||
II(WD(%)WT)‘IH [W(D(o) — D(w))W' |

IN

= A WD) — D)W .

Next, define . = {(,7) € {1,2,...,2n}?|D;;(¢0) # 0}. Then the following holds :

WD) =DE@NWT| = |13 D WaiW; (D () — Dy (o))
T ]D)ij _Dij 0
< 3 [yt P2 Dultn))
(i,j)€S J

From C1 and C2, there exists a real constant ¢z (c3 > 0) such that D;;(¢g) > ¢3 for
every (i,7) € .. Moreover, ID;;(-) is uniformly continuous on % x ¢, thus for every
e > 0, there exists a positive r such that for all ¢ € B(¢y,7), |D;;(¢) —Dy; ()| < €.

It follows that

HW(D(@ZJO)_D(@Z)))WT” < — HWoz ZJ(¢O)||

S —tl" Z Woz z] w())
(i,9)€
2n  2n

- —tl" ( ZW" zg ¢O)>
i=1 j=1

= —tr (WD(3o)W )

< —Ank‘.

C3
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This in turn implies that Hag?p@ ‘ < iﬁ;\f < % Now, choosing ¢ = c— with

0 <c<1, we get that H8¢" H < ¢ for all ©» € B(ty,7), and the result follows.
O
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TAB. 4.1  Simulation results for models .#; : § = (—.8,1) and 43 : § = (—.8,0)
percentage of immunes in the sample
0% 25% 50% 75%
n Bl,n BQ,n Bl,n Bz,n Bl,n EZ,n Bl,n BQ,n
Model .7,
100 -0.834 1.064 -0.773 1.114 -0.787 1.137 -0.750 0.917
(0.258) (0.301) (0.583) (0.412) (0.825) (0.603) (0.921) (0.858)
[0.202] [0.232] [0.465] [0.324] [0.657] [0.440] [0.784] [0.568]
0.965* 0.109* 0.096* 0.121*
500 -0.807 1.012 -0.783 1.111 -0.788 1.129 -0.791 1.120
(0.107) (0.125) (0.320) (0.354) (0.428) (0.389) (0.707) (0.538)
[0.085] [0.099] [0.264] [0.227] [0.352] [0.270] [0.603] [0.407]
1* 0.985* 0.85* 0.267*
1000 -0.801 1.004 -0.794 1.058 -0.798 1.060 -0.797 1.108
(0.077) (0.085) (0.241) (0.202) (0.310) (0.247) (0.683) (0.482)
[0.062] [0.068] [ 0.201] [0.147] [0.253] [0.178] [0.569] [0.354]
1* 1* 1* 0.567*
1500 -0.805 1.003 -0.801 1.040 -0.799 1.040 -0.802 1.057
(0.061) (0.074) (0.210) (0.159) (0.277) (0.191) (0.600) (0.361)
[0.048] [0.059] [0.176] [0.119] [0.228] [0.141] [0.493] [0.276]
1* 1* 1* 0.861*
Model .35
100 -0.815 -0.001 -0.721 -0.007 -0.734 0.000 -0.746 -0.004
(0.224) (0.229) (0.465) (1.341) (0.800) (2.109) (1.966) (3.258)
[0.177] [0.179] [0.377] [0.762] [0.636] [1.111] [1.516] [1.715]
0.052f 0.077* 0.0697 0.0871
500 -0.801 -0.001 -0.748 0.007 -0.750 0.001 -0.775 -0.006
(0.097) (0.099) (0.280) (0.415) (0.520) (0.469) (1.209) (0.711)
[0.078] [0.080] [0.241] [0.231] [0.422] [0.241] [1.007] [0.363]
0.0417 0.0587 0.052f 0.0577
1000 -0.803 -0.001 -0.759 0.008 -0.763 0.005 -0.793 0.005
(0.067) (0.066) (0.221) (0.237) (0.367) (0.266) (1.154) (0.312)
[0.053] [0.053] [0.182] [0.137] [0.299] [0.140] [0.911] [0.175]
0.042f 0.0451 0.0371 0.048T
1500 -0.801 0.000 -0.782 0.009 -0.784 0.003 -0.783 0.009
(0.053) (0.054) (0.208) (0.168) (0.328) (0.212) (1.149) (0.258)
[0.042] [0.043] [0.178] [0.099] [0.267] [0.102] [0.901] [0.144]
0.0517 0.048" 0.0271 0.0397
Note : n : sample size. (-) : root mean square error. [-| : mean absolute error. * :

empirical power (T

: empirical size) of the Wald test at the level 5% for testing

Hy : By = 0. For each percentage of immunes, the percentage of infected among the

susceptibles is 30%. All results are based on 1500 replicates.
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TAB. 4.2 Simulation results for models .5 : = (1,.7) and ., : 5 = (1,0)
percentage of immunes in the sample
0% 25% 50% 75%
n Bin Ban Bin Ban Bin Ban Bin Ban
Model %5
100 1.026 0.720 0.945 0.723 0.949 0.740 0.834 0.647
(0.246)  (0.273) (0.780)  (0.534) (0.988)  (0.788) (1.549)  (1.455)
[0.196] [0.215] [0.655] [0.376] [0.829] [0.555] [1.326] [0.933]
0.746* 0.132* 0.118* 0.088*
500 1.003 0.712 1.008 0.717 1.112 0.721 0.840 0.652
(0.107)  (0.115) (0.651)  (0.247) (0.672)  (0.279) (0.969)  (0.534)
[0.086] [0.091] [0.518] [0.202] [0.534] [0.230] [0.802] [0.421]
1* 0.503* 0.418* 0.168*
1000 1.003 0.707 1.078 0.711 1.096 0.719 0.842 0.657
(0.071)  (0.082) (0.590)  (0.215) (0.571)  (0.224) (0.796)  (0.439)
[0.057] [0.065] [0.428] [0.168] [0.441] [0.181] [0.670] [0.352]
1* 0.779* 0.675* 0.205*
1500 1.001 0.701 1.035 0.705 1.069 0.709 0.887 0.655
(0.064)  (0.065) (0.450)  (0.163) (0.466)  (0.177) (0.604)  (0.312)
[0.050] [0.052] [0.344] [0.135] [0.358] [0.144] [0.502] [0.257]
1* 0.986* 0.926* 0.300*
Model %,
100 1.030 0.001 1.110 0.007 1.154 0.017 0.913 -0.003
(0.233)  (0.234) (0.852)  (0.969) (1.211)  (1.347) (1.775)  (1.640)
[0.182] [0.187] [0.684] [0.587] [0.995] [0.792] [1.450] [0.865]
0.058' 0.072' 0.083' 0.066'
500 1.007 -0.005 1.105 0.020 1.123 0.054 0.915 -0.009
(0.103)  (0.103) (0.609)  (0.293) (0.690)  (0.318) (0.817)  (0.370)
0.081] [0.082] [0.492] [0.180] [0.562] [0.208] [0.614] [0.215]
0.046" 0.050" 0.063" 0.051"
1000 1.003 0.000 1.091 -0.003 1.101 0.033 0.934 -0.003
(0.071)  (0.070) (0.521)  (0.198) (0.578)  (0.210) (0.757)  (0.256)
[0.057] [0.055] [0.437] [0.125] [0.455] [0.135] [0.600] [0.142]
0.051" 0.045' 0.042' 0.039"
1500 1.003 0.001 1.073 0.009 1.115 0.015 0.934 0.002
(0.057)  (0.057) (0.480)  (0.132) (0.501)  (0.139) (0.633)  (0.175)
[0.046] [0.046] [0.392] [0.087] [0.400] [0.104] [0.521] [0.109]
0.042" 0.040" 0.046" 0.047"
Note : * : empirical power (T : empirical size) of the Wald test at the level 5% for

testing Hy : 5 = 0. For each percentage of immunes, the percentage of infected

among the susceptibles is 70%.
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TAB. 4.3 "Naive" analysis of model .#; : 3 = (—.8,1)

percentage of immunes in the sample

25% 50% 5%
n Bm B2,n B\l,n an Bl,n an

100 -1.154 0.023 -1.632 0.017 -2.410 0.001
(10.428) (1.011) (0.879) (1.025) (1.776) (1.071)

[0.365] [0.977] [0.833] [0.983] [1.610] [1.003]

0.049* 0.057* 0.052*

500 -1.128 0.087 -1.594 0.042 -2.305 0.002
(0.344) (0.915) (0.803) (0.963) (1.513) (1.010)

[0.328] [0.913] [0.794] [0.958] [1.505] [0.997]

0.049* 0.051* 0.053*

1000 -1.131 0.059 -1.590 0.050 -2.297 0.033
(0.338) (0.941) (0.795) (0.952) (1.501) (0.970)

[0.330] [0.940] [0.790] [0.950] [1.497] [0.966]

0.053* 0.051* 0.054*

1500 -1.127 0.050 -1.591 0.046 -2.302 0.039
(0.332) (0.953) (0.794) (0.955) (1.504) (0.962)

[0.327] [0.952] [0.791] [0.954] [1.502] [0.960]

0.051* 0.050* 0.053*

Note : * : empirical power of the Wald test at the level 5% for testing Hy : 35 = 0.
For each percentage of immunes, the percentage of infected among the susceptibles
is 30%. In the “naive” analysis, every uninfected individual (i.e. Y; = 0) is considered

as susceptible.
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5.1 Introduction

Dans ce chapitre nous nous proposons d’étudier des bandes de confiance simul-
tanées pour la fonction réponse P(Y = 1|X = z,5) définie dans le modeéle ZIB
(4.1)-(4.2) dans le chapitre 4. Les bandes de confiance simultanées fournissent des
informations utiles sur le domaine dans lequel devrait se situer la vraie fonction
de régression qui est inconnue, et leur construction constitue un probléme difficile
lorsque le nombre de variables explicatives est supérieur a 1. La construction de

bandes de confiance remonte & (Working & Hotelling 1929).

Il existe plusieurs études récentes considérant les applications des bandes de confiance.
Par exemple, (Sun et al. 1999) ont utilisé les bandes de confiance simultanées pour
faire de I'inférence sur la croissance et des courbes de réponse, (Al-Saidy et al. 2003)
et (Piegorsch et al. 2005) ont utilisé les bandes de confiance dans 1'analyse quanti-
tative des risques, (Spurrier 1999), (Bhargava & Spurrier 2004), (Liu et al. 2004) et
(Liu et al. 2007) pour des comparaisons simultanées de plusieurs modéles de régres-
sion linéaires dans certains problémes médicaux, (Zhang & Peng 2010) ont utilisé
les bandes de confiance pour analyser des données sur 'utilisation des contraceptifs,
tandis que (Azais et al. 2010) ont utilisé les bandes de confiance pour la prédiction
de courbes de charge annuelles en électricité.

Les bandes de confiance pour des modéles de régression linéaires multiples (il y’a
au moins deux prédicteurs linéaires et l'espace 2 peut prendre diverses formes)
sont. beaucoup plus difficiles a construire. Nous pouvons cependant noter certains
travaux incluant ceux de (Liu 2011), de (Hauck 1983) dans le cas ou il n’existe
aucune contrainte sur l'espace 2  contenant les covariables (2~ C RP71), ceux

de (Bohrer 1973), (Casella & Strawderman 1980) et (Seppanen & Uusipaikka 1992)
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dans le cas ou les covariables sont restreintes a une hyper-ellipsoide. Dans le cas o
les covariables sont restreintes a un hyper-rectangle, le lecteur pourra se référer aux
travaux de (Naiman 1987), (Naiman 1990), (Sun & Loader 1994), (Sun et al. 2000)
et (Liu et al. 2005) . En particulier, (Sun & Loader 1994) supposent que les p—1 va-
riables prédictives sont des fonctions de ¢ > 1 variables indépendantes (par exemple
dans les modéles de régression polynomiale) et ont fourni des bandes de confiance
hyperboliques pour le modéle de régression lorsqu’il y a contraintes sur les ¢ va-
riables indépendantes ¢ = 1 et ¢ = 2.

Nous commencons par décrire d’abord dans la section 5.2 le modéle ZIB défini par
(Diop et al. 2011). Ensuite nous utilisons les résultats asymptotiques de I'estimateur
du maximum de vraisemblance 121\” de 1 pour montrer un résultat de convergence
faible de processus gaussien. Dans la section 5.3, nous présentons trois méthodes
pour la construction de bandes de confiance simultanées pour la fonction réponse
{p(x), x € Z"}. Enfin dans la section 5.4, nous présentons une étude de simulations

pour étudier la précision des bandes de confiance.

5.2 Modéle

Soit 0; = (Y;,5:,X;,Z;), i = 1,...,n des copies i.i.d. du vecteur aléatoire
0 = (Y,5,X,Z). A partir de cet échantillon, nous considérons le modéle ZIB sui-

vant, défini dans le chapitre 3 par :

T-P(Y=1X;,5;

(5.1)
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et par le modéle suivant pour le statut d’'immunité :

P(S=1Z) \ ¢

(Diop et al. 2011) ont établi 'existence et la consistance de 'estimateur du maxi-
mum de vraisemblance {Zi\n du vecteur de paramétre ¢ = (37,07)T (voir théoréme
4.4.1), et la distribution asymptotique de cet estimateur (voir Théoréme 4.4.5). Nous
pouvons ainsi en déduire la distribution asymptotique de I'estimateur Bn du para-
métre d’intérét 3 (voir corollaire 4.4.6). Dans la suite nous considérons les notations

suivantes.

5.2.1 Notations

Soit les notations suivantes : M € .#(p x (p+ ¢)) désigne la matrice par blocs
11,,0,,] et 0,, € A (p x q) représente une matrice ot toutes les composantes sont
égales a 0. Nous notons ig’n = Mf_l(zzn)MT la partie de la matrice f_l(zzn) res-
treinte au parametre 3. Nous posons ensuite 62(z) = ' Sg,z et 02(z) = 27 Saa.

Notons < .,. > le produit scalaire usuel sur R?, ||.|| la norme associée et [||.||| la

norme matricielle subordonnée a ||.||.

5.2.2 Supremum de processus Gaussiens

La construction de bande de confiance peut se faire de maniére classique en uti-

lisant certaines méthodes existant déja dans la littérature telles que la méthode de
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Scheffé par exemple (voir (Govindarajulu 2001) et (Liu 2011)) que nous présente-
rons dans la suite. Nous utiliserons ensuite la théorie des processus Gaussiens pour
construire d’autres types de bandes de confiance pour {p(z), z € 2 }. Nous com-
mengons par construire des bandes de confiance pour {n(z) = 'z, z € 2} de la

forme

e seal, (53)

Ensuite nous en déduirons les bandes pour la probabilité {p(z), x € 2"}, ou X est
un nombre réel. Plus précisément, pour un niveau de confiance 1 —a € (0,1) donné,
nous cherchons la valeur A = )\, qui satisfait approximativement :

P( sup |[W(z)| < )\a> =1—-a, (5.4)

e

o W est un processus Gaussien de moyenne zéro et de fonction de covariance
p, et ot o%(x) = p(x,r). Des études de majoration de suprémum de processus
Gaussien ont été faites pour seulement un nombre faible de cas particuliers (voir

(Adler & Taylor 2007)).

En utilisant le théoréme 4.4.5 et le théoréme de Slutsky (voir Annexe A), les bandes
de confiance définies dans (5.3) avec une valeur A choisie comme dans (5.4) aura
approximativement une probabilité de couverture égale & 1 — «. Le résultat suivant

fournit une méthode pour calculer A.

Theorem 5.2.1 Sous les conditions (A1)-(A4) définies dans le chapitre 4, le pro-
cessus {Wy(x),x € 2} défini par :

Wa(z) = Vn———— (5.5)
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converge faiblement quand n — +oo dans l'espace C(Z") muni de la norme uniforme
vers un processus Gaussien centré W de fonction de covariance donnée par

xTEgy

@) YEY o0

p(r,y) =

Grace au Théoréeme 5.2.1, nous avons, pour tout A > 0, quand n — +oo, la conver-
gence suivante

P(Sgg W (2)] < >\> - P(fgg W ()| < >\>. (5.7)

L’importance pratique de 'expression 5.7 est qu’elle permet de quantifier la valeur A
définie dans 5.4, et donc s’avérera étre trés utile dans les études de simulations. Pour
ainsi construire les bandes de confiance en utilisant la théorie des processus Gaus-
siens, nous disposons principalement de deux méthodes : la premiére utilise I'inéga-
lité classique de (Landau & Sheep 1970) et la seconde consiste a faire du Bootstrap.
Nous présenterons ces deux méthodes dans la suite. Nous commencons d’abord par
prouver le Théoréme 5.2.1.

Le lemme suivant établit la convergence uniforme de la varaince 52 (z).

Lemme 5.2.2

sup |2(z) — 5%(z)| = 0, quand n — oo.
e

Preuve du lemme 5.2.2 :
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sup [67(a) —o*(@)| = sup | M (T () — T () Mz

= Sg;! <o, M(I () — I (W) Mz > |

< Sup ||| M (T (b)) — (@D))M'xH par Cauchy-Schwartz
€2 2]l 0 ||$||

< sup Hx”Q sup HM( (1/}71) B I_1<¢))M/l‘||

e ||| 0 2€ X ||z]|#£0 k4l

< sup  |2lPIMT (@) — TN w) M),
r€Z,||z||#0

Puisque f_l({/)\n) est un estimateur consistant de I=1(¢), donc par continuité de la
norme ||| M (1" (¢0,) — I-*(1))M’||| tend en probabilité vers 0 quand n — oco. De
plus, x est borné. D’ou le résultat.

Preuve du Théoréme 5.2.1 :
Considérons le processus (Gp(z);z € Z) = (Vi(By — 8) Tz, € Z) et I'appli-
cation ¢ définie par :
RF 2 C(X)
a — ¢(a):z— ¢(a)(z) =az.

@ est linéaire. En effet soit a,bet xr € RP et « € R on a

pla+ab)(z) = (a+ab) 'z = p(a)(z) + ap(b) ().

L’application ¢ est également continue car p < oo.

Nous avons ainsi

~

p(Vn(B, — B)) = ¢(2).
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Par suite, G,, = G dans C(%") quand n — oo, ou G(x) = Z'z (Vo € Z") désigne

un processus. Par la convergence uniforme en probabilité de &2

2(x), et le Théoréme

4.4.7 de Slutsky,

Wn:&:>W:g dans C'(2").
O o

De plus, la fonction de covariance de W est donnée par

pl,y) = cov(W(x), W(y)) = E[W(x)W(y)]

= WE [Z'x.Z'y]
= Syt A7y
dMI7N )My
o(x)o(y)
.%,Zﬂy

a(x)o(y)

5.3 Bandes de confiance

L’un des problémes dans les modéles de régression présentant un intérét est
I’estimation de I'intervalle contenant la vraie fonction de régression. Nous nous pro-
posons donc dans cette partie de construire des bandes de confiance de la probabilité
d’infection {p(z), x € 2"} en utilisant trois méthodes. L’idée principale consiste a
utiliser la loi asymptotique de I'estimateur du maximum de vraisemblance Bn des
coefficients de régression /3.

Lorsque 'on dispose d’une seule variable explicative, (Brand et al. 1973) donnent
une méthode permettant de construire des bandes de confiance pour la probabi-

lité d’infection dans le modéle de régression logistique. Ces bandes sont basées sur
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la loi de I'estimateur du maximum de vraisemblance des paramétres du modéle.
(Hauck 1983) donne une méthode alternative, dite méthode de Scheffé, qui suit de
prés la méthode de (Brand et al. 1973) mais demeure cependant la plus facile a ap-
pliquer. Nous la présentons dans la suite, et nous ’adaptons au modéle de régression

logistique avec une fraction immune.

5.3.1 Meéthode 1 : Méthode de Scheffé

Cette méthode a été essentiellement développée par (Hauck 1983) pour le modéle
de régression logistique. Elle n’impose aucune restriction aux variables explicatives
X, X3, ..., X,. Par conséquent aucune restriction sur la nature de ’espace 2" conte-
nant les covariables.

Les deux lemmes suivants sont donnés sans démonstration.

Lemme 5.3.1 Soit Z € R™ un vecteur aléatoire suivant une loi normale multivariée

N(0,V). Si'V est inversible, alors Z TV =17 suit une loi du x> a m degrés de liberté.

Lemme 5.3.2 Soit X € R", Y € R" et A € .#(n x n) une matrice inversible telle

que A= B"B. Alors

1.
(XTY)? < (XTAX)(YTAY).

(XTY)?2 < (XTAX)(YTATY), si A texiste.

Ces deux lemmes nous permettent de construire des bandes de confiance de type

Scheffé pour la probabilité d’infection dans le modéle de régression logistique avec

~

fraction immune. D’aprés le Lemme 5.3.1 n(f3, — 6)T§A]§;L(ﬁn — [3) converge en loi
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vers une x>. Soit & € (0,1) et x2,_, le quantile d’ordre 1 — o de la loi x2. Alors

quand n — oo,

-~ -~

P [n(5, - 9)'S

~

an(Bn =) < xi,l_a} —1-a. (5.8)

D’aprés le point 2 du Lemme 5.3.2, on a, pour tout x € 2,

~

V(B - ﬁ)%r <n(Ba—B) S35 Bu— B) [ S 1] (5.9)

D’ou

[\/ﬁ(ﬁ” _ 6> x} < n(an - ﬁ)Tig,11<§n - ﬁ) (5'10)

DI

Ce qui implique que

Il suit d’aprés (5.8)
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On en déduit une bande de confiance de niveau asymptotique supérieur ou égal a

1 — a pour {p(z),z € 2"} donnée par

[lmx),m ﬁpm,n} (5.11)

ou -
~ eln (@) N lin(x)
lp(z)n Up(z)n

re Z.

On obtient le corollaire suivant :

Corollaire 5.3.3 Sous les conditions (A1)-(A4) définies dans le chapitre 4, et sous
les conditions des Théoréemes 4.4.7 et 5.2.1, les bandes de confiance définies par
(5.11) ont une probabilité de couverture asymptotique supérieure ou égale a 1 — a,
1.e.

lim P(lAp(z)m <p(x) < Uppyn, ¥V T € 3&”) >1-—a.

n—0oo

5.3.2 Meéthode 2 : Egalité de Landau et Sheep (1970)

Nous présentons tout d’abord I'inégalité classique de (Landau & Sheep 1970) qui
ont travaillé sur la majoration de suprémum de processus Gaussiens a trajectoires

continues. Des résultats similaires ont été également établis par (Marcus & Sheep 1971).

Théoréme 5.3.1 Soit (X,)ier, (T un intervalle), un processus Gaussien centré a

trajectoires continues. Alors on a

1
lim A2 1ogP(sup X, > )\) - (5.12)

ol

o7 =sup E(X7?).

teT
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En utilisant le Théoréme 5.2.1, il est donc possible d’appliquer 1’égalité classique

5.12 de (Landau & Sheep 1970) pour obtenir ’égalité

-1
1
lim —10gP< sup W(z) > /\> =— [2sup p(z,z)| =—=. (5.13)
A—oo \2 el €L 2
En utilisant I'inégalité suivante
P( sup |W(zx)| > /\> < 2P< sup W(z) > )\). (5.14)
zed xed’
et I’égalité (5.13), on obtient
1
hm —logP<sup W (z)| > A) < —-. (5.15)
A2 xeZ 2

Maintenant il suffit de trouver pour quelle valeur de A on a I’équation (5.4). Nous

avons limy_« 35 log(a) < —1 et cette inégalité reste vraie pour A, = \/—2log(a).

Pour cette valeur A, on a I'égalité (5.4) et grace a la convergence établie dans (5.7),

on obtient quand n tend vers I'infini :

P(amp PAEETT < 0) e
Ce qui implique :
(‘\/_ ‘<)\p,‘v:p€3{>—>1—a.

On obtient de maniére équivalente :
P(lAn(x) < BT <U,(x),¥ e %) —1—q,

ou
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pour tout x € 2.

On en déduit une bande de confiance pour {p(x), € 2} donnée par

[lp(m),naap(x),n} 5 (516)
ol .
~ eln (@) tin (@)
l z)n = T t z)n — = y c 2.
p(x), L+ cn@) et Up(a), L em@ ©

On obtient le corollaire suivant :

Corollaire 5.3.4 Sous les conditions (A1)-(A4) définies dans le chapitre 4, et sous
les conditions des théoréemes 4.4.7 et 5.2.1, les bandes de confiance définies par (5.16)
avec le quantile choisi A, = \/—2log(a) ont une probabilité de couverture asympto-
tique égale a 1 — .

i.€.

lim P(l:,(m),n < p(x) < Upgym,V T € 3&”) =1-aq.
n—oo

5.3.3 Meéthode 3 : Bootstrap - Monte Carlo

Dans cette partie, nous proposons une approche bootstrap (Monte Carlo) pour
construire les bandes de confiance pour {p(z),z € 2"} dans le modéle de régression
logistique avec fraction immune. Nous utilisons d’abord des échantillons bootstrap-
pés pour calculer la matrice de covariance empirique des estimateurs du modéle ZIB
(5.1-5.2). Ensuite, un nombre important de simulations est utilisé pour approcher la
distribution de sup,c 4 |W,(2)|. Enfin, nous déterminons le quantile d’ordre « de ce

nouvel échantillon pour construire les bandes de confiance. Ce type de technique est
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utilisé par (Efron & DiCiccio 1996), (Mandel & Betensky 2008) et (Li et al. 2010)
pour la construction d’intervalles de confiance. (Claeskens & Van Keilegom 2003)
ont utilisé une technique similaire pour la construction de bandes de confiance pour
des fonctions de régression et leurs dérivées. (Neumann & Polzehl 1998) I'ont uti-
lisé en régression non-paramétrique et (Zhang & Peng 2010) pour la construction de
bandes de confiance dans des modéles de régression avec paramétres de régression

non constants.

Cette approche est également utilisée en analyse statistique des durées de vie
pour construire des bandes de confiance simultanées pour la fonction de survie
((Li & Datta 2001)) et pour la fonction de risque instantané ((Dudek et al. 2008)),
tandis que (Cowling et al. 1996) ont utilisé la méthode de ré-échantillonnage pour
la construction de bandes de confiance pour la fonction d’intensité d’un processus

de Poisson.

Nous décrivons dans la suite 'algorithme utilisé pour la construction de nos
bandes de confiance simultanées. Posons U,, = sup,c, |W,(x)| et ( = VB, = B).
L’idée consiste a obtenir M > 0 réplications U,Sl),...,UT(LM) et a estimer le quan-

tile d’ordre (1 — «) de la loi de U, par le quantile empirique d’ordre (1 — «) des
oM, UM,

Algorithme :
1. Générer B échantillons bootstraps de taille n, {(Yl(b), ng), Zgb)), s (Yn(b), XS’), 7.
b=1,..., B a partir des observations.

2. Calculer @(Lb) = (B;(b),gl(b))T,b =1,..., B, a partir des modéles (4.1)-(4.2).

)}
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3. Calculer I'estimateur bootstrappé de igyn : iboot = var(ﬁ,(zl), ey Asz)).

4. Générer M vecteurs aléatoires indépendants ((,,, € RP,m = 1,..., M) suivant une

distribution normale multivariée de moyenne 0 et de matrice de covariance

Eboot'

5. Evaluer

U™ = max

T
‘ s xTr; = (1,561'2, ...,.Tip) ,m = 1, ...,]\4'7
r,€EX

o~

‘ (i
Uboot,n(l'i)

Oﬁ
bOOt ,n L xr bOOi x’

6. Déterminer le quantile empirique d’ordre (1 —«) de I'échantillon {U, ..., USM)Y.

On le note ¢_g,.

Comme la distribution empirique de {U,(Ll), s UéM)} est une approximation de celle
de sup,c g |Wy(z)|, d’aprés le Théoréeme 5.2.1 on peut construire une bande de

confiance [Z\n(x),ﬂn(a:)] pour {3z, z € 2} comme suit :

On en déduit une bande de confiance pour {p(x);z € 2"} donnée par

o0 Tt (5.17)
ou -
- eln(@) ¢ (@)
lpoyn = ———— et Tpayn= =, z€Z.
P T @) R Gl g AL

On obtient le corollaire suivant :
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Corollaire 5.3.5 Sous les conditions (A1)-(A4) définies dans le chapitre 4, et sous
les conditions des théorémes 4.4.7 et 5.2.1, les bandes de confiance définies par (5.17)

ont une probabilité de couverture asymptotique égale a 1 — v, c’est-a-dire

lim P(l:,(z),n < p(x) < Upgym, ¥V T € %) =1-oa.

n—o0

5.4 FEtude de simulation

Les objectifs visés dans cette partie d’étude de simulation sont de comprendre
et de montrer les performances des bandes de confiance en taille d’échantillon fi-
nie. Précisément, nous évaluons l'influence de différents parameétres de simulation
(valeur du niveau de confiance, taille d’échantillon, pourcentage d’immunes et pro-
portion d’individus infectés parmi les susceptibles) sur la probabilité de couverture
et la longueur moyenne des bandes. Nous décrivons tout d’abord la procédure de

simulation.

5.4.1 Plan de simulation

Nous considérons les modéles suivants pour le statut infection :

log (%) = f1+ 5o Xig + 332z if 5; =1

(5.18)
et le statut d’'immunité :
P(S = 1|Z;)
1 =01 + 057, 5.19
Og(l—IP(S:HZi)) 1+ 0220 ( )

ou X;» est une variable de loi normale de moyenne 0 et de variance 1 et Z;5 est une

variable aléatoire de loi uniforme dans (0, 1]. Notons que la variable X;5,1 < i <n
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joue le role de la covariable continue V' dans la condition A2 (voir chapitre 4). Nous
pouvons également noter que les modéles d’infection et d’'immunité partagent une
covariable. Un échantillon i.i.d. de taille n du vecteur & est généré a partir de ce
modeéle, et pour chaque individu 4, nous obtenons une réalisation &; = (y;, s;, X;, Z;),
ou s; est considéré comme inconnu si y; = 0. L’estimateur du maximum de vraisem-
blance Bn de 8 = (B4, B2, 33) " est obtenu & partir de cette base de données incompléte
en résolvant I'équation du score donnée dans la Section 4.2 du chapitre 3, en utili-
sant la fonction optim du logiciel R (version 2.14). Un estimateur du paramétre de
nuisance § = (01,0,)7 est également obtenu. Nous nous sommes particuliérement
intéressés a la probabilité de survenue de U'infection p(x) = P(Y = 1| X =x,5 = 1).
Pour chaque configuration des différents paramétres de simulation, nous calculons la
probabilité de couverture empirique et la longueur moyenne des bandes de confiance,
pour chacune des 3 méthodes proposées dans la section 5.3.
Le comportement sur des tailles d’échantillon finies des bandes de confiances est
évalué pour plusieurs tailles d’échantillon (n = 500, 1000, 1500) et différents pour-
centages d’individus immunes dans 1'échantillon, a savoir 25%, 50%. Nous consi-
dérons également différentes valeurs de la proportion d’individus infectés parmi les
susceptibles (30% and 70%) et différentes valeurs du niveau de confiance des bandes
construites : 90%, 95% et 99%. Les proportions souhaitées d’individus immunes et
infectés sont obtenues en choisissant des valeurs appropriées pour [ et 6. Les valeurs
suivantes sont considérées pour (3 :

— modéle .#; : B = (—1,1.5,—.4)" : approximativement 30% des susceptibles

sont infectés.
— modéle A, : 3 = (.5,—1,—1.1)" : approximativement 70% des susceptibles

sont infectés.
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5.4.2 Reésultats

Pour chaque configuration (niveau de confiance x taille d’échantillon x pour-
centage d’individus immunes x pourcentage d’infectés parmi les individus suscep-
tibles) de choix des paramétres, N = 1000 échantillons sont obtenus. Sur la base de
ces 1000 réplications, nous obtenons 1’5%1)(95), .. ,1353000) (x), pour tout z € 2 . Pour
chacune des trois méthodes proposées, nous calculons la probabilité de couverture
empirique comme le pourcentage de bandes contenant exactement la vraie fonction
réponse parmi les 1000 bandes obtenues. Nous avons également étudié la précision
des bandes en regardant leurs largeurs. Des indicateurs de précision sont calculés en
prenant :

1. pour chaque réplication la moyenne et la médiane des largeurs des bandes sur

les n valeurs xy,...,x, de x générées pour les n individus de I’échantillon,

2. puis en calculant la moyenne des deux séries de n valeurs (moyenne et médiane)

ainsi obtenues.
Les résultats sont résumés dans les tableaux 5.1 et 5.2. Dans ces tableaux, les mé-
thodes 1, 2 et 3 correspondent respectivement a la méthode de Scheffé, a la méthode
de Landau et Sheep et a la méthode Bootstrap. Les largeurs présentées dans ces

tableaux sont les largeurs moyennes des bandes.

A partir des Tableaux 5.1 et 5.2, nous notons que la méthode 2 fournit des bandes
de confiance ayant une probabilité de couverture plus faible que les méthodes 1 et
3. Nous constatons également que la probabilité de couverture diminue quand la
taille d’échantillon augmente. On peut faire la méme constatation pour la largeur
moyenne des bandes de confiance : les bandes se rétrécissent lorsque la taille de

I’échantillon augmente, et ce, indépendamment des trois méthodes. La méthode 3
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(méthode bootstrap) est associée a des probabilités de couverture et des largeurs de
bande plus élevées que les deux autres méthodes. Le caractére conservatif des bandes
de confiances constaté sur la méthode 3 est trés similaire a ce qui est observé dans
la plupart des travaux portant sur les bandes et intervalles de confiance simultanés
dans le modéle de régression linéaire et logistique (voir (Zhang & Peng 2010) et
(Li et al. 2010)). En pratique, nous recommandons ['utilisation des méthodes 1 ou
2 pour des raisons de temps de calculs (moins longs que pour la méthode 3) et
également pour des raisons de meilleures précisions de largeurs de bandes. Nous
remarquons également que si 'on augmente la valeur du niveau de confiance, la
largeur des bandes de confiance augmente.
Les résultats (probabilités de couverture et largeurs moyennes des bandes) sont
stables lorsque le pourcentage d’immunes est de l'ordre de 25% et se dégradent
lorsqu’il augmente. Quand le pourcentage d’immune est de 50%, les probabilités de
couverture sont faibles, par contre les largeurs des bandes restent néanmoins stables.
Ensuite, nous comparons ces résultats du modéle .#; a ceux obtenus par la méthode
d’analyse "naive" ou :

nous considérons tout individu ¢ tel que {Y; = 0} comme susceptible mais non

infecté (c’est-a-dire, nous ignorons une éventuelle immunité de cet individu),

— nous calculons les bandes de confiance pour p(x) a partir des données ainsi

obtenues.

Les résultats de cette analyse "naive" pour le modéle .#; sont donnés dans le Ta-
bleau 5.3. Les probabilités de couverture sont proches de 0, indépendamment de
la taille d’échantillon lorsque le pourcentage d’'immunes est égal a 25%. Elles sont

pratiquement toutes égales a 0 lorsque le pourcentage d’'immunes est de 50%.
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Ceci nous permet d’affirmer qu’il est important de tenir compte de I'immunité lors-
qu’elle est présente dans la population.
Le modeéle .#5 fournit des résultats similaires. Ils sont présentés dans la section B.2

dans 'annexe B.
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TAB. 5.1 Modéle A, : f = (—1,1.5,—.4) avec 25% d’immunes.

Méthode 1 Méthode 2 Méthode 3

1—a n Couverture® Largeur Couverture® Largeur Couverture® Largeur

Pourcentage d’immunes = 25%,60 = (1.6, —1)

0.99 500 0.946 0.217+ 0.938 0.205% 0.999 0.734%
0.0821 0.074" 0.6277

0.174* 0.161* 0.830*

0.338F 0.322F 0.898F

1000 0.931 0.134F 0.922 0.128% 0.994 0.593F
0.0317 0.028" 0.282"

0.087* 0.082* 0.775*

0.220F 0.211F 0.877F

1500 0.837 0.102F 0.818 0.098+ 0.996 0.588+
0.018t 0.017* 0.3321

0.062* 0.059* 0.736*

0.172F 0.165F 0.827F

0.95 500 0.854 0.169F 0.841 0.163% 0.989 0.667+
0.0451 0.042% 0.5261

0.117* 0.110* 0.761*

0.274F 0.264F 0.852F

1000 0.791 0.108% 0.773 0.105F 0.989 0.530F
0.0197 0.0187 0.1877

0.063* 0.061* 0.698*

0.181F 0.175F 0.829F

1500 0.836 0.081F 0.827 0.078% 0.988 0.518%
0.012% 0.012% 0.216%

0.046* 0.044* 0.684*

0.137F 0.133F 0.784F

0.90 500 0.846 0.142% 0.842 0.138% 0.989 0.607+
0.0357 0.0337 0.4577

0.093* 0.089* 0.694*

0.230F 0.224F 0.793F

1000 0.788 0.092F 0.776 0.090% 0.990 0.485%
0.0157 0.0157 0.1607

0.053* 0.051* 0.624*

0.154F 0.150F 0.775F

1500 0.8 0.073% 0.792 0.071+ 0.983 0.462F
0.010f 0.010f 0.127%

0.039* 0.039* 0.624*

0.123F 0.121F 0.741F

Note : @ : probabilité de couverture, T : moyenne, T : Ter quartile, * : médiane, T : 3éme quartile.
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TAB. 5.2 Modéle A : f = (—1,1.5,—.4) avec 50% d’immunes.

Méthode 1 Méthode 2 Méthode 3

1—a n Couverture® Largeur Couverture® Largeur Couverture® Largeur

Pourcentage d’immunes = 50%, 6 = (—1,2)

0.99 500 0.879 0.325% 0.862 0.307+ 0.998 0.885%
0.138% 0.124% 0.827%

0.279* 0.258* 0.954*

0.495F 0.472F 0.983F

1000 0.847 0.180F 0.836 0.171+ 0.994 0.596%
0.053" 0.048" 0.3257

0.131* 0.123* 0.727*

0.292F 0.279F 0.856F

1500 0.865 0.143% 0.850 0.137+ 0.991 0.533F
0.031f 0.0291 0.1961

0.092* 0.087* 0.690*

0.239F 0.229F 0.823F

0.95 500 0.797 0.232F 0.779 0.2227F 0.997 0.797+
0.082f 0.0751 0.684"

0.178* 0.167* 0.908*

0.365F 0.351F 0.966F

1000 0.636 0.139+ 0.627 0.134% 0.985 0.538%
0.0317 0.0297 0.272f

0.089* 0.085* 0.622*

0.230F 0.222F 0.784F

1500 0.731 0.106% 0.720 0.103% 0.986 0.448%
0.0207 0.0197 0.1357

0.064* 0.061* 0.547*

0.177F 0.171F 0.722F

0.90 500 0.716 0.197+ 0.705 0.191% 0.984 0.757+
0.0597 0.0567 0.614"

0.141* 0.135* 0.875*

0.316F 0.307F 0.946F

1000 0.744 0.121+ 0.726 0.118% 0.977 0.469F
0.0257 0.024" 0.2077

0.075* 0.072* 0.547*

0.199F 0.194F 0.718F

1500 0.607 0.093+ 0.596 0.091+ 0.966 0.410%
0.016' 0.0157 o.111t

0.054* 0.052* 0.479*

0.156F 0.153F 0.670T

Note : @ : probabilité de couverture, T : moyenne, T : Ter quartile, * : médiane, T : 3éme quartile.
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TAB. 5.3  Analyse "naive" : . : = (—1,1.5,—.4) avec 25% et 50% d’immunes.

Méthode 1 Méthode 2 Méthode 3
1—a n Couverture® Largeur Couverture® Largeur Couverture® Largeur
Pourcentage d’immunes = 25%, 0 = (1.6, —1)
0.99 500 0.301 0.138 0.253 0.132 0.320 0.139
1000 0.001 0.092 0.001 0.089 0.001 0.093
1500 0.358 0.089 0.313 0.085 0.355 0.088
0.95 500 0.004 0.116 0.003 0.112 0.007 0.118
1000 0 0.079 0 0.077 0 0.080
1500 0.012 0.063 0.009 0.061 0.015 0.063
0.90 500 0.008 0.096 0.005 0.094 0.010 0.098
1000 0 0.065 0 0.064 0 0.066
1500 0 0.052 0 0.051 0 0.053
Pourcentage d’immunes = 50%, 6 = (—1,2)
0.99 500 0.241 0.236 0.214 0.226 0.261 0.233
1000 0 0.141 0 0.136 0 0.137
1500 0 0.121 0 0.117 0 0.119
0.95 500 0 0.093 0 0.091 0 0.091
1000 0 0.130 0 0.126 0 0.127
1500 0 0.093 0 0.091 0 0.091
0.90 500 0 0.146 0 0.142 0 0.145
1000 0 0.099 0 0.098 0 0.098
1500 0 0.090 0 0.088 0 0.088

Note : a : probabilité de couverture.
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Study of dengue cases and the members of their households : a familial cluster ana-
lysis in the multinational DENFRAME project
PLoS. Negl. Trop. Dis., vol. 6(1) : e1482, 2012. pages 80-106.

Abstract
Background : Dengue has emerged as the most important vector-borne
viral disease in tropical areas. Evaluations of the burden and severity of
dengue disease have been hindered by the frequent lack of laboratory
confirmation and strong selection bias toward more severe cases.

Methodology : A multinational, prospective clinical study was carried out

in South-East Asia (SEA) and Latin America (LA), to ascertain the pro-
portion of inapparent dengue infections in households of febrile dengue
cases, and to compare clinical data and biological markers from subjects
with various dengue disease patterns. Dengue infection was laboratory-
confirmed during the acute phase, by virus isolation and detection of the
genome. The four participating reference laboratories used standardized
methods.

Principal Findings : Among 215 febrile dengue subjects, 114 in SEA

and 101 in LA, 28 (13.0%) were diagnosed with severe dengue (from SEA
only) using the WHO definition. Household investigations were carried
out for 177 febrile subjects. Among household members at the time of
the first home visit, 39 acute dengue infections were detected of which
29 were inapparent. A further 62 dengue cases were classified at early

convalescent phase. Therefore, 101 dengue infections were found among



6.1. Introduction 93

the 408 household members. Adding these together with the 177 Dengue
Index Cases, the overall proportion of dengue infections among the study
participants was estimated at 47.5% (278/585; 95% CI 43.5-51.6). Lym-
phocyte counts and detection of the NS1 antigen differed significantly
between inapparent and symptomatic dengue subjects; among inappa-
rent cases lymphocyte counts were normal and only 20% were positive
for NS1 antigen. Primary dengue infection and a specific dengue virus

serotype were not associated with symptomatic dengue infection.

Conclusion : Household investigation demonstrated a high proportion of
household members positive for dengue infection, including a number of

inapparent cases, the frequency of which was higher in SEA than in LA.

6.1 Introduction

Dengue is the most important mosquito-borne viral disease of humans. The di-
sease is now endemic in more than 100 countries and threatens more than 2.5 billion
people. It currently affects about 50 to 100 million people each year
(Guzman & Kouri 2002). Dengue viruses (DENV) are enveloped, single-stranded
positive-sense RNA viruses (family Flaviviridae, genus Flavivirus). There are four
types of DENV : DENV-1, DENV-2, DENV-3 and DENV-4. Dengue virus infec-
tion induces life-long protective immunity to the homologous serotype, but confers
only partial and transient protection against subsequent infections with any of the
other three serotypes (WHO 2009). The disease spectrum ranges from inapparent
infection or mild dengue fever (Endy et al. 2002), probably the most common form,

to a potentially severe form of dengue characterized by plasma leakage and hemor-



6.1. Introduction 94

rhage, known as severe dengue. Uncommonly, severe dengue may manifest as hepa-
titis, encephalopathy or rhabdomyolysis ((WHO 2009), (Kalayanarooj et al. 1997),
(Hommel et al. 1998), (Murgue et al. 1999) and (Thomas et al. 2008)). About 500000
people are estimated to have severe dengue and about 25000, mostly children, die
from it each year (Mackenzie et al. 2004). The underlying causes determining the
outcome of DENV infection remain unknown. Although previous exposure, viral
strain and human host genetic polymorphisms also influence the clinical outcome
of DENV infection, we still know little about the complex interplay between host
and pathogen in the pathogenesis of dengue ((Watts et al. 1999), (Rico-Hesse 2007),
(Sakuntabhai et al. 2005) and (Silva et al. 2010)). Inapparent infections have lar-
gely been detected retrospectively through serology. The uses of genome detection
or virus isolation have enabled detection of inapparent infections in cluster stu-
dies designed to detect natural infections in the community ((Beckett et al. 2005)
and (Mammen et al. 2008)). The present study was designed to identify sympto-
matic and inapparent dengue-infected subjects in genetically-related individuals li-
ving in the same household, in line with the main aim of the DENFRAME project
which is to explore the influence of human genetic variants and their functional
roles in the pathogenesis of dengue disease in humans. We based the identification
of dengueinfected subjects upon virological techniques, namely virus isolation and
detection of the genome. We also took this opportunity to evaluate prospectively
a commercial NS1 capture assay ((Young et al. 2000) and (Alcon et al. 2002)) that
could potentially be implemented in laboratories for the diagnosis of acute dengue

((Dussart et al. 2006), (Dussart et al. 2008) and (Blacksell et al. 2008)).
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6.2 Methods

6.2.1 Objectives

A multinational, prospective study was conducted in South-East Asia (Cambodia
and Vietnam) and Latin America (Brazil and French Guiana). We used virological
techniques to identify dengue patients diagnosed at the acute phase of disease among
the patients presenting with dengue-like illness. We then performed a household
investigation, comparing clinical data and biological markers from subjects with a
broad range of dengue disease patterns, including inapparent dengue cases that are
rarely captured in clinical studies. This clinical study’s aims were : (i) to estimate
the proportion of inapparent dengue infections among members of the households
of laboratory-confirmed symptomatic dengue cases, (ii) to calculate the proportion
of dengue-infected subjects at the time of the household investigation, and (iii)
to compare clinical and biological data from inapparent and symptomatic dengue-

infected subjects.

6.2.2 Study sites

Five institutions were involved in this study during the recruitment period :
Instituto Evandro Chagas (IEC) in Belém (Parastate, Brazil), Institut Pasteur du
Cambodge (IPC) in Phnom Penh (Cambodia), Institut Pasteur de la Guyane (IPG)
in Cayenne (French Guiana) and Institut Pasteur de Ho Chi Minh Ville (IPHCM)
in Vietnam were responsible for the recruitment of patients and virological analyses ;
the Institut Pasteur (IP) in Paris (France) designed the study and was responsible
for central monitoring and data analysis.

As shown in the two maps (Figure 1), volunteers were recruited at four clinical sites :
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Vinh Thuan District Hospital (Vietnam), Kampong Cham Referral Hospital (Cam-
bodia), the TPG in Cayenne (French Guiana) and public outpatient and emergency
rooms managed by the Belém Health Secretariat in the districts of Guama, Marco,
Marambaia and Sacramenta, and the outpatient unit of the IEC (Brazil). The viro-
logy laboratories of the four institutions responsible for recruitment are all National
Reference Centers (NRC) for Arboviruses (IEC is also a WHO collaborative cen-
ter). These laboratories carried out virological, NS1 antigen (Platelia Dengue NS1

Antigen, Bio-Rad, Marnes La Coquette, France), and serological techniques.

6.2.3 Study design

We recruited subjects with acute dengue-like illness at the study sites. These
subjects were identified by the treating physicians and were included if they satisfied
the following criteria : (i) aged over 24 months ; (ii) oral temperature .38uC and onset
of symptoms within the last 72 h; and (iii) presenting with at least one clinical
manifestation suggestive of dengue-like illness : severe headache, retro-orbital pain,
myalgia, joint pain, rash or any bleeding symptom. Furthermore, for inclusion in
the second step of the study, the subject had to come from a familial household
containing more than two people during the seven days preceding illness. We first
identified the dengue-infected subjects (referred to in this study as Dengue Index
Cases or DIC) and non-dengueinfected subjects (defined as Non-Dengue Cases -
NDC) on the basis of virological results from an acute sample (see below). We
then recruited individuals from the households of the DIC. We thus constituted
three groups of participants : 1) DIC, 2) household members (HHM), and 3) NDC
not related to the DIC. For all groups (DIC, HHM and NDC), we applied the

same exclusion criteria : women who were pregnant or breastfeeding, individuals
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with a focal source of infection (e.g. otitis media, pneumonia, meningitis), patients
presenting with a known chronic illness, and patients with malaria. Moreover, to
ensure the feasibility of this study, each study site was asked to target a convenient
sample of 50 households and to recruit subjects from July 2006 to June 2007 in line
with the approval granted by the Institutional Review Board and the timing of the

dengue season at each site.

6.2.4 Clinical data and blood sample collection

Participants were examined during sequential visits, as shown in the study design
charts (Figure 2). At each visit, data were collected with a standardized question-
naire. Severe dengue cases were classified, according to WHO recommendations on
the basis of the clinical data. Biological data were also recorded at the sequential
visits [2]. Blood samples were collected during the visits and were rapidly processed
by the laboratories of each of the recruiting sites, for dengue diagnosis and biological
testing. Blood sample volume was adapted for children weighing less than 20 kg.
Paired blood samples were collected for subjects presenting dengue-like illness to
allow classification as DIC or NDC : during the acute phase (Visit 1) and during
the convalescence phase (Visit 4 : 15 to 21 days after the onset of fever). Blood
samples were taken from hospitalized DIC within 24 hours of defervescence (Visit
3). HHM were visited at home for blood collection within 24 to 72 hours of DIC
identification (Home Visit 1). For practical and logistical reasons this delay of up
to 72 hours was unavoidable. HHM were supplied with a monitoring diary card and
a thermometer, to enable them to follow their temperature over a 7-day period.
For HHM with a positive diagnosis of dengue or with an onset of fever during the

seven days of monitoring, a second visit with blood collection for dengue diagnosis
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was organized (Home Visit 2). Blood analyses included virological and serological
dengue diagnosis, complete blood count, transaminases and bilirubin levels. Finally,
the data were coded and entered into the computer via a secure website specifically

developed with the PHP/MySQL system.

6.2.5 Classification of dengue cases on the basis of acute
dengue diagnosis

All serum samples collected at Visit 1 or at Home Visit 1 or Home Visit 2 were
tested : (i) for acute dengue diagnosis, defined as positive virus isolation on mos-
quito cells ((Gubler et al. 1984)) and/or positive viral RNA detection by reverse
transcriptase-polymerase chain reaction (RT-PCR) (Lanciotti et al. 1992), and (ii)
for the diagnosis of early convalescent dengue cases based on a standardized DENV
IgM capture enzyme-linked immunosorbent assay (MAC-ELISA) (Nunes et al. 2011),
and DENV IgG detection by indirect ELISA (in-house protocol developed by each
NRC for Arboviruses). NS1 antigen detection was also performed.

Only subjects with febrile dengue infection diagnosis were classified as DIC. Sub-
jects in the early stage of dengue convalescence at Visit 1 (i.e. positive NS1 antigen
detection with concomitant DENV IgM detection, or isolated DENV IgM detec-
tion with no positive viral tests) were not classified as DIC; we did not perform a
household investigation for them. For the classification of dengue-infected HHM at
Home Visit 1, we included both HHM with an acute (febrile or inapparent) dengue
infection diagnosis and HHM with isolated DENV IgM detection, presumably rela-
ted to an infection preceding that of the DIC (i.e in the early convalescence phase).
During the 7-day period of home monitoring, several new febrile cases of dengue-

infectedHHMwere also confirmed through Home Visit 2.
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We were unable to use the DENV IgM /IgG ratio to distinguish between primary
and secondary dengue infections, due to a lack of standardization of DENV IgG
tests among laboratories (Shu & Huang 2004). We therefore established two groups
of dengue-infected participants, based on the presence or absence of DENV IgG
during the acute phase of the disease. In this study, we considered the presence of
DENV IgG in the acute phase of the study to be suggestive of previous dengue
infection. All sera were also checked for DENV IgM and IgG at Visit 4. Finally, if

all these dengue tests were negative, participants were classified as NDC.

6.2.6 Ethics

The study was approved by the Institutional Review Board of the Institut Pas-
teur and by the ethics committees of each of the countries concerned. It was conduc-
ted in accordance with the Declaration of Helsinki, and the participants or the
parents of minors participating in the study gave written informed consent before
inclusion. The clinical protocol, the questionnaires, the standard operating proce-
dures and informed consent forms were adapted and translated for each clinical site.
All the documentation was accessible through a dedicated website with a speci-
fic login access (www.denframe.org). The centralized electronic database was based
at the Institut Pasteur in Paris and registered with the Commission Nationale de

UInformatique et des Libertés (CNIL) in France.

6.2.7 Statistical methods

We present here the data from all four study sites in Latin America and South-
East Asia. DIC are described according to region, disease severity, DENV type, age

group and IgG status. We estimated the proportion of inapparent dengue infec-
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tions among HHM, and we calculated the proportions of dengueinfected subjects
among household subjects, in total and according to the IgG status at the time
of household investigation. We compared clinical data and biological markers bet-
ween inapparent dengue-infected subjects, symptomatic dengue-infected subjects,
and non-dengue-infected participants at the time of the household investigation. We
created binary variables to evaluate the potential effect of DENV infection on biolo-
gical markers (hematocrit, platelets, neutrophils, lymphocytes, monocytes, ASAT,
ALAT, bilirubin). For lymphocytes and neutrophils, we used a threshold of 26109/1.
We used chi-squared or Fisher’s exact tests to compare categorical variables between
symptomatic cases, inapparent dengue-infected cases and non-dengue-infected sub-
jects among HHM. Univariate and multivariable logistic regression models were used
to assess the effect of covariates on the odds ratios (OR) of symptomatic dengue-
infected cases, inapparent dengue-infected cases, and non-dengue-infected subjects
among HHM. For the multivariable logistic regression models including data from
household members, we used two-stage hierarchical regression models taking into ac-
count the family household structure (Greenland 2000). Potential confounders with
a P value of less than 0.20 in univariate analysis were retained for the final multiva-
riable analyses. STATA version 10.0 (Stata Corp., College Station, TX, USA) and

a significance level of 5% were used for all statistical analyses.

6.3 Results

Flowcharts for the recruitment of participants at each step are shown in Figure
6.3.

— Step 1 : identification of dengue index cases (DIC)
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We screened 473 febrile subjects for dengue infection. Thirty (6.3%) had at
least one criterion for non inclusion in the study at presentation; the remai-
ning 443 (93.7%) were included in the study. We identified 215 (48.5%) of these
443 subjects as DIC, 21 (4.7%) as dengue convalescent cases, 187 (42.2%) as
NDC, and 20 (4.5%) could not be classified because some biological markers
were lacking. Recruitment levels during the study period were very low in
French Guiana (9 DIC and 24 NDC), whereas there had been a large number
of dengue cases during the rainy season of the previous year [25]. For the 215
subjects classified as DIC, 149 (69.3%) were positive by genome detection and
viral isolation, 43 (20.0%) were positive by genome detection only, 15 (7.0%)
were positive by viral isolation only, and a very few subjects (n= 8, 3.7%) were
ultimately classified as DIC by the virologists, based on positive NS1 detec-
tion, clinical data and serological results (negative IgM at Visit 1 followed by
seroconversion IgM at convalescent phase).

The proportions of subjects classified as either NDC or DIC differed between
Latin America and South-East Asia : 69.5% (130/187) of the total NDC in
the study, and 47.0% (101/215) of the DIC, were recruited in Latin America
whereas 30.5% (57/187) of the NDC and 53.0% (114/215) of the DIC were
recruited in South-East Asia (P,1024) (Figure 3A). In other words, in Latin
America, in two thirds of subjects presenting with dengue-like illness, the cause
was not related to dengue infection. Given the inclusion criteria, the dengue-
like illness symptoms were not different between NDC and DIC (data not
shown). However, all biological variables, including counts of platelets, lym-
phocytes and neutrophils, were significantly lower, whereas hematocrit and

liver enzyme levels were higher in the DIC group than in the NDC group
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(data not shown).

Table 1 shows the distribution of DIC by region and according to IgG status at
Visit 1 as a function of DENV type and age group. The proportions of severe
dengue and dengue fever cases with DENV IgG (suggestive of previous DENV
infection) and without DENV IgG in the acute phase were similar (Table 1) :
15 (55.6%) severe dengue cases tested negative for DENV IgG and 12 (44.4tes-
ted positive for DENV IgG, versus 49 (31.8%) and 105 (68.2%) of the subjects
with non severe disease, respectively (P =0.017). DENV-1, -2 and -3 were found
with similar frequencies in South- East Asia, whereas DENV-3 predominated
in Latin America. Fifteen of the severe dengue cases reported in South-East
Asia were infected with DENV-2 (53.6%; 15/28). Interestingly, seven severe
dengue cases positive for DENV-2 virus and negative for DENV IgG in the
acute phase but with subsequent DENV IgM and IgG seroconversion were
identified. This serological pattern suggests that these patients had primary
DENYV infection. Two DIC in Vietnam were reported with co-detection of mul-
tiple DENV strains by RT-PCR : DENV-2/DENV-1 and DENV-4/DENV-2
respectively ; the viral cultures were negative for both subjects. Only the first
virus detected was considered for further statistical analysis (DENV-2 and
DENV-4, respectively).

According to the WHO criteria, twenty-eight (13.0%) subjects were classified
as severe dengue (based on severe plasma leakage and/or severe hemorrhages
and/or severe organ impairment). All these cases were from clinical sites in
South-East Asia (25 in Vietnam and 3 in Cambodia, as presented in Table
S1). At visit 1, presentation with the following combination of features was

significantly associated with the occurrence of severe dengue in this popula-
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tion : being male, over the age of seven years, with no retro-orbital pain but
with bleeding, low monocyte count, normal liver enzyme levels and DENV-2
type infection.
For 163 (75.8%) DIC, data were available for all the biological markers at visits
1 and 4 (Figure 6.3). All these markers had returned to normal levels by visit
4, and all participants, including the 28 severe dengue cases displayed clinical
recovery from dengue disease (data not shown).

— Step 2 : identification of household members (HHM)
Agreement for household investigations was obtained from 177 (82.3%) DIC,
corresponding to a total of 651 household members. We compared the distri-
bution of the covariates (as listed in Table S1) between the 38 DIC with no
familial investigation and the 177 DIC who underwent familial investigation ;
no significant differences were found in the distribution of the covariates bet-
ween these two groups (data not shown). All 28 patients with severe dengue
infection underwent household investigation. In total, 141 (21.7%) of the 651
household members refused to participate in the study. We therefore scree-
ned 510 participants, 497 (97.5%) of whom were eligible for the study. All
but one of these 497 household members were genetically related to the DIC.
Eightyfour were not classifiable due to the lack of some biological results. Full
assessment of DENV infection was carried out according to the study protocol
for the remaining 413 of these subjects (Figure 6.3) during Home Visit 1.
At the time of the household investigation (Home Visit 1), 39 subjects were
identified as being in the acute phase of dengue infection : 29 (74.4%) cases
were inapparent and 10 (25.6had symptomatic dengue infection. An additional

62 subjects were classified as being in the early phase of convalescence from
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dengue infection. The remaining 312 subjects were considered as non-dengue-
infected at the time of Home Visit 1 (Figure 3B) ; however, five of them deve-
loped some clinical symptoms of dengue fever and were laboratory-confirmed
as having acute dengue infection during the 7-day home monitoring. We ex-
cluded them (n—>5) from the remaining analysis (n—312 subjects with 7-day
home monitoring) that thus included 307 subjects (Figure 6.3). It should be
noted that a second home visit and blood sampling was not possible, for ethical
and logistical reasons, forHHM without any clinical symptoms after the 7-day
home monitoring. Hence, among the 307 remaining subjects, some may have
had an inapparent dengue infection after Home Visit 1. Therefore, we conside-
red that at least 101 (39 acute or 62 early convalescent) dengue infections were
found amongst 408 HHM (24.8% ; 95% confidence interval (CI) : 20.6-28.9) at
the time of Home Visit 1 (Figure 6.3). Thus, adding together the 177 DIC
and the 101 DENV-infected HHM, the overall proportion for dengue among
the study participants was estimated at 47.5% (278/585; 95% CI : 43.5-51.6)
(Figure 6.3). We have also estimated these proportions according to the IgG
status (Table 6.2) at the time of Home Visit 1 (excluding the 5 subjects with
known symptomatic infection, 3 were IgG positive and 2 were IgG negative).
Among the 585 subjects, 6 had missing IgG data. Among 425 subjects with
positive IgG, the estimated proportion of dengueinfected subjects was 43.8%
(186/425; 95% CI : 39.0-48.5) and, among the 154 with negative IgG, this
estimated proportion was 57.1% (88/154; 95% CI : 49.3-65.0).

In 101 (57.1%) households, there was only one dengue-infected case. For the
76 (42.9%) households with at least two dengueinfected cases, DENV type had

been determined for all subjects in 29 households. Nine (31.0%) households
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were found to have two different DENV types circulating during the same time
period : DENV-1 & DENV-3 (n=2 in Brazil, n=4 in Cambodia), DENV 1 &
DENV-2 (n=1 in Vietnam), and DENV-2 & DENV-3 (n=2 in Vietnam).
Hematologic and hepatic biological markers observed among non-dengue-infected
cases (n—307), inapparent dengue-infected cases (n—29), and symptomatic
dengue-infected subjects (n= 192) are described in Table S2. Tables 6.3 &
6.4 show comparisons between non-dengue-infected and inapparent dengue-
infected cases, and symptomatic and inapparent dengue-infected subjects,
respectively, among the household subjects. Table S3 presents the main cha-
racteristics of subjects with acute dengue infection compared to non-dengue-
infected subjects among the household subjects. In the comparisons between
non-dengue-infected and inapparent dengue-infected subjects, taking into ac-
count potential confounders, only neutrophil and monocyte levels differed si-
gnificantly whereas presence of [gG at Visit 1 was almost significant with the
non-dengue-infected group. The comparison between symptomatic and inap-
parent dengue-infected subjects (Table 6.4) showed significant difference bet-
ween groups for lymphocyte counts and positive NS1 antigen detection. In this
analysis, no significant difference was found for DENV types identified or IgG

detection during the acute phase.

6.4 Discussion

Several previous epidemiological studies have focused on school-based surveillance
aiming at improving dengue-vector control measures ((Endy et al. 2002) and

(Mammen et al. 2008)), studying the dynamics of patterns of dengue transmission
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((Teixeira et al. 2002), (Morrison et al. 2010) and (Endy et al. 2011)) or describing
a model that takes into account the role of human movement in the transmission
dynamics of vector-borne pathogens (Stoddard et al. 2009). Earlier cluster investi-
gation methods were designed as an alternative approach to the commonly used
prospective cohort study method for investigating the natural history of dengue
virus infection in South-East Asia and Latin America ((Beckett et al. 2005) and
(Reyes et al. 2010)). Although different study designs have demonstrated the feasi-
bility of identification of inapparent dengue cases, it remains difficult to recruit these
subjects. We designed our study to include family household investigation in order
to identify a group of inapparent dengue-infected subjects and to compare them with
symptomatic dengue-infected and non-dengue-infected subjects living in the same
family household. The study design was based on family household recruitment spe-
cifically in order to collect data and biological samples, and to study secondarily the
host susceptibility to dengue infection and disease. Unlike studies based on cohorts
from hospital referrals, this multi-country study captured dengue cases ranging from
inapparent infections, through mild disease to severe dengue fever, using definitions
of clinical cases and diagnostic methodology standardized across the four sites. The
period of inclusion, from July 2006 to June 2007, spanned the dengue season at each
site, although incidence of dengue was low that year in French Guiana.

The main objective of this study was to identify dengue infections and particularly
inapparent infections among dengue patients’ household family members in South-
East Asia and Latin America. Based on our data, we estimated the proportion to
be about 45Most of the dengue cases studied had symptomatic infections, covering
the spectrum of disease from dengue fever to severe dengue cases. We also identi-

fied inapparent infections in the population. We observed dengue-infected subjects
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classified as DIC and some of their HHM without acute dengue infection but with
a positive IgM detection, suggesting an early convalescent phase after dengue infec-
tion with no clinical symptoms. In this study we identified 29 inapparent dengue
infections but we believe this number underestimates the proportion of inapparent
dengue cases because we were not able to take blood samples from nonsymptomatic
subjects at Home Visit 2.

We postulated that dengue is transmitted to members of the DIC’s family household
during the period of the index subject’s infection, and thus designed our study to
detect inapparent dengue infections with a home visit organized shortly after identi-
fication of DIC. Obviously, we cannot confirm whether the index subject’s DIC was
always the source of infection in other family members, but we can postulate that a
non-hospitalized DIC who remains at home during acute illness represents a poten-
tial source of DENV transmission to Aedes. According to our study design, clustering
of cases within a household could be the result of a single or very few infected mos-
quitoes biting different household members during a short period of time, perhaps
within a single gonotrophic cycle as previously suggested ((Mammen et al. 2008) and
(De Benedictis et al. 2003)). This is also consistent with a previous observation that
over periods from 1 to 3 days, dengue cases were clustered within short distances,
i.e., within a household (Morrison et al. 1998). No mosquito captures were, howe-
ver, conducted in our study to identify DENV-positive Aedes mosquitoes. DENV
sequencing would help resolve the extent of localized transmission.

We characterized subjects with acute dengue infection using virus isolation and de-
tection of the genome. We also used NS1 antigen detection, a more recently recogni-
sed diagnostic tool. As for many tropical infectious diseases, there is an urgent need

for validated diagnostic tools for dengue. In parallel with the virological techniques,
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we evaluated detection of the NS1 antigen with the Platelia Dengue NS1 Ag test. In
this study, this test was found to have good sensitivity (83.6%; 95% CI : 78.5-88.6)
and specificity (98.9%; 95% CI : 96.6-99.9) in both Asia and Latin America, as
reported in previous studies ((Dussart et al. 2006), (Chuansumrit et al. 2008) and
(Lima et al. 2010)). A recent multi-country study observed unequal sensitivity bet-
ween geographical regions that remains unexplained, suggesting further assessments
are needed ((Guzman et al. 2010)). The use of viral detection antigen is particu-
larly useful during the first five days of illness with NS1 assays that are signi-
ficantly more sensitive for primary than secondary dengue ((Dussart et al. 2008),
(Lima et al. 2010) and (Tricou et al. 2010)). However, NS1 antigen could be detec-
ted in only 20% of inapparent DENV-infection. This finding suggests that NS1
antigen may have a role in dengue disease pathogenesis and also indicates that this
test cannot be relied upon for detection of inapparent dengue infection.

By comparing HHM not infected with dengue with those presenting with inapparent
dengue infection, we showed that neutrophil and monocyte counts were early indirect
biological markers of dengue infection, whereas platelet counts and the frequency of
IgG detection at the first visit did not differ between the two groups (Table 3). A
comparison of inapparent dengueinfected HHM with symptomatic dengue-infected
subjects showed that lymphocyte counts and detection of the NS1 antigen diffe-
red significantly between these two groups (Table 4). Moreover, the NS1 antigen
was detected during the acute phase in most of the dengue cases tested, and the
sensitivity of this test was even higher in severe dengue cases (26/28, Table S1),
possibly reflecting higher viral loads. These findings may indirectly reflect the pro-
gression of the immune response to DENV, leading in some cases to severe acute

lymphopenia and a lack of virological control, with high rates of NS1 antigen cir-
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culation in the blood that may be correlated with high-level or prolonged viremia
((Thomas et al. 2008) and (Tricou et al. 2010)). Severe dengue cases were also more
likely to be male, to have lower monocyte counts or normal liver enzyme levels, and
to be infected with DENV-2, although quantitative RT-PCR did no permit study of
the magnitude of the viremia. We showed that half of the severe dengue cases had
not previously been infected with DENV, as confirmed by the occurrence of DENV
IgG seroconversion during convalescent phase (Thomas et al. 2008). In all dengue-
infected subjects, including inapparent, we observed a decrease in neutrophil and
monocyte counts. On one hand, it may suggest a direct effect of dengue illness on he-
matopoiesis, although such an effect is in conflict with data reported elsewhere in the
literature (Balsitis et al. 2009). On the other hand, DENV is detected in peripheral
monocytes during acute disease, and the infection of monocytes leads to cytokine
production, suggesting that virus-monocyte interactions are relevant to pathogene-
sis ((Halstead & O’Rourke 1977), (Hase et al. 1989) and (Neves-Souza et al. 2005)).
Moreover, DENV can induce apoptosis in monocytes, and this may lead to decreases
in the number of these cells in severe dengue cases (Torrentes-Carvalho et al. 2009).
In this study we only observed severe dengue cases in South- FEast Asia. Disease
severity and pathogenesis remain largely unexplained and certainly related to com-
plex interactions of several factors, including virus strain, immune response to pre-
vious dengue infection and host genetic background. The introduction of the Asian
1 DENV-2 genotype into the Americas in the 1980s led to the emergence of severe
dengue cases on this continent. Following this introduction a new genotype emerged,
named Asian/American DENV-2 genotype ((Twiddy et al. 2005), (Oliveira et al. 2010)
and (Vu et al. 2010)). During the study period, this Asian/American genotype was

circulating in French Guiana (Philippe Dussart, personal data) and probably in the
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north of Brazil, however DENV-2 did not cause an outbreak and we did not report
any severe dengue case among Brazilian subjects.

Two constraints of the study design deserve mention. All methods (biological mar-
kers, virological testing, NS1 antigen detection and IgM serology) were standardized
across the four reference laboratories, with the exception of the IgG ELISA. As a
consequence, we were unable to calculate the IgM /IgG ratio ((Innis et al. 1989) and
(Shu et al. 2003)). However, as the intention was to include dengue cases during
the acute phase of infection, this ratio was not a crucial endpoint for the study.
Another constraint of this study was that we did not include infants and children
below 24 months of age in the DENFRAME project. However, several previous
reports already provide insight into the epidemiology of dengue in this specific
population ((Hammond et al. 2005), (Pengsaa et al. 2006), (Chau et al. 2009) and
(Capeding et al. 2010)).

These findings confirm the complexity of dengue disease in humans and the need to
strengthen multidisciplinary research efforts to improve our understanding not only
of virus transmission but also host responses to DENV in various human popula-
tions. It will therefore be interesting, based on clinical data and biological samples
collected in this study, to further evaluate the host susceptibility to dengue infec-
tion and disease using family-based association analyses. Moreover, we think that
technological transfer of standardized diagnostic methods in laboratories based in
tropical countries is essential if we are to estimate disease burden and to optimize
vector control interventions. Together with improvements in clinical care for dengue
patients and better understanding of dengue pathogenesis, the development of a
preventive vaccine and antiviral drugs would complete the arsenal of weapons for

combating dengue worldwide.
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6.5 Appendix

TAB. 6.1 Characteristics of dengue index cases (DIC, n—215).

Acute serum samples (n=215)

Latin America (n—101) South-Fast Asia (n—114)*
Negative TgG (n—14) Positive TgG (n—87) Negative TgG (n—14) Positive IgG (n—87)
SD DF NC SD DF NC SD DF NC SD DF NC
Dengue type

DENV-1 - 3(50.0) - - 8(11.4) 3(17.6) 4(26.7) 20(46.5) - 2(16.7) 14(40.0) -

DENV-2 - - 8(100.0) - 13(18.7) 1(5.9) T(46.7) 12(27.9) - 7(58.3) 6(17.2) -
DENV-3 - 3(50.0) - - AT(67.1) 13(76.5) 3(20.0) 9(21.0) 1(50.0) 1(8.3) 11(31.4) 2(50.0)
DENV-4 . - - - - - 1(2.3) - - 257) 1(25.0)
MD - - - 2(2.8) - 1(6.6)  1(2.3) 1(50.0) 2(16.7) 2(5.7) 1(25.0)

Age group (years)

[2-7] - - - 3(4.3)  2(11.8) 2(13.3) 21(48.9) 2(100.0) 2(16.7) 13(37.1) -
17— 10] - 1(16.7) 1(12.5) - - 1(5.9) 3(20.0) 9(20.9) - 4(33.3) 6(17.1) 1(25.0)
> 10 - 5(83.3) 7(87.5) - 67(95.7) 13(76.4) 10(66.7) 13(30.2) -  6(50.0) 16(45.7) 3(75.0)

MD - . . . 1(5.9) . . . . . .

Note : SD : severe dengue. DF : dengue fever. NC : non classifiable. MD : missing data. (.) : percentage. * : For 3
subjects infected by DENV-2, data related to IgG status were missing : 2 dengue fever cases and 1 severe dengue
case. Distribution of DIC is provided by region in relation to the presence of WHO criteria for severe dengue and

IgG status during the acute phase.
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TAB. 6.2 Distribution of the participants in the clinical study (n—590).

Brazil French Guiana Cambodia Vietnam Total
n=134(%) n=28(%) n=180(%) n=248(%) n=590(%)
[1gG+/1gG2] [IgG+/1gG2] [IgG+/1gG2]| [IgG+/IgG2] [IgG+/I1gG2]

Non DENV-infected subjects 47(15.4) 9(3.0) 98(32.1) 151(49.5) 305 (51.7)
[44/3] [3/6] [95/3] [97/54] [239/66]
Missing IgG data 1 - - 1 2(0.3)

Early convalescent phase or

convalescent phase (HHM only) 4(6.5) 3(4.9) 22(36.1) 32(52.5) 61(10.3)
[4/0] 2/1] [22/0] [25/7] [53/8]
Missing IgG data - - - 1 1(0.2)

DENV-infected at the

acute phase (DIC+HHM) 82(37.6) 16(7.4) 60(27.5) 60(27.5)  218(37.0)
Symptomatic [69/6] [3/10] [30/19] [16/36] [118/71]
Missing IgG data - - - 3 3(0.5)
Inapparent dengue infection [6/1] [1/2] [8/3] [3/5] [18/11]

Note : All participants were identified at Visit 1 for Dengue Index Cases (DIC) and at Home Visit 1 for dengue-
infected household members (HHM). Their distribution is presented by country, according to DENV-infected status

and IgG status. (.) : percentage.
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F1G. 6.1 Clinical sites.
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TaB. 6.3 Main characteristics of subjects with inapparent dengue infections com-

pared to non-dengue-infected subjects among Household members.

NDI IDI Crude OR 95% CI P* Adj. OR 95% CI P
Sex
Male 135(44.0) 16(55.2) 1
Female 172(56.0) 13(44.8)  0.64 [0.3—1.4] 025
Age (years)
2-17 16(5.2) 5(17.2) 1 1
17 — 10] 17(5.5)  2(6.9) 0.38 [0.1—2.2] 028 0.79 [0.1-6.5] 0.83
> 10 274(89.3) 22(75.9)  0.26 [0.1-0.7] 0.015 0.41  [0.1—1.8] 0.25
Weight-based Z-score
[—1,1] 89(20.0) 6(20.7) 1
< -1 195(63.5) 21(72.4) 1.6 0.6 —4.1]  0.33
>1 23(7.5)  2(6.9) 1.3 [0.2—6.8] 0.76
Hematocrit (%)
< 36 93(30.3) 7(24.1) 1
> 36 212(69.1) 22(75.9)  1.38 0.6 —3.3] 0.8
Missing data 2(0.6) -
Platelets (x10°/L)
> 100 206(96.4) 26(89.7) 1 1
< 100 10(3.3)  3(10.3) 3.42  [0.9—13.2] 0.075 171 [0.2-12.3] 0.6
Missing data 1(0.3) -
Neutrophils (><109/L)
> 2 288(93.8) 18(62.1) 1 1
<2 18(5.9) 11(37.9) 9.8 [4—23.8 <0.0001 7.75 [2.5—24] < 0.0001
Missing data 1(0.3) -
Lymphocytes (x10%/L)
>2 243(79.2) 15(51.7) 1 1
<2 63(20.5) 14(48.3) 3.6 [1.6 —7.8]  0.001 2.08 [0.7—56] 0.5
Missing data 1(0.3) -
Monocytes (x10°/L)
> 0.2 208(97.1) 23(79.3) 1 1
<0.2 8(2.6)  6(20.7) 9.72 [3.1—30] <0.0001 9.1 [1.8 —44]  0.006
Missing data 1(0.3) -
ASAT® (UI/L)
< 30 225(73.3) 17(58.6) 1 1
> 30 81(26.4) 11(37.9) 1.8 (0.8 — 4] 0.15 1.96 [0.7—5.2] 017
Missing data 1(0.3) 1(3.5)
ALAT? (UI/L)
<35 261(85.0) 22(75.9) 1
> 35 45(14.7)  6(20.7) 1.58 0.6 —4.1]  0.35
Missing data 1(0.3) 1(3.4)
Bilirubin (umol)
<17 262(85.3) 24(82.8) 1
> 17 42(13.7) 3(10.3) 0.78 [0.2 —2.7] 0.69
Missing data 3(1.0) 2(6.9)
IgG at Visit 1
Negative 66(21.5) 11(37.9) 1 1
Positive 239(77.8) 18(62.1)  0.45 [0.2—1.0] 0.051 0.37 [0.1—1.04] 0.06
Missing data 2(0.7) -

* : Potential confounders with a P value of

Note : NDI : non dengue-infected. IDT : inapparent dengue infection. (.) : percentage.
less than 0.20 in univariate analysis were retained for the final multivariable analyses. In this table : age, platelets, neutrophils,

lymphocytes, ASAT and IgG at Visit 1. “ASAT : Aspartate amino transferase. P ALAT : Alanine amino transferase. Univariate and

multivariable logistic regression were used for analyses.
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TAB. 6.4 Main characteristics of subjects with inapparent dengue infections com-

pared to symptomatic dengue-infected subjects.

SDI IDI Crude OR 95% CI P* Adj. OR 95% CI P
Sex
Male 103(53.6) 16(55.2) 1
Female 89(46.4) 13(44.8)  0.94 0.4 —2.1]  0.88
Age (years)
2-7] 38(19.8) 5(17.2) 1 1
17 — 10] 27(14.1)  2(6.9) 0.56 0.1 —3.1] 051
> 10 127(66.1) 22(75.9)  1.32 [0.5 — 3.7] 0.6
Weight-based Z-score
=1,1] 75(39.1)  6(20.7) 1 1
< -1 102(53.1 21(72.4)  2.57 [0.9—6.7 0.052 2.54 (0.6 —10.4]  0.20
>1 15(7.8) 2(6.9) 1.66 [0.3 —9.1] 0.55 4.11 [0.4 — 43] 0.24
Hematocrit (%)
< 36 38(19.8) 7(24.1) 1
> 36 154(80.2) 22(75.9)  0.77 [0.3—1.9] 0.59
Platelets (x10°/L)
> 100 126(65.6) 26(89.7) 1 1
< 100 66(34.4)  3(10.3) 0.22 [0.1—0.7] 0.016 0.23  [0.4 —1.4] 0.11
Neutrophils (x10°/L)
>2 76(39.6) 18(62.1) 1 1
<2 116(60.4) 11(37.9) 0.4 [0.2-0.9] 0.026 0.5 [0.15—1.6] 0.25
Lymphocytes (><109/L)
>2 16(8.3) 15(51.7) 1 1
<2 176(91.7) 14(48.3)  0.08  [0.03 —0.2] < 0.0001 0.09  [[0.02 —0.4] 0.001
Monocytes (x10°/L)
> 0.2 114(59.4) 23(79.3) 1 1
< 0.2 78(40.6) 6(20.7) 0.38 [0.1 —0.9] 0.045 0.65 [[0.16 — 2.7] 0.56
ASAT® (UI/L)
<30 75(39.1) 17(58.6) 1 1
> 30 117 (60.9) 11(37.9) 0.4 [0.2-0.9 0.034 0.4 (0.1 — 1.5] 0.17
Missing data - 1(3.5)
ALATY (UI/L)
<35 112(58.3) 22(75.9) 1 1
> 35 80(41.7)  6(20.7) 0.38  [0.15—0.9] 0.046 052  [0.14—1.9] 0.33
Missing data - 1(3.4)
Bilirubin (pmol)
<17 175(91.1) 24(82.8) 1
> 17 14(7.3)  3(10.3) 1.56 0.4 —5.8  0.51
Missing data 3(1.6) 2(6.9)
DENV type
DENV-1 50(26.0)  5(17.2) 1
DENV-2 50(26.0) 7(24.2) 1.4 [0.4—4.7] 059
DENV-3 79(41.2) 13(44.8)  1.64 [0.5—4.9]  0.37
DENV-4 3(1.6) -
Missing data 10(5.2) 4(13.8)
IgG at Visit 1
Negative 71(37.0) 11(37.9) 1
Positive 118(61.4) 18(62.1)  0.98 [0.4—22 0097
Missing data 3(1.6) -
NS1 antigen
Negative 21(10.9) 23(79.3) 1 1
Positive 171(89.1)  6(20.7) 0.03  [0.01 —0.1] <0.0001 0.05 [0.01 —0.2] < 0.0001

Note : SDI: symptomatic dengue-infected. IDI : inapparent dengue infection. In this table : weight-based Z-score, platelets, neutrophils,

lymphocytes, monocytes, ASAT, ALAT and NS1 antigen. “ASAT : Aspartate amino transferase. Y ALAT : Alanine amino transferase.
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A
Visit 1
Day 1" lo day 3 after fever onset : identification of clinical dengue cases
Virological diagnostic tests (+) Virological diagnostic lests (-
g 4
Visit 2 Visit 2
within 3 days after blood sample collection Lo
= Dengue Index C (DIC) within 3 days after biood sample
| Hospitalized | | Non hospitalized | | = Non-Dengue Cases (NDC)
Visit 3
mumammmﬂ ﬂ
Visit 4 between day 15 and 21 Visit 4 between day 15 and 21
after onset of fever after onset of fever

* Day 1 = first day of fever onset

Home Visit 1
Enrolment of household member subjects (HHM)

0 g

[Mwmmm(q ] I Virological diagnostic tests (-) J
Identification of inapparent or Daily fever home monitoring
symptomalic dengue during 7 days

household cases
Home Visit 2
if inapparent or symptomatic dengue case
or if onset of fever during home monitoring

FiG. 6.2 Study design charts.
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Included: 443
LA: 254, SEA: 189
l Non classifiable: 20 }—
Dengue index Cases
(DIC, acute phass)
Vish 1: 215
LA: 101, SEA: 114
Visit 4: 18 Visit 4: 170
LA 3 SEA 15 LA 98 56
' Only for hospitalized patients. ? Lost from foflow up
lhmﬂ‘l II
| Non included: 13 } |
| Included: 497
1 LA 161 SEA- 336
‘hm.‘ I
Home visit 1: 413°
LA: B4 SEA: 129
1 1 1
Home visit 1: 39 Home visit 1: 62 Home visit 1: 312*
LA 19 SEA 20 LA: T SEA: S8 LA: S8  SEA 254
+ Symptomatic infection. 10 Non-dangue-mnfected subject
(LA T SEA: 3)
. Infection: 29
(LA 12 SEA:17)
|
Home visit 2. 20 Home visit 2 with
LA 12 SEA 17 symptomatic acute dengue
cases: 5°
~ LAY SEA 4
L_

Fi1G. 6.3 Flowcharts for the recruitment of participants at each step.
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7.1 Introduction

Dans cette application, nous considérons une étude de la dengue. La dengue est
une infection virale survenant majoritairement dans les régions tropicales et sub-
tropicales. Le virus de la dengue comprend quatre sérotypes (DENV-1, DENV-2,
DENV-3, DENV-4), et se transmet par la piqire du moustique de la fiévre jaune
issu de la famille Aedes aegypti et du moustique tigre Aedes albopticus. Les deux
types de moustiques sont des insectes diurnes. L’agent pathogéne fait partie des fla-
vivirus, notamment responsables de la fiévre jaune, de la méningo-encéphalite verno-
estivale (MEVE) ainsi que du chikungunya. Le symptome classique de la dengue est

une fiévre élevée soudaine (comme pour la grippe), évoluant puis disparaissant sans
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causer de complications en régle générale. L.’évolution de la dengue peut étre dange-
reuse lorsqu’elle s’accompagne d’hémorragies internes. Cette forme de complication
entraine encore beaucoup de déces, en particulier chez les enfants. La seule préven-
tion possible consiste a prendre des mesures générales contre les piqtires d’insectes.
Aucun vaccin n’est disponible & 'heure actuelle. La dengue est une maladie infec-
tieuse a déclaration obligatoire.

L’infection par la dengue confére une immunité partielle et transitoire contre une

infection ultérieure du méme virus (voir (Dussart et al. 2012)).

7.2 Description des données

Nous considérons dans cette étude une base de données de taille n = 528, qui
a été construite avec des individus recrutés au Brésil, au Cambodge, en Guyanne
Francaise et au Vietnam. Selon les critéres de sélection les individus sont classés cas
index et membres de la fratrie (household members : tout individu ayant des liens
biologiques avec un individu infecté (DIC : Dengue Index Case) et ayant habité au

moins 7 jours avec celui-ci dans le méme site).

Les individus qui répondent aux critéres de sélection suivants sont classés cas index :
— Signature du consentement (ou signature d’un représentant pour les adoles-
cents agés de moins de 18 ans) ;
— Habiter dans un ménage ou habitent plus de 2 personnes durant au moins les
7 derniers jours avant 'apparition de la maladie;
— Etre agé au moins ageé de 2 ans;

— Avoir une température supérieure a 38°C;
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Apparition de fiévre dans les 72h;

— Une des manifestations cliniques (autre que la fiévre) évoquant la dengue :
maux de téte sévéres, myalgie, éruption cutanée, douleurs rétro-orbitaires ou
saignements ;

Habiter dans un site accessible au moniteur.
L’inclusion se fait en deux étapes. Les cas de dengue tout d’abord. Ensuite les autres
membres de leurs familles (pére, mére, fratrie, etc...). Pour plus de détails, on peut

se référer a la figure 6.3 dans le chapitre 6.

Chaque individu i(1 < i < 528) est diagnostiqué pour l'infection par la dengue

et est codé comme suit :

1 silindividu 1 est infecté
}/i =
0 sinon

Notons que si Y; = 0, alors 'individu ¢ peut étre immune a I'instant du diagnos-
tic (& cause, par exemple, d’'une immunité temporaire acquise aprés une infection
précédente) ou susceptible a I'infection de la dengue, bien que non infecté encore.
Notre but est d’estimer le risque d’infection de ces individus, en utilisant cette base
de données contenant les covariables! suivantes : 4ge (une variable continue bornée)
et poids (codé 0 dans le cas de sous-poids et 1 sinon).

Une description détaillée des données est faite dans le chapitre précédent.

1 ¢tude pourrait étre plus poussée en ajoutant dans le modéle d’autres covariables telles que,
par exemple, les données cliniques (maux de téte, myalgie, température etc...), les données de
laboratoire parmi lesquelles les prélévements sanguins, des données sur les signes biologiques, les
sérotypes de la dengue (DEN-1, DEN-2, DEN-3 et DEN-4), les tests confirmant les cas de dengue,

présence antérieure de dengue et confirmation du laboratoire etc. . ..
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Dans la suite, nous présentons le modéle conjoint a utiliser et les résultats de I'ana-

lyse.

7.3 Modéles et résultats

Nous ajustons tout d’abord aux données aux données un modéle de régression
logistique standard. Dans cette analyse "naive", chaque individu non infecté est

considéré comme susceptible. Le modéle final (4.1)-(4.2)-(4.3) est donné par

logit P(Y = 1]age, poids) = 3; + Beage + Bspoids

(7.1)
logit P(S =1) = 0,.
Puis nous ajustons le modéle conjoint final (4.1)-(4.2)-(4.3), ou
logit P(Y = 1]age, poids, S = 1) = 3 + feage + [3poids (7.2)

logit P(S = 1] poids) = 6, + ypoids.

Les résultats sont présentés dans le tableau 7.1. Puis, nous estimons les paramétres
01, P2 et B3 en utilisant la méthodologie développée dans la section 4.2 du chapitre 4.
Notons tout d’abord que I’éventuelle immunité conférée par une infection précédente
est juste transitoire, donc il n’y a aucune raison pour qu'un individu agé (qui a donc
été exposé plus longtemps au risque d’infection par la dengue) ait une probabilité
de devenir immune plus élevée qu'un individu moins agé. En fait, la susceptibilité
d’un individu & une infection par la dengue dépendra plutot du fait que cet individu
bénéficie ou non d’une quelconque action préventive (campagnes de sensibilisation

contre la dengue, utilisation d’insecticides, élimination des eaux usées;...). De telles
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TAB. 7.1 Analyse des données de la dengue

analyse naive modeéle (4.1)-(4.2)-(4.3)
paramétre estimateur écart-type estimateur écart-type
01 1.552 0.255 7.654 1.485
B2 -0.055 0.007 -0.131 0.020
B3 -0.813 0.207 -4.501 1.059
0, 0.497 0.159

informations ne sont pas disponibles dans notre base de données.
L’age a été pris comme étant la variable V' dans la condition C4 de la section 4.2 du

chapitre 4.

Le test de Wald de I’hypothése "0, = 0” dans le modeéle (7.2) n’est pas significatif,
nous avons retiré la variable poids du modéle pour la susceptibilité. Les résultats de

cette modélisation sont donnés dans le tableau 7.1.

[’exécution de cette procédure de modélisation conjointe fournit I’estimation sui-
vante : 1 — exp(0.497)/(1 + exp(0.497)) ~ 0.38 pour la probabilité d’étre immune.
Alors, comme on pouvait s’y attendre, les probabilités d’infection estimées a partir
de notre approche de modélisation sont plus élevées que celles obtenues a partir
du modéle de régression logistique standard qui ne tient pas compte d’une possible
immunité. Par exemple, les probabilités d’infection pour les individus agés de 30 ans
et 10 ans, avec un poids "normal", sont respectivement estimées a 0.29 et 0.55 (par

le modéle de régression logistique standard) et a 0.31 et 0.86 (par notre approche).
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On s’attend a ce que les sujets qui souffrent de sous-poids (ceux qui sont en dessous
de leur poids normal) aient des risques d’infection élevés. Les probabilités d’infec-
tion pour les sujets en sous-poids agés de 30 ans et de 10 ans sont respectivement
estimées a 0.48 et 0.73 (par le modéle de régression logistique standard) et a 0.97
et 0.99 (par notre approche). Bien que les deux approches fournissent les mémes
conclusions qualitatives : la probabilité d’infection par la dengue est plus élevée
pour les personnes trés jeunes et qui sont en sous-poids (causé par la malnutrition,
par exemple), elles différent par-contre sur leurs estimations du risque d’infection.
Notre approche tient compte d’une éventuelle immunité conférée par une infection
antérieure et donc, il est raisonnable de penser que les probabilités d’infection prove-
nant de ces estimations fournissent une image plus réaliste du risque d’infection pour
cette base de données. En particulier, les estimations fournies par notre approche
suggérent que le sous-poids constitue un facteur de risque majeur de l'infection par

la dengue, indépendamment de I'age.



Conclusion et perspectives

Dans cette thése, nous nous sommes intéressés a I'inférence statistique dans le
modéle de régression logistique avec fraction immune. Notre approche, originale,
qui consiste a proposer un modeéle de mélange de deux modéles de régression logis-
tiques s’avere plutot efficace dans la pratique. Elle permet de prendre en compte
une éventuelle immunité d’une partie de la population, méme si les informations

correspondant aux individus immunes sont manquantes.

Nous avons proposé une procédure d’estimation par maximum de vraisemblance
dans le modeéle de régression logistique avec fraction immune. Nous avons dans un
premier temps décrit le modéle a excés de zéros proposé, puis nous en avons établi
I'identifiabilité, sous un ensemble d’hypothéses aisément interprétables. Puis, nous
avons montré l'existence de l'estimateur du maximum de vraisemblance dans ce
modeéle. Nous avons ensuite montré la consistance de cet estimateur, et nous avons

enfin établi sa normalité asymptotique.

Nous avons comparé sur des données simulées les résultats de notre approche a
ceux résultant d’'une analyse naive, dans laquelle nous supposons que les individus
non infectés sont tous susceptibles. Cette comparaison suggére que la modélisation
conjointe du statut d’infection et du statut d’'immunité donne des estimations moins

biaisées, méme lorsque la proportion d’individus immunes est importante.

Nous avons ensuite proposé d’appliquer cette procédure de modélisation conjointe

a 'analyse statistique de données sur la dengue. Les résultats montrent que les pro-



7.3. Modéles et résultats 126

babilités d’infection estimées a partir de notre approche de modélisation sont plus
élevées que celles obtenues a partir d’'un modéle de régression logistique standard qui
ne tient pas compte d’une possible immunité. En particulier, les estimations four-
nies par notre approche suggérent que le sous-poids constitue un facteur de risque

majeur de I'infection par la dengue, indépendamment de 1’age.

La procédure d’estimation que nous avons proposée suppose néanmoins que le
modéle pour le statut d’immunité est bien spécifié. Il serait donc intéressant d’étu-
dier effet d’'une mauvaise spécification de ce modeéle (en particulier, de la fonction
de lien) sur les résultats de nos analyses. Les techniques et résultats établis par
(Czado & Santner 1992) peuvent étre trés utiles pour ce probléme. Il serait égale-
ment intéressant d’étudier le modéle de régression logistique avec fraction immune,
en présence d’un trés grand nombre de variables explicatives. Des études récentes
(voir (Huang et al. 2008) et (Meier et al. 2008)) ont considéré le probléme de Ies-
timation dans le modéle de régression logistique standard (sans fraction immune)
lorsque le nombre de covariables est supérieur a la taille de I’échantillon, comme
dans les études génétiques par exemple. Mais le probléme reste entier en présence

d’immunité.

Dans un deuxiéme temps, nous nous sommes intéressés a la construction de bandes
de confiance simultanées pour la probabilité d’infection, dans le modéle de régression
logistique avec fraction immune. Nous avons proposé trois méthodes de constructions
de bandes de confiance pour la fonction de régression. La premiére méthode utilise la

propriété de normalité asymptotique de I'estimateur du maximum de vraisemblance,



7.3. Modéles et résultats 127

et une approximation par une loi du y? pour approcher le quantile. La deuxiéme uti-
lise également la propriété de normalité asymptotique de 'estimateur du maximum
de vraisemblance et est basée sur une égalité classique de (Landau & Sheep 1970).
Cette inégalité nous a permis d’estimer la loi du supremum de processus gaussien.
La troisiéme méthode repose sur des simulations, pour estimer le quantile appro-
prié de la loi du supremum d’un processus gaussien. La construction des bandes
de confiance via un processus gaussien demande une estimation de la fonction de

covariance de 'estimateur.

A titre de travail futur, il serait intéressant d’étendre notre étude des bandes de
confiance aux régions de confiance, en présence de plusieurs variables explicatives.
Les méthodes utilisées pour la construction de bandes de confiance simultanées
peuvent également étre utilisées pour la construction de régions de confiance en
présence de plusieurs covariables. On peut consulter (Li et al. 2008) a ce propos. La
construction de régions de confiance lorsque le nombre de covariables est supérieur

a 1 constitue une tache difficile. Notre approche pourrait étre étendue a cet effet.






Quatriéme partie

Annexes






ANNEXE A

Rappels et preuves complémentaires

A.1 Rappels mathématiques

Théoréme A.1.1 (Théoréme de Slutsky) Soit W, et Z, deux suites de variables
aléatoires tels que W, — W en loi et Z, — c en probabilité, ot c est une

constante. Alors

Z W, — W en loi, Z,+ W, — c+ W en loi.

Théoréme A.1.2 (Delta-Méthode) Soit X,, une suite de vecteurs aléatoires dans
R? satisfaisant \/n(X, —0) — A(0,V) en loi. Soit F' : RP — R différentiable en
6. Alors /n(F(X,) — F(0)) — A (0,[VE(0)]TVVF()) en loi.

A.2 Bootstrap

Le bootstrap représente un outil puissant dans l'inférence statistique. Sa mo-
tivation ((Efron 1982), (Efron & Tibshirani 1993)) est d’approcher par simulation
(Monte Carlo) la distribution d’un estimateur lorsque I'on ne connait pas la loi de
I’échantillon ou, plus souvent lorsque l'on ne peut pas supposer qu’elle est gaus-

sienne. L’objectif est de remplacer des hypothéses probabiliste pas toujours vérifiées
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ou méme invérifiables par des simulations et donc beaucoup de calcul.

Le principe fondamental de cette technique de ré-échantillonnage est de substi-
tuer a la distribution de probabilité inconnue F', dont est issu I’échantillon d’appren-
tissage, la distribution empirique Ia qui donne un poids 1/n a chaque réalisation.
Ainsi, on obtient un échantillon de taille n, dit échantillon bootstrap, selon la dis-
tribution empirique F par n tirages aléatoires avec remise parmi les n observations

initiales.

Il est facile de construire un grand nombre d’échantillons bootrappés sur lesquels
on calcule I'estimateur concerné. La loi simulée de cet estimateur est une approxi-
mation asymptotiquement convergente sous des hypothéses raisonnables' de la loi
de l'estimateur. Cette approximation fournit ainsi des estimations du biais, de la
variance, donc d’un risque quadratique, et méme des intervalles de confiance du

paramétre considéré sans hypothése (de normalité par exemple) sur la vraie loi.

A.3 Preuves complémentaires

Preuve du corollaire 4.4.6 Soit ¢ une application de R* a valeurs dans R? définie
par ¢(x,y) = x avec x € RP et y € R?. ¢ est linéaire et continue de matrice M. En

appliquant la delta méthode multivariée au théoréme 4.4.1, on obtient

Va($(ihn) — d(1)) 2o A (0, MI; ()M 7).

Techantillon indépendant de méme loi et estimateur indépendant de 1’ordre des observations
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Ce qui donne, par suite

VB — 8) L H (0, MI; ()M T).

Preuve du théoréme 4.4.7 On suppose le Corollaire 4.4.6 vérifié. Posons F(x) =

e” /14 e®. F est différentiable. En appliquant la Delta-Méthode a la fonction F, au
point 3]z, \/n(p,(x)—p(x)) converge en loi vers une variable Gaussienne de moyenne

nulle et de variance

[VF(Q)]Tvar(Bn)VF(H) = exp(?ﬁTx).xTMﬂlﬁ_lMTx/(l + exp(8x))*%

Preuve du Lemme 5.3.1.

La matrice V! est réelle, symétrique et, définie positive, tout comme V. Il
existe donc une matrice A € . (m xm) telle que V=1 = AT A. En effet, une matrice
réelle symétrique étant diagonalisable sur R admet la décomposition spectrale M =
PTDP : P, la matrice dont les colonnes sont les vecteurs propres, peut étre choisie
orthogonale ; D est la matrice diagonale des valeurs propres. Si M est définie positive,
les valeurs propres sont positives ou nulles. Il suffit alors de prendre A = vV DP pour
obtenir M = AT A. Donc, Z'V~=1Z = || AZ||?. Le résultat est alors une conséquence
du fait que le vecteur aléatoire AZ suit une loi normale multivariée de moyenne 0

et de matrice de variance I,,, puisque, en effet,

var(AZ) = Avar(Z)AT = AVAT = AA_l(AT)_lAT =1,.

Preuve du Lemme 5.3.2. Le point 1 du Lemme est obtenu en posant U = BX,
et V = BY et en appliquant I'inégalité de Cauchy Schwartz sur U et V. De maniére

similaire, on montre le point 2 en choisissant U = (B7!)TY et V = BX.






ANNEXE B

Résultats complets des simulations

B.1 Résultats de simulations du chapitre 4

B.1.1 Modéle

Nous considérons les modéles suivants pour le statut d’infection :

log (%) = b1+ 0o Xia + B3Zi2 + OaZiz + B5Zia i S; =1

et pour le statut d’'immunité :

P(S = 1|Z)
to (1 “P(S = 1|Z;)

) = 01 + 6227;2 + 93Zi3 _'_ €4Zi47

(2.1)

(2.2)

ou Xy ~ N(0,1), Zin ~ N(1,1), et Z;3 et Z;4 sont des variables indicatrices

construites a partir d’une variable qualitative a trois catégories. Notons que la va-

riable X5 joue le role de la variable continue V' dans la condition C4 dans le chapitre

4.

Les modéles suivants sont considérés :

— modéle .4, : = (—1.7,—-2,-3.4,5,0.3)T : approximativement 30% des sus-

ceptibles sont infectés.
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modéle . : B = (1.5,—2.3,2.5,—3.5,0.5)" :

susceptibles sont infectés.

modéle A5 : (5

(-1.7,-2.8,0,—0.7,1.1)T

susceptibles sont infectés.

modéle ., : 3 = (1.5,-2,0,3.5,—4)" :

tibles sont infectés.

B.1.2 Résultats

Tab. B.1: Modéle . : B = (—1.7,—-2,-3.4,5,.3) T

Bn On
n Bim  Bom  Bsn  Bam  Bonm 01, 02,1 03,1 01,1
Pourcentage d’immunes = 25%, 6 = (.71,1,2, —3)

100 -1.688 -2.019 -3.417 4.648 0.322 0.667 1.154 2.153 -3.088
(1.625)  (1.160) (1.704)  (1.866) (1.880) (2.660) (1.462) (1.715)  (2.663)
[1.330]  [0.689] [1.387] [1.525] [1.524] [2.199]  [L.161]  [L.410]  [2.156]

0.631* 0.539* 0.316* 0.013*
500 -1.710 -2.006 -3.392 4.991 0.311 0.677 1.076 2.079 -2.994
(0.966) (0.427) (0.923) (1.167) (1.581) (0.849)  (0.804)  (1.144)  (2.090)
[0.734]  [0.330] [0.686] [0.907]  [1.329] (0.711]  [0.643] [0.910]  [1.663]

0.997* 0.993* 0.984* 0.090*
1000 -1.702 -2.004 -3.398 4.968 0.305 0.697 1.046 2.026 -2.997
(0.579)  (0.297)  (0.584)  (0.797)  (0.843) (0.749)  (0.623) (0.779)  (1.127)
[0.456]  [0.233] [0.412] [0.612]  [0.716] [0.611]  [0.477]  [0.605]  [0.910]

1* 0.998* 1* 0.107*
1500 -1.720 -1.998 -3.410 4.971 0.305 0.709 1.035 2.013 -3.002
(0.492)  (0.272)  (0.474)  (0.649)  (0.794) (0.607)  (0.475) (0.614)  (0.979)
[0.384] [0.206] [0.332] [0.484]  [0.675] (0.487]  [0.361]  [0.484]  [0.778]

1* 1* 1* 0.095*

Pourcentage d’immunes = 50%, 6 = (—.3,—1,2.1,1)

100 -1.767 -2.105 -3.341 5.334 0.317 -0.377 -1.123 2.212 1.090
(2.068) (1.013) (1.783) (2.557) (2.758) (2.672)  (1.965) (2.156) (2.851)
[1.682]  [0.784] [1.464] [2.150]  [2.312] [2.141]  [1.265] [L.760]  [2.366]

approximativement 70% des

. approximativement 30% des

approximativement 70% des suscep-
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B bn
n Bl,n BQ,n B3,n B4,n B5,n §1,n §Q,n 53,n 54,71,
0.335* 0.337* 0.127* 0*
500 -1.716 -2.081 -3.576 5.217 0.294 -0.342 -1.092 2.097 1.078
(1.417)  (0.545)  (0.930) (1.704) (1.704) (1.079)  (0.760) (1.518)  (1.746)
[1.085]  [0.452] [0.743] [1.383]  [1.320] (0.875]  [0.554] [L1.177]  [L.401]
1* 1* 0.839* 0.057*
1000 -1.701 -2.076 -3.529 5.015 0.304 -0.318 -1.056 2.105 1.031
(0.780)  (0.391)  (0.627) (1.072) (L.113) (0.743)  (0.473)  (1.028)  (1.160)
[0.650] [0.316] [0.495] [0.866]  [0.892] [0.607] [0.352] [0.770]  [0.905]
1* 1* 0.984* 0.045*
1500 -1.698 -2.013 -3.482 5.007 0.303 -0.315 -1.023 2.103 1.024
(0.694)  (0.204) (0.489) (0.857)  (0.865) (0.609)  (0.384) (0.885)  (0.926)
[0.568]  [0.242  [0.381] [0.694]  [0.685] (0.497]  [0.200]  [0.642]  [0.721]
1* 1* 0.999* 0.057*
Pourcentage d’immunes = 75%, 6 = (.4,—1,—.6,—-2)
100 -1.661 -2.131 -3.387 4.830 0.332 0.410 -1.059 -0.610 -2.158
(2.139)  (2.127)  (2.803) (3.283) (3.661) (3.554)  (1.995) (3.118)  (2.974)
[1.754]  [1.720]  [2.394]  [2.849]  [2.811] [2.823]  [1.380]  [2.587]  [2.511]
0.043* 0.064* 0.005* 0*
500 -1.673 -2.075 -3.435 4.987 0.325 0.407 -1.060 -0.607 -1.921
(1.436)  (1.012) (1.614) (2.455) (2.198) (1.295)  (0.598) (1.651) (1.884)
[1.103] [0.848] [1.337] [2.039] [1.765] [1.046] [0.409]  [1.290] [1.471]
0.747* 0.787* 0.641* 0.046*
1000 -1.545 -2.053 -3.399 5.024 0.309 0.405 -1.045 -0.604 -1.980
(0.847)  (0.783) (1.157) (2.069) (1.394) (0.940)  (0.344)  (1.006)  (1.044)
[0.669] [0.619] [0.899] [1.586]  [1.125] (0.737]  [0.253]  [0.775]  [0.843]
0.994* 0.970* 0.895* 0.083*
1500 -1.595 -2.017 -3.410 5.024 0.306 0.404 -1.035 -0.605 -1.997
(0.708)  (0.630)  (0.909)  (0.895) (1.234) (0.749)  (0.259)  (0.866)  (0.860)
[0.543]  [0.492] [0.679] [0.738]  [0.991] (0.606]  [0.196] [0.661]  [0.679]
1* 0.993* 0.937* 0.089*
TaB. B.2: 4> : B =(1.5,-2.3,2.5,-3.5,.5)
Bn On
n Bl,n BQ,n BS,n B4,n Bs,n gl,n §2,n 53,71 /9\4,71,

Pourcentage d’immunes = 25%, 0 = (.71,1,2, —3)
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Bn On
n Bl,n BQ,n BS,n B4,n Bs,n gl,n 52,71 53,11 54,71,
100 1.512 -2.369 2.522 -3.518 0.562 0.725 1.191 2.061 -2.896
(1.413)  (1.165) (1.189) (2.180)  (1.853) (0.979)  (0.830) (2.728)  (1.646)
[1.190]  [0.917]  [0.949]  [1.810]  [1.582] [0.789]  [0.636]  [2.309] [1.264]
0.800* 0.814*  0.271* 0.236*
500 1.508 -2.313 2.520 -3.497 0.514 0.714 1.076 2.045 -2.959
(0.905)  (0.635) (0.568) (1.198) (0.633) (0.419) (0.434) (1.617)  (0.652)
[0.724]  [0.478]  [0.435]  [0.937]  [0.545] [0.335]  [0.268]  [1.290] [0.454]
0.993* 0.993*  0.991* 0.629*
1000 1.499 -2.297 2.508 -3.502 0.512 0.712 1.071 2.025 -2.985
(0.569)  (0.488)  (0.398)  (0.908)  (0.557) (0.308)  (0.387) (1.178)  (0.365)
[0.453]  [0.335]  [0.286]  [0.663]  [0.479] [0.241]  [0.204] [0.941]  [0.273]
0.999* 0.998*  0.997*  0.732*
1500 1.499 -2.299 2.497 -3.503 0.504 0.708 1.050 2.012 -2.985
(0.339)  (0.372) (0.322) (0.701)  (0.522) (0.257)  (0.337)  (0.983)  (0.289)
[0.331] [0.252] [0.224]  [0.508]  [0.447] [0.204] [0.174]  [0.766]  [0.225]
1* 1* 1* 0.764*
Pourcentage d’immunes = 50%, 6 = (—.3,—1,2.1,1)
100 1.526 -2.328 2.339 -3.336 0.488 -0.332 -1.107 2.179 1.053
(1.887)  (1.824) (2.170) (2.570) (2.181) (0.902)  (1.204)  (1.946) ( 1.567)
[1.577]  [1.507] [1.806]  [2.174]  [1.654] [0.679]  [0.809] [1.391]  [L.158]
0.411* 0.228*  0.101*  0.060*
500 1.517 -2.295 2.635 -3.397 0.537 -0.284 -0.983 2.127 1.041
(0.956)  (0.772)  (0.687) (1.352)  (0.826) (0.317)  (0.472)  (0.466)  (1.043)
[0.775]  [0.580]  [0.530]  [1.045]  [0.648] [0.255]  [0.244] [0.361]  [0.678]
0.999*  0.963*  0.924*  0.339*
1000 1.517 -2.303 2.563 -3.408 0.512 -0.296 -1.023 2.110 1.026
(0.650)  (0.531)  (0.467) (0.962) (0.573) (0.207)  (0.157)  (0.310)  (0.532)
[0.518]  [0.390]  [0.364]  [0.701]  [0.454] [0.169]  [0.123]  [0.243]  [0.366]
1* 0.998* 0.999* 0.399*
1500 1.498 -2.299 2.531 -3.365 0.513 -0.295 -1.012 2.112 0.995
(0.473)  (0.389) (0.355) (0.768)  (0.455) (0.181)  (0.122)  (0.260)  (0.339)
[0.384]  [0.281]  [0.281]  [0.553]  [0.373] [0.146]  [0.095]  [0.208] [0.253]
1* 1* 1* 0.451*
Pourcentage d’immunes = 75%, 0 = (.4,—1,—.6, —2)
100 1.489 -2.384 2.521 -3.458 0.554 0.420 -1.116 -0.557 -2.123
(2.356)  (2.356)  (2.263) (2.793)  (2.326) (1.163)  (1.602) (1.665)  (1.904)
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Bn On
n Bl,n BQ,n B3,TL //6\4,71 B«S,n é\1,71 é\2,77, 53,11 54,71,
[1.934] [1.979] [1.944] [2.389]  [1.902] [0.875]  [1.121]  [1.232]  [1.450]

0.109* 0.070* 0.106* 0.055*

500 1515  -2.381  2.523  -3.482  0.548 0.418  -1.047 -0.633  -2.084
(1.282)  (1.405) (1.701) (1.910) (1.757) (0.394)  (0.396) (0.651)  (0.665)
[1.047]  [1.133] [1.317] [1.527]  [1.420] [0.322] [0.268] [0.482]  [0.491]

0.929* 0.899* 0.756* 0.353*

1000  1.490  -2295 2522  -3.515  0.521 0415  -1.031  -0.627  -1.997
(0.862)  (0.916) (1.141) (1.228) (1.282) (0.243)  (0.185) (0.345)  (0.398)
[0.694] [0.709] [0.793]  [0.958]  [1.013] [0.198]  [0.142] [0.271]  [0.308]

0.999* 0.999* 0.929* 0.367*

1500  1.508  -2.304 2497  -3.512  0.513 0415  -1.023  -0.613  -1.997
(0.721)  (0.683) (0.867) (0.957)  (0.961) (0.221)  (0.149) (0.293)  (0.299)
[0.573]  [0.505] [0.575] [0.728]  [0.765] [0.181] [0.119] [0.218]  [0.236]

1* 1 0.973*  0.359*

Dans le but d’évaluer le niveau d'un test de type Wald d’hypothéses de la forme H, :
B = 0 dans le modeéle ZIB (4.1)-(4.2) du chapitre 4, nous simulons des échantillons
a partir des modeéles .#3 et #,. Les résultats sont respectivement donnés dans les
tableaux B.3 et B.4. Dans ces tableaux, * représente la puissance empirique du test

de Wald (lorsque (3, # 0) et t représente le niveau empirique (lorsque 3, = 0).

TaB. B.3: s : B=(—1.7,-2.8,0,—.7,1.1)

Bn On
n Bl,n 52,77, B\S,n 54,77, §5,n é\1,77, é\2,1'1, é\3,77, é\4,1'1,
Pourcentage d’immunes = 25%, 0 = (.71,1,2, —3)

100 -1.732  -2.918  0.017  -0.764  1.190 0.754 1169  1.857  -2.975
(1.630)  (0.631) (1.310) (1.721) (1.857) (2.681)  (1.686) (1.983)  (2.877)
[1.258]  [0.502] [0.851] [1.297]  [1.569] [2.080]  [1.240] [1.675]  [2.325]

0.818* 0.033f 0.053* 0.052*

500  -1.688  -2.908  -0.016  -0.751  1.114 0.729  1.164 2139 -3.106
(0.570)  (0.386) (0.352) (0.741)  (1.231) (0.837)  (0.634) (1.494) (1.162)
[0.441]  [0.312] [0.196]  [0.465]  [0.956] [0.669]  [0.449]  [1.224]  [0.898]
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Bn O
n Bl,n BQ,n B3,n B4,n B5,n §1,n §Q,n 53,n 54,71,
0.998* 0.0557 0.301* 0.174*
1000 -1.698 -2.853 -0.004 -0.713 1.079 0.726 1.080 2.083 -3.088
(0.385) (0.272) (0.145) (0.383)  (0.781) (0.553)  (0.363) (1.103) (0.771)
[0.304] [0.217] [0.115] [0.301] [0.608] [0.442] [0.269] [0.913] [0.596]
1 0.0557  0.494*  0.294*
1500  -1.704 -2.837 -0.004 -0.705 1.110 0.716 1.057 2.071 -3.087
(0.301) (0.210) (0.126) (0.277)  (0.650) (0.452)  (0.292) (0.906) (0.680)
[0.234] [0.168] [0.101] [0.224] [0.489] [0.359] [0.205] [0.743] [0.503]
1* 0.0497 0.707* 0.479*
Pourcentage d’immunes = 50%, 6 = (—.3,—1,2.1,1)
100 -1.776 -2.912 -0.039 -0.776 1.203 -0.336 -1.116 1.994 1.108
(1.879)  (0.986) (1.824) (1.782)  (2.036) (2.904) (2.260) (2.630) (2.878)
[1.542]  [0.807]  [1.404] [1.493]  [1.709] [2.143]  [1.533] [2.053]  [2.129]
0.472* 0.0761 0.008* 0.018*
500 -1.753 -2.918 -0.030 -0.768 1.194 -0.279 -0.974 2.197 1.035
(1.191)  (0.590)  (0.490) (1.361) (1.307) (0.752)  (0.806)  (1.312) (1.053)
[0.919] [0.481] [0.371] [1.056] [1.021] [0.590] [0.456] [0.929] [0.747]
1* 0.1267 0.108* 0.196*
1000  -1.718 -2.853 0.005 -0.719 1.127 -0.288 -1.003 2.149 1.021
(0.647)  (0.417) (0.293) (0.875) (0.899) (0.509) (0.522) (0.833) (0.654)
[0.525] [0.335] [0.224] [0.682] [0.710] [0.414] [0.259] [0.591] [0.495]
1* 0.0841  0.148*  0.295*
1500  -1.696 -2.824 -0.002 -0.705 1.117 -0.303 -1.020 2.119 1.021
(0.551)  (0.329) (0.310) (0.669) (0.701) (0.387)  (0.304) (0.561)  (0.490)
[0.442] [0.259] [0.181] [0.517] [0.557] [0.314] [0.186] [0.423] [0.385]
0.999* 0.0787 0.190* 0.383*
Pourcentage d’immunes = 75%, 6 = (.4,—1,—.6,—2)
100 -1.684 -2.948 -0.027 -0.792 1.215 0.497 -1.188 -0.587 -2.120
(2.086) (1.581) (1.912) (1.939) (2.648) (3.491) (2.037) (2.879) (2.731)
[1.689] [1.313] [1.591] [1.621] [2.224] [2.297] [1.493] [2.183] [2.215]
0.127* 0.0277 0.013* 0.003*
500 -1.774 -2.898 -0.028 -0.746 1.197 0.476 -0.923 -0.592 -1.905
(1.392) (0.908) (0.993) (1.651) (1.898) (0.952)  (1.042) (1.396) (1.664)
[0.976] [0.750] [0.752] [1.215] [1.567] [0.720] [0.616] [0.959] [1.156]
0.932*  0.162F  0.141*  0.084*
1000  -1.745 -2.851 -0.004 -0.746 1.162 0.473 -0.925 -0.595 -1.927
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Bn On
n Bl,n BQ,n B3,n B4,n B5,n §1,n §Q,n 53,n 54,71,

(0.731)  (0.631) (0.587) (0.934) (1.430) (0.648)  (0.797) (0.742)  (0.978)
[0.540]  [0.512]  [0.435] [0.715]  [1.157] [0.477]  [0.381]  [0.545]  [0.678]

1 0.125t  0.205*  0.143*
1500 -1.733 -2.831 -0.004 -0.746 1.098 0.461 -0.970 -0.595 -1.960
(0.596) (0.514)  (0.360)  0.677  (1.289) (0.513)  (0.447)  (0.572)  (0.845)
[0.407]  [0.410] [0.282] [0.538]  [1.002] [0.383]  [0.247]  [0.417]  [0.545]

1* 0.114t  0.247*  0.186*

Tas. B4: 4y : 3= (1.5,-2,0,3.5,—4)
Bn On
n Bl,n Bz,n B&n B4,n B5,n §1,n 52,71, 53,71 54,n
Pourcentage d’immunes = 25%, 6 = (.71,1,2, —3)

100 1.663 -2.215 -0.004 3.303 -3.512 0.793 0.939 2.216 -2.951
(1.209)  (1.236) (1.592) (1.775)  (1.895) (1.185)  (1.108)  (1.304)  (1.989)
[1.005] [0.975] [1.125] [1.377]  [1.567] [0.926] [0.856] [1.050]  [1.604]

0.364* 0.0267 0.364* 0.117*
500 1.580 -2.230 0.039 3.614 -3.776 0.671 1.132 2.130 -2.943
(0.991)  (0.959) (0.442) (0.842)  (1.528) (0.486)  (0.745)  (1.041) (1.805)
[0.793] [0.660] [0.339] [0.679]  [1.108] [0.391]  [0.454] [0.713]  [1.324]

0.954* 0.1377 0.935* 0.778*
1000 1.548 -2.096 0.028 3.559 -3.988 0.685 1.051 2.081 -2.954
(0.664) (0.712)  (0.256) (0.565)  (1.098) (0.326)  (0.419)  (0.654) (1.241)
[0.519] [0.429] [0.198] [0.452]  [0.820] [0.262]  [0.256] [0.427]  [0.882]

1* of 1* 0.909*
1500 1.514 -2.036 0.010 3.538 -3.997 0.707 1.031 2.031 -2.975
(0.560)  (0.589) (0.206) (0.431)  (0.958) (0.312)  (0.299)  (0.420)  (0.871)
[0.420] [0.314] [0.161] [0.349] [0.697] [0.246] [0.192] [0.318]  [0.669]

0.965* 0.077t 0.965* 0.958*

Pourcentage d’immunes = 50%, 6 = (—.3,—-1,2.1,1)

100 1.472 -1.931 0.022 3.378 -3.427 -0.384 -0.913 2.286 1.276
(1.790)  (1.663) (2.130) (1.998) (2.231) (0.979)  (1.487) (1.607) (1.563)
[1.546)  [1.447] [1.530] [1.691]  [1.946] [0.690]  [0.924]  [1.193]  [1.284]

0.114* 0.184" 0.163* 0.005*
500 1.484 -2.034 0.004 3.428 -3.446 -0.339 -0.934 2.155 1.054
(1.236)  (1.247)  (0.800) (1.180)  (1.826) (0.303)  (0.411)  (1.225)  (1.196)




B.1. Résultats de simulations du chapitre 4

142

Bn On
n Bl,n BQ,n B3,n B4,n B5,n §1,n §Q,n 53,n 54,71,

[1.020] [0.936] [0.518]  [0.999]  [1.505] [0.248]  [0.232]  [0.633]  [0.945]

0.878* 0.235% 0.734* 0.608*
1000 1.490 -1.956 0.008 3.475 -3.482 -0.325 -0.976 2.148 1.052
(0.809)  (0.877) (0.378)  (0.960) (1.565) (0.206)  (0.237)  (0.653)  (0.847)
[0.652] [0.603] [0.282] [0.812]  [L.187] [0.166] [0.130]  [0.401]  [0.658]

0.994* 0.206% 0.959* 0.845*
1500 1.490 -1.987 -0.001 3.492 -3.763 -0.308 -0.982 2.092 1.032
(0.570)  (0.637) (0.322) (0.784)  (0.989) (0.178)  (0.208)  (0.475)  (0.649)
[0.458]  [0.421] [0.238]  [0.662]  [0.769] [0.145]  [0.106]  [0.299]  [0.513]

1* 0.172f  0.989*  0.892*

Pourcentage d’immunes = 75%, 6 = (.4,—1,—.6,—-2)

100 1.462 -1.936 -0.012 3.380 -3.520 0.508 -1.137 -0.710 -2.238
(1.937)  (2.112)  (2.375)  (2.509)  (2.581) (1.050)  (1.710)  (1.880)  (1.705)
[1.643) [1.790] [1.833] [2.211] [2.146] [0.791]  [1.018]  [1.329]  [1.445]

0.042* 0.143% 0.007* 0.012*
500 1.456 -1.939 -0.020 3.453 -3.466 0.485 -0.933 -0.674 -2.156
(1.493)  (1.418)  (0.820) (1.900)  (2.061) (0.478)  (0.410)  (0.644)  (1.395)
[1.202] [1.162] [0.633]  [1.585]  [1.626] [0.372]  [0.268]  [0.450]  [1.156]

0.449* 0.297% 0.116* 0.231*
1000 1.477 -1.947 0.014 3.480 -3.785 0.462 -0.951 -0.645 -2.051
(1.059)  (1.084) (0.531) (1.521) (1.601) (0.339)  (0.300)  (0.409)  (1.196)
[0.851]  [0.857] [0.419]  [1.222]  [1.273] [0.259]  [0.170]  [0.291]  [0.969]

0.912* 0.258% 0.489* 0.450*
1500 1.482 -1.975 -0.011 3.492 -3.801 0.437 -0.961 -0.642 -2.021
(0.741)  (0.731)  (0.368)  (1.250)  (1.091) (0.236)  (0.214)  (0.345)  (1.050)
[0.597]  [0.561]  [0.290]  [0.969]  [0.905] [0.190]  [0.121]  [0.242]  [0.838]

0.971* 0.268% 0.692* 0.558*

Lorsqu’il n’y a aucun individu immune dans I’échantillon et qu’on le sait avant d’ana-

lyser les données, un modéle de régression logistique standard peut étre ajusté aux

données. Les résultats alors obtenus sont intéressants, car ils fournissent un point de

repére pour évaluer les performances de 'estimateur du maximum de vraisemblance
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de  dans le modéle ZIB.
Le tableau B.5 donne les résultats fournis par un modéle de régression logistique
standard sur les modéles .#; et .43, lorsqu’il y a absence d’individus immunes dans
I’échantillon.

Ensuite, nous comparons ces résultats a ceux obtenus par la méthode d’analyse
"naive" o :

— nous considérons tout individu ¢ tel que {Y; = 0} comme susceptible mais non
infecté (c’est-a~dire nous ignorons une éventuelle immunité de cet individu),
nous appliquons un modéle de régression logistique standard aux données ainsi
obtenues.

Les résultats de cette analyse "naive" pour le modéle .#; sont donnés dans le tableau
B.6.

TaB. B.6: 1 : f=(—1.7,—2,-3.4,5,.3) quand on ignore 'immunité.

Bn
n ﬁl,n 62,77, 63,71 ﬁ4,n B5,n

Pourcentage d’immunes = 25%

100  -1.093  -0.376  0.115  2.358  -1.288
(3.448)  (3.792) (4.844) (5.860) (4.619)
[2.082] [2.048] [3.721] [5.131]  [2.526]

0.032*  0.294*  0.171*  0.497*

500  -1.376  -0.085  0.265  1.815  -1.572
(3.609)  (1.929) (4.058) (5.159)  (2.845)

[2.179]  [1.917] [3.751] [4.657]  [2.227]

0.053*  0.559*  0.446*  0.701*

1000 -1.290  -0.158  0.158 2410  -0.966
(2.944) (2.182) (3.565) (4.871)  (2.760)

[2.019] [1.921] [3.558]  [4.304]  [1.843]

0.046*  0.624*  0.535%  0.751*

1500 -1.171  -0.112  0.162  1.962  -1.044
(2.138)  (1.902) (3.570) (4.885)  (2.659)
[1.867] [1.890] [3.562] [4.437]  [1.847]




B.1. Résultats de simulations du chapitre 4

144

B
n //6\1,71 BQ,n BB,?L 34,77. 35,71
0.052* 0.652* 0.570* 0.778*

Pourcentage d’immunes = 50%

100 -1.953 -0.228 -1.048 3.165 0.171
(3.843) (4.118) (5.234) (5.194) (0.506)

[1.745] [2.181] [3.101] [4.347] [0.397]

0.028* 0.508* 0.437* 0.139*

500 -1.611 -0.237 -0.663 2.754 0.426
(1.583) (2.603) (3.193) (5.193) (0.458)

[1.231] [1.902] [2.845] [4.383] [0.392]

0.046* 0.704* 0.658* 0.457*

1000 -1.755 -0.148 -0.617 1.274 0.432
(1.348) (1.871) (2.836) (4.088) (0.434)

[1.175] [1.855] [2.800] [3.725] [0.371]

0.043* 0.759* 0.731* 0.587*

1500  -1.446 -0.124 -0.621 1.425 0.487
(1.281)  (1.891) (2.800) (3.632) (0.433)

[1.143] [1.878] [2.778] [3.574] [0.378]

0.051* 0.799* 0.755* 0.632*

Pourcentage d’immunes = 75%

100 -1.665 -0.284 -1.095 1.434 0.178
(4.897) (4.546) (5.127) (6.948) (6.963)
[2.514] [2.293] [2.981] [5.974] [2.119]

0.037* 0.515* 0.083* 0.237*

500 -1.746 -0.484 -1.032 0.751 0.446
(3.847) (3.748) (4.757) (6.987) (6.769)
[2.091] [2.028] [2.936] [5.969] [1.901]

0.041* 0.696* 0.305* 0.596*

1000  -1.520 -0.261 -0.745 0.252 0.321
(2.883) (4.496) (2.679) (5.839) (3.468)
[1.857] [2.110] [2.655] [5.662] [1.194]

0.038* 0.788* 0.481* 0.696*

1500  -1.510 -0.120 -0.757 0.132 0.315
(2.550)  (1.902) (2.671) (6.016) (3.658)
[1.791] [1.887] [2.649] [5.659] [1.427]

0.041* 0.801* 0.567* 0.727*
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TAB. B.5 — Résultats des modéles .#; et .#5 s’il y a absence d’immunité.

n B\l,n BZ,n Bs,n B4,n Bs,n
Mo B=(—1.7,-2,-3.4,5,.3)

100 -1.887  -2.474  -4.126  5.747 0.349
(1.197)  (1.098) (1.456) (1.851)  (1.825)
[0.938]  [0.750]  [1.031] [1.437]  [1.418]

0.985*  0.996*  0.953*  0.033*

500  -1.749  -2.072  -3.537  5.186 0.317
(0.472)  (0.282)  (0.442) (0.727)  (0.586)
[0.366]  [0.217] [0.332] [0.558]  [0.469]

1* 1* 1* 0.067*

1000  -1.724  -2.027  -3.449  5.066 0.302
(0.318)  (0.188)  (0.275)  (0.456)  (0.436)
[0.253]  [0.149] [0.216] [0.362]  [0.348]

1* 1* 1* 0.121*

1500  -1.715  -2.020  -3.437  5.053 0.298
(0.253)  (0.152) (0.218)  (0.372)  (0.340)
[0.199]  [0.121] [0.169] [0.297]  [0.273]

1* 1* 1* 0.145*
My 3= (-1.7,-2.8,0,—.7,1.1)

100 -1.881 -2.937  0.002  -0.753  1.293
(0.830)  (0.550) (0.385)  (0.969) (1.057)
[0.659]  [0.453] [0.297]  [0.746]  [0.803]

1* 0.044t  0.137*  0.244*

500  -1.740  -2.875  -0.002  -0.718  1.118
(0.348)  (0.299)  (0.144)  (0.367)  (0.397)
[0.272]  [0.228] [0.115]  [0.289]  [0.314]

1* 0.0477  0.540*  0.826*

1000 -1.728  -2.823  -0.001  -0.697  1.116
(0.237)  (0.190)  (0.095)  (0.243)  (0.267)
[0.188]  [0.151]  [0.078]  [0.197]  [0.212]

1* 0.054"  0.809*  0.989*

1500  -1.711  -2.823  -0.001  -0.702  1.104
(0.195)  (0.159)  (0.081)  (0.202)  (0.229)
[0.154]  [0.125]  [0.065] [0.162]  [0.184]

1* 0.047T  0.935*  0.998*
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Comme nous 'avons dit antérieurement, dans le cadre de la régression logistique,
il est naturellement intéressant d’estimer la probabilité de survenue de ’événement
d’intérét p(x) = P(Y = 1|X = x,5 = 1) pour un x donné. Dans le tableau B.7 ci
dessous, nous étudions les propriétés numériques de I'estimateur p,(x) (nous nous
restreignons a une seule valeur de p(x) pour chacun des modéles .#; et .#5). Pour
chaque configuration des paramétres de simulation, nous obtenons les moyennes
(sur les N échantillons) des estimations des probabilités d’infection p(x) = 0.250
(modéle .#) et p(x) = 0.343 (modéle .#5). Nous obtenons également la racine
carrée de I’erreur quadratique moyenne et I’erreur absolue moyenne correspondantes.
Nous déterminons aussi les probabilités de couverture empiriques des intervalles de
confiance de niveau asymptotique 95% pour p(x), et les longueurs moyennes de ces

intervalles.



B.1. Résultats de simulations du chapitre 4 147

TAB. B.7 — Probabilités estimées p(x) pour les modeéles .#; (p(x) = 0.250) et .5
(p(x) = 0.343).

0% d’immune 25% d’immune 50% d’immune 75% d’immune
n M Mo M Mo M Mo M Mo
100 0.229 0.335 0.267 0.363 0.264 0.353 0.266 0.362
(0.118)  (0.117) (0.191)  (0.164) (0.264)  (0.215) (0.360)  (0.367)
[0.097]  [0.095] [0.149]  [0.132] [0.202]  [0.174] [0.293]  [0.318]
0.964* 0.959* 0.964* 0.978* 0.987* 0.949* 0.951* 0.831*
0.407F  0.424F 0.596F  0.523F 0.719F  0.627F 0.859F  0.756F
500 0.246 0.343 0.261 0.356 0.263 0.358 0.255 0.354
(0.046)  (0.049) (0.079)  (0.069) (0.110)  (0.084) (0.188)  (0.201)
[0.037]  [0.039] [0.056]  [0.054] [0.083]  [0.068] [0.150]  [0.160]
0.957* 0.959* 0.930* 0.898* 0.921* 0.943* 0.891* 0.701*
0.182F  0.192F 0.216F  0.228F 0.343F%  0.319F 0.572F  0.482F
1000 0.247 0.342 0.255 0.352 0.258 0.351 0.254 0.350
(0.034)  (0.035) (0.051)  (0.052) (0.071)  (0.061) (0.137)  (0.134)
[0.027]  [0.028] [0.037]  [0.039] [0.055]  [0.049] [0.106]  [0.106]
0.948* 0.954* 0.887* 0.875* 0.931* 0.932* 0.894* 0.651*
0.128F 0.136TF 0.149F 0.164F 0.248F 0.226F 0.436T 0.359F
1500 0.249 0.343 0.252 0.348 0.253 0.352 0.251 0.348
(0.028)  (0.028) (0.037)  (0.038) (0.062)  (0.047) (0.106)  (0.108)
[0.022]  [0.023] [0.028]  [0.028] [0.044]  [0.038] [0.085]  [0.084]
0.945* 0.958* 0.907* 0.877* 0.932* 0.929* 0.904* 0.641*
0.105F  0.112F 0.119F  0.133F 0.199F  0.185F 0.373F  0.301F
Note : (-) : racine carrée de I’erreur quadratique moyenne. [-] : erreur absolue moyenne. * : probabilité de couverture

empirique. T : longueur moyenne des intervalles de confiance. Pour chaque pourcentage d’immunes, les pourcentages
d’infectés parmi les susceptibles sont respectivement 30% (.#1) et 70% (.#>2). Tous les résultats sont basés sur 1500

réplications.
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Nous avons également évalué la qualité de 'approximation normale de la distri-
bution asymptotique de Bn Pour chaque configuration des paramétres de simulation,
nous obtenons les histogrammes des Bffl) (7 =1,...,N), avec les Q-Q plots corres-
pondants. Les résultats sont obtenus pour (5 et (3 dans le modeéle .#;. Pour les

autres parameétres du modeéle, nous obtenons des résultats similaires.
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Fic. B.1  Histogrammes et Q-Q plots pour Bgm dans le modéle .7, sans indivi-
dus immunes dans I’échantillon (le pourcentage d’immunes est indiqué entre paren-
théses). n est la taille d’échantillon. Tous les résultats sont basés sur 1500 jeux de

données simulés.
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Finalement, nous étudions la qualité de 'approximation normale de la distribu-

tion de p,(x). Les histogrammes et Q-Q plots de ]A),(f)(x) (j =1,...,N) sont obtenus

pour une valeur de p(x) = 0.250 dans le modéle .Z;, et sont donnés par les figures

B.9 a B.12.
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B.2 Reésultats de simulations du chapitre 5

Dans cette partie, nous présentons les résultats de simulations du modéle .Z5

décrit dans le chapitre 5.

Les résultats pour 50% d’'immunes (n=100, 500, 1000, 1500) sont en cours et se-

ront aussitot rajoutés dans la version vraiment définitive du manuscrit.
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TAB. B.8 Modéle 4, : = (.5,1,—1) avec 25% d’immunes.

Méthode 1

Méthode 2

Méthode 3

1—a n Couverture® Largeur Couverture® Largeur Couverture® Largeur
Pourcentage d’immunes = 25%,0 = (1.6, —1)

0.99 500 0.831 0.362% 0.815 0.344% 0.992 0.692%
0.261% 0.244% 0.474%

0.343* 0.326* 0.816*

0.468F 0.447F 0.889F

1000 0.775 0.219F 0.762 0.209F 0.982 0.526F
0.1397 0.1317 0.282"

0.214* 0.204* 0.635*

0.292F 0.280F 0.729F

1500 0.735 0.171+ 0.725 0.1647F 0.983 0.350F
0.101f 0.0951 0.180"

0.169* 0.161* 0.368*

0.232F 0.223F 0.507F

0.95 500 0.734 0.2747% 0.719 0.263% 0.994 0.598+
0.179% 0.1691 0.3661

0.259* 0.248* 0.712*

0.366F 0.353F 0.800F

1000 0.662 0.172+ 0.644 0.166F 0.973 0.443%
0.1007 0.0957 0.2057

0.167* 0.160* 0.528*

0.235F 0.228F 0.639F

1500 0.638 0.136% 0.621 0.131F 0.964 0.287+
0.0737 0.0697 0.1357

0.133* 0.128* 0.289*

0.189F 0.183F 0.427F

0.90 500 0.631 0.239% 0.619 0.233% 0.983 0.543%
0.1507 0.1457 0.3077

0.222* 0.216* 0.644*

0.323F 0.314F 0.746F

1000 0.588 0.151F 0.572 0.147+ 0.950 0.403%
0.083" 0.0807 0.172"

0.145* 0.141* 0.472*

0.209F 0.204F 0.589F

1500 0.570 0.120F 0.561 0.116% 0.941 0.255%
0.0621 0.0607 0.1097

0.117* 0.114* 0.251*

0.168F 0.164T 0.385T

Note : + : moyenne, T : ler quartile, *

: médiane, T : 3éme quartile.
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TAB. B.9 Modéle .4, : 3

= (.5,1,—1) avec 50% d’immunes

Method 1

Method 2

Method 3

1—a n Couverture® Largeur Couverture® Largeur Couverture® Largeur
Pourcentage d’immunes = 50%, 0 = (—1,2)

0.99 500 0.690 0.479% 0.672 0.457+ 0.996 0.830F
0.3397 0.3207 0.696T

0.435* 0.412* 0.927*

0.636F 0.611F 0.974F

1000 0.685 0.301F 0.672 0.287+ 0.995 0.664F
0.2017 0.188" 0.3917

0.276* 0.263* 0.812*

0.405F 0.387F 0.884F

1500 0.679 0.226F 0.665 0.216F 0.987 0.552F
0.143% 0.134% 0.273%

0.213* 0.206* 0.677*

0.306F 294F 0.774F

0.95 500 0.574 0.362F 0.555 0.348F 0.986 0.767+
0.2311 0.219% 0.5991

0.317* 0.303* 0.871*

0.501F 0.482F 0.934F

1000 0.607 0.226F 0.589 0.218% 0.984 0.581%
0.1367 0.1297 0.3017

0.207* 0.198* 0.714*

0.312F 0.301F 0.805F

1500 0.618 0.174% 0.609 0.168% 0.975 0.465%
0.0987 0.093" 0.2057

0.163* 0.157* 0.552*

0.243F 0.235F 0.675F

0.90 500 0.533 0.311F 0.525 0.302+ 0.986 0.728%
0.1897 0.182f 0.5397

0.266* 0.258* 0.835*

0.437F 0.426F 0.911F

1000 0.511 0.198F 0.504 0.193% 0.977 0.524+
0.113" 0.1097 0.2517

0.179* 0.173* 0.632*

0.277F 0.269F 0.745F

1500 0.517 0.153% 0.510 0.149F 0.960 0.429F
0.082f 0.079* 0.174%

0.141* 0.137* 0.503*

0.215F 0.210F 0.637F

Note : * : moyenne, T : Ter quartile, *

: médiane, T : 3éme quartile.
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TAB. B.10  Analyse "naive" : Modéle .#5 : 3 = (.5,1,—1) avec 25% et 50%

d’immunes.

Method 1 Method 2 Method 3

1—a n Couverture® Largeur Couverture® Largeur Couverture® Largeur

Pourcentage d’immunes = 25%,0 = (1.6, —1)

0.99 500 0.001 0.201 0 0.193 0.001 0.201
1000 0 0.134 0 0.129 0 0.133
1500 0 0.109 0 0.105 0 0.108

0.95 500 0.162 0 0 0.157 0 0.163
1000 0 0.110 0 0.107 0 0.110
1500 0 0.089 0 0.086 0 0.089

0.90 500 0 0.145 0 0.142 0 0.145
1000 0 0.098 0 0.096 0 0.098
1500 0 0.079 0 0.078 0 0.079

Pourcentage d’immunes = 50%, 6 = (—1,2)

0.99 500 0 0.277 0 0.268 0 0.271
1000 0 0.196 0 0.189 0 0.190
1500 0 0.158 0 0.153 0 0.153

0.95 500 0 0.229 0 0.222 0 0.224
1000 0 0.160 0 0.155 0 0.156
1500 0 0.130 0 0.127 0 0.127

0.90 500 0 0.205 0 0.201 0 0.201
1000 0 0.143 0 0.140 0 0.139
1500 0 0.116 0 0.113 0 0.113

Note : a : probabilité de couverture.
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