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Résumé

L’objectif de cette étude est la modélisation, la validation, I’analyse mathématique
et la simulation de modeles de transmission de I’hépatite B en Afrique en général et au
Sénégal en particulier.

Nous proposons de nouveaux modeles basés sur les connaissances actuelles de I’histoire
naturelle de la transmission du virus de I’hépatite B. Ainsi, nous présentons deux modeles
de la transmission du VHB!, un modele sans transmission verticale et un autre ou la
transmission verticale de la maladie est prise en compte.

Ce second modele est justifié par la controverse, en ce qui concerne l'incidence des
transmissions verticale ou périnatale au niveau de la zone Afrique; entre d’une part,
I’Organisation Mondiale de la Santé et d’autre part les spécialistes de I'hépatite B au
Sénégal.

Ces modeles, nous ont conduit a étudier des modeles épidémiologiques avec une diffé-
rentiabilité, au niveau des susceptibles, et progression de stade pour les infectieux. Nous
obtenons une analyse complete de la stabilité de ces modeles a 'aide des techniques de
Lyapunov suivant la valeur du taux de reproduction de base Ry. Ce qui nous conduit
a I’étude d'un modele épidémiologique beaucoup plus général qui englobe ceux proposés
pour la modélisation de la transmission du virus de I’hépatite B.

Nous illustrons a la fin de ce travail ces modeles par des simulations numériques.
Ces dernieres sont faites a partir de nos modeles confrontés aux données recueillies du
programme de lutte contre ’épidémie de I'hépatite B au Sénégal et dans la littérature.

Elles permettrons 1’évaluation de I'incidence de la transmission verticale/périnatale du

virus de I'hépatite B sur les politiques de Santé Publique.

Mots clés : Modélisation, systemes dynamiques non linéaires, méthode de Lyapunov,
taux de reproduction de base Ry, stabilité globale, modeles épidémiologiques, infectivité
et susceptibilité différentielles, maladies infectieuses, virus de I’Hépatite B, transmission

verticale, simulation numérique, santé publique, Sénégal.
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Abstract

The objective of this thesis is modelling the transmission of hepatitis B in Africa in
general and, Senegal in particular.

We propose new models based on the state of art and the epidemiology currently
known from the transmission of the hepatitis B virus. Thus, we present two models of the
transmission of HBV 2, a model without vertical transmission and another in which the
vertical transmission of the disease is taken into account. This second model is justified
by the controversy, with regard to the incidence of the vertical and perinatal transmission
of the virus in some parts of Africa; between the World Health Organization on one hand
and hepatitis B’s specialists in Senegal on the other hand. These models helped us to
analyse epidemiological models with a differential susceptibility of the population, and
stagged progression of infectious. We present a thorough analysis of the stability of the
models using the Lyapunov techniques and obtain the basic reproduction ratio, Ry which
allows into the study of general epidemiological models including those proposed for the
transmission of the hepatitis B virus.

Numerical simulations are done to illustrate the behaviour of the model, using data
collected during the campaign against epidemic hepatitis B in Senegal and from published
literature. These models enable the evaluation of the incidence of the vertical and perinatal

transmission of the hepatitis B virus on the policies of Public health.

Keywords : Modelling, nonlinear dynamical system, Lyapunov methods, basic reproduc-
tion ratio Ry, global stability, epidemiological models, Stability of Differential Suscepti-
bility and Infectivity, Infectious diseases, Hepatitis B virus (HBV), vertical transmission,

numerical simulation, public health, Senegal.
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Chapitre 1

Introduction générale

« Tout seul, on va plus vite,
ensemble, on va plus loin! »

Proverbe Africain

Au fil des siecles, avec le développement de la technologie, les moyens de transport
ont progressé, favorisant les contacts entre humains et leurs intrusions dans tous les éco-
systemes. L’époque moderne a connu les déplacements de dizaines de millions d’individus
sur des espaces régionaux, continentaux, transcontinentaux ou intercontinentaux (armées,
migrations massives, commerces, tourisme) avec la mondialisation.

Lors de ces déplacements, les étres humains ont souvent amené avec eux, volontaire-
ment ou non, des animaux, des plantes, des micro-organismes, des virus, des bactéries et
des maladies qui se sont révélés néfastes aux terres d’accueil, et y ont apporté de nouvelles
maladies infectieuses et épidémies...

Avec ce flux de voyageurs de plus en plus rapide et des échanges commerciaux floris-
sants, ces risques de contamination pourraient méme augmenter. Au-dela des tragédies
humaines qu’elles provoquent, ces maladies infectieuses déstabilisent, voire aggravent la
situation économique des pays touchés, en particulier les pays a faible revenu ou pays en
voie de développement.

Malgré le progres des sciences durant le X X¢ siecle, notamment le développement
important des traitements et des vaccins efficaces contre les maladies infectieuses et trans-
missibles, on constate que les épidémies sont loin d’étre controlées entierement. Il s’agit,
en effet, de faire face non seulement aux maladies endémiques mortelles comme le palu-
disme, le choléra en Afrique, des maladies émergentes, mais également a des mutations de

virus et au bioterrorisme.



CHAPITRE 1. INTRODUCTION GENERALE

Vu ce contexte, les activités de recherches et la collaboration interdisciplinaires entre les
différentes branches de la science doivent s’intensifier pour 'amélioration de la prévention
et de la lutte : la recherche médicale d’'une part et la recherche fondamentale d’autre
part portant sur la description, I’analyse et la modélisation mathématique des maladies
infectieuses.

Les maladies infectieuses sont 'un des domaines ou les fondements théoriques ont été
les plus développés en épidémiologie. La théorie mathématique des épidémies fournit ainsi
un cadre de référence pour la reconstitution historique des pandémies passées, contribuant
a une meilleure compréhension des mécanismes de transmission, une alerte plus précoce
vis-a-vis des phénomenes émergents, et désormais la prévision de la diffusion épidémique
dans le temps et 1’espace.

La modélisation des maladies infectieuses a une longue histoire. Le premier modele
a été développé par Bernoulli en 1760 pour la variole. Les fondements de I’approche de
I’épidémiologie basée sur les modeles compartimentaux ont étés établis par des médecins
de santé publique comme Sir Ronald Ross, W. H. Hamer, W. O. Kermack ...

Ronald Ross peut étre considéré comme le pere fondateur de la modélisation actuelle.
On lui a attribué le prix Nobel en 1902 pour sa preuve que le paludisme était transmis
par les anopheles. C’est lui en 1911 qui a publié le premier modele dynamique de la
transmission du paludisme. Il a prouvé qu’en dessous d’un certain seuil de population des
moustiques, le paludisme disparaissait.

La modélisation mathématique des maladies infectieuses est une science relativement
nouvelle. Si I’épidémiologie a une longue histoire, ce n’est que récemment que les ma-
thématiciens, les épidémiologistes, les immunologistes ont commencé a collaborer pour
créer des modeles susceptibles de prédire 1’évolution d’une maladie. Pour les maladies
transmissibles, le paradigme central est celui de la contagion inter-humaine.

Les modeles des maladies infectieuses ont d’abord été utilisés pour comprendre la
dynamique temporelle et spatiale d’une épidémie, puis pour envisager une stratégie thé-
rapeutique ou de lutte contre la maladie.

Les modeles mathématiques sont de plus en plus fréquemment utilisés en médecine,
dans des domaines d’application de plus en plus variés. Formalisant des phénomenes bio-
logiques complexes, ils permettent d’évaluer des hypotheses en fournissant des éléments
de compréhension ou de prédiction.

Actuellement, les modeles des maladies infectieuses sont de plus en plus souvent utilisés
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pour prévoir un éventail de possibilités futures, afin d’aider et soutenir le développement
des connaissances et le processus décisionnel au niveau scientifique, médical et sanitaire.
Pour parvenir a ces objectifs, de nouvelles méthodologies, en provenance d’autres do-
maines, ont été développées et adaptées et des études de validation de modeles ont été
conduites concernant différentes maladies infectieuses ou des vaccins. Depuis, beaucoup
de maladies ont été modélisées, avec divers degré de sophistication et de succés.

La compréhension des degrés d’hétérogénités, comme 1’age, I’appartenance sociopro-
fessionnelle, le sexe ou les mécanismes qui conduisent a l’exposition des populations a
des risques environnementaux, sanitaires et professionnels mobilisent 1’épidémiologie, la
modélisation mathématique, les sciences de la vie et de la nature et les sciences humaines
et sociales (telles que la démographie, la géographie, la sociologie, I’économie...).

La maitrise de tous ces facteurs peut permettre d’élaborer des politiques de prévention

et de lutte contre les épidémies et ainsi contribuer aux efforts de santé publique.

L’objectif de ce travail est la mise au point de modeles mathématiques de la transmis-
sion de 'hépatite B au niveau des zones de haute prévalence! en général et au Sénégal en
particulier.

La modélisation se fera a partir de ’épidémiologie connue actuellement de ’hépatite
B. Nous proposons des modeles nouveaux basés sur une bonne compréhension des méca-

nismes de transmission du virus de I'hépatite B.

Avec ces modeles, nous obtenons des simulations numériques en partant de données
recueillies au niveau du Sénégal, dans le cadre du programme national de lutte contre
I’hépatite B. Nous allons aussi mettre en évidence la transmission verticale de la maladie
au niveau du Sénégal, en accord avec les résultats obtenus par le professeur A.S. Diallo.

En effet, il y a des divergences en ce qui concerne l'incidence de la transmission ver-
ticale du virus de I’hépatite B au niveau de la zone Afrique en général et du Sénégal en
particulier, au sein de la communauté scientifique. L’OMS? estime que la transmission
verticale de ’hépatite B n’a pas une tres grande incidence en Afrique. Cette estimation
est basée sur 'utilisation de certains marqueurs. Le professeur Diallo a montré que ces

marqueurs n’étaient pas significatifs en Afrique, elle a montré, en utilisant les présences

1. prévalence > 8%
2. Organisation Mondiale de le Santé
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ADN, qu’au Sénégal, la transmission verticale était importante. L’OMS recommande un

protocole de vaccination différent de celui du continent Asiatique qui est aussi une zone de

haute prévalence de I’'HBV ou elle prend en compte la transmission verticale mere-enfant.

On verra que cela a d’importantes conséquences au niveau de la transmission.

Ce travail est organisé de la fagcon suivante :

Apres I'introduction générale, dans le deuxieme chapitre nous rappelons la problé-
matique de 'hépatite B pour justifier les modeles que nous allons proposer dans ce
travail. Nous ferons ainsi, un rapide survol de I'histoire naturelle de la transmission
de I’hépatite B, basée sur le consensus actuel concernant cette maladie infectieuse.
Nous nous sommes reférés aux sources de I’'OMS et du CDC? les plus récentes.
Dans le chapitre 3, nous faisons I’état de I’art concernant la modélisation et les li-
mites des modeles actuels. Par rapport a d’autres maladies transmissibles, I’hépatite
B a été relativement peu modélisée mathématiquement.

Dans le chapitre 4, nous proposons une premiere étude sur des modeles épidémiolo-
giques avec différentiabilité au niveau des susceptibles et progression de stage pour
les infectieux. Nous obtenons une analyse compléete de la stabilité de ces modeles a
I’aide de techniques de Lyapunov.

Dans le chapitre 5, nous proposons des modeles réalistes de la transmission du
HBV. En particulier, nous distinguons les susceptibles suivant leur classe d’age et
les infectieux suivant leur statut symptomatique.

Dans le chapitre 6, nous introduisons une classe générale de modele qui englobe les
modeles précédents. Nous faisons I'analyse de la stabilité de ces modeles.

Le chapitre 7 présente les simulations des modeles de ’hépatite B que nous avons
proposé au chapitre 5. En particulier, nous ferons la différence entre ceux avec trans-
mission verticale et ceux sans transmission verticale et nous confronterons ces mo-
deles aux données du Sénégal.

Nous concluerons ce travail en faisant le bilan des différentes simulations et sur
I’éventualité d'une transmission verticale et périnatale.

Enfin, les annexes rappellent les résultats mathématiques que nous utilisons dans
ce travail et les différents résultats contenus dans ce travail, qui ont été publiés a

travers des articles, des journaux et des conférences internationaux.

3. Center for Disease Control
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Chapitre 2

I’hépatite B, épidémiologie et
histoire naturelle

” L’infection du virus de
I’hépatite B arrive au deuxieme
rang, apres le tabac, des agents
cancérogenes connus pour
I’homme ...

OMS

2.1 Introduction

L’hépatite B est une des maladies virales les plus fréquentes a travers le monde. Le
risque de passage a la chronicité qui entraine I'apparition de carcinome hépatocéllulaire !
ou de cirrhose du foie en font une pathologie grave. L’hépatite est, en particulier en Afrique,
un probleme majeur de santé publique, et elle constitue un frein pour le développement
économique.

Dans le monde, deux milliards d’individus ont déja rencontré le virus de I’hépatite B
(HBV) et environ 347 millions en sont porteurs chroniques ; parmi eux, 13% des femmes et
40% des hommes mourront d’une maladie hépatique liée au virus de I’hépatite B, soit plus
d’un million de déces par an. L’infection du virus de 'hépatite B arrive au deuxiéme rang,
apres le tabac, des agents cancérigenes connus pour 'homme. En Afrique, ’hépatite B,
associée a I’hépatocarcinome, est la premiere cause de tumeur cancérigene.

Sa distribution géographique est hétérogene, avec des zones de haute incidence (20

nouveaux cas/100 000 habitants par an en Asie du Sud-Est et Afrique) et des zones de

1. cancer du foie
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faible incidence (cing nouveaux cas/100 000 habitants par an en Europe et aux Etats-
Unis) [93].

Les prévalences sont estimées a partir de plusieurs marqueurs sérologiques. Parmi ces
marqueurs, on cherche la présence d’antigene de surface du virus de ’hépatite B : AgHBs.
La distribution de la prévalence du portage du marqueur AgHBs permet de diviser la
planete en 3 zones de prévalence différentes, correspondant a des modes de transmission

et des niveaux de risque différents [3].

Hepatitis B Surface
Antigen Prevalence

0 High =
[ Intermediate 5% - 7%
Low =2%

FiGURE 2.1 — Distribution géographique de la prévalence de 1'hépatite B année : 2006
Source : http ://wwwn.cdc.gov/travel/yellowbook/ch4 /hep-b.aspx

Dans les zones de forte endémie, ou la prévalence de I’AgHBs est supérieure a 8%
(Afrique subsaharienne, Asie du Sud Est, Chine méridionale, bassin Amazonien, soit en-
viron 45% de la population mondiale), le risque d’acquérir l'infection au cours d’une vie

entiere est supérieur a 60% et la majorité des sujets (cas) contaminés le sont a la naissance
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ou au cours des premieres années de vie. Quarante trois pour cent de la population vit dans
des zones de prévalence intermédiaire comprise entre 2 et 7% (Proche Orient, Amérique
Centrale et du Sud, Asie Centrale, sous-continent Indien, certains pays de I’Europe du Sud
et de 'Est). Dans ces zones de prévalence intermédiaire, le risque d’acquérir I'infection au
cours d’une vie entiere est compris entre 20 et 60%, et la contamination survient a tous
les ages de la vie. Douze pour cent de la population vit en zone de faible endémie avec une
prévalence inférieure a 2%, zone incluant essentiellement les pays industrialisés (Europe
de T'ouest et du Nord, Amérique du Nord, Australie). Le risque d’acquérir 'infection au
cours d'une vie entiere est inférieur a 20%, et la contamination survient surtout a ’age
adulte [4].

Le développement d’un vaccin fortement immunogene, ayant peu d’effets indésirables,
aurait du représenter une avancée certaine dans le controle, voire 1’éradication de ’hépa-
tite B. L’efficacité de ce vaccin est telle qu’on a pu parler du "premier vaccin contre un
cancer ”. Cependant son cotuit est, a I’heure actuelle encore, un obstacle aux vaccinations
de masse la ou elles seraient le plus justifiées, essentiellement dans les pays en voie de
développement. Il est donc nécessaire de conduire une réflexion sur la meilleure politique

vaccinale a appliquer.

2.2 Epidémiologie

Le terme hépatite signifie « inflammation du foie ». L’hépatite B est un virus transmis-
sible pouvant causer des ulcérations au foie, des insuffisances hépatiques, et des maladies
hépatiques comme la cirrhose ou le cancer du foie. Il se transmet par voie sexuelle mais
aussi par des contacts des liquides biologiques dans les petites communautés. Par exemple
dans le milieu familial, le virus est hautement contagieux. A Téchelle mondiale, I’hépatite
B est tres fréquente.

Le réservoir du virus de I’hépatite B semble strictement humain et le virus peut résister
dans le milieu extérieur pendant plus de 7 jours.

L’hépatite B est difficilement soignable. La plupart des gens infectés n’auront aucun
symptome de l'infection. On les appelle porteurs asymptomatiques, ils jouent un role
important dans la transmission de cette maladie. Il s’agit d’individus qui sont porteurs du
virus, et ne manifestent pas de symptomes cliniques. Un dépistage sérologique couteux est
nécessaire. C’est pourquoi, bon nombre de personnes infectées par I’hépatite B pourraient

7 Etude de quelques modsles épidémiologiques :
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ne jamais le savoir et la transmettre.

L’hépatite B se présente sous deux formes, aigué (a court terme) ou chronique (a long
terme).

Lorsqu’une personne est d’abord infectée par le virus de I'hépatite B, elle développe une
infection « aigué ». Cette infection aigué peut présenter différentes formes de symptomes.
Les symptomes de I'hépatite aigué peuvent souvent étre légers et peuvent ressembler (a
s’y méprendre) a ceux de la grippe. Ceux-ci se manifestent par la fatigue, des douleurs
articulaires, des douleurs dans la région de ’estomac, une perte d’appétit, la nausée et
un sentiment général de malaise. Dans certains cas, 'hépatite B peut également causer la
jaunisse, qui est un signe de troubles du foie. Il peut aussi arriver que la personne infectée
ne présente aucun symptome.

Schématiquement, I’hépatite chronique B est caractérisée par trois phases (Lok et coll.,

2001 ; EASL, 2003) [82] :

1. une premiere phase dite de « tolérance immunitaire » avec une forte réplication vi-
rale (grande quantité d’ADN VHB détectable dans le sérum) et une faible activité de
I'hépatite chronique (transaminases normales ou peu élevées et Iésions histologiques

d’hépatiques de nécrose et d’inflammations absentes ou minimes) ;

2. une deuxieme phase dite de « réaction immunitaire » avec une réplication virale
modérée (quantité modérée d’ADN VHB dans le sérum) et une forte activité de

I'hépatite chronique (transaminases élevées et lésions histologiques marquées) ;

3. une troisieme phase dite « non réplicative » avec une faible réplication virale (faible
quantité d’ADN VHB) et I'absence d’activité de I’hépatite chronique (transaminases

normales et absence de lésions d’activité histologique).

Les deux premieres phases ont une durée tres variable (de quelques mois a des dizaines
d’années) en fonction de la date de contamination et du statut immunitaire. En cas de
contamination périnatale, la phase d’'immunotolérance est tres prolongée et le passage a la
phase de « réaction immunitaire » est peu fréquent et tardif. En cas de contamination a
I’age adulte, le passage a la phase de « réaction immunitaire » est fréquent et précoce. Le
passage a la phase « non réplicative » est d’autant plus fréquent et rapide que la réaction
immunitaire est plus forte, avec une activité de I’hépatite chronique plus marquée. Le
passage de la deuxieme phase a la troisieme s’accompagne généralement d’une « hépatite
de séroconversion HBe » avec un pic de transaminases suivi de la négativation de I’antigene
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HBe (AgHBe) et la positivation de I'anticorps anti-HBe. Cette exacerbation de I’hépatite
chronique peut étre sévere, voire fulminante. La troisieme phase correspond au statut de
« porteur inactif de 'antigene HBs » : le patient reste AgHBs positif, mais est AgHBe
négatif et anti-HBe positif avec un ADN VHB sérique inférieur & 100 000 copies par ml et
des transaminases normales. Il est important de confirmer le statut de « vrai » porteur
inactif en vérifiant I’absence de signe clinique, biologique ou échographique évocateur
d’une fibrose hépatique évoluée ou d’une cirrhose. En effet, une fibrose évoluée, voire une
cirrhose a pu se constituer au cours de la phase d’hépatite chronique active, avant le
stade de porteur inactif. Cette distinction est essentielle car les « vrais » porteurs inactifs
de ’AgHBs ont un excellent pronostic avec un risque quasiment nul de complications (en
particulier d’hépatocarcinome) alors que le risque de complication est non négligeable chez
les « faux » porteurs inactifs. En cas de doute, une ponction biopsie hépatique peut étre
proposée. Dans tous les cas, une surveillance réguliere est recommandée (EASL, 2003).
L’AgHBs disparait rarement spontanément et tardivement (incidence d’environ 1% par

an).

Dans ce cas, les anticorps anti-HBs n’apparaissent pas toujours (séroconversion HBs) et
le sujet peut ne garder que des anticorps anti-HBc détectables. Cela correspond a la gué-
rison de I'hépatite chronique B bien que 'on sache qu’il ne s’agit généralement pas d’une
éradication de 'infection par I'hépatite B, puisque de ’ADN VHB peut rester détectable
dans le foie, voire dans le sérum, avec des méthodes sensibles (Chemin et coll., 2001).
Chez les porteurs inactifs de ’AgHBs, une proportion relativement importante (environ
20% & 30%) peut avoir une réactivation de I’hépatite chronique avec augmentation de la
réplication virale (ADN VHB supérieur a 100 000 copies par ml) et augmentation des
transaminases ; cette réactivation est généralement modérée mais peut étre sévere, voire
fulminante (surtout en cas de cirrhose sous-jacente), et elle peut se prolonger ou se répé-
ter. L’AgHBe peut rester négatif, correspondant a I’apparition d’une hépatite chronique
active AgHBe négatif due & un VHB variant (« mutant pré-C ») incapable d’exprimer
I’AgHBe (Hadziyannis et Vassilopoulos, 2001). L’hépatite chronique active AgHBe négatif
apparait tardivement au cours de 1 ’histoire naturelle de la maladie, ce qui explique qu’on
la diagnostique le plus souvent chez des sujets ayant une contamination ancienne et que
la proportion des sujets atteints de cette forme d’hépatite chronique B soit prédominante
dans les régions ou la plupart des malades ont été contaminés il y a longtemps (80%a
100% des cas dans le bassin méditerranéen). L’hépatite chronique active AgHBe négatif
9 Etude de quelques modales épidémiologiques :
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est caractérisée par un taux faible de rémission durable spontanée et par une évolution
sévere (risque élevé de complications, cirrhose et hépatocarcinome) (Zarski et coll., 1994 ;
Hadziyannis et Vassilopoulos, 2001 ; Brunetto et coll., 2002). Il faut noter qu’en France, la
proportion de malades atteints d’hépatite chronique AgHBe négatif augmente : elle était
de 20% il y a 10 ans (Zarski et coll., 1994) et elle semble étre maintenant de l'ordre de
50%.

La proportion de cas symptomatiques de I’hépatite aigué B augmente avec 1’age alors que
le risque de passage a une infection chronique diminue (McMahon et coll., 1985) [90]. En
effet, lorsqu’elle a lieu a la naissance ou durant la petite enfance, 'infection par I’hépatite B
entraine en regle générale une hépatite aigué asymptomatique mais est associée a un risque
élevé (de 90% a la naissance a 30% a 4 ans) d’évolution vers une infection chronique (source
OMS et CDC). Inversement, lorsqu’elle a lieu apres 5 ans, l'infection par I’hépatite B peut
entrainer une hépatite aigué symptomatique (30% a 50% des cas) et est associée a un risque

faible d’évolution vers une infection chronique (5% & 10%).

Outcome of Hepatitis B Virus Infection
by Age at Infection
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FIGURE 2.2 — Evolution de la maladie suivant I’age d’infection
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2.3 Modes de transmissions

La contagiosité de 1’hépatite B est liée a sa présence dans les liquides biologiques des sujets
infectés : sang, salive, sperme et sécrétions vaginales (Anonyme, 1999 ; Expertise collective
Inserm, 1997a). Chez les sujets ayant une infection chronique par ’hépatite B, la virémie
est tres variable mais peut, dans certains cas, étre tres élevée (jusqu’a 109 virions par ml
de sang).

Il existe quatre principaux modes de contamination par le virus de ’hépatite B :

— les relations sexuelles, hétérosexuelles ou homosexuelles ;

— les contacts avec du sang ou des dérivés du sang lors d’actes médicaux (transfusion
sanguine, chirurgie, hémodialyse, actes invasifs, acupuncture, soins dentaires) ou de
toxicomanie intraveineuse, ou tatouages ou piercing;

— la transmission de la mere a I'enfant lors de I’accouchement ;

— les contacts dans la famille ou dans une collectivité.

La transmission se fait rarement par la salive et plus souvent par le partage d’objets
de toilette (brosse a dent, rasoir) ou par lésions cutanées (par exemple contact avec des

suintements de plaies ouvertes).

L’importance relative de ces différents modes de transmission est extrémement variable
en fonction des zones géographiques et est liée a la prévalence de I'infection chronique par
le virus VHB dans la population concernée. Dans les zones de haute prévalence (8% a
20%) (Asie du Sud-Est, Afrique sub-saharienne, Chine et Amazonie), la contamination a
généralement lieu a la naissance (transmission verticale) ou au cours des premieres années
de vie (transmission périnatale). Le risque est plus élevé chez les enfants nés de meres
ayant un antigéne HBe positif : 'incidence de I'infection varie de 70% a 90% au cours des
6 premiers mois apres la naissance (Stevens et coll., 1979). Chez les enfants nés de meres
ayant un antigene HBe négatif, I'incidence de l'infection varie de 40% a 70% (Stevens et
coll., 1979 ; Beasley et Hwang, 1983 ; Xu et coll., 1985 ; Hurie et coll., 1992) [7].
La transmission du virus de I'hépatite B s’explique par :

— la longueur de la phase d’incubation (2 & 6 mois), le sang étant infectant dans la

seconde partie de cette phase;

— le tres haut titre infectieux du sang (0,0001ml de plasma peut transmettre le VHB) ;

— le grand nombre de porteurs asymptomatiques;

— la présence du virus dans tous les liquides biologiques : liquide séminal (sperme),
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sécrétions vaginales, sueur, larmes, salive, urine (alors que 'infectiosité des selles est
négligeable) ;

— Le virus de I'hépatite B est 50 a 100 fois plus infectieux que le VIH.

Les différents modes de transmission de I’hépatite B peuvent étre classés en deux
sous groupes : les transmissions verticale, périnatale et horizontale. Nous incluerons la
transmission verticale avec la transmission périnatale car nous avons vu le role important
de I’age ou est acquis I'infection.

La présence d’AgHBs a été démontrée dans le lait maternel mais le risque de trans-
mission par le lait maternel est considéré comme négligeable en comparaison du risque

par exposition aux liquides biologiques maternels lors de I’accouchement [28].

2.4 Politiques de santé publique contre ’hépatite B

En 1991, 'OMS recommandait I'inclusion du vaccin contre ’hépatite B dans les pro-
grammes de vaccination nationaux. Aujourd’hui plus de 150 pays ont suivi cette recom-
mandation. Cependant, en raison du cotit important du vaccin, de nombreux pays pauvres
n’y ont pas acces et c¢’est souvent la ou la prévalence du virus de I'hépatite B est la plus
forte.

L’Organisation mondiale de la santé (OMS) avait recommandé la mise en place de
programmes de vaccination généralisée contre I’hépatite B avant 1995 dans les pays de
forte endémie et avant 1997 dans les pays de faible endémie. Apres les Etats—Unis, le
Canada et I'Italie, la France a adopté une stratégie de vaccination orientée vers une double
cible : les nourrissons et les pré-adolescents avant 1’age de 13 ans. Mis en place en 1994,
ce programme complétait I'immunisation des sujets a risques et permettait d’envisager
une diminution de 90% de 'incidence de 'hépatite B dans les vingt années a venir et son
élimination a long terme. Cependant on dispose de différentes politiques de Santé publique
selon les pays.

Dans les pays du Tiers Monde a forte endémicité d’hépatite B, I'important est d’obtenir
une immunité le plus vite possible. Ainsi deux schémas ont été élaborés par ’OMS selon
I'endémicité : vaccination des la naissance (zone d’hyperendémie type Asie du Sud-Est)
ou associée avec les autres vaccins (type Afrique sub-saharienne). Il est donc indispensable
de se soumettre aux regles édictées par chaque pays qui combinent a la fois les stratégies
du Programme Elargi de la Vaccination (PEV) et les recommandations locales établies
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d’apres I’épidémiologie.

En raison de ces différences épidémiologiques géographiques, deux types de politique
de vaccination ont été mis au point. Dans les pays a forte endémicité, la stratégie a été
de vacciner tous les nouveau-nés. Plusieurs de ces pays comme la Chine, la Thailande
et I'Indonésie ont déja mis en place d’ambitieux programmes nationaux. En revanche,
dans les pays a faible endémicité, dont la France, la vaccination introduite en 1981 a été
initialement orientée vers les groupes a risque. Malheureusement, cette stratégie n’a pas
permis d’obtenir la régression attendue de 'incidence de 'infection. L'une des principales
explications est la sous-vaccination des groupes a risque. La seule exception est le succes
de la vaccination rendue obligatoire en 1991 dans les établissements de soins et les écoles
médicales et paramédicales. Les autres groupes a risque restent difficiles a repérer et

vacciner de fagon exhaustive.

2.4.1 Vaccination systématique des nourrissons

Cette vaccination systématique des nourrissons consiste a vacciner les bébés des leurs
plus jeune age. Il faudrait accorder de tres grands efforts a la vaccination systématique des
nourrissons, parce que la plupart des infections chroniques sont contractées pendant la plus
petite enfance, surtout dans les pays a moyenne ou forte endémicité. Elle est également
une priorité élevée dans les pays a faible endémicité car c¢’est la seule stratégie permettant
d’éviter l'infection de toutes les classes d’age (enfants, adolescents et adultes). Dans ces
pays, la majorité des infections chroniques sont contractées pendant ’adolescence ou a
I’age adulte, mais les infections qui interviennent pendant la petite enfance jouent un role

important dans le maintien de la charge de I'infection chronique.

2.4.2 Prévention de la transmission périnatale du virus de 1’hé-
patite B

Pour ce qui est de la prévention de la transmission périnatale de I'hépatite B, la
premiere dose de vaccin anti-hépatite B doit étre administrée aussitot que possible apres
la naissance de préférence dans les 24 heures qui suivent. La stratégie la plus facile consiste
a administrer une dose de vaccin a tous les nouveaux-nés. L’autre méthode consiste aussi
a dépister la présence de marqueurs du virus de I'hépatite B chez la femme enceinte
et a vacciner automatiquement a la naissance les enfants de femmes infectées. L’obstacle
majeur est que le dépistage chez la femme enceinte et la recherche des nourrissons de meres
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infectées sont des opérations qui nécessitent des ressources considérables, ce qui est parfois
onéreux pour la plupart des pays de forte prévalence. La prévention de la transmission
périnatale de I'hépatite B est d’'une importance majeure car selon les estimations, 90%

des enfants infectés a la naissance, deviennent chroniques a ’age adulte.

2.4.3 Vaccination de rattrapage pour les sujets plus agés

La vaccination de rattrapage consiste a vacciner les groupes a risques pour prévenir 'in-
fection de I’hépatite B. Lorsque le vaccin anti-hépatite B est incorporé dans les calendriers
de vaccination infantile systématique, il faudrait évaluer la nécessité d’une vaccination de
rattrapage pour les classes d’age supérieures a un an. En particulier, il convient de noter
que les agents de santé exposés a une contamination par le sang courent un risque élevé
d’infection a I'hépatite B. La nécessité d’une vaccination de rattrapage pour les sujets
plus agés dans d’autres groupes variera en fonction du degré d’endémicité de cette infec-
tion dans chaque pays. Il est particulierement important que la vaccination de rattrapage
dans les classes d’age supérieures ne fasse pas obstacle aux efforts visant a parvenir a la
vaccination complete des nourrissons et a empécher la transmission mere-enfant du virus

en administrant a ce dernier une dose de vaccin a la naissance [12].

2.5 Conclusion

L’hépatite B se caractérise par la présence de porteurs chroniques asymptomatiques. Ces
porteurs chroniques jouent un role important dans la transmission de la maladie.
L’évolution vers le portage chronique dépend de I’age a laquelle on a contracté la maladie.
Du point de vue de la modélisation, il est naturel de distinguer différentes classes d’infec-
tieux. Il est communément admis que I'infectiosité des asymptomatiques est inférieure a
celle des infections aigués (en tout cas certainement différentes).

Par ailleurs, on va distinguer des classes différentes de susceptibles. La différence dépendra
de I’age puisque, a la suite d’un contact infectieux, I’évolution de la maladie sera différente.
Si une politique de vaccination existe, on introduira une autre classe de susceptibles : les

vaccinés, car tout vaccin ne protege pas a 100%.
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Chapitre 3

Etat de ’art : modélisation de la
transmission de I’hépatite B

« Tous les modeles sont faux,
mais certains sont utiles. »

G. Bozx

3.1 Introduction

La modélisation mathématique appliquée a I’étude de la dynamique des maladies in-
fectieuses semble un outil intéressant pour aider a la conception de stratégies de controle
ou d’éradication d’une maladie comme I’hépatite B. Elle permet de tester « in silico »
(sur ordinateur) différents scénarios de prévention avant de les mettre en oeuvre et ainsi
d’aider la décision de santé publique [29].

Par définition, un modele est une représentation simplifiée de la réalité; il repose
donc sur des paradigmes et sur une théorie. La modélisation mathématique des maladies
infectieuses est une science relativement nouvelle. Si I’épidémiologie a une longue histoire,
ce n'est que récemment que les mathématiciens, les épidémiologistes, les immunologistes,
les médecins ont commencé a collaborer pour créer des modeles susceptibles de prédire
I’évolution d’une maladie.

Pour les maladies transmissibles, le paradigme central est celui de la contagion inter-
humaine. Depuis, diverses maladies ont été modélisées, avec un succes variable. L’épi-
démiologie classique utilise des variables pour décrire 1’état d'une population qui a été
exposée a une pathologie infectieuse. Le nombre de variables dépend de la maladie étu-

diée, ainsi que de la complexité souhaitée pour la modélisation. Les parametres incorporés
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représentent des facteurs de base, comme le taux de transmission de I'agent infectieux,
le taux de mortalité, et autres données suivant le contexte sociologique, géographique et
culturel.

Depuis les années 1911, toute la théorie mathématique déterministe des épidémies de
maladies transmissibles repose sur les travaux de Ronald Ross, W. O. Kermack et A. G.
McKendrick, c’est-a-dire sur des modeles compartimentaux. Par exemple, on considere des
modeles de type SEIR, qui partagent la population en sujets susceptibles de contracter la
maladie (S), sujets latents (E), sujets infectieux (I) et sujets retirés (R).

La plupart des modeles sont complexes. Il est possible de prendre en compte de tres
nombreux facteurs, qui seront inclus dans des équations, avec des limites toutefois. Un
modele incluant des douzaines de variables pourra étre tres réaliste, mais sera souvent
ingérable en raison du grand nombre de parametres a déterminer. Un compromis doit
souvent étre adopté. Ces modeles peuvent étre utilisés non seulement pour prédire I'impact
d’une maladie infectieuse, mais également pour simuler un traitement ou un vaccin, pour
en évaluer I'impact parfois méme économique.

Par exemple, la modélisation mathématique des maladies infectieuses a un niveau
cellulaire ou moléculaire est fondée sur un principe similaire. Chez un patient, il y a des
cellules infectées, des cellules susceptibles de le devenir, des cellules qui ne le seront pas,
il y aura une réponse immunitaire dont les composantes peuvent étre incorporées.

En fonction de notre niveau de compréhension de la biologie de la maladie, il est
possible de construire des modeles réalistes, qui permettront de déterminer les meilleurs

traitements, ainsi que I'impact respectif des facteurs qui influencent cette maladie.

3.2 Quelques définitions en modélisation des épidé-
mies

Définition 1 : On appellera contact adéquat tout contact a l'issue duquel ['infection

est effectivement déclarée.

Définition 2 : Un susceptible est un individu de la population qui n’est ni malade, ni
immunisé contre la maladie et qui, suite a un contact dit adéquat avec un individu malade,

est susceptible de contracter la maladie.

Définition 3 : On appellera infecté (latent) tout individu ayant été contaminé par le
pathogeéne de la maladie mais ne pouvant encore la transmettre.
16 Etude de quelques modéles épidémiologiques :
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Définition 4 : En effet, il existe une période dite période de latence pendant laquelle
le développement des organismes responsables de la maladie est purement interne. Durant
cette période, les infectés sont dits latents et ne peuvent pas transmettre la maladie a

d’autres individus.

Définition 5 : Un individu est dit infectieux s’il est infecté par le virus de la maladie

et s’il peut transmettre la maladie a un susceptible par un contact adéquat.

Définition 6 : Le nombre de reproduction de base R, est le nombre moyen de cas
secondaires produits par un individu infectieux typique placé dans une population consti-

tuée entierement d’individus susceptibles, durant toute sa période d’infectivité.

Intuitivement, on a I'impression que I'introduction d’un cas infectieux pourra mener a une
épidémie lorsque cette valeur est supérieure a 1; le cas Ry inférieur a 1 correspondra en
revanche a un défaut de transmission, menant a la disparition de la maladie. Ceci a été
démontré mathématiquement par Diekmann et al. En fait, le nombre de reproduction de
base R est un seuil.

Grace a cette caractérisation, il est possible de mesurer I'efficacité d’une intervention
pour prévenir une épidémie par l'effet qu’elle aura sur le taux de reproduction de base.
Le nombre de reproduction de base Ry peut intégrer 'effet des interventions selon leur
efficacité a réduire le taux de contact (quarantaine), la transmission lors des contacts
(protection individuelle, meilleure hygiéne, vaccination) ou la durée de la période infec-
tieuse (diagnostic, traitement). L’obtention d’une expression analytique du nombre de

reproduction de base R est, de ce point de vue, intéressante.

3.3 Modeles mathématiques pour les épidémies

La théorie mathématique des épidémies fournit de nombreux systemes d’équations
différentielles ou aux dérivées partielles. D’autre part, on a une idée intuitive du com-
portement de ces phénomenes, de la propagation de ces maladies. Y interviennent des
phénomenes de contamination, de diffusion...

Il existe deux grands types de modeles mathématiques pour I'étude de la dynamique
épidémique d’une maladie transmissible : les modeles déterministes et les modeles sto-
chastiques. Les modeles déterministes, que ’on vient de décrire a propos du modele SEIR,

reposent sur des systemes d’équations différentielles non linéaires dont la programmation
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et la résolution, devenues aisées grace au progres de 'informatique, permettent de dis-
poser tres rapidement de résultats. Ils présentent cependant le grand inconvénient de ne
pas prendre en compte des événements aléatoires inéluctables lors des démarrages épidé-
miques.

L’impact de tels événements aléatoires sur les courbes épidémiques peut étre évalué a
I’aide d'une autre méthodologie appelée «stochastique». Nous ne détaillerons pas ici les
nombreuses techniques de modélisation stochastique, mais elles reposent toutes sur des
simulations effectuées sur de puissants calculateurs ot 'on peut programmer les contacts
entre chaque individu d’une population avec un maximum de précision sur les probabilités
de contacts inter-individuels. Ces probabilités ainsi que d’autres parametres du modele
(durée d’incubation, durée des symptomes, délais de prise en charge par le systeme de
soin) sont souvent variables et les programmes permettent pour chaque simulation de tenir
compte de cette variabilité en la modélisant. Ainsi, chaque parametre ne prend pas une
valeur constante comme c’est le cas dans les modeles déterministes, mais prend une valeur
différente a chaque simulation, cette valeur fluctuant a 'intérieur d’une loi de distribution
qui reproduit au mieux la réalité des fluctuations de ce parametre dans la nature. Chaque
simulation reproduit donc le cours d'une épidémie avec ce jeu de parametres. On peut
alors réitérer sur 'ordinateur plusieurs centaines ou milliers de simulations, toutes avec
des jeux de parametres différents, et ’on obtient alors des intervalles de confiance autour
des projections du modele. Ces modeles sont donc particulierement adaptés a 'étude
d’épidémies de nouveaux agents infectieux pour lesquels on connait encore peu l'impact
des événements aléatoires initiaux. Ils sont cependant dépendants de la précision des lois
de distribution des parametres, comme nous l'avons expliqué ci-dessus, mais dans le cas
des phénomenes émergents, on ne connait pas toujours exactement ces lois de distribution.

Par ailleurs, ces modeles sont souvent d’un maniement tres lourd et difficiles a analyser

mathématiquement.
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3.4 Présentation de quelques modeles sur la trans-
mission de I’hépatite B

La littérature mondiale concernant le sujet est relativement restreinte comparée a celle
sur les autres infections comme le VIH!, la tuberculose ou le paludisme. Nous avons ana-
lysé les publications sur les modeles mathématiques déterministes, sur la transmission du
virus de I'hépatite B, en dimension finie en utilisant les bases de données : Mathscinet,
Zentralbllatt, Medline, ISI Thomson. Nous résumons ici les travaux publiés par quatre
équipes concernant ’étude par des modeles mathématiques de I'impact de stratégies vac-
cinales contre 'hépatite B dans des pays européens de faible endémie (Cvjetanovic et coll.,
1984 et 1987 ; Pasquini et Cvjetanovic, 1987 ; Pasquini et coll., 1987 ; Williams et coll.,
1996a et b; Garuz et coll., 1997 ; Medley et coll., 2001 ; Kretzschmar et coll., 2002).

3.4.1 Modele d’Anderson-May

Il s’agit la probablement du premier modele utilisant les équations différentielles or-
dinaires sur la transmission du virus de I’hépatite B. Dans la référence [2], Anderson et
May considerent la transmission du virus de 'hépatite B a partir des porteurs chroniques
de la maladie. Ils supposent que l'infection va dépendre de la réponse immunitaire de
I'individu. Une réponse immunitaire adéquate stimule la production des anticorps pour
stopper l'infection et une réponse immunitaire inadéquate favorise la réplication virale
d’ou I'évolution de la maladie vers la chronicité. Ils divisent la population des susceptibles
en deux groupes, avec une proportion, (1 — 7) de cette population qui va développer
une infection aigué, puis guérir et une proportion, 7 de cette population qui va devenir
infectée ou chronique. Ils introduisent donc des compartiments d’infectieux I (infection ai-
gué) et C' comme chronique, les porteurs asymptomatiques. Ils supposent que les porteurs

chroniques sont moins infectieux.

Ils introduisent le modeéle suivant :

1. virus de 'immunodéficience humaine
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FIGURE 3.1 — Modele May-Anderson avec infectivité différentielle

oum +m=1

Ce qui conduit au systeme différentiel suivant :

S =uN—(/iI+BC)S—pS

I =m (Bil+3C)S—(n+m)l
C =mb(bl+pC)S—(p+t7)C
R =yn1+v%C—-upR

ol
— [3; désigne le coefficient de contact adéquat pour étre contaminé soit par un infecté
I (i =1) ou un chronique C (i = 2).
— 7; le taux de guérison des malades.

— p caractérise le taux de mortalité supposé égal au taux de naissance.
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En fait, ce modele appartient a la catégorie des modeles a infectivité différentielle

[49,50,84]. Nous y reviendrons plus loin.

UR

-

FIGURE 3.2 — Infectivité différentielle

Dans le méme ouvrage, ces deux auteurs proposent un autre modele, tenant compte cette
fois-ci de la transmission verticale. Ils distinguent maintenant les susceptibles suivant leur
réaction a l'infection et ils supposent que les porteurs asymptomatiques vont donner nais-
sance a une proportion v de porteurs asymptomatiques. Le diagramme de la transmission

du virus de I’hépatite B dans ce cas est le suivant :

7t uN-t;vuC THUN-myvuC

Y2

FI1GURE 3.3 — Modele du virus ’hépatite B avec une transmission verticale
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Avec la condition suivante : m; + 7 = 1 Ce modele suppose que la population des suscep-
tibles est divisée en deux groupes de proportion m; et my. Les S7 donnent apres infection

des infections aigués, les Sy des porteurs chroniques.

51 =mpuN—mpvC —(fl1+PFC)S —pud
SQ :WQ/LN—WQV/LC—(ﬁll—i—ﬁQC)Sg—,uSQ
I =Bl +50)8 — (p+m)! (3.2)
C =i l+BC)S—(p+7)C+puvC
R = NI+7%C—-pR
Ce modele suppose également que les susceptibles ont le méme taux d’infectiosité vis a

vis d'un infectieux ou d’un chronique.

3.4.2 Modele de Cvjetanovic et coll. (Cvjetanovic et coll., 1984
et 1987 ; Pasquini et Cvjetanovic, 1987 ; Pasquini et coll.
1987) [17,18,95,96]

Cvjetanovic et al utilisent les modeles multi-stades discrets pour modéliser I'histoire
naturelle de I'infection du virus de I’hépatite B. Le modele construit est composé de douze
états épidémiologiques avec une structure d’age discrete : des nouveau-nés (pour simuler
la transmission verticale), une immunité maternelle de 9 mois, un état susceptible, une
incubation non infectieuse (30 jours), une incubation infectieuse (60 jours), une atteinte
hépatique infraclinique (infectieuse, 30 jours), une maladie déclarée (60 jours), un portage
infectieux (20 ans), une atteinte chronique infectieuse (15 ans), un état d’immunité post-
infectieuse (a vie), un état d’immunité post vaccinale (20 ans), une mortalité liée au virus
de I'hépatite B (VHB), une mortalité par autre cause. Ils considerent des taux de transfert
d’un état a un autre. Ils utilisent le modele pour simuler les situations endémiques et
épidémiques de la maladie. Les simulations faites avec les données Italiennes de 1’époque
les avaient conduit a la conclusion suivante : la vaccination des groupes a risque n’avait
pas d’impact sur les taux d’infection par le virus de I’hépatite B.

Plus tard, en 1987, Cvjetanovic et al. améliorent leur modele en introduisant une struc-
ture d’age plus détaillée, ce qui est beaucoup plus réaliste en ce qui concerne 'infection
du virus de I’hépatite B car, on ’a vu, I’age d’infection est important. Dans ce modele
structuré en age, la population est composée des nourrissons et le reste est subdivisé
en tranches d’age de cing ans. Avec ce modele, ils disent pouvoir simuler le cours natu-
rel de la maladie, les politiques d’intervention publique, I'immunisation d’une population
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appropriée et les mesures de prévention sanitaire.

3.4.3 Modele de Edmunds-Medley-Nokes [25]

Leur modele porte sur I'étude de la corrélation entre ’age d’infection du virus de
I’hépatite et la probabilité de devenir chronique. Ils établissent ainsi un modele qui donne
une loi de probabilité de devenir chronique suivant 1’age. Ainsi, ils proposent le modele

suivant :

{ p(a) = exp(—r.a®) si a > 6 mois 33)

Pperi = 0.885(95% C.L 0.84 — 0.93) si a < 6 mois
Les parametres du modele sont estimés a partir du maximum de vraisemblance, en utili-
sant les données de la surveillance épidémiologique de 'hépatite B en Gambie et donnent :

r = 0.645 et s = 0.455, ce qui nous conduit a la relation suivante :

p(a) = exp(—0.645.a"4%) si a > 6 mois
(3.4)

Pperi = 0.885(95% C.L 0.84 — 0.93) si a < 6 mois
Ce résultat est important car nous allons 'utiliser avec les données épidémiologiques du

Sénégal pour avoir une idée sur les parametres de notre modele pour les besoins de nos

simulations.

3.4.4 Modele de Medley et coll. (Williams et coll., 1996a et b ;
Medley et coll., 2001) [24,91,112]

Williams et coll. (1996a) ont proposé un modele mathématique trés complet appli-
qué aux données du Royaume-Uni. Ce modele déterministe, structuré en 12 classes d’age,
prend en compte les transmissions verticale et sexuelle du virus de I'hépatite B. Ils consi-
derent, de facon séparée et indépendante, la dynamique épidémique chez les hétérosexuels
et les homosexuels masculins.

La population est répartie en six compartiments, les susceptibles, les personnes infec-
tées en période de latence, les personnes atteintes d’hépatite aigué, les personnes immu-
nisées apres infection, les porteurs chroniques du virus, et les personnes immunisées par
vaccination. Les parametres relatifs aux nombres de contacts sexuels sont issus d’enquéte
sur le comportement sexuel des Britanniques. Les valeurs du taux de reproduction de base
(Ro) ont été estimées un peu au-dessus de 1 chez les hétérosexuels et de 'ordre de 4 chez
les homosexuels (soit des valeurs tres inférieures aux valeurs estimées pour la rubéole 7
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ou la rougeole 16). Différentes stratégies de vaccination ont été simulées, et leurs impacts
évalués. La vaccination de masse des nourrissons est la mesure la moins cott-efficace, alors
que la vaccination des nouveau-nés de mere infectée est la mesure la plus cott-efficace. La
vaccination de masse des adolescents est plus rapidement efficace que celle des nourris-
sons, puisqu’elle concerne une population plus proche de la maturité sexuelle. Il n’a pas
été possible d’analyser avec précision I'impact d'une vaccination orientée vers les groupes
a haut risque, en raison du manque de données disponibles. Un second papier de Williams
et coll. (1996b) indique qu'il faudrait attendre 40 années de mise en oeuvre d'un pro-
gramme de vaccination de masse des nourrissons pour obtenir une meilleure efficacité que
la vaccination ciblée sur les sujets a haut risque chez les hétérosexuels (et 50 ans chez les

homosexuels).

En 2001, Medley et coll. ont proposé, a partir de méthodologies similaires, une étude
du role de ’age au portage sur le niveau d’endémicité : plus cet age est élevé et moins
I’endémicité est importante. Ces auteurs ont aussi analysé le role des afflux de porteurs de
virus par I'immigration venant de pays de forte endémie. Ce role apparait primordial dans
les pays de faible endémie, notamment dans la circulation du virus de ’hépatite B, mais
aussi dans le risque que ces porteurs de virus font courir a la région d’accueil de passer a un
niveau d’endémicité plus élevé. Ce risque pourrait justifier des stratégies d’immunisation
de masse moins efficientes a court terme que les stratégies ciblées sur les populations a

risque, mais cependant intéressantes sur le plan de la santé publique a long terme.

Ce modele est un modele a infectivité différentielle et a susceptibilité différentielle
avec les parametres suivants : Susceptibles (S), Latents (E), Infectés (I), Chroniques (C),
Vaccinés (V), Guéris (R). La variable p; représente la mortalité dans les différents com-
partiments. Le parametre p représente la probabilité de devenir susceptible a la naissance
(pas de transmission verticale) et 1 — p la probabilité de devenir latent ou la transmission
verticale a la naissance.
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FIGURE 3.4 — Le modele Edmunds, Medley, Nokes (Nature 2001)

3.4.5 Modele de Kretzschmar et coll. (2002) [69]

Cette équipe néerlandaise a développé une application légerement modifiée du mo-
dele de Williams et coll. (1996a). 11 s’agit d’un modele compartimental déterministe qui
prend en compte les contacts sexuels (homosexuels et hétérosexuels) et la transmission
verticale comme le modele Anglais, mais aussi désormais, qui tient compte de I'afflux de
porteurs de virus par voie d’'immigration issue de pays de forte endémie. Ainsi, sans tenir
compte de 'immigration, le taux de reproduction de base R reste inférieur a la valeur
1 (donc inférieur au seuil de déclenchement épidémique) dans la population néerlandaise
hétérosexuelle (il est de 2,7 dans la population homosexuelle). C’est donc I'immigration
des porteurs de virus qui déterminerait le maintien de la circulation de l'infection par
le virus de I’hépatite B aux Pays-Bas selon les résultats de ce modele, et qui limiterait
les bénéfices de la vaccination (tant que la prévalence dans les pays d’ou I'immigration
provient reste élevée). En conclusion, ils affirment que les nouvelles infections par le virus
de I’hépatite B aux Pays-Bas pourraient étre controlées efficacement par la vaccination de
masse des enfants, mais seulement 5 & 10 % des contaminations pourraient étre prévenues
par une telle stratégie en raison de 'afflux continuel de nouveaux immigrants infectés.
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3.5 Conclusion

Les modeles que nous avons présentés ne tiennent pas compte de I’évolution de I'infection
qui dépend de I’age. Ces modeles sont assez simples et comprennent peu de compartiments.
La plupart de ces modeles ont été développés pour de zones de faible endémicité pour le
portage du virus de I’hépatite B.

Une synthese des informations de ces différents modeles, adaptée aux zones de haute
prévalence, sera faite dans le cadre de nos modeles que nous proposons dans les chapitres

suivants.
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Chapitre 4

Modeles épidémiologiques et
fonction de Lyapunov

Nous donnerons quelques résultats de stabilité globale de quelques modeles comparti-
mentaux épidémiologiques en utilisant les méthodes de Lyapunov. Nous allons revoir les

méthodes classiques et donner une preuve simple basée sur les techniques de Lyapunov.

Apres 'examen du modele classique de Lajmanovitch et Yorke [70], nous nous inté-
resserons a un modele avec susceptibilité différentielle et progression de stade pour les
infectés/infectieux. La motivation pour cette étude est que I'infection au virus de I'hépa-
tite B fait apparaitre naturellement les modeles avec une susceptibilité et une infectivité
différentielles. Ce résultat est nouveau et a fait I'objet de deux publications. Un premier
résultat sur la stabilité du DFE, a été publié dans les actes de la conférence CARI'08 ' ;

la généralisation de ce dernier, dans le journal MMNP 2,

Nous donnons un nouveau résultat sur les modeles a susceptibilité différentielle et une
progression de stades des infectés, avec la loi d’action de masse et un nombre arbitraire
de compartiments. Ces modeles viennent compléter les modeles DI (modeles d’infectivités
différentielles "Differential Infectivity”) et SP(modeles de stades sanguins "Stagged Pro-
gression”). Dans tous les cas, nous allons montrer que si le taux de reproduction de base
Ro < 1 alors le DFE? (point d’équilibre sans maladie) est globalement asymptotiquement
stable. Si le taux de reproduction de base Ry > 1, il existe un unique point d’équilibre

endémique.

1. 9¢™¢ Colloque Africain sur la Recherche en Informatique
2. Mathematical Modelling of Natural Phenomena
3. Disease Free Equilibrium
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CHAPITRE 4. MODELES EPIDEMIOLOGIQUES ET FONCTION DE
LYAPUNOV

4.1 Introduction

Ana Lajmonovitch et James A. Yorke [70] sont les premiers a étudier les modeles
multi-groupes. Ils fournissent dans leur étude une description complete de la dynamique
de n groupes de systemes SIS a population constante. Ils utilisent dans leur étude des
fonctions de Lyapunov pour montrer que toutes les trajectoires issues de R’} tendent
vers 0, sinon il y a un seul et unique équilibre endémique  dans 'orthant positif et les

trajectoires dans R’} \ {0} tendent vers Z.
Il existe une riche littérature sur les modeles multi-groupes [44, 61,80, 105, 106].

Les modeles de progression a stades sont des modeles avec une seule classe de suscep-

tibles (non infectés) et dans lequel les infectés passent par une série de stades d’infectivité.
Exemple de modeles a progression de stade. (J.A. Jacquez [60]).

Ces modeles ont été introduit pour la modélisation du VIH Sida.

Blll+"’+BnIn w
y

Y1 o+

O+

FIGURE 4.1 — Progression dans les stades d’infectiosité
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4.2. LE MODELE LAJMANOVICH ET YORKE

La dynamique est représentée par le systeme d’équations différentielles :
/ n
S=A-pS—-5> B
j=1

Li=8Y Bl — (m+np+a)h

L=nh—(rtpta)l (4.1)

L=l —(y+pt+a)l

\ jn = Yn—1 [nfl - (,U + Oén) [n

Le parametre «y; représente la vitesse de transfert du compartiment j au stade j 4 1. Les
termes I; représentent les différentes classes d’infectieux, S le compartiment des suscep-

tibles, a; représente la mortalité due a l'infection et p la mortalité naturelle.

4.2 Le modele Lajmanovich et Yorke

4.2.1 Notations

On identifie les vecteurs de R™ par les vecteurs colonnes n x 1. Le produit scalaire eucli-
dien noté par (.|.) et ||z[|> = (z]2) est la norme euclidienne usuelle. La famille {e;, ..., e,}
désigne la base canonique de R™. On note par 1 le vecteur dont toutes les composantes
sont égales a 1,i.e. 1 =e;+---+e,. De facon standard si x € R", on note par x; sa i-eme
composante. De maniére équivalente, nous avons 1'égalité : z; = (x|e;).

Pour une matrice A, on note A(%, j), I’élément a la i-eme ligne et a la j-éme colonne. Pour
deux matrices A, B de méme dimension, on écrit A < B si A(i,j) < B(i,7) pour tout i
et pour tout j; A< Bsi A< Bet A# B; A< Bsi A(i,j) < B(i,7) pour tout i et j.
La notation AT désigne la transposée de A et on a (vi|vs) = v{vy. Si 2 € R™, nous notons
diag(x), la matrice diagonale dont les éléments diagonaux sont donnés par les coordon-
nées du vecteur z. On rappelle qu'une matrice est stable si ses valeurs propres ont des
parties réelles strictement négatives. Une matrice de Metzler A est une matrice dont les
termes A(i,j) > 0 pour tout i # j. Ces matrices sont souvent appelées des matrices
quasi-positives [103]. Les matrices de Metzler stables sont les opposées des M-matrices
inversibles [10,108]. Dans notre propos, nous préférons utiliser les matrices de Metzler car
elles apparaissent naturellement dans les systemes compartimentaux.
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4.2.2 Le modele

Considérons le systeme suivant :
t=[D+ B — diag(z) B] x (4.2)

ou D est une matrice de Metzler stable et B > 0 est une matrice positive irréductible.

Pour justifier le choix d’un tel systeme, nous allons considérer n compartiments a
population constante et une maladie qui ne confere aucune immunité apres la guérison
des malades. Les contacts sont modélisés par une loi d’action de masse.

Si on note, S; et I; respectivement le nombre de susceptibles et d’infectés dans un
compartiment i, N; = .S; + I; la population totale dans ce compartiment, le systeme pour

1=1,---,n est donné par :

Si =i Ni— i Si =Yy Bij s L+l

(4.3)
I =370 Bij ff_i L — (i i) I
Puisque la population est constante, il suffit de connaitre les I;.
) I - N;
Si nous posons : x; = A Bi; = Bi; N, et a; =y + i
Nous obtenons I’équation différentielle suivante :
donc nous pouvons alors I’écrire sous une forme beaucoup plus compacte :
& =[D+ B —diag(z) B] x (4.5)

avec

B= (B,.J) et D = —diag(a;)

Ce systeme est celui, qui est utilisé dans la référence [70] de la bibliographie, il a la
méme structure que le systeme différentiel (4.2). Dans ce modele, la matrice B décrit les

interactions entre les différents compartiments.

Définition 7 : Une matrice A de dimension n X n, n > 2 est dite irréductible, si pour
tout sous ensemble propre I de {1,--- ,n}, on a pour touti € I et j & I alors A(i,j) # 0.
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4.2. LE MODELE LAJMANOVICH ET YORKE

4.2.3 Le nombre de reproduction de base

On notera p(A), le rayon spectral de la matrice A qui est définie, si Sp(A) représente le
spectre de A, par :
p(A) = max{|A| | A € Sp(A)}

et le module de stabilité de a(A) par :

a(A) = max{RX | A € Sp(A)}

2

En utilisant les mémes notations dans [108], la matrice —D~!'B, représente le ” next

generation matrix” du modele (4.2) et le nombre de reproduction de base est donnée par :
Ro = p(—D_lB)
Nous allons maintenant utiliser le résultat du théoreme de Varga [109,110].(Voir annexe )

Définition 8 : (Décomposition réguliére d’une matrice)
Soit une matrice réelle M, M = A + N est une décomposition réguliere de M si A

est une matrice de Metzler stable et N > 0 une matrice positive.

4.2.4 Existence et unicité d’un état d’équilibre endémique

Nous allons maintenant montrer qu’il existe un unique point d’équilibre endémique x > 0
si et seulement si Ry > 1. S’il existe un tel point d’équilibre tel que x > 0, il est appelé
point d’équilibre endémique. La preuve est inspirée par méthode développée dans le livre
de Thieme [44,105,107].

Soit B une matrice de Metzler irréductible. Le point d’équilibre éventuel z vérifie :
T=-D"'Bz+diag(z) D"'B1Z.

Puisque D est une matrice de Metzler, alors nous avons —D~! > 0 [103]. Comme la matrice
B est irréductible et —D~! est une matrice a diagonale positive, on a alors —D~'B est
aussi irréductible. Donc —D 1B Z > 0 et d’apres les relations précédentes, on peut dire

que Z > 0. Une des conséquences est :
diag(z) D"'Bz < 0.

Finalement, nous obtenons :
T < -D'Bz
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ce qui veut dire, en d’autres termes que :
Ro=p(—D'B) > 1

Maintenant, il reste a montrer si Rg > 1 alors il existe un unique point d’équilibre endé-
mique.

Le point d’équilibre vérifie :

(D + B)z = diag(Z) BT
qui équivaut a :
T+ diag(z) (-D'Bz) =+ diag(—D'Bz)z=—-D"'Bz

ce qui peut s’écrire sous la forme :

I + diag(—D'Bz)]z=—-D"'Bz
T=|diag(1—-D'Bz)]™' (-D'B) z
Ce qui nous ameéne & chercher le point fixe de 'application : H : [0, 1]™ dans [0, 1]™
H(x) = [diag (1 — D7'Bx)|™' (-D7'B) x

Soit & A = —D~!B la matrice de nouvelle génération.
Puisque Ry = p(—D7'B) et A = —D~!B est une matrice positive irréductible, d’apres

le théoreme de Perron-Frobenius, il existe un vecteur v > 0 tel que :

Av=TRyv

Nous allons choisir € suffisamment petit tel que, pour tout indice 7, nous avons :

1+€Ro’Ui SRO

ce choix est justifié car Ry > 1. On en déduit que :

1< Ro
- 1+€R01)Z‘
et

. Roev; (Aew),
Vi = =
1+eRov; 14 (Aev),
Nous avons prouvé qu'il existe € > 0 tel que ev < H(ewv). Nous avons aussie < 1, ev < v.
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4.2. LE MODELE LAJMANOVICH ET YORKE

Avec un raisonnement similaire, on peut choisir A avec 0 < Av; < 1 et A assez grand tel

que :

_ R oy
1+R0)\’Ui -

Ce qui équivaut a : < Aw;. Ceci implique : H(Av) < Av. En choisissant e < A, nous

0
avons alors ev < H(ewv) et H(Av) < Av <1, donc H laisse invariant le parallélépipede :

K={x|ev <z <Av}C]0,1["

Par le théoreme du point fixe de Brouwer, on peut dire que H a un point fixe w dans K.

Ce qui représente 1’équilibre endémique car 0 < e v < w.

Montrons alors 1'unicité du point d’équilibre endémique.

Lemme 1 : Siw > 0 est un point d’équilibre endémique, si T est un autre point d’équi-
libre endémique alors T < w

Preuve : Soit £ = max —. Nous avons alors 7 < {w et il existe une indice iy tel que
i=ln W,
Z;, = Ew;,. Comme A est une matrice positive et  un point fixe de H alors, nous avons

les inégalités suivantes :

o (Az),, < (Alw),, & (Aw),
1+ (Az), ~— 1+ (Aw), )

Supposons par ’absurde que £ > 1. De la derniere inégalité, nous avons :

10

i’ < 5 (A w)lo
io
1+ (Aw) i
mais, comme @ est un point fixe :
T < —(Aw)’o =fwi, =1
20 - 20 0
1+ (Aw) i
ce qui est une contradiction.
O
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Nous avons besoin d’une lemme pour terminer la preuve.

Lemme 2 : St w > 0 est un équilibre endémique, si A est irréductible alors w > 0.

Preuve : Comme w > 0 et A irréductible, nous avons Aw > 0, comme toutes les

composantes de w sont données par :

oo (Aw);
T4 (Aw),

J

>0

Nous avons alors la conclusion. O

Les deux lemmes prouvent qu’il existe un unique point d’équilibre endémique.

4.2.5 Un théoreme de stabilité

Pour étudier la stabilité, nous avons besoin du résultat suivant, qui peut étre considéré

comme étant un résultat dual d'un théoréeme de Lasalle [71].

Théoreme 1 : Soit G un ensemble ouvert, contenant l’origine, positivement invariant
pour le systéme & = A(x).x ot A(x) est une matrice de Metzler, continue en x. Nous
supposons qu’il existe ¢I' > 0 tel que ¢! A(x) < 0 pour tout vecteur v € G, x # 0.

L’origine de [’ensemble ouvert G est globalement asymptotiquement stable dans G.

Preuve : Considérons V (z), une fonction de Lyapunov dans G

n

Viz) =) ¢ |

=1

On définie €, = sign(z), i.e. |x;| = €4, x;.
Cette fonction est une fonction localement lipschitzienne. On peut alors la dériver au sens
de Dini [71].

Nous avons :
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n

|4 :E Ci €, T
i=1
n n

i=1 j=1
n n
= E E Ci Eg; Ajj T
i=1 j=1
n n
= E Ex;Tj E Ci €x;€x; Qij
j=1 i=1
- -
= E €x;T5 | Cj 55 + E Ci Ex,Eq; Qij
j=1 L i#]
n n
<D ey |Gag+ Y cag | =) |l A); <0
g=1 L #J J=1

comme ¢ A(z) < 0 dans G, la fonction V est définie négative dans G. On peut alors

conclure avec le théoreme Lyapunov. O
4.2.6 Stabilité globale du point d’équilibre sans maladie (DFE)
Nous avons le résultat suivant :

Théoréme 2 : L’origine, qui est le DFE du systéeme (4.2) est globalement asymptotique-

ment stable, si et seulement st Ry < 1.

Preuve : La condition est nécessaire, car si Rg > 1 alors le DFE est instable. Comme
Ro = p(—D'B) < 1, nous avions vu dans la proposition (Varga, 1962, Theorem 3.13,
[110]), c’est équivalent a D + B stable. D’apres le théoreme de Perron-Frobenius, comme

D + B est irréductible, alors il existe un vecteur propre ¢ > 0 tel que :

(D+ B)f'c=a(D+ B)c
Choisissons la fonction de Lyapunov suivante :
V(x) = (c|z)

qui est définie positive sur 'orthant positif R, et nous avons :

V(e) = (D + B)" ¢| ) — (diag(x)Bx | ¢) <0
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si D + B est stable, c’est-a-dire a(D + B) < 0, la démonstration est terminée, puisque ce
terme est défini négatif. Il reste a voir le cas ot a(D + B) = 0, qui est aussi équivalent a
Ro = 1.

Nous allons appliquer le théoreme d’invariance de Lasalle. Nous considérons L le plus

grand ensemble invariant contenu dans :
E ={z | diag(x)Bx = 0}.

L’irréductibilité B implique : £ = {0}.

En effet, si z € £ C E, nous avons pour tout (i,7), z; Z Bij x; = 0, les quantités sont

J
positives, ce qui implique que pour tout couple d’indices (i, 7), on a : f;; x; x; = 0.

Par ’absurde, nous supposons que si g est tel que z;, # 0. Il existe un indice ¢; tel que
Birio # 0, & partir de I'irréductibilité de B. Il s’ensuit que z;, = 0. Les trajectoires x(t)
de z, vérifient pour tout intervalle de temps suffisamment petit z(t);, # 0. Dorénavant,
x(t);, = 0.

Par I'invariance de £, nous avons :
Ty = — E Bil,j Zj.
J

Ce qui implique a son tour x;, = 0, pour tout 3;, ;, # 0. En d’autres termes si le noeud i,
est connecté dans un espace orienté a un autre noeud 7;, alors z;, = 0. Par une induction
finie, nous déduisons que nous avons x; = 0 pour tout noeud connecté a un autre noeud
i1. Par I'irréductibilité [10], le graphe associé a B est fortement connecté, nous avons alors

x;, = 0, qui est une contradiction.

4.2.7 Stabilité globale de I’équilibre endémique

Théoréeme 3 : L’équilibre endémique du systeme (4.2) est globalement asymptotiquement

stable dans R™/{0}, si et seulement si Ry > 1.

Preuve : Comme Ry > 1, il existe un unique point d’équilibre endémique w > 0. Nous
notons 'égalité (4.5) avec de nouvelles coordonnées x = X + w. En utilisant la définition

de w: (D + B)w — diag(w)Bw = 0, nous avons :

X =[D +diag(1 — X —w) B — diag(Bw)] X (4.6)
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comme w est dans |0, 1[" qui est un ensemble absorbant, ce qui est suffisant pour considérer
le systeme (4.2) dans cet ensemble, ou c¢’est équivalent quand x < 1. Dans ce cas diag(1 —

X —w) = diag(1l — x) la matrice définie par :

A(X) =D +diag(l — X —w) B — diag(Bw)

est une matrice de Metzler. Le vecteur X est dans I’ensemble compact —w + [0, 1]".

On applique le théoréme (1), comme nous savons pour toute matrice irréductible B > 0,

pour toute matrice de Metzler stable D telle que p(—D~'B) > 1 il existe w > 0 tel que :

(D — diag(Bw) + B)w =0

En d’autres termes A(—w) vérifie A(—w)w = 0. A partir de la proposition (matrice
irréductible), on en déduit que a(A(—w)) = 0. Comme cette matrice est une matrice

irréductible, et transposable, nous savons qu’il existe ¢ > 0 tel que :

' A(~w) =" (D — diag(Bw) + B) =0

alors pour X 4+ w > 0 (i.e. z > 0, nous avons :

TAX)= " (X +w)B<0

Ce qui prouve la stabilité dans ]0,1[". Comme le champ des vecteurs est strictement
entrant, c’est la fin de la preuve dans R™ \ {0}.
O
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4.3 Modeles épidémiologiques a susceptibilité et in-
fectivité différentielles (DSDI)

Nous considérons un modele ou 'on distingue n classes de susceptibles. Chaque classe de
susceptibles a un recrutement et une mortalité. Ces quantités sont strictement positives
de fagon a assurer un équilibre démographique. A 1’équilibre chaque classe atteint une
valeur strictement positive.

Nous distinguons m classes d’infectés ou infectieux. Chaque classe a une mortalité et le
graphe des flots entre les compartiments infectés/infectieux est représenté par une matrice
de Metzler. En raison des bilans de matiere, cette matrice est somme de colonnes nulle.
Si l'on rajoute la diagonale des mortalités, on obtient donc une matrice de Metzler stable.

Le flot des susceptibles vers les infectieux/infectés est représenté par 'infection.

Susceptibles S 1 S i S n

I, :
1\12/71J

Infectés/infectieux l

a—

FIGURE 4.2 — Modele a susceptibilité et infectivité différentielles

Nous allons utiliser tout au long de cette partie les notations suivantes : Si x est un
vecteur de R", alors diag(z) sera une matrice diagonale n x n dont les composantes de

la diagonale sont les éléments du vecteur z. On notera ( | ) le produit scalaire de R”. On

notera {ep, -+ ,e,} la base canonique de R™. Nous choisirons 1 le vecteur qui est donné
par 1 = (1,---,1)T =¢; + -+ + ¢e,, ou T représente la transposée. Nous allons utiliser
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l'ordre R™ généré par le cone de R’}. Nous allons écrire x <y, siy —z € R} et z <y si
x < yetx#y. Finalement x < y équivaut a x; < y; pour tout i.

Considérons le modele généralisé suivant :

S = A—diag(p) S — diag(BI) S
. (4.7)
I =(BI|SYb+Al

ou S € RY représente les états des individus susceptibles. I € R’} représente les différents
stades d’infection. Le vecteur A est le recrutement dans le compartiment des susceptibles.
Par conséquent on a : A € R’}. La matrice B > 0 représente les coefficients d’infectivité,
avec B(i,j) = Bi; qui est les coefficients de contacts de la classe des infectés I; a la

classe S;. Soit b > 0 est un vecteur de R'!. Il représente la transmission de la classe des
m

susceptibles a la classe des infectés d’ou Z b; = 1 a cause de la loi d’action de masse.
i=1
Enfin, A est une matrice de Metzler stable et elle représente 1’évolution des infectés suivant

les stades infectieux. L’hypothese de stabilité de A s’exprime simplement, quand il n’y

a pas de transmission, I'infection disparait. De plus, puisque A est obtenu par analyse

compartimentale, nous supposons que A est une matrice compartimentale [58]. En d’autre

termes, nous supposons pour tout indice ¢ = 1,--- ,m nous avons a; + Z a;; < 0. Le
J#i

terme a;; est la somme des sorties du compartiment d’infectieux ¢ avec le taux de mortalité

du compartiment.

Nous supposons que B > 0. Cette hypothese permet de considérer les compartiments

d’individus qui ne sont pas infectieux, les individus par exemple infectés ou latents.

Ce modele vient compléter les modeles d’infectivité différentielles et de progression a

stades (DI, SP). Nous généraliserons les résultats obtenus dans [6,37,48,52].

4.3.1 Un ensemble positivement invariant pour le systeme

Nous allons montrer maintenant qu’il existe un ensemble positivement invariant et absor-
bant K pour le systéme (4.7). Un ensemble absorbant pour le systeme dynamique est un
ensemble K tel que, pour n’importe quelle condition initiale, le trajectoire finit par aller

dans I’ensemble K suivant le temps.

On note N(t) la population totale a I'instant ¢. Nous avons alors N = (S|1) + (I|1) et
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= (A1) = (ulS) + (A1) = (A1) = (ulS) + Z(Z%)

i=1
m

Soit po définie par gy = min (,ui, — Z aij) > ( alors nous avons :

i=1
Lemme 3 : Pour tout ¢ > 0, le sous-ensemble K. de l'orthant positif R, x R, définie

par :

K.={(S,)[S>0;1>0 ;N <((A+¢e,1))/ 1o}

est un compact positivement invariant pour le systeme (4.7).

Preuve : On vérifie facilement que l'orthant positif est positivement invariant par le

systeme (4.7). Si on remarque que N < (A|1) — o N, d’ott le résultat.
Nous avons aussi : S* € K. ou S* = (diag(u) ™A, 0).

4.3.2 Nombre de reproduction de base

Pour calculer la valeur de Ry, nous allons utiliser les techniques de Van Den Driessche
dans [108].

Soit F;(S, 1), le taux d’apparition des nouveaux infectieux dans le compartiment I et
V;(S, 1), le taux de transfert des individus a Uintérieur et a I'extérieur du compartiment
S et I par tout autre moyen.

Avec nos définitions, nous avons F (5, ) qui est définie par :

F(8,1) = { (BI?S)el 1

et V(S, 1) qui est donné par :

A — dia S — diag(BI)S
V(S’]):{ g(u)AI 9(BI) }

Le jacobien de chacune de ces matrices est :

B 0 0 | —pul —diag(BI;)S —diag(S)B
DF(S,I) = [el(BI)T elSTB} et DV(S,I) = { 0 M
Au DFE on a :
. 0 0 « v | 0 —diag(S*)B
DF(S*,0) = [O e(S*)TB} et DV(S,I)_{O P ]
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Ce qui nous conduit a :

F=eS"B et V=A

)

Le nombre de reproduction de base étant le rayon spectral de la "next generation matrix’

c'est-a-dire —FV =1 on a:
Ro = p(=FV~') = p(erS*" B(=A™"))

Or la matrice e;S*7 B(—A™') est de rang 1 et la seule valeur propre non nulle est donnée
par S*TB(—A~)e; qui est naturellement le R,.

Comme A est une matrice de Metzler, on a : (—A™') > 0, ce qui nous conduit a :

Ro=(B(-=A"")e1] S) (4.8)

4.3.3 Stabilité globale du point d’équilibre sans maladie (DFE)

Nous avons le théoreme suivant :

Théoréme 4 : Pour le systeme (4.7), si Ro < 1 alors le DFE est globalement asympto-
tiquement stable suivant [’orthant positif. St Rog > 1, le DFE est instable.

Preuve : Si M est une matrice réelle positive, on note L. = In M, la matrice réelle
définie par L(7, j) = In(M (4, j)). Nous pouvons maintenant définir la fonction de Lyapunov

candidate dans R} x R\ {S*} x R :

VDFE(S, I) == R() <1 | S— S*> — RO <S* | IHS— IHS*> + <B(—A_1)[ | S*>

Cette fonction est une fonction positive suivant 'orthant positif et elle est nulle au DFE.
Puisque S* > 0, alors les coefficients de S dans Vpprg sont positifs. On peut vérifier que
(—=A~T BT §* > 0. Dorénavant, au moins un des coefficients de I ; est non nul dans Vppg.
Cette fonction est bien une fonction de Lyapunov [38,71].

Nous avons, en utilisant le fait que : A = diag(p) S* :

Vorp = diag(u) Ro (1 | S*) — diag(u) Ro (1 | S) = Ro (1 | diag(BI) S)
— diag(u) Ro (S* | diag(S)™" 8%) + diag(i)) Ro (S* | 1) + Ro (" | diag(BI)1)
F(BI|S) (B(—A™Yb| S*) — (BI| S%). (4.9)
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En tenant compte de la formule (4.8) de Ry, avec les relations suivantes :

(1| diag(BI)S) = (BI | S), (diag(BI)1 | S*) = (BI | S*)et (1] S) = (S* | diag(S*)~' S)
I'équation (4.9) devient :
Vpre = diag(p) Ro (2 — diag(S)™" S* — diag(S*)™' S| S*) + (Ro — 1) (BI | S*).

L’inégalité de la moyenne arithmétique et géométrique et Ry < 1 implique Vprg < 0.

Soit L le plus grand ensemble invariant contenu dans I’ensemble :

L= {(S,[) e K, ’ VDFE(S,[) = 0}

satisfait la relation S = S*.

Dans l'ensemble £, on a diag(B ) = 0. Comme A est une matrice de Metzler stable, le
plus grand ensemble invariant contenu dans £ est réduit au point {(5*,0)}.

En appliquant le principe d’invariance de Lasalle [71], le DFE est globalement asympto-
tiquement stable dans K,.. Comme K, est absorbant, on a donc la stabilité asymptotique

globale dans tout l'orthant positif.

—
=)
o

4.3.4 Existence d’un équilibre endémique

Théoréme 5 : Pour le systéme (4.7), il existe un unique point d’équilibre endémique

dans 'orthant positif si et seulement si Ro > 1.

Preuve : Nous cherchons un point d’équilibre (S, I) avec I > 0. A partir des relations

0 = A —diag(p) S — diag(BI) S,
o - (4.10)
0 =(BI|S)b+AI
Comme A est une matrice Metzler stable, nous avons I = (BT | S) (—A~1)b. En utilisant

la deuxieéme relation du systeme (4.10) et avec le produit scalaire de b, noté [|b]|3 = (b | b),

nous avons :

1bl[3(BI|S)=—(ATI|b).
Finalement
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I— —W (AT|b) (—A~)b. (4.11)

Pour calculer 7, il faut avoir U'expression —(A T | b).

Avec lexpression de I = (BT | S) (—A~!)b, nous avons

(BI|S)=(BI|S)(B(~=A"")b|S).
La condition (BT | S) = 0 implique A I = 0 et comme A est une matrice de Metzler stable,
I = 0 alors S = S*. Ainsi, nous avons le DFE mais pas le point d’équilibre endémique.
Dot (BI|S) # 0, alors on a :
(B(=A™Hb | S) =1. (4.12)
Avec la premiere équation du systeme (4.10), on a :

S = [diag(u + BI)]7'A = [diag(1 + diag(u)~' BI)]~! S*. (4.13)

En utilisant la valeur de S et de BI dans I’égalité (4.11), nous avons

9(B(=A")b g| [diag(1 — Gyt diag(u) ™' B(~=A")b)] 1 57g) = 1.

1o

Autrement dit, le scalaire —(A I | b) est une solution de H(z) = 1 avec la fonction H(z)

définie par :

H(z) = g{B(=A"")bg|[diag(1 + x pdiag(p) " B(=A7)b)] ™ S*g).

Il est clair que H(x) est une fonction strictement décroissante vérifiant xgrﬁo H(z)=0.11
existe une unique solution positive si et seulement si H(0) > 1. Comme H(0) = Ry, alors
nous avons une unique solution positive.

De la premiere équation du systéme (4.10), nous avons S* > S > 0 et a partir de I'égalité
(6.15), avec —(AT| b) > 0, I > 0, alors I'équilibre est un équilibre endémique. De plus
(BI|S)#0>0.

D’apres ce qui précede, nous avons vu que si Rg = 1 alors 'unique point d’équilibre est
le DFE. Dans le cas ou Ry < 1, nous avons I < 0, alors cet équilibre n’est pas intéressant
d’un point de vue biologique. O
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4.3.5 Stabilité globale de ’équilibre endémique, dans un cas par-
ticulier : le cas n =2, k =2

Pour voir la stabilité globale du systeme, nous aurons a utiliser la structure de la matrice
A, qui représente la matrice d’évolution dans les classes d’infectés. Dans cette partie,
nous allons traiter un exemple, le cas ou n = 2 et k = 2, c’est-a-dire, nous considérons un
modele avec deux classes de susceptibles et deux classes d’infectés avec une progression

de stades. Nous donnerons ensuite le cas général qui s’obtient assez facilement.

plA pzAl

¢ k
u
B11li+B121n Bo111+B2215

M+€>1¢ l 11

M+6£ l 12

L
W

FIGURE 4.3 — Modele avec deux classes de susceptibles et deux classes d’infectieux
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Le systeme différentiel est donné par :

( Sl =p1 A —pSy — P 1 S1 — Bz I Sy

S2 =pa A — Sy — Par It So — Pz [ 5o

§ hi=BuliSi+Bi2loSi+ B [t Sy + Ban Ir So — (u+ ) I (4.14)
L=yli—(p+n) b

| R=nlL—uR

Théoréme 6 : Si Ry > 1, l'unique point d’équilibre endémique du systéme (4.14) est

globalement asymtotiquement stable. Le nombre de reproduction de base est donné par :

R — Y1 (Br2ST + B2255) + (1t + 72) (B115T + B2153)
0=
(14 71) (1 +72)

Preuve : Le nombre de reproduction de base Ry est obtenu en appliquant la formule (4.8)
de Rg. A partir de ce qui précede, nous avons l'existence d'un unique point d’équilibre

endémique qui vérifie les relations suivantes :
(pA=pSi+Bu i S+ B2 o S
po A =Sy + Bor [t Sy 4 Pa2 [, S,
Buuli Si+ Pralo Si+ Por [1 Sa + Por [ Sy = (u+m) Ly (4.15)

h=(u+7) b

L Yolz = uR
Considérons maintenant la fonction de Lyapunov candidate suivante :

B1251 + Ba2Ss

VEE = (Sl —S’l ln51)+(52 —SzlnSQ> + (Il —I_l ln[1> +( (,u+7)
2

) (Iy — Iy In 1))

B1251+ 82252
(ut2)

trajectoires du systeme différentiel ordinaire (4.14) est donnée par :

Posons d = , la dérivée de la fonction candidate de Lyapunov V' le long de

Ver = [p1 A —pSi — Bu i Si — B2 [ St — pu A% + 1St + B L1 Si+ Pro I 51]
+[pa A — Sy — Bor [1 Sy — Paa I Sy — po A§—§ + 1152 + Bo1 I Sy + a2 I5 S5
+[B11 11 S1 4 Bi2 Lo St + Bor It So + oo I So — (+ 1) Iy
B I1 S1— Pra Iy B8t — B Iy S — o I 1.8y + (1 + ) I

"‘d[%h—(M‘i‘%)]z—%h%—f'(/l‘i‘%)jz]
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En utilisant les relations du systéme au point d’équilibre endémique du systéeme (4.15),

nous avons :

Ver = [uS + B [ S+ Bia l2 S1 — Mgl%
—(uS1+ P11 [ S+ Pra I 5’1)5—1 + uS1 + B L1 S1 + Pra I S
+ (1152 + Bo1 It Sy 4 B2 I S — M%%
—(uSz + Por [ Sy + Paz I 52)& + 1Sy 4 Pa1 [t Sa + Boa I So] — (4 ) Iy
—fBn Iy Sls — B2 1,51 % Sl h 2 2 + P L 525 — f22 IS5 gi ﬁ g
+611 [y Sy + Pra I St + Par [t So + B2 I Ss
+dnh —(p+7) - 1.15—2 + 71 1]
= pSi[2 = & = F+uSh2 - - 2
+Au L 512 - 51 —i]+512[251)[2—§—i— A ﬁ 2]
+821 [ S2[2 — 52 - SQ] + a2 I So[2 — Ej - 2—;%}—;]
+(B11 St 4 B Se +dy — (p+m)) L

+(B1251 + Ba2 Sa — d (pn 4+ 72)) I, — d 1 ]111 12 +dv

D’une part, en exploitant I’expression de d, nous avons :

Br2S1 + P2 Sa —d (+72) =0

et
P11 81+ Par So+dy — (n+m) :5115'1‘1‘5215'24‘%%—(#4‘%)

_ (pty2)(Bu S14821 S2)+71 (B1251482252)
(lu—l-vz) = —(u+m)

_ (t+2)(B11 S1+B21 S2)+m1 (B1251482252)
= (n+ml (ut7) (pt2) 1]

=0
D’autre part, si on utilise les relations endémiques du systeme (4.15), nous observons dans
la troisieme équation que :
Bir I Sy + Bra Iy Sy + Bor Iy So + Bag I Sy = (,u + ) L
Bii I 514‘512 [1 51‘1‘521[1524‘522 [152 (N+71)j1
(81151 + B 52 + o u+72 (512 S1 4 P22 53)) = (,u +71)

(p+72)(B11 S1+B21 S2)+71 (B12S1+82252) -1
(p+71) (p+72)
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dnl = —512(%:@2)252 v Iy

= (512]151 + 522[152)

M+72)
= B121251 + Ba2 25,

En utilisant ces relations dans ’expression de Vi £, on obtient :
Ver = pSi[2 — 5t — 2]+ pS[2 — §§ - 2]

+Bn L 512 - % - ’1] + P12 1, 51)[3 — Si - %%% - %%]

I, S S Sy SsLl I I
ol G2 -8~ B+ b S3—  — 2hia _alky

<0

L’inégalité de la moyenne arithmétique et géométrique nous permet de conclure que Ver

est définie négative. CQFD

4.4 Conclusion

Dans cette partie, nous avons montré, pour une classe de modele DSDI, c’est des mo-
deles avec susceptibilité différentielle et progression de stade pour les infectés/infectieux,
que si le taux de reproduction de base Ry < 1 alors le DFE? (point d’équilibre sans
maladie) est globalement asymptotiquement stable. Si Ry > 1, il existe un unique point
d’équilibre endémique. Pour ce qui est de la stabilité asymptotique globale sur 'orthant
positif en dehors de la variété stable du point d’équilibre endémique, nous n’avons pas
pour le moment, un résultat général, mais il existe des cas ol on peut se prononcer comme

dans I'exemple de la section (4.3.5).

4. Disease Free Equilibrium
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Chapitre 5

Modeles de la transmission du virus
de I’hépatite B

5.1 Introduction

Comme nous 'avons constaté dans le chapitre sur I’épidémiologie de I’hépatite B, il y
a des discussions en ce qui concerne l'incidence de la transmission verticale de la maladie
en Afrique sub-saharienne en général, au Sénégal en particulier. C’est ce qui nous a poussé
a faire deux modeles de I’hépatite B. Ainsi, nous proposons un modele sans transmission
verticale et un autre dans lequel cette transmission verticale est prise en compte dans

I’élaboration du modele.

5.2 Modele de I’hépatite B sans transmission verti-
cale

Ce modele va tenir compte de I'histoire de la maladie. Par exemple ’age auquel est
un individu est infecté influe sur son devenir en terme de chronicité de la maladie. Il est
donc nécessaire de diviser les individus susceptibles en classe d’age. On pourrait envisager
un modele continu, ce qui donnerait un systeme distribué. Mais en raison des données
connues, en particulier celle de 'OMS ou du CDC, il est naturel de se restreindre a 5

classes d’age.
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FIGURE 5.1 — Modele HBV sans transmission verticale

Le modele ci dessus représente un modele de la transmission du virus de I'hépatite B, il

est composé de 10 classes.

Il présente cinq compartiments de susceptibles :

— Le compartiment S représente la classe des bébés de 0 a 1 mois. Dans ce compar-
timent, nous avons toutes les naissances de la population totale qui est de A. Il en
ressort les bébés qui grandissent avec une proportion p; pour entrer dans le compar-
timent S,. Il en ressort aussi les bébés qui meurent avec une proportion qui est de
Sy et aussi les bébés qui sont infectés par transmission verticale (mere-enfant) avec

une proportion /3y ;. Ces derniers deviennent latents infectés £ avec une probabilité
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oy et latents chroniques Eo avec une probabilité (1 — aq). Dans la littérature on
estime que (1 — aq) = 90%.

— Le compartiment Sy représente les nourrissons agés de 1 a 6 mois. Dans ce compar-
timent, il y entre les bébés issus du compartiment S; avec une proportion p; et il en
ressort les nourrissons qui grandissent avec une proportion de p, pour passer dans le
compartiment S ; ceux qui se sont infectés avec un coefficient 3, ; suivant I'infectant.
La mortalité au niveau de ce compartiment est de .S;. Dans le flux de sortie, il y a
aussi les susceptibles du compartiment S, qui ont été en contact avec la maladie et
deviennent latents infectés E (c-a-d qui vont évoluer vers un état infecté) avec une
probabilité ay et latents chroniques E¢ avec une probabilité (1 — as).

— Le compartiment S3 représente les enfants de 7 a 12 mois. L’entrée de ce compar-
timent est constituée des nourrissons qui ont grandi dans le compartiment S5 avec
une proportion py. La sortie est constituée de la mortalité pSs; des enfants qui
grandissent avec une proportion ps et des susceptibles qui ont été infectés avec une
proportion fs; suivant 'infectant.

— Le compartiment Sy représente les enfants qui sont agés de 1 a 5 ans. Le flux qui
entre dans ce compartiment est caractérisé par les enfants qui ont grandi dans le
compartiment S3 avec une proportion ps. Le flux de la sortie de ce compartiment
est constitué par les enfants qui grandissent pour aller dans le compartiment Sj
avec une proportion de p4; de la mortalité .S, des susceptibles. Il faut aussi noter
dans cette sortie les susceptibles qui sont infectés avec la proportion S,; suivant
I'infectant. Ces derniers passent dans le compartiment des latents infectés E; avec
une probabilité de a4 et latent chronique E¢x avec une probabilité (1 — ay).

— Le compartiment S5 est constitué d’enfants de plus de 5 ans, des adolescents et des
adultes susceptibles. Le flux d’entrée de ce compartiment est p,Sy, qui représente
les enfants qui grandissent dans le compartiments S; avec une proportion p4. Le
flux de sortie est constitué par la mortalité pS; des susceptibles et des infectés
qui s’infectent avec la proportion [B4; suivant l'infectant. Ce flux rentre dans le
compartiment E; avec une probabilité de as; dans le compartiment Eo avec la

probabilité complémentaire qui est de (1 — ).

Le fait de diviser la population des susceptibles en 5 compartiments est une bonne ap-
proximation de la réalité vue I’épidémiologie de I'hépatite B, car le pronostic de 1’évolution
de la maladie dépend de 1’age auquel on a contracté le virus de la maladie.
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Nous avons deux compartiments de latents :

— le compartiment E; qui représente les latents infectieux, c’est-a-dire des latents qui

vont évoluer vers un état infectieux. L’entrée de ce compartiment est caractérisée

par les susceptibles qui ont été infectés suivant les proportions «a;f3; ;. La sortie est

constituée d'une part, par la mortalité pF;, et d’autre part, par I’évolution vers un

état infectieux avec une proportion ~.

— le compartiment E¢ représente les latents chroniques E¢, ¢’est-a-dire des latents qui

vont évoluer vers un état chronique. Le flux de la sortie est constitué par la mortalité

uwEe et I'évolution vers 1’état chronique avec la proportion ~.

On a un compartiment d’infectés I qui est caractérisé par une entrée yE; et une sortie qui

est composée par la mortalité (une mortalité naturelle et une mortalité due a la maladie)

ul et la guérison v31.

Le compartiment C représente les malades chroniques, 'entrée de ce compartiment est

dEc et la sortie est composée de la mortalité (mortalité naturelle et mortalité due a la

maladie) uC et la guérison 41.

Le compartiment R représente ceux qui sont guéris de la maladie et immunisés. Ce qui

nous conduit au systeme différentiel suivant :

( Sl
S
S3
Sa
Ss
E;

I
Iy

=N—u S1 =P Er St —Big Ec St — B 1351 — Prals S1— piSi

= p1S1 — p2 So — 52,1 ErS; — 5272 Ec Sy — /32,3 1355 — 52,4 Iy Sy — p2Ss
= p2So — 3 S5 — P31 E1 Sz — 832 Ec S3 — B33 1353 — 334 14 S3 — p3Ss
= p3S3 — fta Sa — Bag Er Sy — Bao B Sy — Bas I3 Sy — Baa L4 Sy — paSa
= paSy — 5 S5 — B51 E1 S5 — P52 Ec S5 — B53 1355 — B5,4 1455
=a1(bii ErSi+BipEc St + Prals Si+ PralsSi) + ...

+ao(Bay Er Sy + Poo Ec So + Po3 1382 + Poa Iy Sa) + ...

+as(f3,1 Er S3+ P32 Ec Ss 4 (33 I3 S3 + P34 14 S3) + ...

+ouy(Bay Er Sy + Pag Ec Sa+ Bas I3 Sy + Baaly Sa) + ...

+as(Bs,1 Er Ss + P52 Ec Ss + 53 I3 S5 + P54 14 S5) — ppEr — viEr
=1 —a)(Bia ErSi+ o EcSi+ B33 S+ fralsSi) + ...

+(1 — a9) (P21 LEr So + Po2 Ec So 4 Pos I3 So + Paa 1y Sa) + ...

+ )(Bs1 Er Ss + 32 Ec Ss + B33 1355+ B34 14 S3) + ...

+(1 — ) (Ba1 Er Sy + Paz2 Ec Sy + Bas I3 Sa+ Baa Ly Si) + ...

+(1 = a5)(Bs5,1 E1 S5 + B52 Ec S5+ B53 13 S5 + P54 14.S5) — iy — e Ec
= yibr — (ur + v3) 13

=vcEc — (pe + v4) 14

=3l +Yals — pR

1—0(3

(
(
(
(

(5.1)
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Sionpose Iy = Er, Iy = E¢, I3 = I et I; = C, nous obtenons alors le systéme suivant :

(S =A— 1 S1—Pia 1St — Prala St — Prs I3 St — Pra Ly St — piSi
52 = p1S1 — po S — 52,1 I Sy — 52,2 1,5 — 52,3 I35, — 52,4 1455 — p2So
53 = paSy — 13 S3 — 53,1 I S3 — 53,2 I, S5 — 53,3 I3 55 — 53,4 IS5 — p3Ss
54 = p3S3 — g Sy — 54,1 I Sy — 54,2 I, Sy — 54,3 I35, — 54,4 Iy Sy — paSy
35 = paSy — p5 S5 — P51 1155 — B52 12 S5 — P53 1355 — P54 14 S5
I =ay(Bigi i Si+ Prala Sy + Brs I3 Sy + Brals Si) +

(B, 11 So + Bap 12 So + Bog 1352 + o I4.S2) +
(B31 11 S5+ B3 o1y Sy + P33 1355 + B34 ls Ss) +

+au(Bag Iy Sa+ Bap Iy Sy + Bag I3 Sa + Paa L4 Sa) +

+a5(B5,10 11 S5 + B52 125 + Bs3 1355 + B5.4 14 S5) —

L =1 —a)(Bia i Si+ BialoSi+ Pisls S+ PralsSi) +

a2)(Ba2,1 11 S + Bog Lo So + Bog I So + o4 1y S) +

+O[3

(5.2)
welh — vl

(1 —ag)(
+(1 — a3)(B3,1 L1 S5+ P32 1255 + P33 1353+ B34 14S5) +
+(1 — o) (B L1 Sy + Pao Lo Sy + Bas I3 Sa+ Baa Ly Si) +
+(1 —a5)(Bs51 11 S5+ Bs212S5 + P53 13 S5+ P54 14 S5) — purly — e ls
(

Iy =5 — (ur +73)13

Ii =qcl— (pe +71) s

\ R = v3d3 + yaly — pRR

Puisque la derniere équation en R = Y313 + v41y — R ne dépend que de I3 et de 14 et
les autres équations du systeme ne dépendent pas de R, on peut écrire le systeme sans la

derniere équation. Ce qui nous donne le systeme suivant :
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Sl =N—mw S =P i S1—Biala St — Bis I3 S1— Prals Sv—piSi
52 = p1S1 — p2 So — 52,1 LS, — 52,2 I, 5, — 52,3 I3 55 — 52,4 14 S5 — p2Ss
S3 =252 — i3 S3 — P31 11 53 — P32 1255 — P33 I3 S3 — P34 Is S3 — p3Ss
54 = p3S3 — 22 Sy — 54,1 I Sy — 54,2 I, S, — 54,3 I3.84 — 64,4 1484 — paSay
5_5 = p4Sy — s S5 — P51 11 S5 — Bs2 12 S5 — 531355 — B54 14 S5
L =oq(BinhSi+ PrialaSi+ Prsls Si+ Prals S1) +
+ao(Bo It So + Poo s So + Bas I3 So + Poa 14 S2) +
+as(Bs1 11 S5+ P32 1o S5+ B33 1355 + 3.4 14 S3) +
+oy(Ba1 11 Sy + Baz2Io Sa+ Bas I3 Sy + Baa Ly Sy) + (5.3)
_ +as (P51 11 S5+ Bs2 1295 + B53 13 S5 + P54 14.S5) — pply — vl
Iy =1 —o)(BigliS1+ ProlaSi+ Bi3ls S+ FralsSh) +
+(1 — a2)(Bo1 11 So + P2 Lo So + Bos I3 So + Paa 1y Ss) +
+(1 — a3)(Bs1 11 S5+ B2 12 S5+ B33 1555+ 3414 Ss) +
+(1 — aq)(Ba1 L1 Sy + Ba2 Lo Sy + Bas I3 Sq+ Baa Ly Sy) + ...
_ +(1 —a5)(B51 11 S5 + P52 1255 + B5,3 1395 + P54 14 S5) — purda — yela
I_3 =vilh — (ur +73) 13
| s =1cla— (ke +74) 14
Ecrivons ce systeme sous une forme compacte.
S =A—diag(p) S + AgS — diag(BI) S
. (5.4)
I = Pdiag(BI)S + Al
tels que :
S1 A
S, ? 0
S = Sy | €RYL T = 12 €ERL, A= 0 | eR}
Sy I 0
Ss 4 0

La matrice B > 0 représente les coefficients d’infectivité, avec B(i,j) = f;; qui sont

les coefficients de contacts de la classe des infectés I; a la classe S; avec 0 < ¢ < 5 et

0<j<4

Le vecteur ug représente ici la mortalité des différentes classes de susceptibles S;. La

matrice Ag est définie par I’expression suivante :
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5.2. MODELE DE L’HEPATITE B SANS TRANSMISSION VERTICALE

—p1 O 0 1
: M2
— : 0

Ag=| Pt TP e Ms(R), ps=| s |€R
: : —psy O La
0 . P4 0 s

La matrice A est définie par :

—pp—7% 0 0 0
0 —pr—7v 0 0

A= € My(R
Vi 0 —pur—7s 0 1(R)
0 Yo 0 —pc — V4

Pour ce qui concerne le modele ci-dessus, on a la premiere colonne et la deuxieme
colonne de la matrice B qui sont nulles car ces dernieres représentent les coefficients
d’infection des latents. En effet, les latents sont infectés mais pas infectieux, donc ils ne

participent pas a la transmission de la maladie. Ce qui nous conduit a :

8 8 gm gl"* 0.1 0.2 045 0.7 0.9
23 P24
B=|00 By Bos | € Ri y Riv p_ 0(.)9 O(.)8 0.5)5 O(.)3 O(.)l € Ri o Ri
0 0 Bs53 Bsa
D’ou I'écriture du systeme (5.3) sous une forme beaucoup plus compacte :
S = A—diag(p) S + AgS — diag(BI) S
(5.5)
I = Pdiag(BI)S + AT
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5.3 Modele de I’hépatite B avec transmission verti-
cale

Ce modele avec transmission verticale sera un peu différent du modele précédent.
Il y aura une modification au niveau des naissances de la population totale A. Cette
modification aura une incidence au niveau de la classe ou compartiment des porteurs
latents chroniques. En effet, la transmission verticale du virus de I’hépatite B se fait
souvent au niveau des porteurs chroniques de la maladie. Ainsi, une partie des naissances

provenant des chroniques, c¢’est-a-dire pbC, va aller au niveau du compartiment des latents

chroniques.
A-pbC
0-1mois 1- 6 mois 7-12 mois 1-5 ans >5ans
P, ) Py Py
— S, [
2
0.9 ¢ 0.8 0.7 0.90
“;1 0.45| yyu . 1"
MS1 2 3 4 0.1 MSS
0.1 0.2 0.3
0.55 p transmission
verticale

Ei Ec '

Y3

R
FIGURE 5.2 — Modele HBV avec transmission verticale
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5.3. MODELE DE L’HEPATITE B AVEC TRANSMISSION VERTICALE

On suppose que le recrutement général est constant. On va supposer que les chroniques
participent avec quantité(l — p)bC' a leur nombre (ou densité) aux naissances et une

proportion pbC' va aller dans les chroniques.

On remarque qu’ici, l'introduction d’une transmission verticale diminue les naissances
d’une quantité pbC' qui ne deviennent plus susceptibles car les bébés issus de ces naissances
deviennent chroniques avec la transmission verticale, ce qui fait que 'on voit apparaitre

au niveau de F¢ cette quantité pbC. Ainsi, nous avons le systeme suivant :

(S =A—m S =B ErSi— BiaEcSi— Bisls Si — PralsSi — piSi — pbly
52 = p1S1 — p2 S2 — 52,1 Er Sy — 52,2 Ec Sy — 52,3 I35, — 52,4 I, 55 — p2So
Sy = p2Sy — i3 Ss — B31 Er Sz — B3 Ec Sz — B33 I3 S3 — Baa I Sz — p3Ss
54 = p3S3 — f1a Sy — 54,1 Er Sy — 54,2 Ec Sy — 54,3 I35y — 54,4 I, 54 — paS,
35 = paSa — p5 S5 — P51 Er S5 — P52 Ec S5 — P53 13 55 — B5,4 1455
By =ai(fig ErSi+ BrpEc Si+ Bis s S1+ Brali i) +
(P21 Er Sy + Bap Ec So + Pz I3 Sa + P24 14Ss) +
+az(Bs1 E1S3+ Ba2 Ec Ss + B33 1353 + B34 14.53) +
0y (B Er S+ Pag Ec Sy~ Bas I3 Sy 4 Paaly Su) +
+as(Bs,1 Er S5 + Bs2 Ec S5 + P53 1355 + 85,4 14.55) —
Ec =(1—a1)(Bi1 ErSi+ BiaEc Si+ Bisls Si+ BraliSi) +
— ) (P21 LEr So + Pa2 Ec So + Bos I3 So + a4 14 Ss) +

)
(
1 — a3)(Bs1 Er S3 + Bsp Ec S5 + Bas I3 S + B3 L S3) +
(
(
(

wekr —viEp

(1

(
+(1 — au)(Bag Br S+ Bz Ec Sa+ Pz I3.Ss + Baa Ly Sa) +

(1 —a5)(Bs1 Er S5 + P52 Ec Ss + Bs53 I3 S5 + P54 14.55) — jir By — yoEo + pbly
Iy =%Er — (ur+73) I

Iy =vcEc — (e +71) s

\ R =sls+y4ly — uR
(5.6)
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CHAPITRE 5. MODELES DE LA TRANSMISSION DU VIRUS DE

L’'HEPATITE B

5.4 Calcul du DFE et du Ry du modele avec la trans-

mission verticale

Le dernier compartiment R ne dépends que de

I'ignorer dans I'analyse du systeme.

s compartiments I et C', nous pouvons

St A E
So 0 5
S = Sy |, A= 0 [ €RLI = “ | ery,
I3
Sy 0 7
Ss 0 !
-p1 O 0
Ag=| P O] e Ms(m)
: —P4 0
0 Pa 0
Nous avons le systeme suivant :
S = A—diag(p) S+ AgS — diag(BI) S — M5 .1
‘ (5.7)
I = Pdiag(BI)S + AI+ M, I
Avec les notations suivantes :
0.1 0.2 045 0.7 0.9 0 0 0 pb
| 09 0.8 055 0.3 0.1 1 0000
P=1 0 0 0o o o |Me=|g000 |MB
0 O 0 0 O 0000
—pr, —7 0 0 0
0 —pr, —vc 0 0
A = 2 e Myu(R),
i 0 —pry —7v3 0 «(B)
0 Yo 0 —pr, — 4
0 0 Biz Bia 0 0 0 pb
0 0 Bz Bou 00 0O
B=|00 B3 B34 [ ERL xR, M}, =] 00 0 0 e R} x RS,
0 0 Bas Paa 00 0O
0 0 B53 Bsu 00 0O

o8
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5.4. CALCUL DU DFE ET DU R, DU MODELE AVEC LA
TRANSMISSION VERTICALE

5.4.1 Calcul du DFE (point d’équilibre sans maladie)

Il existe un unique point d’équilibre sans maladie (DFE) pour le systeme (5.6). Ce

DFE est donné par (5*,0) € R x Ry ol
S* = — (diag(—ps) + As)) " A.

Nous avons, S* = — (diag(—ps) + Ag))"" A > 0'si A > 0 car nous avons la matri-
cequi est (diag(—us) + Ag) qui est une matrice Metzler-Hurwitz. Dans le cas général, si
A > 0, il peut arriver, pour le DFE, que certaines des composantes de S* soient égales a

7éro.

5.4.2 Calcul du R,

Notons que notre matrice V, pour le calcul de Ry, est I'opposée de la matrice V qui
est utilisée dans [108].
On a:

0
f’l}@’f‘t(s7 [) - {szag(B I)S+ A[’ ]:|

vert

et

A — diag(p) S + AgS — diag(BI) S + MSJ]
Al '

Les jacobiennes de ces matrices sont données respectivement par :

V(S, 1) =

0 0
Pdiag(BI) Pdiag(S)B+ M!

vert

D-Fvert(S7 [) =

)

et

—dia + Ag — diag(BI) —diag(S) B+ M2,
DV(S,]):[ glus) + As 9(BI) g(S) ,L]_

0 A
Au DFE nous avons :

vaert(S*ao) -

vert

0
0 Pdiag(S*)B + M/ ] ’

et

—dia + As  —diag(S*) B+ M2,
DV(S*,0) = [ 9(us) s 9(5") t] .

0 A
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D’ou le nombre de reproduction de base est donné par :
Rgert = p(_FvertV_l)

avec

Fvert = PdZag(S*)B + M = F + M1

vert ver

et V=A

Nous allons utiliser ce résultat pour calculer la valeur de R dans les simulations.

Remarque 1 : Nous pouvons remarquer que :
Rgert Z RO

car M' = >0

vert —

5.5 Conclusion

Dans ce chapitre, nous avons développé deux modeles mathématiques déterministes
pour la transmission du virus de I’hépatite B. Ces modeles découlent de I'état de D'art
et de I'épidémiologie actuelle du virus de I’hépatite B. Le fait de proposer deux modeles
avec ou sans transmission verticale pour I’hépatite B, va nous permettre de faire une
étude comparative des modeles avec les simulations numériques que nous allons faire dans
la derniere partie de ce travail. Ainsi, nous allons évaluer l'incidence des transmissions

verticale ou/et périnatale sur I'endémie de I’hépatite B.
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Chapitre 6

Un modele général a susceptibilité et
infectivité différentielles

Dans ce chapitre, nous allons étudier une forme générale de systemes. Cette forme contien-
dra, comme cas particuliers, les systemes du chapitre cing, excepté le modele avec trans-
mission verticale du (5.6).

Pour ces systemes, nous calculerons Ry, nous prouverons la stabilité du DFE si Rg < 1,
Iexistence et 'unicité d’un équilibre endémique quand Rq > 1. Ces résultats sont publiés

dans un article* publié dans JMB 2.

6.1 Introduction

Pour un bon nombre de maladies infectieuses, un des défis que rencontre la modélisa-
tion en épidémiologie est la prise en compte des hétérogénéités. L’hypothese que les indivi-
dus se rencontrent au hasard n’est pas réaliste. Beaucoup de populations sont divisées en
sous-populations a l'intérieur desquelles, on peut admettre 'hypothese de rencontre aléa-
toire. En revanche, les rencontres entre groupes différents sont soumises a une certaine
structuration. La division en groupes se fait selon le mode de transmission, la période
de latence, la période infection, la période infectieuse, I'age, la susceptibilité génétique,
le comportement ou la réaction par rapport a la vaccination mais aussi sur les facteurs
sociologiques, culturels, économiques, démographiques voire géographiques.

Chaque groupe (compartiment ou classe) est composé d’individus qui ont des caracté-
ristiques presque identiques. L’étude mathématique des maladies sexuellement transmis-

sibles, comme le VIH Sida, est a I'origine des modeles multi-groupes. En effet, les études

1. http ://www.springerlink.com/content/0612425711325kh4/
2. Journal of Mathematical Biology
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cliniques de la transmission du VIH montrent une variabilité de I'infectivité au cours de la
longue période asymptomatique ou l'individu séropositif n’a pas encore déclaré un SIDA.

Ce type de modele est applicable aux maladies qui changent d’infectivité suivant leurs
périodes infectieuses telles que le VIH Sida ou I'hépatite B (HBV) qui sont des maladies
avec des porteurs asymptomatiques. L'infectivité différentielle vient du fait que la popu-

lation d’infectés est subdivisée en différent sous groupes, suivant leur taux d’infectivité.

6.2 Modele général

Ce modele ne prend pas en compte la transmission verticale.

On considere le modele suivant :
S =A—diag(ps) S+ Ag S — diag(BI) S
I = Pdiag(BI)S — diag(us + 1) I + A I (6.1)

R =LI—diaglug) R+ Ag R

ou S € R} représente I'état des individus susceptibles, I € R’ les individus infectés,
R € R% les individus guéris ou immunisés. Le recrutement dans le compartiment des
susceptibles est modélisé par le vecteur positif A > 0. Le vecteur positif pg > 0 représente
le taux de mortalité dans les différentes classes de susceptibles. La matrice Ag modélise
les différents flots entre les classes de susceptibles. Jacquez appelle les coefficients de Ag,
coefficients de transferts [58]. Comme la matrice Ag représente seulement les transferts
dans les compartiments S, Ag est une matrice compartimentale, une matrice de Metzler,
dans laquelle, la somme des éléments de chaque colonne est nulle. La matrice B > 0
modélise les coefficients des contacts entre les différents compartiments de I et de S,
B(i,7) = Bi; est le contact adéquat de 'infecté du compartiment [; au compartiment
de susceptibles S;. La matrice B est souvent appelée la matrice « WAIFW » (Who
Acquire Infection From Whom [2]). La matrice P est une matrice colonne-stochastique

de dimension m x n :

P11 P2 --- DPin

P21 P22 ... DPon
P = ] )

pml me s pmn

Cette matrice représente la distribution des individus susceptibles, apres leur infection
dans les différents compartiments des infectés I; de I. Un susceptible qui est infecté du
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compartiment S; passe dans le compartiment des infectés I; avec une probabilité p;;, d’ou

j=1

Par analogie a ce qui précede, la matrice A; représente les échanges entre le différents
compartiments des infectés I. Les vecteurs puy > 0 et 77 > 0 représentent respectivement
le taux de mortalité et le taux de guérison des individus infectés et/ou infectieux des
différents compartiments d’infectés de 1. On suppose que le vecteur v; est positif ou nul,
parce qu'un individu infecté peut ne pas guérir et plus généralement passer dans un autre
compartiment d’infecté.

Enfin, la matrice L représente la distribution des infectés de I vers le compartiment R.
Le vecteur pug et la matrice Ag correspondent de fagon analogue aux mouvements entre
les compartiments de R.

On peut remarquer avec nos hypotheses que la matrice B > 0, car dans le modele (6.1), il
peut y exister des compartiments d’infectés et non infectieux que 1’on appelle des individus
latents. Ceux-ci ne transmettent pas 'infection. Par conséquent, dans ces compartiments,
il n’y a pas de transmission de la maladie, c’est-a-dire dans un compartiment I; sans
transmission, on a B; ; = 0, pour tout . En d’autres termes, la matrice B peut contenir
des colonnes dont tous les éléments sont nuls.

En effet, pour tout i € {1,...,n}, il existe k € {1,...,m} tel que B;; # 0, ou sil existe
un indice iy tel que B;,r = 0 pour tout k € {1,...,m}, c’est-a-dire les individus du
compartiment S;, ne seront pas infecté et ne sont pas susceptibles.

En utilisant le théoreme Gershgorin, il est clair que les matrices :
—diag(ps) + As, —diag(ur) + Az, et — diag(pr) + Ar

sont des matrices de Metzler stables et en particulier non singulieres. Ceci implique que

quand il n’y a pas d’infection, les individus du compartiment I et R disparaissent.

Nous utilisons la propriété suivante : une matrice de Metzler M est stable si et seulement

si —M~1'>0[10,103].

Ceci a comme conséquence que si x > 0 alors —M 12 > 0.

Il y a deux écoles en ce qui concerne cette catégorie de matrice. La premiere utilise

les matrices de Metzler qui sont aussi appelées matrices quasi-positives. Cette école est

représentée par J.A. Jacquez, D. Luenberger, H.L.. Smith ou H. Thieme [57,58, 83,103,

107]. La deuxieme école, représentée par Bermans et Plemmons ou Van Den Driessche
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( [10,108]), utilise les M-matrices. L’opposée d’'une matrice de Metzler inversible est une
M-matrice.

Nous avons choisi 'approche de Jacquez, qui est plus adaptée pour la modélisation
compartimentale ou notre matrice A va représenter les échanges entre les différents com-
partiments.

Pour I’étude de la stabilité, nous omettons la derniere équation :
R=LI—diag(ugr) R+ Ag R.

car la variable R ne figure pas dans les deux premieres équations. Donc pour I’étude de la

stabilité du systeme, nous pouvons réduire le systéme original (6.1) au systeme suivant :

S = A —diag(us) S+ As S — diag(BI) S
' (6.2)
I = Pdiag(BI)S — diag(ur +v1) I + A; I,

Soit la matrice A définie par :
A = —diag(pur + 1) + Az

Il existe un unique point d’équilibre sans maladie (DFE) pour le systeme (6.2). Le DFE
est donné par (S*,0) € R} x R} ol

§* = — (diag(—ps) + As)) " A.

En effet, au point d’équilibre endémique nous avons le systeme suivant :

0=A-— diag(,us) S* + AS S

A = —(diag(—ps) + As)S*

comme la matrice —(diag(—pugs)+ Ag) est inversible (théoreme de Gershgorin) : nous avons
le résultat.
Nous avons, S* = —(diag(—pus) + As)""A > 0 si A > 0 car la matrice (diag(—ps) + As)
est une matrice de Metzler. Dans le cas général, si A > 0, il peut arriver, pour le DFE,
que certaines composantes de S* soient égales a zéro.

Dans ce cas, cela veut dire, pour le systeme général, que la population de certains com-

partiments de susceptibles tend asymptotiquement vers zéro. Alors, nous pouvons négliger
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ces compartiments et nous supposons dans la suite que S* > 0. Plutot que de donner une
condition compliquée sur A et Ag, nous préférons donner une condition simple que nous

allons vérifier au cas par cas suivant les modeles.

Hypotheses supplémentaires : Pour notre systeme général, nous ajoutons des hy-
potheses supplémentaires pour le rendre biologiquement raisonnable. Pour formuler ces
hypotheses, nous avons besoin de quelques définitions de la théorie des graphes [10]. En ce
qui concerne notre systeme, nous allons 1’associer a un graphe orienté de facon classique.

Nous avons m +n sommets : n sommets correspondent aux compartiments de suscep-
tibles et les m autres sommets correspondent a des compartiments d’infectés/infectieux.

Nous pouvons écrire le systeme (6.2) sous une forme canonique de systéme comparti-

mental [58] :
S
1

[s’
i
(6.3)

La matrice qui apparait dans cette équation est une matrice de Metzler, dite comparti-

A
0

—diag(ps) + As — diag(BI) 0
0 diag(S)B — diag(pr + 1) + A;

mentale [58].

On note M (S, I) cette matrice :

—diag(ps) + As — diag(BI) 0

M(S, 1) = . .
0 diag(S)B — diag(ur + 1) + Ar

Dans le graphe associé au systeme, un arc mene du sommet j au sommet ¢ # j si
M(S,I);; > 0 pour un certain (S,). On dit alors que j est accessible depuis i, si dans
le graphe, il y a un chemin orienté de j vers ¢. Ceci équivaut a dire que pour un entier
p >0, MP(S,I);; >0 [10].

Nous utilisons la notation duale de la notation habituelle, ceci pour nous adapter au
produit matriciel. Autrement dit, il y a un arc du sommet j vers le sommet 7 si il existe
un flot de matiere de j vers i.

On va maintenant supposer ’hypothese suivante.

Hypothese 1 : Nous supposons pour la suite que, tout compartiment « susceptible » est

accessible depuis un compartiment de « susceptible avec recrutement ».
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Cette propriété dépend seulement de la matrice Ag et du recrutement A. Pour tout vecteur

x > 0, la matrice —diag(ps) + As — diag(x) est une matrice de Hurwitz-Metzler.
Lemme 4 : Pour tout x > 0, nous avons :
—[—diag(us) + As — diag(x)]| "' A >0

Ceci implique, en particulier que le point d’équilibre sans maladie (DFE) du systéme (6.2),
donné par (S*,0) = (—[As — diag(us)]™* A, 0) vérifie S* > 0.

Nous considérons seulement les composantes connexes issues d’un recrutement. Autrement
dit, tous les sommets sont accessibles depuis un compartiment avec recrutement. Nous
notons par e, le vecteur de la base canonique correspondant au compartiment ou il y a
recrutement (on peut toujours le faire), par M (z) la matrice —[diag(us)+As —diag(x)] ™ .

Nous allons prouver pour tout e; accessible a partir de e;, nous avons :

(=M (z) erle) >0

Comme M (z), pour vecteur x fixé et constant, est une matrice de Hurwitz, on a :

(-Ma) Merle) = [ fexple M) erfe
0
L’expression sous I'intégrale est positive ou nulle pour un certain ¢ > 0, car M (z) est Metz-

ler. Comme l'expression sous l'intégrale est analytique en ¢, il suffit pour que l'intégrale

soit strictement positive, de prouver que pour tout £ > 0 :

dlc

%(exp(tM(f)) ele:) o (M(2)" e1]e;) > 0

Ce qui est vrai pour un certain k puisque j est accessible a partir de 1. En effet, choisissons
k tel quil vérifie (A% ey |e;) > 0 et (A% er|e;) = 0 pour 0 < p < k. En se référant a
I'hypothese (1), on voit un tel k£ existe. Alors, nous avons :

Y
- (z) ‘ _ k ,
SN ey fey | = (M@) e e

(M(z)%e1|e) = Sk ) CL(=1)5P(us, +21)F (Al er | e;) = (Aker | e;) > 0.

Ce qui complete la preuve du lemme.

—
=)
el
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Il existe dans le modele des compartiments dans lesquels, nous avons des individus in-
fectés et non infectieux, nous ainsi avons la possibilité d’ajouter des compartiments I;
pour lesquels B; ; = 0. On peut dire que les individus infectieux n’apparaissent qu’en
évoluant a partir d’une transmission. Si nous avons une classe typique de susceptibles,
nous aurons une proportion ¢ > 0 d’individus susceptibles qui deviennent infectés avec
une distribution de P % ¢ dans les compartiment infectés-infectieux. Ces individus nou-
vellement infectés évolueront dans les compartiments d’infectés-infectieux. Nous pouvons

formuler cette hypothese d’une autre maniere :

Hypothese 2 : Tout compartiment dinfecté-infectieuz est accessible a partir d’un com-

partiment avec une « entrée d’infection ».

Une « entrée d’infection » est un flux qui provient des classes susceptibles. Il s’agit d’indi-
vidus qui viennent d’étre infectés par un contact adéquat avec les infectieux. C’est-a-dire
si 7 est indice de ce compartiment, alors la composante p; de P 1 est positive.

Une des conséquences de cette hypothese (2) est : =A™ Pc > 0 pour tout ¢ > 0. La

preuve est semblable a celle du lemme précédent.

Remarque 2 : Avec ces deux hypothéses, lorsque nous avons une infection, alors toutes
les trajectoires du systéeme sont dans [’orthant positif. Cependant, notre hypothése est plus

faible que celle de l'irréductibilité du graphe de notre systéeme.

6.2.1 Le taux de reproduction de base R,

Pour calculer le taux de reproduction de base Ry, nous utilisons les techniques qui sont
développées dans [22,23, 40,41, 108], puisque Ry est donné par le rayon spectral de la
matrice de seconde génération « next generation matrix ». En général, il est impossible
d’obtenir son expression analytique.

Cependant, il y a deux cas ou nous pouvons aboutir a une formule explicite. Il s’agit des
cas ou la matrice distribution stochastique P ou la matrice du « WAIFW » B sont de

rang 1.

6.2.1.1 Modele avec distribution stochastique P de rang 1

v 1 _
Nous supposons dans ce cas que, nous pouvons considérer que P 17 ou p € R™ est

m
un vecteur stochastique positif non nul, c¢’est-a-dire E pi=1letl=(1---,1)T € R~
i=1
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En effet, d’apres le théoreme de Perron-frobenius, nous pouvons écrire P = uv’, pour
deux vecteurs positifs u € R”, v € R™. Comme une nouvelle infection est représentée
par un mouvement d'un compartiment S vers un compartiment I, nous avons v > 0. En

utilisant le fait P est un vecteur stochastique, nous avons le résultat suivant :

p1T diag(BI)S = (1| diag(BI)S)p=(BI|S)p,
Nous obtenons le systeme suivant :

S = A —diag(ps) S+ As S — diag(BI) S
. (6.4)
I =(BI|S)p—diag(u+y) I+ Al

Ce modele ne prends pas en compte l'origine des individus susceptibles a 'infection. Une
fois infectés, les individus entrent dans le compartiment I et sont distribués suivant le
vecteur stochastique p dans [I.

Dans ce cas particulier, 'hypothese (2) a pour conséquence —A;l p > 0, qui implique a

son tour —B A7t p > 0.

Pour obtenir 'expression de nombre de reproduction de base Ry, nous utilisons les tech-
niques développées dans [108].

Nous avons :

Ro= (B(~A")p| $*) = § B(—A")p. (6.5)

ou la matrice A est définie par :
A = —diag(pr + 1) + Ar.

Nous utilisons I'expression (—A™!), pour insister sur le fait que (—A™') > 0 car cette
matrice est Metzler stable. En utilisant les notations de [108] (au signe pres), on note par
Fi(S, I) le taux d’apparition de nouvelles infections dans le compartiment I et par V;(S, I),
le taux de transfert des individus dans ou en dehors du compartiment I pour tout autre

raison. La matrice V représente les transferts des flux dans les différents compartiments
de I.

Remarque 3 : Notons que notre matrice V est ['opposée de la matrice qui est utilisée

dans [108].
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On a:

750 = (511 ,]

A — diag(ps) S+ As S — diag(B1I) S
Al

et

V(S, 1) =

Les jacobiennes de ces matrices sont données respectivement par :

0 0
DF S,] - )
50 p(BD)" pS'B
et
—dia 4+ Ag —diag(BI) —diag(S) B
DV(SJ):[ 9(ps) 05 9(BI) ix( )

Notons, en comparaison avec [108], que nous avons mis les variables dans 'ordre opposé.
On obtient alors : ' = pS*T B et V = A. Ceci est explicite dans [108]. Le nombre de
reproduction de base Ry est alors donné par le rayon spectral de la matrice de seconde

génération notée —F'V 1 calculée au point d’équilibre sans maladie (DFE).

Remarque 4 : Le signe - vient du fait que l'on a utilisé une matrice de Metzler a la

place de M-matrices de [108].

Donc, le nombre de reproduction de base est donné par :
Ro=p(=FV™) =p(p ST B(=A"")).

Il est évident que p S*T B (—A™') est une matrice de rang 1, et que la seule valeur propre
non nulle est : S*7 B (—A71) p.
D’ot1 le nombre de reproduction de base est donné par : Ry = S*T B (—A~1) p.

6.2.1.2 Modele avec une matrice WAIFW B de rang 1

Dans ce cas, on note B = o 37, ot & > 0 est un vecteur positif de R” et 3 > 0 est un
vecteur strictement positif de R’?. Du point de vue de la modélisation, cela veut dire que
pour un compartiment donné de susceptible 5;, les coefficients de contact adéquats aux
différents compartiments d’infectés sont multipliés par le méme coefficient «;.

En utilisant B = a7, nous pouvons réécrire le modele (6.2) sous la forme suivante :
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S = A —diag(ps) S+ As S — (B|I) diag(a) S,

I = (B|I) Pdiag(a) S — diag(u; +~1) I+ A; I
Pour ce modele
Ry = <B ‘ (=AY P diag(«) s*>
La preuve est identique a la preuve précédente.
6.2.2 Un ensemble compact positivement invariant et absor-

bant pour le systeme

Nous allons montrer qu’il existe un compact positivement invariant et absorbant K
pour le systeme (6.2). Un ensemble absorbant K pour un systéme dynamique est tel
que, pour toute condition initiale, toute trajectoire issue de cette condition initiale finit
par rentrer, sans en ressortir, suivant le temps dans I’ensemble K. On note par N(t) la
population totale au temps ¢, alors nous avons : N = (S| 1) + (I|1).

En utilisant le fait que les matrices Ag, A; sont des matrices telles que la somme de
chaque colonne est nulle et que pour P, la somme de chaque colonne vaut 1, nous avons

les relations suivantes :
(As S| 1) = (S|AGL) =0, (A[IL) = (I|A71)=0,

et
(P diag(BI) S|1) = (diag(BI) S|PT 1) = (diag(BI)S|1) = (BI | S).

Nous obtenons alors :
N = (A1) — (diag(ps) SI1) — {diag(ur +r) I|1).
Lemme 5 : Soit o définie par o = min (us, iy +vr) > 0, c¢’est-a-dire :
N < (A1) —po N
Pour tout € > 0, le sous ensemble K. de l'orthant positif R} x R, définie par :
K. = {(5,1)‘5 >0 :1>0 ;N < ((A|1) +g)/ﬂo},
est un compact positivement invariant et absorbant pour le systéme (6.2).
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Il est simple de voir que I'orthant positif est positivement invariant pour le systéeme (6.2).
Si on utilise la relation N < (A|1) — s N, on voit nettement la preuve du lemme.
Nous pouvons remarquer que (S*,0) € K.. Car nous avons (A|1) = (ug|S*) et po < ps.

Nous avons ainsi un ensemble positivement invariant contenu dans K..

Lemme 6 : L’ensemble Q définie par :

Q:“&De&

Sg?}
est un compact positivement invariant pour le systeme (6.2).

Sur le bord, S = S* alors nous avons S = —diag(BI)S* < 0. Ce qui prouve que

est positivement invariant.

6.2.3 Stabilité globale du point d’équilibre sans maladie (DFE)

Nous allons prouver la stabilité globale de DFE pour les deux catégories de modeles.

6.2.3.1 Modeéle avec distribution stochastique P = p 17 de rang 1

Théoréme 7 : Si Ry < 1 alors le DFE du systeme (6.4) est globalement asymptotique-
ment stable sur 'orthant positif. Si Ro > 1, le DFFE est instable.

Preuve: Si' Ry > 1, l'instabilité du DFE est classique et elle découle des résultats contenus
dans [22].

Maintenant, on suppose Ry < 1, et nous considérons la fonction de Lyapunov candi-
date suivante :

Vore(S, 1) = (B(—A™) 1| $*).

Cette fonction est positive sur I'orthant positif et elle est nulle au DFE. La dérivée de

cette fonction le long des trajectoires du systeme (6.2) est donnée par :
Vpre = (BI | S) (B(=A™")p | 5%) = (BI | §*) = (BI | RS — 5%).

En tenant compte de la formule de (6.5) pour Ry, il est évident de voir que dans le compact

(2, nous avons Vore < 0.

Soit £, le plus grand ensemble invariant contenu dans {(S,1) € Q | Vpre(S, 1) = 0}.

Puisque Ry < 1 et S* > 0 (par I'hypothése H1), nous avons si S < S*, la relation

Ro S — S* < 0. Ce qui implique que BI = 0, d’ott [ = AI. Puisque A est une matrice
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de Metzler stable, le plus grand ensemble invariant contenu dans £ satisfait I = 0, par
conséquent, on a : .S = S*.

Par le principe d’invariance de Lasalle [71](on peut aussi voir [11], Theorem 3.7.11, page
346), puisque nous sommes dans un compact positivement invariant, le DFE est globale-
ment asymptotiquement stable dans €2 si Ry < 1.

Pour le cas Ry = 1, nous avons :
Vpre = (BI| S—S*) <0, pour tout (S,1) € Q.

Pour cela, il suffit de montrer que £ est réduit a {(S5*,0)}. Soit (S, 1) € L, la trajectoire
du systeme (6.4) issue de ce point initial vérifie (BI(t) | S(t) — S*) = 0, pour tout ¢ > 0.
Supposons I > 0, par I'hypothese (2), nous avons :

BI(t) > 0 pour tout t >0 et S(t) — S* =0 pour tout ¢ > 0.

Ceci, combiné avec la premiere équation du systeme (6.4), implique BI(t) = 0, ce qui
est une contradiction avec I > 0. D’ou, si (S, 1) € L alors, on a nécessairement [ = 0 et
S = S* grace a la premiere équation du systeme (6.4).

Si Vpre = 0, alors le systéme (6.4), nous donne le systeme suivant :

(6.7)

S = Ag(S—S*) —diag(S*)BI S — S
I= (pSTB+A)I I '

ou

; Ag —diag(S*) B
~\0 pSTB+A

> et Ag = —diag(pus) + As

Le module de stabilité de la matrice J est égal & zéro puisque 1 = Ry = p(p S*T B (—A™1)).
Par conséquent, le DFE est globalement asymptotiquement stable dans 2 quand Ry = 1.
Nous avons démontré la stabilité globale sur €.

Comme K. est absorbant, il reste maintenant a examiner les trajectoires qui commencent
dans 'ensemble K \ €.

L’ensemble définie par I = 0 est invariant par le systeme. Par conséquent toute trajectoire

qui commence par un point contenu dans 'ensemble K. \ Q, avec I = 0, convergera vers

(5*,0).
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Maintenant, si une trajectoire commence par un point de K. \ 2, on a I > 0 alors avec
I'hypothese (2), nous avons B I(t) > 0, pour tout ¢t > 0. De ce fait, a partir de la premiere
équation, la trajectoire va entrer dans () et alors va converger vers le DFE. Ce qui prouve

que le DFE (S*,0) est globalement asymptotiquement stable dans I'orthant positif.

6.2.3.2 Modele avec une matrice WAIFW B = o 37 de rang 1

Théoréme 8 : Si Ry < 1, alors le DFE du systeme (6.6) est globalement asymptotique-
ment stable sur 'orthant positif. Si Ry > 1, le DFE du systéme (6.6) est instable.

Preuve : Considérons la fonction de lyapunov candidate suivante :

V(S,I)= (8| - A1)
Calculons la dérivée de V(S,I) le long des trajectoires du systeme (6.6) dans 2.

V. =(B1) (8| - A Pdiag(e) S) — (8] 1)
= (BI1) ((B| — A~ Pdiag(e) S) — 1)
=(B[1)(Ro—1) <0
e Ry < 1, le plus grand ensemble invariant contenu dans I’ensemble V = 0 qui est contenu
dans Q, vérifie (8| I) = 0. Comme A est une matrice de Metzler stable, cet ensemble est
réduit a I = 0. Par conséquent, on a .S = S*. Par le principe d’invariance de Lasalle, comme
nous travaillons dans un compact positivement invariant [11,71], le DFE est globalement
asymptotiquement stable dans Q. La fin de la preuve du théoreme (7), nous permet de
conclure sur la stabilité globale du systeme dans 'orthant positif.

e Si Ry = 1, nous pouvons écrire :

V= (8] 1) (8| — A7 Pdiag(a) S) — (8| T)
) <<5‘ — A7 Pdiag(a) S* — A™! Pdiag(a) (S — S*)> — 1>

= (B1) ( (B] — A" Pdiag(a) S*) + (8| — A" Pdiag(a) (S — 5*)) — 1)

<R0—1+ (8] — A~' P diag(c) (S—S*)))
I) (8] = A~ Pdiag(a) (S — S¥)).

Par conséquent V (S, 1) = 0 si et seulement si :
(B] Iy =0 or (B] — A~ Pdiag(a) (S — S*)) =0
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Soit (S,1) € L ou L est le plus grand ensemble invariant contenu dans :
E={(5I)eQ: V(SI) =0}

Si (6| I) = 0 alors nous pouvons conclure comme dans le cas ou Ry < 1.

Soit f 'application définie par :
f(S) = (B| — A7 Pdiag(a) S) = (diag(a) P (—A71)T B|S)

L’application f(S) n’est pas identiquement nulle car f(S*) = Ry. Puisque le vecteur
diag(a) PT (=A™HT B3 > 0, c’est-a-dire, il existe au moins des composantes non nulles, en
d’autres termes, (diag(a) PT (=A™ B); # 0 pour quelques i € {1,...,n}.

Donc (3] — A~ Pdiag(a) (S — S*)) = 0 implique qu’il existe au moins S;(t) = S;. Donc

I'équation qui d’écrit 'évolution de S;(t) est :
Si = —ps,(Si(t) = ) + el As (S(t) = 87) — (Bl 1 (1)) ciSi(t)

Comme 5;(t) = S, la matrice Ag est une matrice de Metzler et S < S* dans (2, on obtient
alors el Ag (S(t) — S*) = (B| I(t)) a;S; = 0. En particulier, nous avons (8| I(t)) = 0 et

alors nous pouvons conclure dans le cas ou Rg < 1.

6.2.3.3 Existence et unicité d’un équilibre endémique

La preuve, pour les deux cas, est similaire et on y utilise le méme principe. Cependant,

les calculs sont différents, c¢’est pourquoi nous allons faire la preuve pour chaque cas.

6.2.3.4 Modele avec distribution stochastique P = p 17 de rang 1

Théoreme 9 : [l existe un unique point d’équilibre endémique dans [’orthant positif pour

le systeme (6.4), si et seulement si R > 1.

Preuve : Nous cherchons un équilibre (S, 1) avec I > 0. Il doit satisfaire les relations

suivantes : _ _
0 =A—diag(ps) S+ As S —diag(BI) S,
- B (6.8)
0 =(BI|S)p+AI
Nous en déduisons, puisque A est une matrice de Metzler stable, que
I=(BI|S)(=A™")p.
74 Etude de quelques modéles épidémiologiques :

application a la transmission du virus de I’hépatite B
en Afrique subsaharienne (Sénégal).



6.2. MODELE GENERAL

A partir de la seconde équation du systeme (6.8) et du produit scalaire avec p nous

obtenons :
Ipll5 = (p | p)
Ipl5(BT|S)=—(AI|p).
Finalement,
T= -0 (AT p) (~A7)p. (6.9)
(3

Pour le calcul de I, nous avons besoin de I'expression de —(A T | p).

D’autre part, avec Pexpression de [ = (B | S) (—A~1) p, nous avons :

(BI|S)=(BI|S)(B(~=A"")p|S).
La condition (B I | S) = 0 implique, puisque A est une matrice de Metzler stable, I = 0,

alors S = S*. Ce qui correspond au DFE et non & un point d’équilibre endémique

Alors, si (B1 | S) # 0, en faisant une simplification des relations précédentes, nous avons :

(B(—A™Yp | §) =1. (6.10)

A partir de la premiere équation du systeme (6.8), nous avons :
S = —[— diag (us + BI) + As] 'A (6.11)

En utilisant la valeur de I & partir de la relation (6.9), nous avons :

(—(AT|p))

1
3 B (—A_l)p) + AS:| A
212

S= - [—diag (us + (6.12)

= —M(—(AI|p))" A
Ou M (x) est définie par, pour z > 0 :

M (z) = —diag (us + ﬁ B (—Al)p> + Ag
2

La matrice M (x) est une matrice de Metzler stable dépendant du réel positif x.

En remplacant S, par son expression donnée dans I’égalité (6.12), dans la relation (6.10),

on obtient :

(B-A"p | = d(=AT 1) 8) =1
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En d’autres termes, le scalaire —(A I | p) est une solution de I'équation H(z) = 1 avec

H(z) est une fonction strictement décroissante en x. La dérivée de H est donnée par :

H'(z) = <B(—A_1)p‘ — M(z) ' diag (M) M(x)™? A>.

Ipll3
D’une part, nous avons B (—A™!)p > 0 avec I'hypothese (2). Et d’autre part, ’hypothese
(1) implique que —M (x)™'A > 0, alors, on a H'(z) < 0. Ce qui prouve que H(x) est

strictement décroissante.

La fonction H(x) vérifie mEI-II—loo H(z) = 0. Alors il existe une unique solution positive si et
seulement si H(0) > 1. Comme H(0) = R, > 1, nous avons une unique solution positive.
A partir de la relation (6.11), nous avons S* > S > 0 et de I'égalité (6.9), tel que
—(AT | p) > 0. Avec I’hypothese (2), nous en déduisons I > 0, d’ot1 le point d’équilibre
est un équilibre dit fortement endémique.

De I’analyse précédente, nous avons vu que si Ry = 1, il existe un unique point d’équilibre
qui est le DFE. Dans le cas ot Ry < 1, nous avons I < 0, ce cas n’est pas biologiquement

acceptable.

6.2.3.5 Modele avec une matrice WAIFW B = o 37 de rang 1

Théoreme 10 : [] existe un unique point d’équilibre endémique sur l’orthant positif pour

le systéme (6.6) si et seulement si Ry > 1.

Preuve : Cette preuve est analogue au cas du modele avec distribution stochastique

P =p 17 de rang 1. Nous avons les relations suivantes pour I'équilibre (S, T).

0 =A+AgS— (B|I)diag(a) S,
) B B (6.13)
0 = {(B|I) Pdiag(a) S+ Al
Posons Ag = —diag(ps) + Ag et par analogie A.

A partir de la premiere équation, nous avons :

—~diag(us) — (B|I) diag(a) + Ag est une matrice de metzler stable pour tout I,
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-1

S = —[~diag(ps) — (BII) diag(a) + As] A

= —M((B[1)™

ou la matrice M est définie par :

(6.14)

M(z) = —diag (ps + z a)) + As,
est une matrice de Metzler stable, dépendant linéairement de x > 0

A partir de la deuxieme équation de (6.13), puisque A est une matrice de Metzler stable,

nOUS avons :
I={(3|1)(—A"") Pdiag(a) S. (6.15)
Pour calculer (S, 1), il suffit de déterminer (3 | I).

En utilisant les relations du systeme (6.15), nous avons :

(B11) = (81 1) (B](~A7") Pdiag(a) 5.

Si (B | I) =0, alors la relation (6.13) implique I = 0 et S = S*, c’est-a-dire, le DFE.
Alors, nous pouvons simplifier I'expression en remplacant par les valeurs < I6] ) (—A~Y) Pdiag(a) S >

par 1. En remplagant S par sa valeur dans 1'égalité (6.14) :

(9] (=a7) Paingta) (21451 1)) ) =1
En d’autres termes, (3 | I) est une solution de I'équation H(x) = 1 avec
<5 ‘ ') Pdiag(e) [=M(x)™"] A> .

H(x) est une application strictement décroissante. La preuve est presque identique a celle
qui se trouve dans le théoreme (9). Il nous reste seulement & montrer que la dérivée H'(z)

est négative.
)= (8] (=A™ P diag(a) M(x)~!(~diag()) M(x)~'A)
Par I'hypothese (1), nous avons —M (z)"*A > 0, et a > 0. Nous avons aussi
diag(a) M ()Y —diag(a)) M(z)*A >0
De plus, en utilisant 'hypothese (2), nous avons :

(=AY Pdiag(a) M(2)~Y( —diag(a)) M(x)*A < 0
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Ce qui implique H'(z) < 0 car § > 0.
Comme H (x) vérifie mgrfoo H(z) = 0, il existe une unique solution positive si et seulement
si H(0) > 1. Comme H(0) = Ry, nous avons un unique équilibre endémique. Puisque
d’aprés Pégalité (6.14), nous avons S* > S > 0 et de 1'égalité (6.15), avec (8 | I) > 0,
I > 0, alors I’équilibre est un équilibre endémique. De plus (BT | S) # 0 > 0.

D’apres ce qui précede, nous avons vu que si Ry = 1 alors 'unique point d’équilibre
est réduit au DFE. Dans le cas oi Ry < 1, nous avons I < 0, alors ce point n’est pas

biologiquement intéressant.
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6.3. STABILITE GLOBALE DE L'EQUILIBRE ENDEMIQUE D'UN
MODELE AVEC UNE SUSCEPTIBILITE DIFFERENTIELLE ET UNE
INFECTIVITE EN PROGRESSION DE STADES

6.3 Stabilité globale de I’équilibre endémique d’un
modele avec une susceptibilité différentielle et

une infectivité en progression de stades

Pour montrer la stabilité de I'équilibre endémique, nous utilisons les propriétés des
matrices A; et Ag. Nous étudierons la stabilité globale de 1’équilibre endémique d’un
modele avec une susceptibilité différentielle et une infectivité en progression de stades. Ce

modele est de la méme forme que le modele (6.4) avec Ag = 0.

A1 A2 A3 An

bu,

Bnlll-'_Bn212+ m+|3nmIm

[51111"'[51212"' "'+[31mlm

FIGURE 6.1 — Modele a susceptibilité différentielle et une infectivité en progression de
stades : n classes susceptibles et m classes d’infectés
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On peut avoir dans le modele quelques I; qui peuvent étre infectés et non infectieux.

Le modele est donné par le systeme différentiel ordinaire suivant :

( Sl = Al - ,U/ISl - ﬁll [1 Sl - B12 ]2 Sl T T Blm Im Sl
52 = AQ - M?SQ - 521 ]1 S2 - 522 ]2 82 T T 52771 ]m SQ
SS = A3 - MSSB - 531 Il S3 - 532 ]2 83 T T 53771 ]m SS
Sn = ATL - :unSn - Bnl [1 Sn - BnZ [2 SS T T Bnm Im Sn
jl :511[1 Sl+512[251+....+61m[msl+ ..... -+ (616)

+6n1 Il Sn +Bn2 ]2 S3 + ... +6nm Im Sn - (M""’YH)II

L=y I = (u, + 1) b

jm = ’}/Im—l [m_l - (/‘le—l + ")/I'm) Im

\ R:f}/[m[m_/l[mR
Pour I'analyse de la stabilité globale du systeme, nous omettons le compartiment des R
puisqu’il n’interviennent pas dans les deux premieres équations. Le systeme (6.16) peut

s’écrire sous une forme beaucoup plus compacte, en utilisant les notations matricielles de

Scilab :

S =A—diag(us) S — diag(BI) S

. (6.17)
I =(BI|S)eg+AI
Sl Al Il
Sz AQ IZ
S = : eR}, A= : eRi, I= : € RY
Sy, A, I,

Les vecteurs ug et puy représentent ici respectivement la mortalité des classes ou compar-

timents susceptibles et infectés. La matrice A est définie par :

— 0 0 e 0
g —pr, =72 0 0
A= 0 V2 —az e 0 € M,,(R)
0 0 Ym—1 —H1, = Ym
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Pour simplifier I’écriture, on écrit A au lieu de A.

S = A—diag(ps) S — diag(BI) S

_ (6.18)

I =(BI|S)egs+ Al
oll le vecteur S € R} représente les états des individus susceptibles. Le vecteur I € Rﬁ
représente les différents stades d’infection. Le vecteur A est le recrutement dans le com-
partiment des susceptibles par conséquent on a : A € R”. La matrice B > 0 représente
les coefficients d’infectivité. Le terme B(z,j) est le taux de contact et l'infectivité de I;
avec le compartiment S;.
La matrice A est une matrice de Metzler stable et représente ’évolution a travers les
stades infectieux. En effet, A décrit les échanges entre les compartiments infectés et les
mortalités éventuelles. C’est donc une matrice de Metzler. Dire qu’elle est stable revient
a dire que sans transmission, l'infection disparait.
Nous avons généralisé le modele obtenu dans [48,52]. Avec e; le premier vecteur de la

base canonique de R™ et la matrice A est la matrice donnée par :

[—a; 0 0o .- 0 |
v —ay 0 0

A= 0 72 —ag - 0 | € M,(R).
i 0 0 Ym—1 _am_

Nous avons posé o; = v, + pr, et v, = v7,. La matrice B est définie par :

Bl,l 61,2 ﬂl,S ﬂl,n

B — ?2,1 .62,2 .52,3 s BZ,n

€ R} x R
ﬁm,l 5771,2 64,3 v ﬂm,n
On va vérifié que 'orthant positif est positivement invariant pour le systeme et qu’il existe

un ensemble compact positivement invariant et absorbant sur cet orthant positif.

Le point d’équilibre sans maladie (DFE) est donné par :
(5%,0) e RY X RT ou S* = diag(pus)™ A
En effet, au point d’équilibre sans maladie, on a I* = 0 donc le systeme (6.2) devient :
A —diag(pus) S*=0
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La stabilité du systeme au DFE est donné par le théoreme (7). La variété stable du DFE
est dans 'ensemble {(S, 1) € RT™ : I = 0}.

Théoreme 11 : Si Ry > 1, alors l'unique point d’équilibre endémique du systéme (6.18)
est globalement asymptotiquement stable dans RYT™ \ {(S,I) : I = 0}, lorthant positif

moins la variéte stable du point d’équilibre sans maladie (DFE).

Preuve :

Nous utilisons la fonction de Lyapunov Vgg(.S, I) suivante dans 'orthant positif. Ce méme
type de fonction de Lyapunov a été utilisée par différents auteurs, par exemple dans
[1,6,20,54,56,65,67,80]. Nous montrons que la dérivée de cette fonction de Lyapunov

Ver(S, I) est négative le long des trajectoires.
Vis(S, 1) = <S — diag(S) In S| 11> + <B(—A—1) (I — diag(I) In1) | S> L

ou IT est donnée par :

I = (S — diag(S) In S |1) + (B(—A™") (I — diag(I) In1) | S).

Avec la matrice A donnée dans cette partie, nous avons (—A™)e; > 0.
En se référant a la section (6.2.3.3), on a I > 0.

Puisque S > 0, alors I'hypothese B > 0 implique BT S > 0. La matrice A étant une
matrice de Metzler stable —A~! > 0, nous pouvons conclure que : —(A~1)T BT S > 0. Par
ailleurs, la fonction V' (S, I) est positive et le point d’équilibre endémique vérifie V' (S, I) =
0.

La dérivée de Vg le long des trajectoires du systéme (6.18) est donnée par :
Ve = (M| 1) — (diag(us) S| 1) — (diag(BI) S| 1)
—(S| diag(S)~" A) + (S| us) + (S| diag(S)~" diag(BI) S)
+(BI|S)(B(—A ") e1|S) + (B(—A') AI|S)

(BI|S)(B(—A™) % e1|S) — (B(—A™Y) diag(I)diag(I)"" AI|S).

on peut aussi écrire
Vep = (A|1) = (S|ps) — (BI|S) = (diag(S) 'S |A) + (us| S) + (S| BI)
+(BI[S) <B(—A‘1)€_1|5> —(BI|S)
_(BI|S) (B(—A"Y) %61 |5) — (B(—A~") diag(T)diag(I)~* AT| §) .

1
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En utilisant la relation (6.10), nous avons (B(—A~1)e; |S) =1, d’ot :
Ve = (A1) = (S |pus) = (diag(S)"'S|A) + (S| us)

hprs) - (B(~A"") diag(D)diag() " AT| ).

Comme A = diag(us) S + diag(B I) S, nous avons alors
Vep = (S|ps) +(BI|S) (S| us)
—(diag(S)~*S | diag(ps) S) — (diag(S)~'S | diag(B 1) S) + (S| ps)

i (BI]S) - < (— Afl)dmg(f)dmg(f)—1m|§>_

Veg = <diag(u5) S|2— diag(S)~'S — diag(S)™* S>
<[BI] Sy — (diag(S)~'S| diag(BI) S)
_[_1(BI|S> < (—A™Y) diag(I)diag(I)~ 1A1|§>.

L’inégalité de la moyenne arithmétique et géométrique, nous permet de dire que :

<diag(u3) S 12— diag(S)™'S — diag(S)™* S>

est définie négative.
Ainsi, pour montrer que Vgg est définie négative, il suffit d’établir que le reste de l'ex-

pression de Vg, les quatre autres expressions sont, chacune, définies négatives. Pour cela,

nous posons :

Oy = —(diag(S)™'S | diag(BI)S) = —S21, S BiySiI; 3.

I " __ S e __ S L1
Q3 =— 11<BI|S> Zﬁilsilf— Zﬁz’jijf_lfj
! i=1 =1 =2 i ALy
et enfin la derniere expression :
O, = —<B(—A-1) diag(Ddiag(I)"" AT §> .
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nous avons, pour k= 1,---m — 1, les relations A e, = —ay e + Y, €x41 et pour le dernier
indice Ae,, = —a,, €,,. D’ou,
Q =- Z I <B(—A_1) diag(Idiag(I)~! Aey | §>
k=1
m m—1 I_
7 k
-3 k<B(—A l)ek|5’> ~ 3 Loyt <B(—A )ek+1|s>
k=1 k=1 Ly

Soit uy, définie par : uy = (B(—A71) ex | S). 1l en découle les relations suivantes :
vk_lukl_k_lzz:fj(BeﬂS), k=2---.,m. (6.19)
—k

Nous montrerons cette relation (6.19) a la fin de cette partie, nous 'admettons pour le
moment.
Si nous tenons compte du fait que : oy I, = Ve—1 Iy pour k = 2,--- . m et oy I, =

(BI | S), nous obtenons :

:zm: (Zm: J Bej|s> kzl’“l’““ (Z I { Be]|S>

P ]:k Iy I el
- a G 5 7 Iy Tja
IPIRLELES oLV ¥

alors nous avons la somme de ces quatre expressions :

ohy 7ol Si Si L I e I I
; jz; Piadilic\J Si S L I ; I, Tir

Si S,
221 <
Sz Sz
et -
S, SiLi I; = I |
jrr- S Sihh bl
Si i ]1 j el ]Ic ]k‘—i-l
d’ou
Vee <0
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A T’équilibre endémique, nous avons les relations suivantes a partir du systeme :

(A1) — (diag(us)S| 1) + (AI|1) =0

Puisque ( AT |1) = —v,,[,, — {71 | 1), et en utilisant la définition de o du Lemme (5),
_ _ All _
nous avons (S |1) + (I]1) < < ) ce qui prouve que ’équilibre endémique (S, ) est
Ho

dans K. pour tout € > 0.
Soit £, le plus grand sous ensemble invariant de K., contenant Vg = 0. Tout élément
(S, 1) de L doit satisfaire :

<dz’ag(,u5) |2 — diag(S)™1S — diag(S)~! S> = 0.

Puisque ps > 0, alors nous avons S = S, et il est dans 'ensemble £, il en découle que
diag(BI) S = A — diag(us) S. D’autre part, nous avons diag(BI)S = A — diag(us) S.
Alors dans £, la dynamique de [ est définie par :

I=(BI|S)—AI
La matrice A étant une matrice de Metzler stable, alors le plus grand ensemble invariant
L est réduit a {(S,1)}. Avec le principe d’invariance de Lasalle, ceci prouve la stabilité
globale de 1’équilibre endémique (S, I) qui est dans l'intérieur de K. [11,71]. La stabilité
asymptotique globale de I’équilibre endémique dans R} x R\ {(S,0)} vient du fait que
K. est un ensemble absorbant et en dehors de la variété stable de DFE la frontiere de
lorthant positif n’est pas invariant par le systeme (6.18).
Pour terminer la preuve, nous allons établir la relation de 1’égalité (6.19). Pour ce faire,
nous procédons par récurrence sur k.
e Pour k = 2, en utilisant 1'égalité : (B(—A"!)e;|S) = 1, nous avons les égalités sui-

vantes :

Aei = —ajer +71 69
—€e1 = —O1 (—A_l) e + 71 (—A_l) €9
nh(B(=A e |S) = [ (B(=A") e |S) =L (B(=A") e |5)
71“2]_1 =0é1]_1 —]_1
nuly =(B(-A e | )i =L+ ) (B(—A™")e|S)

=2
m

yusly =) (B(-=A")elS)

1=2
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e Supposons maintenant que la relation est vraie pour k — 2, c’est-a-dire que, nous avons :

m

Vez U1 Tp—z = Z (B(=A™) e S)
j=k—1
alors, on a la relation suivante :
Aep 1= —Qp_1€p_1+Yp-16k

—ep1 =~ (A er1 + Y1 (AT ) e
Vi1 D1 (B(=A N e | S) = apy Loy (B(—A Y ep_1 | S)
— L 1 (B(—A N ep1]8)
Vit Ty = apy Ty up—1 — Iy—1 (B(—=AY) er_1 ] S)

Vi1 Uk L1 = Vo2 T2 ugp—1 — Ly—1 (B(—A ") ep—1|S)

m

Yoot e = Y (B(=A)ei|8) = Ly (B(—A™") e | S)
j=k—1

Vel = (B(=A)e|S)
j=k

Ce qui montre que la relation est vraie pour £ — 1, donc on a bien la relation :

m

Vi1 Uk Ty1 = Z<B (—A™ el S)

j=k

(1

6.4 Conclusion

Nous avons étudié un modele général dans lequel, on considere une différentiabilité au
niveau des susceptibles de méme qu’au niveau dans les infectieux. Comme on a montré,
I’existence et 'unicité de 1’équilibre endémique il est souvent difficile de se prononcer sur
la stabilité de 1’équilibre endémique des systemes dans le cas général. Par contre, on peut
parfois montrer la stabilité de ’équilibre endémique pour des cas particuliers en utilisant
la structure des matrices de transmission comme nous l’avons fait dans la derniere partie
de ce chapitre. A défaut de cela, on peut faire des simulations numériques pour avoir une
idée sur la stabilité, ce que nous allons faire dans le chapitre suivant pour les modeles de

I’hépatite B.
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Chapitre 7

Application des modeles a
I’hépatite B et simulations
numériques

”"Donnez-moi cent parametres et
je vous ferai un éléphant.
Donnez-m’en un cent-unieme et
je lui ferai remuer la queue!”

éléphant de Hadamard

Dans ce chapitre, nous analysons numériquement les modeles formulés dans la section
(5.1, 5.6). Nous proposons une estimation des différents parametres collectés du modele
dans la littérature et provenant du programme de lutte contre ’hépatite B au Sénégal.
Ensuite, nous utilisons ces données pour vérifier la validité des résultats théoriques ob-
tenus avec I’étude du systeme général (6.1). Nous concluons par le bilan des simulations

numeériques.

7.1 Introduction

Tout modélisateur se retrouve a un moment ou un autre de son analyse face a une
série de données correspondant a un certain échantillonnage de grandeurs qui varient de
fagon continue ou non dans Iespace et/ou dans le temps. Dans de nombreux domaines
(scientifiques, économiques, épidémiologiques...), on a besoin de connaitre certaines ca-
ractéristiques d’une population. Mais, en regle générale, il n’est pas facile de les évaluer
du fait de l'effectif trop important des populations concernées. Que ce soit pour réaliser

I’analyse de ces données, pour les représenter graphiquement ou pour ajuster un mo-
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dele numérique, il est alors souvent nécessaire de les interpoler pour en reconstituer les
variations continues.

De nombreux modeles ont été publiés pour évaluer 1’épidémiologie et les stratégies
de controle de I'hépatite B. Ces modeles reposent sur des hypotheses fortes concernant
les parametres de 'histoire naturelle de I’hépatite B, ses modes de transmission et sur
Iefficacité des mesures de controle. En complément des travaux de modélisation, il est
important de documenter ces parametres dans la vie réelle, via des études observationnelles
et des stratégies visant a mesurer, par exemple, I'incidence du virus de I'hépatite B, le
pronostic suivant I’age d’infection vers un état d’infection chronique, le taux de guérison,

etc.

7.2 Identification de parametres

Le Sénégal fait partie de la liste des pays de haute endémicité pour le portage du
virus de I’hépatite B. La prévalence du portage du virus de ’hépatite B au niveau de la
population sénégalaise est estimée a 17% selon certains professionnels de la santé publique.
Les responsables du programme estiment que 85% de la population ont déja été en contact
avec le virus de I’hépatite B.

Le taux brut de natalité de la population Sénégalaise selon PANSD ! est estimé & 40,6
pour mille habitants. La mortalité infantile est estimée a 58,3 pour mille pour I'année
2008 et la mortalité générale a 10, 72 pour mille habitants.

Dans la période 2001-2005, 61 bébés vivants sur 1000 sont décédés avant d’atteindre
leur premier anniversaire, dont 35 pour mille entre 0 et 1 mois et 26 pour mille entre 1 et
12 mois. Parmi les enfants agés d’un an, 64 pour mille n’ont pas atteint leur cinquieme
anniversaire. Durant cette méme période, le risque global de déces entre la naissance et le
cinquieme anniversaire est estimé a 121 sur 1000, soit plus d’un enfant sur dix [97].

Les indicateurs de mortalité présentés ici sont calculés a partir d’informations sur I’histo-
rique des naissances recueillies. Au cours de leurs enquétes, ont été enregistrées toutes les
naissances vivantes de la femme et certaines de leurs caractéristiques, notamment le sexe,
I’age, I’état de survie, ainsi que 1’age au déces pour les enfants morts. L’age au déces est
déterminé de la maniere la plus précise possible (au jour pres pour les déces de moins d'un

mois, au mois pres pour ceux de moins de deux ans, et en années pour les déces survenus

1. Agence Nationale de la Statistique et de la Démographie Aott 2007
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TABLE 7.1 — Mortalité infantile dans la période 2001-2005

Tranches d’ages | Taux de mortalité sur 1000 enfants de méme tranches d’ages | Source

moins de 1 mois 35 [97]
1 mois a 1 ans 26 [97]
1 ans a 5 ans 64 [97]

supérieur a 5 ans 10,72 [21]

Source : Enquéte démographique et de santé Sénégal 2007 et ANSD

a deux ans ou plus) pour le calcul exact de ces indicateurs.

Les professionnels de santé ont pu évaluer le risque d’évolution vers un état chronique

suivant 1’age d’infection. Cette évaluation se résume dans le graphe suivant :

100

ﬂ
8

Risque de portage
chronique (%)
&

I Naissance (90%)

Source : CDC(Center of Disease Control) et A. S. Diallo

e 1-6 mois (80%)
I 7-12 mois (60%)
I 1-4 ans (35%)
> 5 ans (10%)

FI1GURE 7.1 — Risque d’évolution vers un portage chronique suivant 1’age d’infection.
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Avec ce graphe, on voit que I'estimation de la probabilité de passage a la chronicité
décroit avec ’age. Par ailleurs, on voit que la probabilité de passage a une hépatite chro-
nique est 9 fois supérieure pour les nouveaux-nés a celle des enfants agés de plus de 5
ans.

Nous avons eu a collecter un ensemble parametres de notre modele de transmission de
I’hépatite B, a travers la littérature, portant sur des études de la sous région de I’ Afrique
de 'ouest, correspondant a une zone de haute transmission de méme caractéristique que

le Sénégal. Les parameétres recueillis sont présentés dans le tableau suivant :

TABLE 7.2 — Quelques parametres recueillis dans la littérature

parametres valeur estimée

force d’infection relative des chroniques/infections 0.16

taux de passage des latents 6 par ans

taux de guérison des infections aigué 4,8 par an

taux de guérison des infections chroniques 0.023 par an (durée 2.5 par mois)

force d’infection age 0-1 an 0.159
force d’infection age 1-5 ans 0.144
force d’infection age 5-10 ans 0.116
force d’infection age 15-80 ans 0.030

Source : CDC

Pour ces parametres, les données de la littérature montrent que la force d’infection est
décroissante suivant ’age. En effet, on voit que la force d’infection des enfants qui sont
agés de 0 a 1 an est de 0.159, et va décroitre a 0.144 pour les enfants qui sont agés de 1 a
5 ans et ainsi de suite.

Pour nos simulations, nous avons besoin de la distribution de I'infection de 'hépatite B
dans la population Sénégalaise. En exploitant les données récentes et les publications sur
I’hépatite B, nous avons fait les estimations qui se trouvent dans le tableau suivant.

L’estimation de cette distribution de portage de I'hépatite B s’est faite sur des tranches
d’ages qui ne sont pas uniformes. Ceci est justifié par les besoins de nos modeles de la
transmission de I’hépatite B avec ou sans transmission verticale. Une enquéte réalisée chez
2962 enfants sénégalais agés de moins de 5 ans montre que 38% d’entre eux présentent la
présence des marqueurs du virus de I'hépatite B et que 59,4% d’entre eux ont au moins

un de ces marqueurs [98].
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TABLE 7.3 — Prévalence de virus de I'hépatite B dans la population

Tranches d’ages | Taux de prévalence de 'antigene AgHBs
moins de 1 an 11.5 %
2 a4 ans 12a14 %
4 a 6 ans 14 %
6 a 8 ans 14 216 %
8 & 10 ans 12416 %
11 & 14 ans 11 %
15 a4 19 ans 11a12%
20 & 24 ans 11.5 %
25 a 29 ans 11.5 %
29 a 34 ans 8 %
35 4 39 ans 6 %
plus de 40 ans 5%

Source : littérature
7.3 Simulations

Dans cette partie, nous envisageons différents scénarios pour voir 'impact de la trans-
mission verticale ou périnatale dans la transmission du virus de ’hépatite B dans une zone

de haute endémicité comme I’ Afrique subsaharienne en général et le Sénégal en particulier.

7.3.1 Effet de la transmission périnatale

Pour ce cas, nous simulons le modeéle sans transmission verticale en faisant varier les
coefficients de transmission de la matrice B, qui caractérisent la transmission périnatale
dans le modele. Les parametres correspondant a la transmission périnatale sont représentés
par les coefficients de contacts des compartiments Sy, S, S3, S4, correspondant aux

enfants agés de moins de cinq ans.
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taux de prevalence des infectes et de chroniques
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FIGURE 7.2 — Prévalence des infectés et des chroniques du modele sans transmission
verticale. cas : transmission périnatale normale

e La simulation du modele sans la transmission verticale donne un état d’équilibre
endémique correspondant a 19% de prévalence de la maladie (infectés et chroniques) de
la population générale. Les simulations que 'on a faite, indique que cet état d’équilibre
est atteint au bout de 230 pas de temps qui est égal a 20 ans car le pas de temps est de

un mois.
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taux de prevalence des infectes et de chroniques
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FIGURE 7.3 — Prévalence des infectés et des chroniques du modele sans transmission
verticale. cas : Transmission périnatale normale amoindrie de 0.09

e La diminution légere, d’amplitude maximale de 0.09 des coefficients correspondant a
la transmission périnatale, donne un état d’équilibre endémique correspondant a une pré-
valence de 9% de malades de la population. Avec le méme état initial que précédemment,

la population se stabilise a son point d’équilibre au bout de 175 mois, environ 15 ans.
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taux de prevalence des infectes et de chroniques
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FIGURE 7.4 — Prévalence des infectés et des chroniques du modele sans transmission
verticale. cas : Transmission perinatale normale 4+ amplifiée de 0.09

e Une augmentation légere, d’amplitude maximale de 0.09 des coefficients de la matrice
B correspondant a la transmission périnatale, fait passer ’état d’équilibre endémique, au
bout de 19 ans, de 20% a 26% de prévalence de malades dans la population générale.
Avec la variation de ces parametres qui caractérisent la transmission périnatale, nous
voyons que celle-ci jouerait un role important sur la prévalence de la maladie dans la
population générale ; sur le temps au bout duquel, nous obtenons I’état d’équilibre endé-

mique.

7.3.2 Effet de la transmission verticale

Pour cette partie, 'objectif est de mesurer l'incidence de la transmission verticale
dans le maintien de I'endémicité de 1’épidémie du virus de I’hépatite B. Pour ce faire,
nous simulons le modele avec transmission verticale en faisant varier la probabilité de
cette forme de transmission. Nous commengons par le cas p,e+ = 0, qui correspond au
modele sans transmission verticale, puis nous faisons varier la probabilité de transmission
verticale.
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taux de prevalence des infectes et de chroniques
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FIGURE 7.5 — cas : prévalence des infectés et des chroniques du modele sans transmission
verticale (pyere = 0)

e En prenant p,.+ = 0, ce qui correspond au modele sans transmission verticale, nous
avons un état d’équilibre endémique correspondant a une prévalence de 19% de malades

(infectés et chroniques) dans la population totale.
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taux de prevalence des infectes et de chroniques
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FIGURE 7.6 — Prévalence des infectés et des chroniques du modele avec transmission
verticale (pyers = 0.2).

e Si nous faisons varier p.,; de 0 a 20%, nous observons un état d’équilibre endémique
de la maladie au bout de 19 ans; une prévalence de malades (infectés et chroniques) de

la population totale qui passe de 19% a 21.5%.
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FIGURE 7.7 — Prévalence des infectés et des chroniques du modele avec transmission
verticale (pyes = 0.4).

e Lorsque pyers passe de 0 & 40%, le temps au bout duquel on a 1’état d’équilibre endémique
est toujours de 19 ans; la prévalence de malades (infectés et chroniques) dans la population
totale passe de 19% a 24.5%. De ces simulations, il ressort que la transmission verticale est
un facteur important du maintien de 'endémicité dans les zones démunies de programme

de lutte contre la transmission mere-enfant.

7.3.3 Effet des transmissions verticale et périnatale

Simulons le modele avec transmission verticale, en faisant varier simultanément les
coefficients de la transmission périnatale et la probabilité de transmission verticale afin

de mesurer l'incidence des transmissions verticale et périnatale.

97 Etude de quelques modeles épidémiologiques :
application a la transmission du virus de I’hépatite B
en Afrique subsaharienne (Sénégal).



CHAPITRE 7. APPLICATION DES MODELES A L’HEPATITE B ET
SIMULATIONS NUMERIQUES

taux de prevalence des infectes et de chroniques
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FIGURE 7.8 — Prévalence des infectés et des chroniques du modele avec transmission
verticale (pyers = 0.1) et une petite perturbation positive sur la transmission périnatale.

e Une transmission verticale avec une valeur de py.; & 10%, associée a une légere aug-
mentation des coefficients de la matrice B correspondant a la transmission périnatale, fait
passer a I'état d’équilibre endémique définie dans la section (7.3.2) de la prévalence des

malades (infectes et chroniques) de 19% a 31% de la population.

A la lumiere de ces résultats, on déduit que le controle de I’épidémie de I’hépatite B passe
par une diminution, voire une éradication de la transmission verticale et de la transmission

périnatale.

7.4 Conclusion

Dans cette partie, nous avons fait varier les différents parametres des transmissions
verticale et/ou périnatale pour voir leurs incidences sur le pronostic de ’évolution de
I’épidémie de ’hépatite B.

En faisant varier la probabilité p,..;, qui représente la transmission verticale, on re-
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marque que lorsque p,.¢ augmente, on a la proportion de chroniques de la population
générale qui augmente a 1’équilibre endémique, de méme que la prévalence de malades
(infectés et chroniques). Cela explique I'importance de la transmission verticale dans la
transmission du virus de 'hépatite B.

Une variation des parametres d’infection suivant 1’age des susceptibles montre que si
la transmission périnatale est faible, la proportion de chroniques diminue a 1’équilibre
endémique; la prévalence de malades dans la population diminue aussi. La corrélation
entre ’age d’infection, la proportion de chroniques et le taux de prévalence montre que
la transmission périnatale est un facteur important dans le maintien de I'endémicité de
I’épidémie de I’hépatite B dans une zone donnée.

Nos simulations montrent que la transmission verticale, contrairement a la transmis-
sion périnatale, ne change pas le temps au bout duquel I’équilibre endémique est atteint.

La combinaison des transmissions verticale et périnatale conduit a une augmentation
significative (de 20% a 31%) de la prévalence de malades. De ce fait, avec nos données que
nous avons eu a utiliser dans nos simulations, nous pouvons suggérer pour le controle de
la transmission du virus de I’hépatite B, une bonne maitrise de la transmission verticale

et périnatale mais aussi de la transmission horizontale.
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Chapitre 8

Conclusion et perspectives

Les travaux exposés dans cette these ont pour objet la modélisation et I’analyse de la
transmission de 1’hépatite B dans une zone de haute endémicité en I'occurrence I’ Afrique
subsaharienne de facon globale, le Sénégal en particulier. Nous avons essayé de cerner
I'incidence des transmissions verticale et périnatale de la maladie afin d’aider a améliorer
les politiques de santé publique pour la lutte et la prévention de I’hépatite B dans cette
zone. Nous avons eu a faire une synthese des différents travaux sur I’épidémiologie et sur
la modélisation de la transmission du virus de I'hépatite B. C’est ainsi que nous avons pu
identifier, dans les publications [17,18,24,91,95,96, 112] sur la transmission de I’hépatite
B, deux éléments déterminants que sont la susceptibilité différentielle et les transmissions
verticale et périnatale, qui ne sont pas pris en compte dans les modeles précédents.

Pour ce qui concerne les publications sur la modélisation du virus de 1'hépatite B,
les différents auteurs ont négligé un facteur important, a savoir I’évolution de la maladie
suivant I’age d’infection.

Notre effort de modélisation, nous a conduit a étudier, des modeles a susceptibilité
différentielle et a infectivité en progression de stades, mais aussi des modeles a susceptibi-
lité et infectivité différentielles. Ces modeles sont applicables aux maladies qui changent
d’infectivité suivant leurs périodes infectieuses telle que le VIH Sida ou I’hépatite B qui
sont des maladies avec des porteurs asymptomatiques. L’infectivité différentielle vient du
fait que la population infectée est subdivisée en différents sous groupes suivant leur taux
d’infectivité. La susceptibilité différentielle est justifiée par le fait que la population de
susceptibles est divisée en tranches d’ages. Pour ces deux modeles, qui ont fait I'objet de

deux publications dans MMNP ! et JMB 2, nous avons pu montrer la stabilité globale

1. Mathematical Modelling of Natural Phenomena
2. Journal of Mathematical Biology, accepted

101



CHAPITRE 8. CONCLUSION ET PERSPECTIVES

de 'équilibre sans maladie (DFE) si le nombre de reproduction de base Ry est inférieur a

1 et 'existence d’un point d’équilibre endémique si R est supérieur a 1.

Pour tenir compte de ces insuffisances notées dans les modeles du chapitre de I’état de
I’art et aussi de I’épidémiologie actuelle de la transmission du virus de I’hépatite B, nous
avons formulé deux modeles mathématiques déterministes pour décrire la dynamique de
transmission du virus de ’hépatite B. Un premier modele sans transmission verticale, qui
est justifié par la position de I’Organisation Mondiale de la Santé (OMS) qui préconise
que la transmission verticale du virus de I’hépatite B n’a pas trop d’incidence au niveau de
la zone de haute endémicité Afrique contrairement au continent Asiatique. Le deuxieme
modele, avec transmission verticale est justifié par la position des professionnels de Santé
de la lutte contre transmission du virus de I’hépatite B au Sénégal. Avec ces modeles, nous
avons divisé la population de susceptibles en cing compartiments pour prendre compte
I’age d’infection. Dans ces modeles, la population qui est en contact avec le virus est divisée
en quatre compartiments, deux compartiments de latents (E;, E¢) et deux compartiments

d’infectieux (1, C').

L’élaboration des ces modeles de transmission de I'hépatite B, nous a conduit a des
simulations, justifiées par le fait que dans nos modeles généraux, nous avons seulement
montré l'existence de ’équilibre endémique. Dans ces différents cas étudiés, la stabilité
de I'équilibre endémique n’a pu étre établie. Pour mettre en oeuvre les simulations numé-
riques, une étape préliminaires et nécessaire, nous a conduit a faire une identification des
différents parametres de nos modeles. Nous avons rencontré pas mal de problemes dans
cette identification, d'une part en raison de la structure des données disponibles, mais

aussi en raison du manque d’information concernant certains parametres.

Les résultats obtenus lors des simulations numériques des modeles avec les jeux de pa-
rametres utilisés dans les modeles sans transmission verticale ou périnatale, nous montrent
que la transmission verticale ou périnatale joue un role dans le maintien de la haute endé-
micité. Notamment, dans les zones ou il n’y pas de protocoles de lutte contre la transmis-
sion mere-enfant et aussi de la transmission durant la petite enfance en milieu familial et
scolaire. Effectivement, ces observations suggerent que le controle de 1’épidémie du virus
de I'hépatite B, dans les zones comme I’Afrique subsaharienne en général, le Sénégal en
particulier, se fera avec des protocoles de vaccination et de lutte contre deux modes de

transmission.
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En perspective pour ce travail, nous pensons pouvoir intégrer dans I’élaboration de la
modélisation une vaccination, car on note souvent des politiques de vaccination, méme si
c’est parfois ponctuel au niveau du Sénégal, pour en évaluer leur impact pour le controle
de la transmission de la maladie mais aussi la prévention et la surveillance. Il serait aussi
intéressant de voir le comportement de nos modeles et faisant varier la population totale
car dans la réalité la démographie n’est pas constante.

Par ailleurs, avec une bonne collaboration avec les professionnels de santé, nous pensons
pouvoir concevoir, avec nos modeles des outils pour fournir des informations importantes
en matiere de santé publique pour le controle de I’épidémie du virus de I’hépatite B.

Enfin il reste a étudier mathématiquement les modeles généraux avec une transmission

verticale.
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Annexe A

Quelques outils Mathématiques

La modélisation épidémiologique conduit a I’analyse des systemes dynamiques. Ces sys-
temes pouvant etre différentiels, discrets ou a dérivées partielles. Les systemes différentiels
étudiés dans cette these sont en général non linéaires. La plupart des résultats que nous

allons énoncés, sont des résultats classiques liés au systemes dynamiques [10,11,71,103].

A.1 Notations et pré-requis

L’espace vectoriel ordonné R"

De fagon standard si x € R™ est un vecteur, on désigne par x; sa i-eme composante.

Définition 1 : On définit un ordre sur R™ par x > y si pour tout indice © on a l"inégalité

T 2> Y

Il est facile de voir que cette relation est une relation d’ordre qui fait de R™ est espace
vectoriel ordonné.

On note R? T'orthant positif. On a I'équivalence z > y et v —y € R, en particulier

x>0 <= pourtoutindicei, ona x; >0

La notation x > 0 signifie z > 0 et  # 0

On notera x > 0 si x est dans 'intérieur de R soit

x>0 <= pourtoutindicet, ona x; >0
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De méme on étend ces notations aux matrices en assimilant 1’espace vectoriel des matrices
M(n,n,R) avec R™. On note A > B si pour tout coupe d’indices (i,7) on a a;; > b;; et
I'on a I'analogue pour A > B et A > B.

Pour cet ordre sur R" on définit 'intervalle fermé

[a,b] = {x € R"|a<x<b}=]|a;,b;] X - X [a,, by]

Cette notation est utilisée pour ne pas confondre avec le segment

a,0) = {ta+(1—t)b | 0<t <1}

On définit de méme l'intervalle ouvert

JJa,b[[= {x € R" [ a < x < b} =Jas, by [x - - x]an, by

Si F et F sont des sous-ensembles de R™, on définit classiquement

et

E+F={z+y | zek yel}

On notera {x | y) le produit scalaire de deux vecteurs. Si A est une matrice A désignera
sa transposée. Si l'on identifie les vecteurs de R™ et les vecteurs colonnes n x 1, on a
I'expression du produit scalaire (z | y) = 27y

On notera par e; le i-eme vecteur de la base canonique de R".

A.2 Stabilité et point d’équilibres
A.2.1 Généralités et définitions

Définition 2 :

Un point xy est appelé point d’équilibre si pour tout t, on a

f(t, l’o) = 29
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Si f est localement Lipschitz alors pour tout ¢ € R, z(t, t, xo) = xo.
On dit aussi que z( est un point singulier ou encore un point critique.

On considérera maintenant le cas des systemes autonomes.

Définition 3 : [stabilité]
On dit que xqo, point d’équilibre du systeme & = f(x) est stable (au sens de Lyapunov) si
pour tout ouvert U contenant xq, il existe un ouvert V de conditions initiales, V C U tel

que pour tout y € V' et pour tout t >0, on ait : x(t,y) € U

Définition 4 : [attractivité]
On dit que xq est attractif sur l'ouvert V' si pour tout y € V.

i o(0.) =

Définition 5 : [stabilité asymptotique/
On dit que o est asymptotiquement stable (localement) s’il est stable et s’il existe un

ouvert V de xy pour lequel il est attractif.

Remarque 5 :
Attention Uattractivité n’implique pas la stabilité. Cependant c’est vrai pour les systemes

linéaires T = Ax.

A.2.2 Propriétés dynamiques

Soit €2 un sous ensemble de R™. Considérons I’équation différentielle autonome définie par

& = f(z) (A.1)

Définition 9 : (ensemble absorbant)

Supposons que le systéme (A.1) est tel que f est de classe C' et que Q est un ouvert de
R™. Supposons de plus que cette équation admet des solutions quel que soit t > 0. Un
voisinage D de Q) est dit absorbant suivant (A.1) si tout voisinage borné de K de Q

satisfait f(t, K) C D pour toutt > O(resp. t < 0).

On considere maintenant que le systéme autonome (A.1) est de classe C! et qu’il satisfait
f(t, K) C D. On peut, quitte a reparamétrer les trajectoires considérer qu’il est complet.

Cela signifie que 'on peut trouver une fonction p(z) telle que & = p(z) f(x) soit complet.
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Définition 6 : [ensemble invariant/

On dit qu’un ensemble M est positivement invariant pour le systéme & = f(x) si pour
tout xg € M on a x(t,x9) € M pour tout t > 0

On définit de facon analogue négativement invariant. On dit qu’un ensemble est invariant

s’il est positivement et négativement invariant.

Définition 7 : [orbite/

On appelle orbite positive v (xg) issue de xy 'ensemble

{z(t,zo) | t > 0}

L’orbite est définie par :
V(wo) = {x(t,20) [t € R}

Un ensemble est positivement invariant si v*(M) C M, invariant s’il contient l'orbite de

chacun de ses points.

Définition 8 :
Un point p est appelé point w-limite de l'orbite v(xo), s’il existe une suite strictement

croissante de réels ti, ..., ty telle que

li t =
Jm_ altea) = p

Cette définition ne dépend que de 'orbite v et non de x,.

Théoreme 12 :
Si Uorbite positive v (xq) est bornée alors l’ensemble des points w-limites, w(7y) est un

ensemble non vide, compact, connexe, invariant.

A.2.3 Poincaré-Bendixson

Théoréme 13 : [Poincaré-Bendizson/
On considére 'équation © = f(z) dans R2. On suppose que ¥ est une orbite positive
bornée et que w(y") ne contient pas de points singuliers (équilibres). Alors w(y") est une
orbite périodique. Si w(~yT) # v cette orbite périodique s’appelle un cycle-limite.
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A.2.4 Linéarisation

Définition 9 :
Soit un systeme autonome & = f(x) de classe C' et un point d’équilibre xqy, on appelle

systeme linéarisé en xg le systeme linéaire

&= Df(xo)x

ot Df(zg) est la dérivée de f en xg.

Théoréme 14 : [Poincaré-Lyapunov/

On consideére le systeme C1, & = f(x) et xo un point d’équilibre.

1. Si Df(xo) a toute ses valeurs propres a partie réelle strictement négative, alors g

est asymptotiquement stable.

2. Si Df(xo) a (au moins) une valeur propre a partie réelle strictement positive alors

o est instable.

A.3 Matrices de Metzler

Définition 10 : [Matrice de Metzler]
Une matrice dont les termes hors de la diagonale sont positifs, i.e. si i # j alors a;; > 0

est appelée une matrice de Metzler.

Le terme de la diagonale est donné par :

DA(i,i) = —foi — Y fii <0 (A.2)
J#i
Autrement dit le terme A(i, 1) est obtenu en retranchant la somme des termes de la colonne
i au terme — fo;. La matrice A a la propriété que la somme de chaque colonne est négative.
Une matrice de Metzler, qui en plus vérifie que la somme des termes de chaque colonnes
est négative (donc nécessairement la diagonale est négative) est dite matrice compar-
timentale. [57]
On va montrer que les matrices de Metzler, considérées comme un champ de vecteurs
linéaire, laissent « dynamiquement » invariant 'orthant positif et que cela les caractérise.
Plus précisément, on va étudier les systemes linéaires © = Ax et chercher parmi ces
systemes ceux qui laissent positivement invariant ’orthant positif.
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Théoréeme 15 : Le systeme linéaire © = Ax laisse invariant ['orthant positif si et seule-

ment si A est une matrice de Metzler.

Preuve :

La condition est suffisante. En effet le systeme s’écrit

T; = Q4 Ty + E ai,j ZEj
J#i

Sur la face z; = 0 de l'orthant on a @; = Dzj# a;jx; > 0, comme A est Metzler et
puisque sur la face de l'orthant x; > 0. Le champ est bien rentrant ou tangent. Aucune
solution ne peut sortir par cette face.

Réciproquement sur toute face de 'orthant le champ Az doit soit étre tangent soit pointer
vers l'intérieur de 'orthant. Sur la face H; = {x > 0 | z; = 0} on doit avoir pour tout z,
#; > 0. Autrement dit pour tout z € R"} on a (Ax); > 0. En particulier, pour j # i on a

(Ae;); = (Ae; | e;) = a;; > 0. La matrice doit étre une matrice de Metzler.

—
=
d

Proposition 1 :
Le systeme linéaire © = Ax + b laisse invariant ['orthant positif si et seulement si A est

une matrice de Metzler et b > 0

La démonstration est analogue a la précédente. Il est évident que la condition est suffisante
par le théoreme de la barriere (17). La condition est nécessaire il suffit de regarder a
I’origine pour obtenir b > 0 et suffisamment loin de I'origine pour les coefficients de A. En

effet Aa;; + b; > 0 pour tout A > 0 entraine a;; > 0 pour A Metzler.

Il existe un analogue discret de ce résultat. On se demande quelles sont les matrices A
telles que le systeme discret z,,1 = Az, laisse positivement invariant 'orthant positif. Il
est clair que I'on recherche les matrices A qui laissent invariant I'orthant AR’ C R%. I
est immédiat que ce sont les matrices positives A > 0.

Les matrices positives laissent 'orthant positif invariant, quand on les considere comme
des opérateurs linéaires. Par conséquent, elles respectent la relation d’ordre associée. On
a ainsi démontré une relation entre l'infinitésimal et le global : les matrice de Metzler

comme champ de vecteurs, engendrent des matrices positives.
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A.3.1 DMatrices de Metzler-Hurwitz : Caractérisation

Le livre de Berman et Plemmons donne 50 conditions équivalentes pour qu'une matrice

de Metzler soit une matrice d’Hurwitz [10].
Théoreme 16 : Si A est une matrice de Metzler, les conditions suivantes sont équiva-
lentes

1. La matrice de Metzler A est une matrice d’Hurwitz

2. La matrice de Metzler A est inversible et —A~!1 >0

3. Si b est un vecteur tel que b > 0 alors il existe x > 0 tel que Ax +b =10
4. Il existe ¢ > 0 tel que Ac < 0

5. Il existe ¢ > 0 tel que Ac < 0

Preuve :

(1=2)
On choisit une norme sur R”. Puisque A est une matrice d’Hurwitz on sait [46] qu’il existe

une constante K telle que pour tout zy et tout ¢ > 0 on ait

HetA -770” S Kea(A)tSCO

Cela entraine que l'intégrale

—+00
/ e xo dt
0

est normalement convergente pour tout xzg.
On en déduit 'existence de D f0+oo etA dt.
La matrice A étant une matrice d’Hurwitz on a D lim,_,, o, !4 = 0. Elle est aussi inversible.

On en déduit

+oo
AT = /0 ot A dt — [A—letA] :)roo

En utilisant que la composante (i,5) de —A™! est donnée par (—A~'e; | €;), on obtient

+oo
(=A™, = /0 (el eydt >0

En effet d’apres le théoreme (15), on a ete; > 0
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(2=13)
La solution de Az +b = 0 est donnée, si A est inversible, par —A~'b. Comme b > 0 et
—A71 > 0 et qu’aucune ligne de —A~! ne peut étre identiquement nulle; on en déduit

r=—-A"1>0

(3=14)
On choisit b > 0 d’apres 3, il existe ¢ > 0 tel que Ac+ b =0 (on a affaibli la conclusion)
et donc Ac=-b <0

(4=05)
Il suffit de perturber 4. En effet soit e > 0et ¢y =c+¢e) ;¢ > 0.
Alors Ac; = Ac+ ¢ | Ae;. Par continuité on peut choisir ¢ > 0 suffisamment petit tel

que Ac; < 0.

(bG=1)

On considere sur I'orthant positif I’équation différentielle # = AT z. On choisit

V(z) = (c|x)

Puisque ¢ > 0 la fonction V' est définie positive sur R’}

V = {c| Az) = (ATc| z)

cette derniere quantité est nulle si et seulement si z = 0. Cela prouve la stabilité asympto-
tique de A” sur R”} par le théoréme de Lyapunov (22). Comme toute condition initiale z
peut s’écrire zop = g — xy avec z et ¥y dans Porthant, on en déduit que ez converge
vers l'origine. Cela prouve que A7 donc A est une matrice d’'Hurwitz .

—
=
d

A.3.2 Les barriéres

On va démontrer un résultat concernant les champs de vecteurs Lipschitziens. Intuitive-
ment cela dit que si un champ de vecteur pointe vers 'intérieur ou est tangent a une
hypersurface, le demi-espace fermé dont la frontiere est I’hypersurface est positivement

invariant.
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FiGURE A.1 — Champ pointant vers 'intérieur

Théoreme 17 : On considere une fonction H : R® — R. On suppose qu’en tout point

x tel que H(x) =0, on a VH(z) #0 et

(X(2) [ VH(z)) <0

Alors l'ensemble G = {x € R™ | H(x) < 0} est positivement invariant par X

En fait, on va démontrer que aucune trajectoire ne peut quitter le demi-espace par ’en-

semble des points de la frontiere ot

(X(2) [ VH(z)) <0

Théoreme 18 :
Soit Q un ouvert contenant un point xo de la frontiére de G, 0G = {x | H(x) = 0}. On
suppose qu’en tout point x de IG U on a VH(z) #0 et
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(X(z) [ VH(z)) <0
Alors aucune trajectoire de X ne sort de G' par 0G U €.
Preuve :

On va décomposer la démonstration en deux cas. Dans le premier cas, on suppose qu’en

Toon a :

(X (x0) | VH(x0)) <0

Par un argument de continuité, il existe € > 0 et une boule de centre 7 telle que pour tout

y € B(xg,n) on ait :

(X(y) | VH(y)) <e <0

On considere la trajectoireX;(zq) issue de zo. Pour ¢ > 0 suffisamment petit, elle reste

dans la boule B(zg,n). On a

©H(X.(x0) = (VH(X(x0) | X (Xi(ao))} <2 <0

Ce qui prouve que X;(xg) € G

Supposons maintenant que (X (zg) | VH(xp)) = 0. On considere le champ

ViH(z)
IVH@

Ce champ vérifie, pour tout € > 0 I’hypothese de la démonstration suivante sur 2 U 0G.

Xe(z) = X(x) —

Soit 7 tel que la boule fermée B(zg,n) soit dans 2. On choisit ¢ < T suffisamment petit tel
que Xy(zo) € B(wg,n). Comme X est un champ e-approché de X, on applique le lemme

de Gronwall :

LT_]_

| X5 (x0) — Xi(zo)]| < € 7

Ceci prouve qu’en choisissant 1" suffisamment petit on aura

X (wo) — Xy(wo) € B(xo,1)
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Ceci montre par le méme argument que la Preuve précédente que X (z) € G, par consé-
quent X;(zg) est limite de points de G qui est fermé, donc dans G. La trajectoire issue
de xg ne peut quitter GG localement. Comme ceci est vrai pour tout point zy de G, on a

montré le résultat sur €.

—
=
e

A.3.2.1 Matrices irréductibles

Définition 11 : [Matrices irréductibles]
Une matrice A € M,(K) est dite réductible si :
-n=1etA=0 ou
—- n <2, il existe une matrice de permutation P € M,(K) et un entier naturel r avec

1<r<n-—1tel que:

PTAP = {Al Aﬂ

0 Ay
ou Ay € M. (K), Ay € My, (K), Ay € M,,_.(K) et 0 € M,_,,.(K)

Une matrice non réductible est dit irréductible.

Exemple : Une matrice positive ayant tous ses coefficients non nuls est irréductible.

A.3.2.2 Matrices de Metzler irréductibles

On va caractériser par une propriété dynamique l'irréductibilité des matrices de Metzler.
Une matrice de Metzler laisse positivement invariant I'orthant positif. Que se passe t-il a
la frontiere, autrement dit sur les faces de I'orthant ?

On va d’abord démontrer une premiere proposition.
La définition d’irréductibilité, pour les matrices de Metzler est équivalente a la propriété

suivante :

Proposition 2 : [Matrices de Metzler irréductibles]
La matrice de Metzler A est irréductible si et seulement si, pour tout vecteur x > 0

appartenant a une face F' de RY, ou I est définie par :

F={x>0|iel (e]|x)=0}

il existe un indice i € I tel que (e; | ) =0 et (e; | Az) > 0.
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Preuve : On va montrer que la condition est nécessaire. D’apres la remarque suivant le
théoreme (19), on peut toujours remplacer A par A+ A pour A suffisamment grand. La
condition d’irréductibilité est équivalente, comme la condition du théoreme. S’il existe ¢ tel
que (e; | x) =0et (e; | Az) > 0 alors c’est équivalent a (e; | ) = 0et (e; | (A+ A )z) > 0.
On va donc supposer que A > 0.

La condition est suffisante.

En effet, supposons que pour tout ¢ tel que (e; | ) = 0, on ait (e; | Az) = 0. Soit
F, = R"0,z] la face engendrée par z. Puisque A > 0, on a A F, = R" [0, Az]. La face
F, est caractérisée par un ensemble d’indices I. On a F, = {x > 0| {(e; | ) = 0. Pour ces
indices on a (e; | Az) = 0. Et donc A F, C F,. La matrice A n’est pas irréductible.
La condition est nécessaire.

Si A est réductible, il existe une face, que 'on peut écrire F,, telle que AF, C F,.
Pour tout indice tel que (e; | ) = 0 on a donc (e; | Az) = 0.

P—
)
e

Définition 12 : Un graphe orienté G = (X, U) est un couple constitué par un ensemble
X ={x1,--+ ,x,} et une partie U de X x X
Les éléments de X s’appellent les sommets du graphe. Un élément (x,y) € U s’appelle un

arc, T est son origine et y son extrémité.
Un graphe est donc un ensemble de sommets avec des fleches liant certains sommets.

Définition 13 : Un chemin est une une suite d’arcs (uy,--- ,u,) tel que chaque arc u;
ait pour l'extrémité terminale l'origine de u; 1. On dit que le chemin joint ['origine de u;
a Uextrémité de u,

Un graphe est dit fortement connexe si tout couple de sommets distincts peut étre joint

par un chemin
On peut maintenant associer a toute matrice un graphe.

Définition 14 : On considére une matrice carrée A = (a;j). On considére le graphe
avec n sommets X = {1,--- ,n}. Un arc joint le sommet i au sommet j si aj; # 0.
On notera linversion des coefficients. Nous utilisons cette définition pour étre en accord
avec les notations des modeles compartimentaux. Ce n’est pas important car la notation

alternative introduit la transposée ce notre matrice et cela revient a changer le sens des
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arcs du graphe. On verra plus loin qu’une matrice est irréductible si sa transposée est
wrréductible.
Réciproquement a tout graphe d’ordre n, on associe une matrice n X n, ot a;; = 1 sl

existe un arc entre v et j et a;; = 0 sinon.

On peut caractériser I'irréductibilité d’une matrice de facon élégante, par une propriété

de son graphe associé :

Théoréme 19 :

La matrice A est irréductible si et seulement si son graphe G(A) est fortement conneze.

Preuve :

La condition est nécessaire. Supposons que la matrice A soit irréductible. Soit 7 un sommet.
On définit I ’ensemble des sommets, différents de i, que I'on peut atteindre a partir du
sommet ¢, c’est a dire ’ensemble des sommets j # i tels qu’il existe un chemin de joignant
iaj.

L’ensemble I est non vide. En effet si on considere I’ensemble J le complémentaire du
singleton {i}, puisque A est irréductible il existe k ¢ J et j € J tel que a;, # 0. Mais vu
la définition de J cela veut dire qu'il existe j # i tel que a;; # 0. Autrement dit il existe
un arc allant de ¢ a j.

Supposons par absurde que I # {1,--- ,n}. Par irréductibilité de A, il existe j € [
et kK & I tel que a; # 0. Il y a un arc allant de j a k. Mais comme j est dans I il est

accessible depuis i, donc k est accessible depuis 7. C’est une contradiction

La condition est suffisante. On suppose par I’absurde que le graphe associé est fortement
connexe et que A est réductible. Il existe donc un sous-ensemble propre d’indices I, tel
que si I'on note J son complémentaire, on ait a;; = 0 pour tout ¢ € I et j € J. On choisit
un indice ¢ € I et un indice j € J. C’est possible puisque I est propre. Il existe un chemin
joignant ¢ & j. Il existe donc une ensemble d’indices {ky,--- ,k,} tels que les coefficients

suivants soient tous non nuls :

Ajkeys Ay gy " " 5 Aoy i

Avec les hypotheses sur I et J on en déduit que, puisque ay, ; # 0, k, € J, soit k, € I. Mais
si k, € I le méme raisonnement appliqué a ay,_, r, prouve que k,_; € I. Un raisonnement

par récurrence finie montre que j € I, une contradiction.
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Remarque 6 : Une conséquence du théoreme précédent c’est que [irréductibilité ne dé-
pend que des termes hors diagonale. 1l est équivalent d’étudier l'irréductibilité de A ou de
A+ NI

Si une matrice A est réductible elle peut se mettre sous une forme triangulaire bloc

All A12 Alp
prap_ |0 Mo A
0 0 - Ay

ot les blocs diagonaux A;; sont des matrices irréductibles et P une matrice de permutation

I1 suffit d’appliquer le processus de réduction un nombre fini de fois.

Proposition 3 : Si A est une matrice de Metzler irréductible alors aucune trajectoire ne
peut rester dans une face.
Plus précisément A est une matrice de Metzler irréductible si et seulement si pour tout

t>0, ona:e?>0.

Preuve : On suppose que cela est faux. Il existe donc ¢ > 0 tel que e/4 € 8R12. Mais

(t—s) A e t—s)

pour tout s, tel que 0 < s <t,onace 4. La matrice e*=*)4 est positive (théoreme

15 ). Elle est inversible. Par conséquent si e¥4 > 0 cela entraine ¢ > 0. On vient de

sA

montrer que e®“ n’est pas fortement positive pour tout 0 < s < t. Il existe un x > 0 de

tA x, soit dans la frontiere de l'orthant.

la frontiere de I'orthant, tel que e
D’aprés la proposition (2), il existe un indice i tel que (e;|e! z) = 0 et (e;|A et x) > 0.
La fonction ¢p(s) = (e;le* z) est positive pour tout s. Elle s’annule en ¢ = s. C’est un

minimum, donc sa dérivée s’annule en ¢t. Or

o'(t) = <ei\AetA:1:> >0

C’est la contradiction cherchée.

Réciproquement si A est réductible, alors A peut s’écrire :

A A
PTAP =
0 Ay
d’ou
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PT etA P = |:DetA1 M(t):|

0 Det As

La matrice e'? est réductible et positive, il existe donc un vecteur de la frontiere z > 0

A

tel que e'“ z soit dans la frontiere de 'orthant. e ne peut vérifier e!4 > 0.

A.3.3 Quelques propriétés des matrices compartimentales linéaires

Théoréme 20 : [disques de Gerschgorin/

Le spectre d’une matrice A est contenu dans la réunion des disques

{z] [z —aul < E ai| 1=1,---,n}
J#i
Preuve :
On va d’abord montrer que si une matrice A est inversible alors il existe un indice i tel

que :

|ai0i0| < Z |a’i0j|

J#io0
En effet si A n’est pas inversible, soit x # 0 tel que Ax = 0. Soit 7o un indice tel que

Tiy ¢ %] co- On &

Qigig Tig = — E : Qi Lj

J#i0

Ce qui donne

|igiol 17]]o0 <Y latigs] |
J#io
et

|2
|Gigio | §§ |ai0j|—||x‘]| SE | @iy
[ee]

J#io J#io
Si on applique de résultat a la matrice A — A I, qui n’est pas inversible pour A € Spec(A),
on en déduit qu’il existe un 7 tel que
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|>‘ - aioio| < Z |ai0j|
JFi

Ce qui termine la démonstration =

Remarque 7 : On a un résultat analogue pour les rayons des disques : en la somme des
valeurs absolues des termes hors diagonaux colonnes. Il suffit de remarquer que le spectre

de AT est égal au spectre de A et d’appliquer le théoréme précédent a AT.

Corollaire 1 : [spectre d’une matrice compartimentale/
Le spectre d’une matrice compartimentale est contenu dans la réunion du demi-plan ouvert

gauche du plan compleze et du singleton {0}.

En effet, en prenant le résultat en colonne, la relation (A.2) et le théoreme de Gerschgorin,
on obtient que le spectre de A est contenu dans des disques centré sur 'axe ds x négatif
et passant au plus par l'origine.

On dit que A est a diagonale dominante.

Le spectre est constitué de nombre complexes a partie réelle strictement négative et peut-

etre de la valeur propre 0.

Définition 15 : On dit qu’un modéle compartimental est «outflow connected» si de tout

compartiment, on a un chemin vers un compartiment qui a une sortie vers l’extérieur.

Proposition 4 : La matrice d’un modele compartimental linéaire «outflow connecteds

est une matrice d’Hurwitz.

Preuve : On va montrer que la matrice est inversible, 0 ne sera pas valeur propre, cela
démontrera la proposition en raison du corollaire précédent.
On raisonne par 'absurde. Si A n’est pas inversible, AT aussi. Si AT n’est pas inversible,

soit = # 0 tel que AT z = 0. Soit 4y un indice quelconque qui est tel que zy, : [|7]|o. On a

Qigig Tig = — E : Qigj Lj

J#io0

Ce qui donne
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|igiol [12]]o0 <> latigg] |
J#i0
et

3 |7, 3
j
|a’i0i0| < |a”i0j| ||$’|| < |ai0j| < |ai0i0| (AS)
J#io o
Nous avons la derniere inégalité parce que A est une matrice compartimentale.
Si 7o est indice pour lequel le compartiment a une sortie extérieure, la derniere égalité est

stricte, ce qui est une contradiction.

Si ce n’est pas le cas, alors on a 'égalité de tous les termes et en particulier

>l (1 - ﬁ) =0

J#io0 *
Autrement dit |z;| = ||z]|~ pour tout indice pour lequel a;,; # 0, c’est a dire un indice tel
qu’il ait un chemin venant de iy. Pour ces indices la, la relation (A.3) est satisfaite. On

recommence. On finit par atteindre un indice de compartiment ou il y a une sortie, qui

vérifie (A.3) avec inégalité stricte : contradiction.

—
i
e

Corollaire 2 : Un systeme compartimental «outflow connected» linéaire avec entrées

constantes est stable.

Le systtme # = Ax + b admet comme équilibre —A~1b, puisque A est inversible. En
faisant le changement de variable 7 = —A~1b et X = 2 — T on obtient X = A X qui est

asymptotiquement stable.

A.3.4 Compléments sur les matrices de Metzler

On va démontre un résultat du a Varga [109,110] qui est important dans I’élaboration du

concept de Ry.

Définition 16 : [décomposition réguliere] Soit une matrice de Metzler A inversible. On

appelle décomposition réquliére de A toute décomposition de A de la forme

A=F+V

ou ' >0 et V est une matrice de Metzler- Hurwitz
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On a le théoreme suivant démontré par Varga

Théoreme 21 : Il est équivalent de dire, pour toute décomposition régqulicre d’une ma-
trice de Metzler inversible.
— A est une matrice d’Hurwitz

-~ p(-FV ) <1

Preuve : Supposons que A est une matrice d’Hurwitz. Alors d’apres le théoreme (16), on
a—A"1>0.

Les matrices V = A — F' et A étant inversibles, on peut écrire

—FV ' '=-FA-F)'=-FA'I-FA™

On note G = —F A~!. C’est une matrice positive. Pour chercher son rayon spectral,
d’apres Perron-Frobenius, il suffit de se restreindre aux vecteurs positifs. Soit v > 0 un

vecteur propre de G correspondant a une valeur propre A > 0, soit Gv = Av. On a

o
1

La matrice —F V1 est positive. Réciproquement soit p > 0 une valeur propre relative-

—FV o =GUI+G) v

ment & un vecteur propre v > 0. Alors G(I + G)™'v = pwv. Les matrice G et (I + G)™*
commutent, on en déduit Gv = u (I + G)v. Cela entraine que nécessairement p # 1 et v
est un vecteur propre de G relativement a la valeur propre Dﬁ.

La fonction de RT dans [0, 1], définie par z D+ est une bijection entre les valeurs

propres de G = —F A~! sur celles de —F V1. (est une fonction monotone. Par consé-
quent on a
- p(G)
—FV hH=_""L_ <1

Réciproquement supposons p(—F V1) < 1. Alors la matrice —1 — F V=1 est inversible,
c’est une matrice de Metzler. Puisque p(—F V™) < lona s(—I — FV™') < 1. Cest une

matrice de Metzler-Hurwitz. Son inverse est positive et par conséquent

AT = (I -FV HV >0

Ce qui montre que A est Metzler-Hurwitz d’apres le théoreme (16). Cela termine la dé-
monstration.
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Remarque 8 : En fait ce théoréme est démontré par Varga en 1960, et présent dans son
livre en 1964 [110]. Ce résultat est cité dans Berman et Plemmons [10](1974). C’est la
condition Oy7 du fameux théoreme aux 50 équivalences pour qu’une matrice de Metzler
soit une matrice d’Hurwitz. Berman et Plemmons les énoncent en terme de M-matrices,

il suffit de changer de signe!

(11

A.4 Méthodes de Lyapunov

Définition 17 : [fonction de Lyapunov]
On appelle fonction de Lyapunov en xo, point d’équilibre du systeme & = f(x), une
fonction V telle que

- V(zg) >0

- V(z) =0 si et seulement si v =

— 1l existe un voisinage de xq tel que sur ce voisinage on ait
V(z) = (VV(z) | f(z)) <0
Une fonction qui vérifie les deux premiere propriétés est dite définie positive en x

Théoréme 22 : [Lyapunov/
Si xg est un point d’équilibre du systéme autonome & = f(x), s’il existe une fonction de

Lyapunov en xy pour ce systeme alors xqy est un point d’équilibre stable.

Si en outre V est définie négative, i.e. si V(z) =0 si et seulement si x = xq alors zq est

un point d’équilibre asymptotiquement stable.

Théoréme 23 : [LaSalle/
Si'V est une fonction de Lyapunov propre alors le plus grand ensemble invariant contenu

dans

L={z|V(z)=0}

est un ensemble attractif.

Si L = {xo} alors xy est globalement asymptotiquement stable.
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Ce théoreme a été longtemps ignoré par les biomathématiciens. Il est prouvé dans le livre
de Diekmann en 2000 [23] Théoreme 6.13, avec une référence a Nold en 1980 [94]. On

retrouve une démonstration dans [108] en 2002.

A.4.1 Systemes triangulaires

On considere un systeme triangulaire, plus précisément il s’agit d’un systeme sur R™ x R™

du type

{ = hin) (A4)

Ty = f2(I1,l’2)
ou f; est une application de R™ dans R" et fo de R™ x R™ dans R™. On supposera que

les conditions sont vérifiées pour 'existence et I'unicité des solutions (par exemple f; et
fo de classe C1).

Les trajectoires ont toutes la mime projection sur R™ x {0}, ce sont celle du systeme
1 = fi(z1) sur R™.

On voit bien pourquoi on a donné le nom de triangulaire. En fait la jacobienne du systeme
est triangulaire inférieure par blocs. Ces systemes sont aussi appelés hiérarchiques. On va
démontrer un résultat de stabilité du théoreme de Vidyasagar [111]. La version que nous
présentons est dans le cas autonome. C’est beaucoup plus simple que le cas général de

Vidyasagar.

Théoréme 24 On considére un systéme de classe C!

(5 =g "

iy = fa(x1,72)
Tel que l'origine de R™ est globalement asymptotiquement stable (GAS) pour le systeme
isolé @1 = fi(x1) sur R™ et tel que lorigine de R™ est GAS pour &9 = fo(x1,x9).
Alors lorigine est asymptotiquement stable.

S toutes les trajectoires sont bornées alors l'origine est GAS sur R™ x R™.

preuve
On va montrer la stabilité. Soit le voisinage de 1’origine
B(0,¢) = {(x1,22) | [lz1]l < &, [l22]| < €}
Puisque les équilibres des systémes isolés sont GAS, que les systémes sont de classe C* on
peut appliquer la réciproque du théoreme de Lyapunov. Il existe des fonctions de classe

C! définies positives Vi (z1) et Vo(xs) telles que
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Vi = (VVi(21)|fi(21)) <0

Va = (VVa(2)|f2(0,72)) <0

et ces deux fonctions Vi et V3 sont définies négatives sur B(0, €) pour ¢ suffisamment petit.
Puisque f; et V; sont de de classe C! soit
O

L= max — (1,
(z1,22)EB(0,¢) 8:61( 1, %2)

et
M= max V Vs ()

(z1,22)€B(0,¢)

Puisque V5 est une fonction de Lyapunov, on peut choisir 6; < 5 suffisamment petit tel

que

max Vo(zz) < min  Va(xz)
l[z2]|<d1 £<wz|<e

Va(23) = (VVa(22)| fola1, 72)) = (VVa(22)| f2(0, 22)) + (VVa(2)| fola1, 72) — f2(0, 22))

On a la relation

1
0
fa(z1, 22) — f2(0,20) = —af2 (txy,xe) 1 dt
o 9I1

qui entraine sur B(0,¢)

1221, 22) = f2(0, 22) | < Ll

et

Va(2) < (VVa(22)| f2(0, 22)) + L M ||, | (A.6)

la fonction (VVa(x2)|f2(0, 22)) est définie négative, par conséquent si l’'on définit la fonction

@Y par

ple) = min_ —(VVa(22)]f2(0, 22))

e<|lel|<e
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La fonction ¢, définie sur R, est continue croissante, tend vers 0 quand c¢ tend vers 0 et
vérifie p(c) > 0 pour tout ¢ > 0.

Puisque le systeme @7 = fi(z1) est asymptotiquement stable, on peut choisir §, < d; tel
que si la condition initiale vérifie ||z1(0)| < 0y alors on a pour tout ¢ > 0, I'inégalité
Jan ()] < 552

Sion a ||z < 69 et ||za]| > 01, avec I'inégalité (A.6), on en déduit la relation

(VVa(22)[£2(0, 22)) + L M [l ]| <0 (A7)

Soit maintenant 0 < d3 < dy tel que

max Vi(z;) < min V()
llz1/<ds o<z ]|<e

Considérons 'ouvert U défini par

U = {(1, )] [Ja]| < I35 [[22]] < 03}

Si 21(0) < d3, comme V; est décroissante, I'inégalité précédente montre que ||z1(t)|| < d2
(aucune trajectoire ne peut atteindre la sphere de rayon d; dans R™).

Soit [|z2(0)|| < 5. Comme

max Vo(z2) < max Vo(zg) < min  Va(z)

llz2[|<d3  lw2li<a 5<[lz2ll<e

La trajectoire issue de (x1(0),z2(0)) tant qu’elle vérifie ||z5(t)| < &,

Vo(z2(t)) < min  Va(xy)

1< lazl<e

On a vu ci-dessus que I’ on a ||z1(t)]| < 2. Ceci entraine, des que ||za(t)|| > 61, en vertu
de 'inégalité (A.7), inégalité Vy(xy) < 0.
Comme V5, est décroissante sur les trajectoires contenues dans 'anneau

[|z1]] < 02, 61 < ||lz2]| < 5, on en déduit qu'une trajectoire ne peut atteindre la sphere
de rayon § dans R™. On a prouvé |[z;(t)|] < 02 < € et [|z2(f)[[T < 5. Ceci termine la
démonstration de la stabilité.
On va démontrer I'attractivité locale par le principe d’invariance de LaSalle. Puisque
I'origine est stable il existe un voisinage compact U, de l'origine positivement invariant.

On va se restreindre U.
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On considere la fonction V;. C’est une fonction de Lyapunov-LaSalle. Par hypothese

Vl = (VVi(21)|fi(21)) <0

On considere dans E = {t(zy,23) € U | Vi(x;) = 0} le plus grand ensemble invariant.
C’est évidemment ({0} x R™)NU. Par hypothese le systeme &9 = f2(0, z2) est globalement
asymptotiquement stable sur {0} x R™. Ceci implique que toute trajectoire négative du
systeme de U \ {0} sort de U.

En effet, si ce n’est pas le cas, il existe une trajectoire complete v dans . L’ensemble
des points a-limites de ~ est invariant. Par stabilité asymptotique et invariance, cet en-
semble contient 'origine. Cela signifie que la trajectoire part aussi prft que l'on veut de
I'origine pour y retourner. La fermeture de cette trajectoire étant compacte, cela contredit
la stabilité. La propriété énoncée est vraie.

Cela signifie que le plus grand ensemble invariant contenu dans E est réduit {0}. Cela
montre 'attractivité dans U.

Si une trajectoire est relativement compacte, alors les poins w-limites sont dans {0} x R™.
En effet pour t,, — oo on a x1(t,) — 0. Si toutes les trajectoires sont compactes, alors
I’ensemble des points w-lmites sont dans {0} x R™. Par asymptotique stabilité sur {0} x R™
I'origine est un point w-limite. Toute trajectoire s’approche aussi pres que l'on veut de
I'origine. Par stabilité elle est piégée dans I'ouvert U défini ci-dessus. Elle tend donc vers
I'origine.

p—
)
e

Remarque 9 Si les trajectoires ne sont pas bornées alors on ne peut conclure qu’avec la
locale asymptotique stabilité. L’exemple suivant dans R?, Seibert et Suarez [99], en fourni

un contre-exemple.

r =-—x
. A8
{yzny—U (A5)
Il est facile de voir que 0 est bien un équilibre globalement asymptotiquement stable du
premier systeme et du systeme y = —y. Par symétrie il suffit de considérer les trajectoires

dans 'orthant positif.

On considere la famille de fonctions Hg (z,y) = zy — k
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H, = <VHk

[y (x;x— 1)} > =y (a’y’ —2)

On voit que les hyperboles 2y — v/2 = 0 sont invariantes. Les hyperboles zy —a 0" a > /2
sont des frontieres et le champ pointe vers les xy croissants. L’origine n’est pas un équilibre

globalement asymptotiquement stable . On obtient la figure

T L —
25 3.0

o
o
o
o
-
o
o
n
o

FIGURE A.2 — asymptotique stabilité locale

A.5 Calcul du taux de reproduction de base R

Le nombre de reproduction de base Rq est un concept clé en épidémiologie et sans
conteste une des idées importantes que les mathématiques ont apporté a la théorie des
épidémies.

Cette quantité, sans dimension, est le nombre moyen de cas secondaires, engendré par un

individu infectieux typique durant sa période d’infectiosité, quand il est introduit dans

une population constituée entiérement de susceptibles. On suppose également qu’il y a

pas eu d’intervention.

Ce concept est utilisé en écologie, démographie et en épidémiologie. L’apparition de R

est relativement récente en épidémiologie et date des années 80. Depuis une trentaine
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d’années R est de plus en plus utilisé dans les situations de plus en plus réalistes et sur
des modéles de plus en plus compliqués.

Le concept trouve sa base en démographie. Le directeur de bureau des statistiques de
Berlin, Richard Bockh introduit et calcule ce qu’il appelle "la propagation totale de la
population” (K. Dietz). Dans ce contexte Rq est le nombre moyen de naissance de filles
produit par une femme durant sa vie entiére. C’est A. Lokta (1913) qui introduit la

notation R et reconnait la formule de Bockh

Ry = /O " p(a)d(a)da

ou p(a) désigne la probabilité pour une femme de survivre a I'age a et B(a) le taux de
naissance des filles a ’age a.

En épidémiologie la premiére note qui anticipe la notion de Ry est due a Theophil Lotz
(1980) (Nichiura, Dietz, Eichner 2006). Il se trouve que Ry est un seuil. A savoir si
Ry < 1 I'équilibre sans maladie est localement asymptotiquement stable et si Ry > 1
il est instable. Mais bien d’autres quantités peuvent jouer ce role, par exemple Rj pour
n > 0. C’est Ross qui décrit le premier modéle différentiel et donne les conditions de
seuil. Mais le concept en lui-méme n’est pas dégagé. La notion fut d’abord introduite par
MacDonald dans le contexte du paludisme (1952). En 1975 quatre articles qui montrent
I'importance du concept (Dietz, Hethcote, Becker). L’atelier de Dahlem, organisé par
May et Anderson en 1982 popularise la notion. Enfin I'article de Diekmann et al. fonde

mathématiquement le concept pour toute une série de modéles.

Définition 10 : Le nombre de reproduction de base est le nombre de cas secondaires
produit par un individu infectieur typique au cours de sa période d’infectivité, dans une

population constituée entiérement de susceptibles.

A.5.1 Algorithme de calcul de Ry

Dans ce paragraphe, nous allons considéré la définition du Ry suivant 'article de P.
Van Den Driessche et J. Watmough [108]. On considére le systéme épidémiologique com-
portant n classes ou compartiments homogénes. Le vecteur x représente 1’état du systéme,
et x; est le nombre (ou concentration) d’individus dans le compartiment i. On donne les
compartiments de fagon que les derniers compartiments correspondent aux compartiments
des individus infectés (latents, infectieux...). Les m premiers compartiments sont les indi-

129 Etude de quelques modéles épidémiologiques :

application a la transmission du virus de ’hépatite B
en Afrique subsaharienne (Sénégal).



ANNEXE A. QUELQUES OUTILS MATHEMATIQUES

vidus libres de I'infection.
Soit F;(z) la vitesse d’apparition des infectieux dans le compartiments i. On note V;' la
vitesse de transfert des individus dans le compartiment 7 par tout autre moyen et V; la

vitesse de transfert hors du compartiment 7. On a donc

T =F)+V -V~
On suppose que les fonctions sont au moins C'. On dit quun état du systéme z( est sans
maladie si les compartiments "infectés” sont vides, ie (xg); = 0 pour i > m.
On dit qu'un équilibre est un DFE si X (zg) = 0 et z( est un état sans maladie.
Pour des raisons biologiques évidentes, on a les propriétés suivant pour ces fonctions
L.2>0, F(x) >0,V (x) >0V (x) >0
2. siz; =0 alors V; = 0. Cela dit simplement qu’il ne peut rien sortir d'un comparti-

ment vide.

3. Si i < m alors Fi(z) = 0. Cela signifie qu’il ne rentre pas d’infectés dans les

compartiments, non infectés.

4. Si g est un état sans maladie alors JF;(zo) = 0 et pour i > m V; (x¢) = 0. Quand

il n’y a aucun infecté, il ne peut y avoir de maladie, donc on reste sans infection.

On va essayer de définir le nombre moyen de ré-infections produit par un individu typique
infecté dans une population au voisinage d’'un DFE.
Pour cela on va considérer la dynamique du systéme linéarisé au voisinage du DFE, avec

la ré-infection bloquée :
i = DV(xg)(x — x9) = DV (20) (2 — 20) — DV~ (0) (2 — 70)
Le lemme suivant précise la structure du systéme linéarisé DX (z).

Lemme 1 : (P. Van Driessche et J. Watmough [108])

Si g est un DFE, alors les matrices DF (xg) et DV(xo) se décomposent en blocs

DF(x0) = {0 0 }

0 F
et
_ | S
ou "> 0 et est une matrice de Metzler.
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OF;
Ox;

Preuve : De part la propriété (3) de F alors

(x0) = 0sii < m. En effet la propriété
(3) implique F;(z) =0sii < m.

De méme de la propriété (2), on a gf; (xg) = 0sij < m. En effet, on a d’aprés la propriété

(2) et puisque xy est un état sans maladie

E(l‘(l),... 71‘81; 7x'g)+h7 7x8‘):ﬁ(07. 707‘7;6”’ 7x~g)_|_h’ 7x61‘):0

La positivité de F' vient du fait que F;(z) — F;(xo) = Fi(z) > 0
Si e; désigne jm¢ vecteur de la base canonique de R™, on a :

Vi<$0 + hej) — Vl(ﬂfo)
Ox; h—0+ h

mais pour i > m et j < mon a V" (zo+te;) = 0 car (ro+ te; est un état sans maladie et
en raison de la propriété (4). De méme V; (zo + te;) = 0, car les compartiments & partir
de m sont vides (propriétés 2). Cela montre pour i > m et j < m, on a

oV,
(9xj

(z0) =0

Maintenant pour i > m on a encore V;(zq) = 0. Si de plus 7 # j, alors la im¢ composante
de o+ he; est nulle, par conséquent d’aprés la propriété (2), on a V;(xo+ he;j) = V" (xo+
he;) > 0. Ce qui prouve bien que les éléments hors diagonale de V' sont positifs par
passage a la limite de quantité positives. La matrice V' est bien une matrice de Metzler.
Ce qui achéve la preuve du lemme.

On suppose maintenant que V' est une matrice stable. Si x;(0) est un petit nombre
d’individus infectés dans le compartiment ¢ > m au départ. Alors au bout du temps ¢, la
ré-infection étant bloquée on aura pour 7 > m, en raison de la structure de la structure
de DV (xp)

z(t)(m+1:n) = (eVao(m+1:n))

ou 'on note (z(t)(m + 1 : n) les coordonnées de m + 1 a n d'un vecteur z.

Pour obtenir le nombre moyen de cas engendrés, il suffit de calculer
+oo
/ FeVaom+1:n)dt = —FV " ag(m +1:n)
0

car on a supposé V stable. De plus —V ! > 0 car V est Metzler stable. On peut main-

tenant interpréter la matrice —FV ~!. Considérons un individu infecté introduit dans un
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compartiment k& > m d’une population sans maladie. L’entrée (4, k) de la matrice —V !
est le temps moyen des individu passera dans le compartiment j au cours de sa vie, en
supposant que la population reste prés du DFE et que 'on bloque la ré-infection. La
valeur (7,j) de la matrice F est la vitesse a laquelle un infecté dans le compartiment j
produit des infections dans le compartiment . Par conséquent I'entrée (i, k) de —FV !
est le nombre espéré de nouvelles infections dans le compartiment ¢ produit par un indi-
vidu infecté introduit originellement dans le compartiment k. On appellera cette matrice

la "next generation matrix”.

Définition 11 : on appelle nombre de reproduction de base le rayon spectral de —FV ~1

Ro = p(=FV~H)
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Abstract. We give a survey of results on global stability for deterministic compartmental epidemi-
ological models. Using Lyapunov techniques we revisit a classical result, and give a simple proof.
By the same methods we also give a new result on differential susceptibility and infectivity models
with mass action and an arbitrary number of compartments. These models encompass the so-called
differential infectivity and staged progression models. In the two cases we prove that if the basic
reproduction ratio Ry < 1, then the disease free equilibrium is globally asymptotically stable. If
Ry > 1, there exists an unique endemic equilibrium which is asymptotically stable on the positive
orthant.

Key words: nonlinear dynamical systems, global stability, Lyapunov methods, differential sus-
ceptibility models
AMS subject classification: 34A34, 34D23, 34D40, 92D30

1. Introduction

The primary objective of this paper is to give two results on global stability for some epidemiolog-
ical models using Lyapunov techniques. Using a new result for systems of the type © = A(z) z,
we revisit a celebrated result of Lajmanovitch and Yorke [39] and give a simple proof. The second
result is for differential susceptibility and infectivity models with mass action. We generalize a
result of [28, 24]. But before we will give an overview of the literature concerning the problem of
stability in epidemiological models
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In [59] J.A. Jacquez says :

A major project in deterministic epidemiological modeling of heterogeneous popula-
tions is to find conditions for local and global stability of the equilibria and to work
out the relations among these stability conditions, the threshold of epidemic take-off,
and endemicity, and the basic reproduction.

We denote in this paper by R the basic reproduction number. The basic reproduction number, a
key concept in epidemiology, is defined as the expected number of new cases of infection caused
by a typical infected individual in a population of susceptibles only and is an ingredient in almost
all papers using mathematical modeling for infectious diseases. An abundant literature have been
devoted to R (see [8, 10, 67, 17, 18, 34, 59, 66] and the references therein) after the seminal paper
[9].

The citation before was written in 1982, at this time no too many results was known. What
is the situation 25 year later ? As early as 1976 the stability analysis for the classic SIR or SIRS
models was well known [20, 19]. The reason was that the study of stability for these models was
reduced to the study of 2-dimensional systems, hence phase methods could be used : Poincaré-
Bendixson theorem. Periodic orbits are ruled out using Dulac criteria or condition of Busenberg
and van den Driessche [7].

For many infectious diseases the transmission occurs in a heterogeneous population, so the
epidemiological model must divide the population into subpopulations or groups, in which the
members have similar characteristics. This division into groups can be based not only on mode of
transmission, contact patterns, latent period, infectious period, genetic susceptibility or resistance,
and amount of vaccination or chemotherapy, but also on social, cultural, economic, demographic,
or geographic factors. This is the rationale for the introduction of multi-group models. In the
epidemiological literature, the term “multi-group” usually refers to the division of a heterogeneous
population into several homogeneous groups based on individual behaviour. The interest in multi-
group endemic models origina lly stems from sexual transmitted diseases such as gonorrhea or
HIV/AIDS. The pioneering paper of Lajmanovitch and Yorke in 1976 [39] provides a complete
description of the dynamics of n groups of SIS systems for subpopulations of constant size. The
authors use Lyapunov techniques to prove that either all trajectories in R”} tends to 0, or else there
is a unique endemic equilibrium 7 in the positive orthant and trajectories in R} \ {0} tends to Z.

Other types of high dimensional systems are the so-called differential infectivity (DI) and
staged progression (SP) models. The staged progression model [59, 29, 34] has a single unin-
fected compartment, and infected individuals progress through several stages of the disease with
changing infectivity. This model is applicable to disea se with changing infectivity during the in-
fectious period such that HIV or disease with asymptomatic carriers such that HBV or tuberculosis.
The differential infectivity model has been also introduced to take into account some specificity of
HIV/AIDS. In a DI model the infected population is subdivided into subgroups of different infec-
tivity. Upon infection, an individual enters some subgroup with a certain probability and stays in
this subgroup until becoming inactive in transmission.

For multigroup SEIRS models of constant size many results have demonstrated the global
stability of the disease free equilibrium when Ry < 1 and the local asymptotic stability of an
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unique endemic equilibrium when Ry > 1 [21, 64, 65]. The most difficult task is the global
stability of the endemic equilibrium when Ry > 1, when this is possible. Actually for general
multigroup models the uniqueness of the endemic equilibrium non longer holds and the disease
free equilibrium may be locally, but not globally, asymptotically stable [67, 34, 59].

The global stability when Ry > 1 of SEIR models with constant size has long been conjectured
but only proven in 1995 [43]. The proof relies heavily on the competitive structure of the system,
and the fact that 3 dimensional competitive systems satisfy the Poincaré-Bendixson theorem [22,
61, 60]. When the system is not competitive another approach consists to show that the system
satisfies a Bendixson criterion which is robust under C! perturbation [44, 62, 41, 48].

Since these path-breaking papers numerous results of global stability for the endemic equilib-
rium have been obtained for low dimensional systems;

e For SEIRS systems, with fraction of classes (then the system reduces to a 3-dimensional
systems) for small or large temporary immunity [45],

e For SEIR model with vertical transmission [46]. The study of stability is reduced to a 3-
dimensional system. Since this system is not competitive the second approach is used,

e For SEIR model with varying population size [42] for the system of fraction of classes,

e For SIRV models (V for vaccinate class) with constant population size and mild parameters
constraints [2],

e For SVEIR models [14] with small mortality,

e For Staged progression models in dimension 3 and 4 [53],

e For SEI models with immigration of latent and infectious [54],

e A model of dengue which is reduced to a 3 dimensional competitive system [67],

e A 5 dimensional staged progression model [13], for which the asymptotic stability of the en-
demic equilibrium reduces to a 3 dimensional system permitting to apply the Li-Muldowney
technique [44].

For arbitrary dimensional system, the most promising method may be that of Lyapunov. The
systematic use of Lyapunov function in studying stability problems is relatively recent. The excep-
tion is the result of Lajmanovitch and Yorke evoked before. However, Lasalle-Lyapunov theory
has been used in [50, 57, 34, 59] to study the stability of classic SIRS models.

In 2004, Korobeinikov and Maini using a Lyapunov function [36] demonstrate simply the
result of Li and Muldowney for the endemic equilibrium. The Lyapunov function used is V' =

n

Z a;(x; — T Inx;). This function has a long history of application to Lotka-Volterra models

i=1
[5, 12, 16, 63] and was originally discovered by Volterra himself, although he did not use the
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vocabulary and the theory of Lyapunov functions. Since epidemic models are “Lotka-Volterra”
like models, the pertinence of this function is not surprising. This Volterra-Lyapunov function has
been used in epidemiological models at the end of the eighties.

Beretta and Capasso [4] use a skew-symmetry condition on the Jacobian of the matrix of the
system to give a necessary condition for the global stability of the endemic equilibrium.

For a SIRS multigroup model with constant subgroup sizes, Lin and So [49] show that the en-
demic equilibrium is globally asymptotically stable if the contact rate between subgroups is small.
These two results are actually perturbation results of the situation where the endemic equilibrium
is known to be globally stable.

Since the publication of the result of Korobeinikov and Maini the “Volterra-like” Lyapunov
functions has been used to address the stability of high-dimensional systems with mass action.
The difficulty is in choosing the coefficient and in proving that the derivative is nonnegative. The
global stability of DI model with mass action is demonstrated in [52]. The global stability of SP
model, eventually with latent classes, with mass action is proved in [15, 32]. Stability of intra-host
models with different strains [30] (which contained as a particular case, SE; --- E,I R models
with multiple strains) is treated in [1, 30]. The stability of differential and staged progression
latent classes, with one infectious class is solved in [32]. Two models of tuberculosis are studied
in [55]. The stability of a model with complex graph interaction between latent classes and one
infectious class is addressed in [56].

We give a brief outline of the paper. In Section 2, we consider a system similar to the system
in [39]. We compute R, and prove that if Ry < 1, the DFE is globally asymptotically stable and
if Ry > 1, then a unique equilibrium exists which is globally asymptotically stable on R’} \{0}.
In Section 3, we present a system with different classes of susceptible individuals and staged
progression through latency and infectious classes. Using a “Volterra-like” Lyapunov function we
obtain results as before : if Ry < 1 the DFE is globally asymptotically stable and if Ry > 1 then a
unique equilibrium exists which is globally asymptotically stable on the positive orthant.

2. A n groups SIS model

Throughout the paper we will use the following classical notations. We identify vectors of R" with
n x 1 column vectors. The Euclidean inner product is denoted by (| ), then ||z||3 = (2 | 2) is the
usual Euclidean norm. The family {e;,--- ,e,} denotes the canonical basis of the vector space
R™. We denote by 1 the vector with all components equal to 1,i.e. 1 = e 4 -+ + ¢,.

If € R™ we denote by x; the i-th component of x. Equivalently z; = (x | ¢;). For a matrix
A we denote by A(7, j) the entry in row 4, column j. For matrices A, B we write A < B if
A(i,j) < B(i,j) foralliand j, A< Bif A< Band A # B, A < Bif A(i,j) < B(i,j) for all
i and j. The notation AT denotes the transpose of A. Then (v; | vo) = v¥ v,. The notation A~T
will denote the transpose of the inverse of A. If 2 € R", we denote by diag(x) the diagonal matrix
whose diagonal elements are given by .

A Metzler matrix A is a matrix such that A(7, j) > 0 for any indices i # j [6, 33, 51]. These
matrices are also called quasipositive matrices [61]. Metzler matrices are the opposite of M-
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matrices [6, 67]. We prefer to use Metzler matrices since they appear naturally in compartmental
systems.
In this section we will consider the following system

t = |D+ B —diag(x) B| . (2.1)

where D is a stable Metzler matrix and B > 0 is a nonnegative irreducible matrix.

To motivate the consideration of such a system we consider n groups with constant population
size and a disease which confer no immunity after recovery. We model the contact by the mass
action law. If we denote by S; and I; the respective number of susceptible and infectious individuals
in group ¢, N; = S; + I;, the system is, forv =1,--- | n

Si = pi Ny — 1 S; — 22;1 ﬁi,j %Iz + v I;
(2.2)
I = Z?:l Bij % I — (i + pa) 1.
Since the population is constant, it is sufficient to know the /;. If we set x; = ﬁi’ B” = B3i; N;

7

and «o; = ~; + p; we obtain a system of ODE

Zt'i = (1 — fL‘l) ZB@]' XTj — O Ty (23)

that we can write in compact form
&= [D + B — diag() B} z. 2.4)

with B = (B”> and D = —diag(«;). This system is the system considered in [39], where the

system addressed has the structure of (2.1). In this model, the matrix B describes the contact
interaction between groups. We recall the following definition [6, 61, 66].

Definition 2..1. A matrix A of size n X n, n > 2 is called irreducible if for any proper subset I of
{1,--- ,n} therearei € I and j & I such that A(i,j) # 0.

Epidemiogically speaking the irreducibility of B (or ()) means that no group is contact isolated in
and out from the remaining groups. It is now easy to interpret the meaning of the system (2.1). The
matrix D describes the transfer of individuals out of compartments and B — diag(z) B the disease
transmission. The model can also be written & = [D + diag(1 — =) B] z. It is clear that [0, 1]" is a
compact positively invariant absorbing set for this system.

2.1. The basic reproduction number

We denote by p(A) the spectral radius of a matrix A, which is defined, if Sp(A) denotes the
spectrum of A, by

p(A) = max{|A| [ A€ (Sp(A)}
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and the stability modulus «(A)

a(A) = max{R(\) | A € (Sp(A)}.

Using the framework of [67] the matrix —D~! B is the next generation matrix of (2.1) and the basic
reproduction number is Ry = p(—D~*B). We now will use a result of Varga [69, 68] (rewritten in
term of Metzler matrices)

Definition 2..2 (Regular splitting). : For a real Metzler matrix M, M = A + N is a regular
splitting if A is a Metzler stable matrix and N > 0 is a nonnegative matrix.

Now we can give the following classical theorem.

Proposition 2..1 (Varga, 1962, Theorem 3.13, [69]). Let M = A + N be a regular splitting of M,
a real Metzler matrix. Then M is Metzler stable if and only if p(—NA™1) < 1.

The proof of Proposition 2..1 is in Varga (1960). It is also in Bermann and Plemmons [6]: the
condition 45 expressed in terms of M -matrices. We see from this proposition, by a continuity
argument, that for any regular splittings of a Metzler matrix M we have

a(M) <0< p(—-NA™) < 1,
(2.5)
a(M) =0 <= p(-NAH) =1.

Thus any regular splitting gives an equivalent threshold condition (/) on the parameters. This
has a consequence for our system : D + B is a regular splitting and the stability of D + B is
completely related to Ry and its position relatively to 1. Since this equivalence is independent
from the splitting, we can replace the system (2.1) by the same system where we assume that D is
a diagonal matrix and incorporating the off-diagonal elements in 3, this modification let the new
matrix B still irreducible. This does not change the generality of the conclusion. However only
the original p(— D~ B) has a biological meaning, the others are equivalent thresholds. From now
on we will assume that D is a diagonal matrix.

2.2. Existence and uniqueness of an endemic equilibrium

We will show that there exists a unique equilibrium z >> 0 if and only if Ry > 1. An equilibrium
such that z > 0 is called a strongly endemic equilibrium. The method of proof is inspired by the
methods used by Thieme [21, 66, 64]. We show that if there exists an endemic equilibrium z > 0
then Ry > 1. For the convenience of the reader we recall the following result on Metzler matrices

[6]

Theorem 2..1. Let A be an irreducible Metzler matrix

1. If there exists x > 0 such that Ax > Az then a(A) > A
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2. If there exists x > 0 such that jpx > Ax then 1 > a(A).

If A is only Metzler, the preceding relations hold with > replaced by >. If A is an irreducible
nonnegative matrix, we have analogous inequalities, obtained in replacing the stability modulus
a(A) by the spectral radius p(A) in the preceding inequalities.

If there exists an endemic equilibrium z > 0 it satisfies
T=-D"'Bz+ diag(z) D"'B7.

Since D is a Metzler matrix, then —D~! > 0 [61]. As B is irreducible and —D diagonal, with
positive diagonal terms, —D !B is also irreducible. Therefore —D !Bz > 0 and from the
preceding relation, we deduce Z > 0. A consequence is also diag(7) D~!B T < 0. Finally we
obtain

T < -D7'Bx.
which in turn implies using Theorem 2..1

Ro = p(—DilB) > 1.

Conversely, we have to show that if Ry > 1, then there exists a unique strongly endemic equilib-
rium. An equilibrium satisfies

(D + B) z = diag(z) Bz,
equivalently,
T+ diag(z) (-D'Bz) =z +diag(—D'Bz)z = —-D " 'B1,

which can be written
[I +diag (—~D"'Bz)|z=-D"'Bz.

Hence
7 = [diag (1-D'Bz)]"" (-D'B) .

We are reduced to find a fixed point for the application H : [0, 1]" in [0, 1]"

H(z) = [diag (1- D™'Bz)]”" (-D'B) .

Let be A = D~ !B the next generation matrix. Since Ry = p(—D7'B)and A = —D"'Bisa
nonnegative irreducible matrix, from the Perron-Frobenius Theorem there exists v > 0 such that

Av="TRyv.

We choose ¢ sufficiently small such that for any index ¢
1+4¢ R() Vi S RO.
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This is possible since Ry > 1. We deduce

j<_ R0
- 1+5ROU¢
and

Roévi (A&?U)Z-
E; S = .
1+EROU¢ 1+(A€U)z
We have proved that there exists € > 0 such that e v < H(cv). We also have ¢ > 1l and e v < v.

A similar argument shows that we can choose A\ with 0 < Av; < 1 and X large enough such
that

L<1’
1+R0/\UL‘ -

Ro —

1
which is equivalent to < Av;. This implies H(Av) < Awv. Choosing ¢ < A we have

ev < H(ev)and H(Av) SO)\ v < 1. Since H is a monotone function, H maps the parallelepiped
K={x]ev<z<Av}C]0,1[",

into itself. By Brouwer fixed point Theorem we know that H has a fixed point w in K. This is an

endemic equilibrium since 0 < ev < w.

It remains to show the uniqueness.

Lemma 2..1. If w > 0 is a strongly endemic equilibrium and if T is another equilibrium then
T < w.

x . . . _
Proof Let{ = max “L We have 7 < ¢w and there exists an index ¢ such that z;, = £ w;,.
t=1,n WI

Since A is nonnegative and 7 a fixed point of H we have the following inequalities
= = (Af)io < (Ag w)ig _ § (Aw)io
Y14 (AT),, T 1+ (Afw),, 1+ E(Aw),,

By contradiction assume that ¢ > 1. From the last inequality we have

5 < § (Aw )io
‘0 1+ (Aw),
But since @ is a fixed point
_ (Aw);, _
Tiy < Tt (4 )io—ﬁwio T4,
Therefore we obtain a contradiction. O

We need a second lemma to end the proof.
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Lemma 2..2. Ifw > 0 is an endemic equilibrium and if A is irreducible then w > 0.

Proof Since w > 0 and A is irreducible, then we have Aw > 0. Since components of w are
given by
__(Aw),
1+ (Aw),

J

Wi > 0,

the assertion of the lemma is obtained. O
The two lemmas prove that there exists an unique strongly endemic equilibrium.

2.3. A theorem on stability

To study the stability we need the following result which can be considered as a dual result to
LaSalle’s theorem [40].

Theorem 2..2. Let G be an open set, containing the origin, which is positively invariant for the
system © = A(x).x, where A(x) is a Metzler matrix, depending continuously on x. We assume
that there exists cT' > 0 such that ¢ A(x) < 0 forany v € G, x # 0. Then the origin is globally
asymptotically stable on G.

Proof Let us consider on GG the Lyapunov function

n

Viz)=> ¢ |zi].

i=1
We define £, = sign(z), i.e. |z;| = €, x;. This function is locally Lipschitz. The Dini derivative
can be defined [40]. We have

n

V = E Ci Eg, l‘z

i=1
n n

= E Ci Eq; E Ai5 Tj
i=1 j=1
n n

= E E CiEx; Qjj Tj
i=1 j=1

n n
= E Exjﬂfj E Cinggxi Qi
j=1 i=1
- =
= g €x; X5 |Cjajj + E Ci €€z, Qij
Jj=1

L i
n n
<D ey |Gag+ Y G %‘] =D lail (" 4); 0.
j=1 L i£j J=1
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Since ¢’ A(z) < 0 on G, then the function V is negative definite. This ends the proof by the
Lyapunov theorem.
O

2.4. Global stability of the DFE
We have the following result.

Theorem 2..3. The DFE of the system (2.1), which is the origin, is globally asymptotically stable
if and only if Ry < 1.

Proof Assume that Ry = p(—D7'B) < 1. We have seen from Proposition 2..1 that this is
equivalent to the stability of the matrix D + N. From the Perron-Frobenius theorem, since D + B
is irreducible, it follows that there exists an eigenvector ¢ > 0 such that (D + B)”Tc = a(D + B) c.
We choose the Lyapunov function

V() = {c] ),

positive definite on R’} and we have

V(z) = ((D+ B)T ¢|x) — (diag(x)Bz | ¢) <0.

If D+ B is stable, i.e. a(D + B) < 0, the proof is finished, since this quantity is negative definite.
It remains to study the case where a(D + B) = 0, or equivalently R = 1.
We apply Lasalle’s invariance principle. We consider the largest invariant set contained in

E = {z | diag(z) Bz = 0}.

The irreducibility of B implies £ = {0}. Indeed if x € £ C E we have for all (i, j),
ZT; Z ﬁij Ty = 0.
J

The quantities are positive, this implies that for any couple of indices [3;; z; x; = 0. By contradic-
tion assume that ¢ is such that x;, # 0. There exists an index ¢; such that 3; ;, # 0, from the
irreducibility of B. It follows x;, = 0. The trajectory x(¢) from x, satisfies for a small positive
time z(t);, # 0. Hence x(t);, = 0. By invariance of £ we must have

Ty = — § Biyjxj = 0.
j

Which in turn implies z;, = 0 for any 3;, ;, # 0. In the other words, if the node i, is connected
by an oriented path to the node ¢y, then z;, = 0. By a finite induction we deduce that we have
x; = 0 for any node connected to the node 7;. Since by irreducibility [6] the graph associated to B
is strongly connected, we have z;, = 0. This gives a contradiction.

O
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2.5. Global stability of the endemic equilibrium

Theorem 2..4. The endemic equilibrium of the system (2.1) is globally asymptotically stable on
R"™\ {0} if and only if Ry > 1.

Proof Since Ry > 1, then there exists an unique equilibrium w > 0. We write (2.4) under new
coordinates x + X + w. Using the definition of w : (D + B)w — diag(x) Bz = 0, we get

X = [D +diag(1 — X — w) B — diag(Bw)] X. (2.6)

Since w is in |0, 1[* which is an absorbing set, it is sufficient to consider (2.1) on this set, or
equivalently, when z < 1. In this case diag(1 — X — w) = diag(1 — z) and the matrix

A(X) =D +diag(1 — X —w) B — diag(Bw)

is Metzler. X is in the compact set —w + [0, 1]™.
We apply (2..2). We know that for any irreducible B > 0, for any Metzler stable D such that
p(=D7'B) > 1 there exists w > 0 such that

(D — diag(Bw) + B)w = 0.

In other words A(—w) satisfies A(—w) w = 0. From Proposition (2..1) we deduce a(A(—w)) = 0.
Since this matrix is irreducible, and transposing, we know that there exists ¢ > 0 such that

" A(—w) = " (D — diag(Bw) + B) = 0.
Then for X +w > 0 (i.e. z > 0, we have
" AX) = —c" (X +w)B k0.

This proves the stability on |0, 1[". Since the vector field is strictly entrant, this ends the proof on

R™\ {0}.
O
3. A differential susceptibility and infectivity model
We consider the following model
S =A—puS—diag(BI)S
(3.1)

I =(BI|S)e,+AI,

where S € R is the state of susceptible individuals and I € Rﬁ is the state of infectious. The
matrix B > 0 represents the coefficients of infectivity, actually B(i, ) is the contact and infectivity
of I; in the group S;. As usual, e; is the first vector of the canonical basis of R*. Finally, A is
a stable Metzler matrix and represents the evolution through the infectious stages. This model
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encompass known models of DI, SP, or differential susceptibility models . We generalize the
results obtained in [28, 24].

It is straightforward to check that the nonnegative orthant is positively invariant by this system,
that there exists a compact positively invariant absorbing set. The DFE is given by (S*,0) €
R" x R where S* = © A.

3.1. Basic reproduction ratio

We can give a simple elegant formula for the Ry (compare with [28, 24]). To obtain R, we can
use the techniques developed in [67]. We claim that

Ro = (B(—A ") e | 5%). (3.2)

We use the expression (—A~!) to put the emphasis on the fact that (—A~!) > 0 because A is
Metzler stable. Using the framework of [67], we denote by F;(S, ) the rate of appearance of
new infections in compartment ¢, and by V;(S, I) the rate of transfer of individuals in and out the
compartment ¢ by all other means. The matrix ) is the “mass” balance of the compartments. Note
that our V is the opposite of the same used in [67]. Then

FSD= 51510

and

V(S.T) = {A—MS—diag(B])S} |

Al

The Jacobian matrices are

0 0 —u I — diag(BI) —diag(S) B

DF@w) = e, (pryr elSTB}’ Dv(z’y):[ 0 A

Noting that we have sorted the variables in the reverse order in comparison with [67], we set
F =2*bpT and V = A. It is proved in [67] that the basic reproduction number is the spectral
radius of the next generation matrix for the model, namely —FV ~! computed at the DFE (the
minus sign comes from Metzler matrices used in place of M -matrices),

Ro=p(—=FV™') = pler S B(-A")).
It is clear that e; S*7 B (—A™1) is a rank one matrix, the only nonzero eigenvalue is given by
S*T B (—A~1) e;, which is exactly our claim.
3.2. Global stability of the DFE

We have the following theorem.
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Theorem 3..1. If Ry < 1 then the DFE is globally asymptotically stable on the nonnegative
orthant. If Ry > 1 the DFE is unstable.

Proof We will introduce some notation to simplify the exposition of the proof. Actually these
notations are used in MATLAB and SCILAB. For two matrices M and N of same size we denote
by D = M./N the matrix which is defined by D(i,7) = M(i,5)/N(i,j). In the same spirit
L = In M will denote the matrix defined by L(i,j) = In(M(i,7)). We can now define the
Lyapunov-LaSalle function on R x R \ {S*} x RE:

Vor(S, 1) = Ro (1] S — %) — Ry (S* | InS —In S*) + (B(—A"1) T | S*.
We have, using the fact that A = ;1 S*:

Vore = it Ro (1| S*) — R (1 | diag(BI)S) — nRo (1| S)
— 1R (57./5 | 57) + Ro (diag(BI)1 | S%) + pRo (1 | 5)
+(BI'| S)(B(—A Y e, | S*) — (BI'| S*). (3.3)

Taking into account the formula (3.2) on R with the relations
(1| diag(BI)S) = (BI | S), (diag(BI)1| S*) = (BI | S")
and (1| S) = (S*| S./S*) the preceding equation becomes

Vpre = it Ro (2 —5%./S — S8./8% | §*) + (Ro — 1) (BI | 5*).

The inequality between the arithmetic and the geometric means and Ry < 1 imply Vpre < 0. The
largest invariant set contained in the set {(S, 1) | Vpre(S,I) = 0} satisfies the relation S = S*.
Since A is a stable Metzler matrix, by Lasalle’s invariance principle [40] the DFE is globally
asymptotically stable. This ends the proof

a

3.3. Endemic equilibrium

Theorem 3..2. There exists a unique endemic equilibrium in the nonnegative orthant if and only if
Ro > 1.

Proof. We look for an equilibrium (S, I') with I > 0. From the relations

(3.4)

<
)
o
1)
o
[
o
o
A,
=
o
¢}
S
—_
2]
[
-t
N
=
<)
—
2]
S
o
o
o
—*
o
)
-t
~i
Il
—
oy
~
95]]
S~

(—_A_l) e1. From the second relation of
| S) = —(AT| ey). Finally
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I=—(Al|e)(—A He. (3.5)

Then to compute I it is sufficient to find —(A I|ey).
Again with the expression I = (B | S) (—A™1) e1, we get

If (BI|S) # 0 then we have

(B(=A™)ey | §) = 1. (3.6)

From the first equation in (3.4) we have
_ o 1 -
S = [diag(p1+ BI)]'A = [diag(1 + ~BI)] ' *. (3.7)
W

Using this value of S and of B in (3.6) gives

Aj| €1>

<B(—A_1)el [diag(1 — <

In other words —(A I | ;) is a solution of H(z) = 1 with

B(—AYey)] ™ 5*> =1.

H(z) = <B(—A—1)e1

[diag(1 + ;B(—A‘ Je1)] ™ S*>.

It is clear that H (z) is a strictly decreasing function satisfying lim,_, ., H(z) = 0. Then a unique
positive solution exists if and only if H(0) > 1. Since H(0) = R, we have a positive solution.
Since, from (3.7) we have S > 0 and from (3.5), with —(A T | ;) > 0, I > 0, then the equilibrium
is endemic. Moreover (B I | S) # 0 > 0. From the preceding analysis we see that if Ry = 1 then
the unique equilibrium is the DFE. In the case Ry < 1 we have I < 0, that is the equilibrium is
not biologically feasible. O

3.4. Global stability of the endemic equilibrium

To prove the global stability of the endemic equilibrium we need to study in more detail the struc-
ture of A. We will treat in this section one example. For the sake of brevity we will consider a
model of two susceptible classes and two infective classes with stage progression. It is not difficult,
but certainly more involved, to treat exactly in the same way the case of n susceptible compart-
ments and k infectious compartments. The compartimental model is represented in figure 3.4..
The model is given by the following system of ordinary differential equations.
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( 51 =pi A—pSy =Bl 51— B2 x5
52 =po A — pSy — Bor 11 Sy — B 15 S
jl =0l S1+ Brala S+ o1 It So + Paa In So — (L + 71+ 01) 4 (3.8)

j2=7111—(,u+71+52)]2

\ R:’YQIQ—[LR.

Theorem 3..3. If Ry > 1, then the unique endemic equilibrium is globally asymptotically stable.
The basic reproduction number is given by

R — Y1(B12ST + B2253) + (1 + 71 + 92)(811ST + P2153)
0 — .
(1 +y1 +61) (471 + 02)

Proof. The basic reproduction ratio is obtained by applying (3.2). From the general theory we
know that there exists a unique endemic equilibrium which satisfies the following relations

( A= puS + B S+ Pl S
pa A = M§2 + Bo1 [y So + Baz I Sy
B IS+ B2 IS+ Ba1 ISy + B2 ISy = (1 +~ +01) A (3.9)

Y= (u+v+6)hL

| 72l2 = pR.

Let us consider a possible Lyapunov function

B1251 + B22.55

I, — LinlI
(u+%+52))(2 2lnly)

VEE = (Sl — 51 lnSl) + (SQ - S’Q lnSQ) + ([1 — [_1 ln[l) "—(

251482252

Setting d = 2 , its derivative along the trajectories of (3.8) is
g (utv1+02) g J

Vep =[piA—puSi— Buli St — Pra Ly Sy — pr ASE + uSy + By I S1 + Bia I 81
+[p2a A — Sy — Baa [t Sy — Boa o S — py A + 1Sy + By Tt Sz + Boz I 5]
+H[Bi1 [ S1+ Bia I S1+ PBor [t So + Paa In So — (p+v1 +01) 1
P11 S1— Pro Iy B8 — Bor Tt So — B I 1S + (pu+ 1 + 61) 1]

tdmh = (p+n+0) h—nh2+ (p+n+6) 0]

By using the endemic relations in the system (3.9) we obtain,
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Ve = [uSi+ Bu i Si+ Bz 2 5 — M‘gl%
—(uS1 4 i 1 St + Pra I 51)% + 1St + B I Si + Bra I 54
s+ O Ty 5o+ fon o S — Sy
—(1Sa + Por 1y S + P I S2) 2 + pSa + Bt Ty Sa + Bz To Sa] — (m+ 1 + 61) I
B[ 518 — B LS S 02 4 By [} Sy — B LS, 2122
+611 L1 S1 + Pro I St + By [y So + Baz I 52

+d [y I = (471 + 02) I —7111% + 1 1]

= pSi[2— 2 — )+ pSe2 — 2 — &
Houh 52— 5 - §1+behS)2- g - F 17

oL 52— E — @+ oL S2 - &~ 7]

+(B11 Sy + Boy So +dyy — (L+m+00)) L
+(51251 + B2 S9 — d(p+71+02) o —dm I1I1 L S+ dy L.
Using the expression for d, we observe that
B1251 + Baz Sa —d(p+v+98)=0
and

51151—1-52152—1-6[’71—(M+’Yl+51) 2511§1+521§2+%7 —(,u+71+51)

_ (p4y1+62) (B11 514821 S2)+71 (812514822 52)
= G+ 0[S S s

=0.

Substituting the endemic relations in the third equation of system (3.9), we obtain
B Iy St + i o Sy + B I Sy + Pz 1o So = (147 + 61) I,
(B11 81+ fa1 52 + m(ﬁm Sy 4 P22 52)) = (+m + 1),

(pt+y1+62) (B11 S1+B821 S2)+71 (B1251+B2252) -1
(ptv1+01) (p+y1+02) ’

T S1+8225
dnh =i,

= m(ﬁufui + B221152)
= B12l2S1 + BazlsSs.
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and finally we have the following expression for Vg

Vir =u5’1[2—§—1—§—ﬂ+u52[ _%_%]

+6u 1 Si[2 - % - 2—1] + B2 I, 51)[3 — % - %%% - %%]

+ 021 11 S2[2 — g—; - 2—;] + B2 I S5[3 — §—j - g—z%% - %%]

<0

Using the comparison between the arithmetical and the geometrical means we see that Vg is
negative definite. This ends the proof of the theorem.
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1 Introduction

The primary objective of this paper is to give results on global stability for epidemio-
logical models with differentiation in susceptibility for infection and differentiation in
infectivity. The first models with differential infectivity has been introduced for study-
ing HIV infection (Jacquez et al. 1991, 1988; Simon and Jacquez 1992) by Jacquez
et al. circa 1990s. The term differential infectivity has been coined by Hyman and Li
(2005a,b) and Hyman et al. (1999, 2001). Models with differential susceptibility has
been introduced in the references Hyman and Li (2005a, 2006).

The rationale to introduce differential infectivity and susceptibility is motivated by
the heterogeneity, concerning the mode of infection, for the individuals.

For many reasons difference in susceptibility to infection can occur : genetic vari-
ations, different social behaviors, different states of immunization, different vaccines

The infection by HBYV, hepatitis B, is typically a disease where simultaneously
differential susceptibility and infectivity appear:

Hepatitis B virus (HBV) is a bloodborne and sexually transmitted virus. The liver
is the primary site of HBV replication. After a susceptible person is exposed, the virus
enters the liver via the bloodstream. Hepatitis B is one of the major diseases of man-
kind and is a serious global public health problem. Of the 2 billion people who have
been infected with the hepatitis B virus (HBV), more than 350 million have chronic
(lifelong) infections. Rates of new infection and acute disease are highest among
adults, but chronic infection is more likely to occur in persons infected as infants or
young children. These chronically infected persons are at high risk of death from cir-
rhosis of the liver and liver cancer, diseases that kill about one million persons each
year. According to CDC and WHO, risk for chronic infection is inversely related to
age at infection: approximately 90% of infected infants and 30% of infected children
aged under 5years become chronically infected, compared with 5% of adults. This
difference in the evolution of infection introduces naturally differential susceptibility.

Indeed hepatitis B is a major public health problem in developing countries of Africa
and Asia (where prevalence is greater than 8%). In much of the developing world, (sub-
Saharan Africa, most of Asia, and the Pacific), most people become infected with HBV
during childhood, and 8—10% of people in the general population become chronically
infected. In these regions liver cancer caused by HBV figures among the first three
causes death by cancer in men.

Asymptomatic carriers play an important role in the transmission of HBV. Usually
asymptomatic carriers are considered as less infectious than acute carriers, which is
a reason for incorporating differential susceptibility. Vaccination is recognized as the
most efficient way of preventing hepatitis B. But the problem of imperfect vaccine
introduce naturally differential susceptibility. Even if HBV vaccine is very efficient it
does not offer 100% protection against infection. According WHO, Hepatitis B vac-
cine is 95% effective in preventing HBV infection and its chronic consequences, Then
vaccinated individuals form a class of individual with different susceptibility.

In Anderson and May (1991), May and Anderson consider a model of HBV infec-
tion. They distinguishes, in this model the susceptible individuals according to their
response. They assume that a proportion of births to infected carriers are themselves
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Fig. 1 A differential susceptibility and infectivity model

infected carriers, while the remaining fraction of these births give susceptibles in the
carrier carrier group. This model is clearly a differential susceptibility and infectivity
model.

In Edmunds et al. (1996), a SVEICR model is considered for modeling HBV infec-
tion (Fig. 1).

When different strains are taken into account differential susceptibility and infec-
tivity models are given in Wilson et al. (1998, 2000).

More generally the stage-progression HIV model with imperfect vaccine of Gumel
et al. (2006) is also a differential susceptibility systems and infectivity model.

We consider a general class of differential susceptibility systems and infectivity
models with bilinear mass action as in Hyman and Li (2005a) and give stability results.
We could have use a standard incidence mass action c(N) ,3% (de Jong et al. 1995;
McCallum et al. 2001). The stability results of the disease free equilibrium remain
true by an easy adaptation. However the proof of existence and uniqueness of the
endemic equilibrium, as well as the stability of this endemic equilibrium, work only
with the bilinear mass action. This mass action becomes natural when N is constant
or c(N) = co N or else when the model is dealing with proportions. For homogeneity
of exposition, we will use bilinear mass action throughout the paper.

The models considered in this paper address the issue of flows between the differ-
ent compartments of infected and infectious individuals as well as flows between the
different compartment of susceptible individuals. Moreover the differences of death-
rates between classes are also taken into account. These models encompass the models
with bilinear mass action of Gandon et al. (2001), Gandon and Troy (2007), Gumel
et al. (2006), Hyman and Li (2005a) and Hyman and Li (2006).

We give a brief outline of the paper. In Sect. 2 we introduce the class of system
considered. Our models are differential susceptibility and infectivity epidemic mod-
els. These models take into account flows between the different classes of susceptible,
infected and infectious compartments. The death rate can be different for each com-
partment. Since our model is presented in a general setting we add hypotheses for
biological soundness. These hypotheses are satisfied in the models in Gumel et al.
(2006), Hyman and Li (2005a) and Hyman and Li (2006). In this section we give, for
natural subclasses of our general systems, a simple analytical expression for the basic
reproduction ratio Rg. We prove the global stability of the disease free equilibrium
(DFE) when Rp < 1 and the existence and uniqueness of a strongly endemic equi-
librium when Rg > 1. The proof of the global stability of the endemic equilibrium
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is always a challenge. We give the global stability of the endemic equilibrium for a
differential susceptibility and infectivity epidemic model which generalizes the results
in Hyman and Li (2005a, 2006).

2 A general class of systems

Throughout this paper we will use the following notations. If x is a vector of R”
then diag(x) will be the n x n diagonal matrix, whose diagonal elements are the
components of x. We will denote by ( | ) the usual inner product on R”. In R" Let
{e1, ..., ey} be the canonical basis of R"”. We will denote by 1 the vector given by
1=q,..., l)T =e1 + ---, ey, Where the superscript 7 denotes transpose.

We use the ordering in R” generated by the cone R’} . We write x < y,if y—x € R’}
and x < yifx < yand x # y. Finally x <« y will means x; < y; for any index i.

We consider the following general model

S = A —diag(us) S + Ag S — diag(B I) S,
I = Pdiag(B 1) S — diag(u; +y1) I + Af 1, (1)
R = LI —diag(ug) R + Ag R,

where S € R’} is the state of susceptible individuals, I € R’ is the state of infectious
and infected individuals and R € Rf)‘_ the state of recovered and immune individu-
als. The recruitment, in each susceptible compartment, is described by a nonnegative
vector A > 0. The positive vector s > 0 represents the death rate of the differ-
ent classes of susceptible individuals. The matrix Ag represents the flows between
the susceptible compartments. In the words of Jacquez the coefficients of A; are the
Jractional transfer coefficients Jacquez and Simon (1993). Since A represents only
the movement between the S compartments, Ag is a compartmental Metzler matrix,
whose column sums are zero, i.e., the sum of the elements of each column is zero.

The matrix B > 0 represents the coefficients of infectivity, actually B(i, j) = B;;
is the contact and infectivity of /; in the group S;. The matrix B is also known as
the WAIFW matrix (Who Acquire Infection From Whom Anderson and May (1991)).
The matrix P is a column-stochastic m X n matrix:

pi1 P12 ... P

p21 P22 .- P
P =

Pml Pm2 --- Pmn

This matrix represents the distribution of susceptible individual after infection.
A susceptible individual in group S; enters group I; with probability pj;, hence

m
>0 i = 1.

j=1 p Ji

Analogously as before, the matrix A; represents the movements between the 7
compartments. The vector ;1; > 0 and y; > 0 represent respectively, the death rate

@ Springer



Stability of differential susceptibility

and the recovery rate of the infectious-infected compartments 7;. The vector y; is
supposed only nonnegative, since an infected individual does not necessarily recover
and usually move in an infected compartment.

Finally, the matrix L represents the distribution of the / compartment toward the R
compartments. The vector ug and the matrix Ag are defined as their corresponding
analogue in the S and / compartments.

We remark that in this setting, since B is a non zero nonnegative matrix, the
model (1) can contain compartments of infected individuals that are not infectious
or latent individuals. They are simply the /; compartments, with no transmission, i.e.,
for which B; ; = 0, for any i. However the matrix B cannot contain a row whose
elements are all zero. In other words, foralli € {1, ..., n} thereexistk € {1, ..., m}
such that B;; # 0, otherwise if there is an index ip such that By = 0 for all
k € {1, ..., m} this would mean that the individuals of compartment S;, can never be
infected and hence the individuals of S;; would not be susceptible.

Using Gershgorin theorem it is clear that the matrices

—diag(us) + As, —diag(uy) + Ay, and — diag(ug) + Ag

are stable Metzler matrices and are in particular non singular. This implies, that when
there is no transmission, the infected, infectious and the removed individuals disappear.

We will use the following properties repeatedly in the sequel: a Metzler matrix
(off-diagonal entries are nonnegative) M is stable if and only if —M~! > 0 (Berman
and Plemmons 1994; Smith 1995). This also has for consequence that if x >> 0 then
—M~1x > 0. There are two schools for matrices like these matrices. The first one,
uses Metzler matrices (called also quasipositive matrices) and it is represented by
Jacquez (1999), Jacquez and Simon (1993), Luenberger (1979), Smith (1995) and
Thieme (2003). The second one uses M-matrices : the negative of a stable Metzler
matrix is a nonsingular M-matrix. This school is represented, for example, by Berman
and Plemmons (1994) or van den Driessche and Watmough (2002). We choose to
stick to the Jacquez formalism, natural for compartmental models, since our matrices
A represent the exchanges between compartments.

For the stability analysis we can discard the last equation

R = LI —diag(ug) R+ Ag R.
Since the variables R do not play a part in the preceding equations, the stability analysis

can be reduced to the system (1) without the last equation.
Therefore we will consider, from now on, the following system

I S = A —diag(us) S + Ag S — diag(B 1) § o

I = Pdiag(BI)S — diag(u; +y) I + A; 1,
Throughout the paper, we shall use the matrix A; defined by

Ap = —diag(ur +y1) + A;
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Supplementary assumptions Our systems are general, we will add some hypothe-
ses for to be biologically consistent. For formulating these hypothesis we will use
some definitions from graph theory (Berman and Plemmons 1994). To our system we
associate a directed graph as usual. We have m + n vertices, n vertices correspond-
ing to susceptible compartments, m vertices for infected or infectious compartments.
Our system (2) can be rewritten under a canonical form for compartmental systems
(Jacquez and Simon 1993):

ST _[A | ~diaglus) + As — diag(BI) 0
Il |o 0 diag(S)B — diag(u; + yr) + Ay

xm 3)

The matrix appearing in this equation is a compartmental Metzler matrix (Jacquez
and Simon 1993). We denote by M (S, I) this matrix.

[ —diag(us) + As — diag(BI) 0
M. D= [ 0 diag($)B — diag(us + y1) + Al

In our associated graph an edge leads from a vertex j to a different vertex i # j if
M(S, I);,j > O for some (S, I). We say that j has an access to 7, if in the graph there
is a path from j to i. This is equivalent to say that, for some p > 0, M?(S,1); ; > 0
(Berman and Plemmons 1994). We thus shall assume that the following hypothesis is
fulfilled:

H1 We will assume in the sequel that any “susceptible” compartment is accessible
from a “susceptible” compartment with recruitment.

This property depends only of the matrix Ag and the location of recruitment. For
any x > 0, the matrix —diag(us) + As — diag(x) is a Hurwitz Metzler matrix.
Hypothesis H1 implies the following

Lemma 2.1 For any x > 0, we have
—[—diag(us) + As — diag(x)]~' A > 0.

This implies, in particular, that the disease free equilibrium (DFE) of system (2) given
by (8*,0) = (—[As — diag(us)|"' A, O) satisfies S* > 0.

Proof We have only to consider the connected components from the recruitment. If
we denote by ej, the vector of the canonical basis, corresponding to a recruitment

compartment, by M (x) the matrix [—diag(us) + As — diag(x)], we have to prove
that for any e; accessible from e; we have

<— M)~ e |e,~> > 0.
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Since the matrix M (x) is Hurwitz, it satisfies fooo MO gy = —M(x)~!. Thus we
can write

<—M(x)_1 e |ei> = /Oo<etM(x) el Iei>dt.
0

The expression under the integral, in the right hand side, is nonnegative and analytic
in 7. Hence, it suffices to prove that %(6‘ M) o1 | ei)]s=0 > O for some k > 0. We
choose for k the integer satisfying (A’; e |e;) > 0and (Ag7 e1]ei) =0for0 < p <k.
This integer exists thanks to Assumption H1. We then have

d
- (x) . _ k )
qEle T erle)| = (M) er]er)
k
(M) erlei) =D CL(=D!P(us, +x1) " P(Af er | &) = <A§e1 i) > 0.
p=0
This completes the proof of the lemma. O

An entry-point compartment for infection is an infected-infectious compartment
with an edge coming from the susceptible compartments. Equivalently this is the
compartment with index for which the components of P 1 are positive.

Since this model can deal with infected people that are not infectious, i.e., we allow
the possibility of having some compartments /; for which B; ; = 0, we must add
some hypotheses. The infectious individuals must appear from transmission. If we
have, a typical set of different susceptible, ¢ >> 0, becoming infected, then distributed
in the infected-infectious compartments as P ¢ we assume that all these individuals
will evolve through all the infected-infectious compartments. This hypothesis is the
analogous of the preceding hypothesis. This can also be formulated in the following
manner:

H2 Any infected-infectious compartment is accessible from at least one compartment
which is an “entry-point” for infection.

A consequence of hypothesis H2 is —AI_I P c > 0 for any ¢ > 0. The proof is
similar to the proof of the preceding lemma.

Remark 2.1 With these two hypotheses, when there are some infection, then the tra-
jectories of our system are in the positive orthant. However our hypothesis are weaker
than an irreducibility hypothesis on the flow graph of our system.

This model encompasses known models of differential infectivity (DI) staged pro-
gression (SP), or differential susceptibility models, with bilinear mass action. We will
generalize the results obtained in Bame et al. (2008), Fall et al. (2007), Hyman and
Li (2005a) and Hyman and Li (2006). In particular, we shall prove the global asymp-
totic stability of the endemic equilibrium when R > 1. This has been conjectured in
Hyman and Li (2006) according to numerical simulations.
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2.1 Basic reproduction ratio

It is not difficult using the results on R¢ (Diekmann et al. 1990; Heesterbeek and
Dietz 1996; Diekmann and Heesterbeek 2000; van den Driessche and Watmough
2002; Heesterbeek 2002) to obtain a formula for the basic reproduction ratio. Since
this formula expresses Ry as the spectral radius p(G) of the next generation matrix G,
we cannot expect, in general, to obtain an analytical expression.

Using the techniques developed in van den Driessche and Watmough (2002), we
claim that the basic reproduction ratio Ry for the general system (2) is

Ro = p (—P diag(S*) B A,—l) = (—A,—l P diag(5™) B) . (4)
where

Ap = —diag(ur +y1) + Ar.

We use the expression (—Al_l) to put the emphasis on the fact that the matrix (—Al_l) >
0 because the matrix A is Metzler stable. Using the framework of van den Driessche
and Watmough (2002), we denote by F; (S, I) the rate of appearance of new infections
in compartment i, and by V; (S, I') the rate of transfer of individuals in and out the
compartment i by all other means. The matrix V is the “mass” balance of the com-
partments. Note that our V is the opposite of the one used in van den Driessche and
Watmough (2002). Then

0
7S, 1) = [Pdiag(BI)s]’

and

— di Ag S — di
V(S,I)=|:A iag(ius) S + As S 1ag(BI)Si|.

Al
The Jacobian matrices are

0 0
Dr@&. 1= [ Pdiag(B1) P diag(S) B } ’

and

DV(S. I) = [—dlag(us) + Ag — diag(BI) —diag(S) B:| |

0 A

Noting that we have sorted the variables in the reverse order in comparison with van
den Driessche and Watmough (2002), we set F = P diag(S*) B and V = Aj. It is
proved in van den Driessche and Watmough (2002) that the basic reproduction number
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is the spectral radius of the next generation matrix for the model, namely —FV !,
computed at the DFE (the minus sign comes from Metzler matrices used in place of
M -matrices). This proves our claim.

However there are two cases where we can get explicit formulas. These cases are
when the distribution stochastic matrix P or when the WAIFW matrix B are rank one
matrices. We will now specialize to these two subcategories. In these two cases we
can give a simple elegant formula for the basic reproduction ratio R (compare with
(Hyman and Li 2005a, 2006).

2.1.1 Model with rank one stochastic distribution matrix P

We claim that in this case, the stochastic distribution matrix P we can always be writ-
ten P = p 17, where p € R™ is a nonnegative stochastic vector, i.e., >iipi=1
and 1 € R”. This is quite evident since we can write, by Perron-Frobenius, P = u vl
for two nonnegative vector u € R", v € R™. Since upon infection a susceptible indi-
vidual moves in the I compartments, we have v >> 0. Using the stochasticity of P,
the result follows. With this expression for P and the fact that

p1T diag(BI)S = (1 | diag(B1)S) p = (BI|S) p,
we obtain the following system

S = A —diag(us) S+ Ag S — diag(B 1) S

. . (5)
I =(BI|S)p—dagur+y)I+Arl

This model does not take into account the origin of the susceptible individuals upon
infection. Once infected the individuals are distributed and enter the / compartment
according to the stochastic vector p.

In this peculiar case, the hypothesis H2 has for consequence —Al_l p > 0, which

in turn implies — B ANI_1 p > 0.
We claim that for system (5), the basic reproduction number Ry is given by

Ro = <B (—A,—l) Dl S*> — 5T B (—A,—l) p. (6)
Applying the preceding general formula (4) to system (5), we have
Ro=p (— p 17 diag(5*) B Al_l) =p (p s*' B (—Al_l))

It is clear that p S*T B(—A;l) is a rank one matrix. The only nonzero eigenvalue
is given by §*7 B(—Al_l) p, which is exactly our claim.
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2.1.2 Model with rank one WAIFW matrix B

In this case we can write B = « 87, where a >> 0 is a positive vector of R” and 8 > 0
is a nonzero nonnegative vector of R". From the modeling point of view, this means
that for a given class of susceptible S;, the infectivity factor of the different classes of
infected is multiplied by a same coefficient ;.

For this model Ry = ,0((—1&1_1) P diag(5*) o B7)

We again have a rank one matrix, then the spectral radius is given by

Ro = <ﬂ| — (A,—l) P diag(a) s*>

2.2 A compact positively invariant absorbing set
We will show that there exists a compact positively invariant absorbing set K for (2).
An absorbing set K for a dynamical system is a set K such that, for any initial con-
dition, the forward trajectory starting from the initial condition enters for a positive
time the set K.

We denote by N (¢) the total population at time 7. We have N = (S| 1) + (/| 1).

Using the fact that Ag, A; are zero column sum matrices and P is a one column
sum matrix we have the relations

(AsS|1)=(S|Ag1) =0, (A;I|1)=(]|A]1)=0,
and
(Pdiag(B 1) S| 1) = (diag(B1) S| PT 1) = (diag(BI) S |1) = (B | S).
We get
N= (A1) = (us|S) = (wr+vi | 1)
Let o be defined by (g = min (ug, y + yr) > 0, then we have

N <(A|1)—puoN

Lemma 2.2 Let jup = min (s, iy + yr) > 0. For any € > 0, The subset K. of the
nonnegative orthant R, x R}, defined by

Ke={(S.DIS=0;1=0;N = (A1) +¢)/1no},

is a positively invariant compact absorbing set for (2)

It is straightforward to check that the nonnegative orthant is positively invariant by
the system (2). If we use the relation N < (A | 1) — uo N, then the lemma follows.
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We also remark that (§*, 0) € K. Indeed we have (A | 1) = (ug | S*), the conclu-
sion follows from pug 1 < ug.
We have also a positively invariant set contained in K.

Lemma 2.3 The set Q2 defined by
Q={(S.1) € K|S < 5§},

is a positively invariant compact set for system (2).

On the boundary S = $* we have § = —diag(B I) §* < 0. This proves the positive
invariance of 2.

2.3 Global stability of the DFE
We will prove the global stability of the DFE for each category of models.
2.3.1 Model with rank one stochastic distribution matrix P = p 17

Theorem 2.1 If'Rog < 1 then the DFE of system (5) is globally asymptotically stable
on the nonnegative orthant. If Ro > 1 the DFE is unstable.

Proof If Ry > 1 the instability of the DFE is classical and is a consequence of the
results of Diekmann et al. (1990).

We suppose now that Ro < 1, and we consider the following candidate Lyapunov
function

Vore(S, I) = <B (—A;‘) I S*).

This function is nonnegative on the positive orthant and is zero at the DFE. The deriv-
ative of V along the trajectories is given by

Vors = (BI|S) (B (=A7") p 1) = (BI 1S =(BI | RoS —57).

Taking into account the formula (6) for Ry, it is clear that on the compact set 2 we
have Vprr < 0.
We consider the largest invariant set £, contained in the set

{(S,1) € Q| Vpre(S, 1) =0} .

e For Ry < 1, using §* > 0 (by hypothesis H1) we have if S < S* the relation
Ro S —S* <« 0. This implies BI = 0, which gives I = AI I. Since AI is Metzler
stable, the largest invariant set contained in €2 satisfies / = 0, which in turn implies
S = §*. By Lasalle’s invariance principle (LaSalle 1976) (one can also see (Bhatia
and Szegd 1967), Theorem 3.7.11, p 346) since we are in a positively invariant
compact set, the DFE is globally asymptotically stable in 2 when Rg < 1.
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e When Ry = 1, we have
Vpre = (BI| S—S* <0, forall (S, 1) e .

Once again, it is sufficient to show that £ = {(S*, 0)}. Let (S, I) € L, the trajec-
tory of (5) corresponding to this initial point satisfy (BI(t) | S(t) — S*) = 0, for
all > 0. Suppose 71(0) > 0, then by hypothesis H2, BI1(t) > O forallt > 0
and hence, S(¢t) — S* = 0 for all ¢+ > 0. This, together with the first equation of
(5), would imply BI(t) = 0 which contradict / > 0. Hence, if (S, I) € L then
necessarily / = 0 and so S = S* thanks to the first equation of (5). Therefore, the
DFE is globally asymptotically stable in & when Ry = 1.

Since K, is absorbing, it remains to examine the trajectories starting in the set
K \Q.

The set defined by I = 0 is invariant by the system. Therefore, any trajectory
starting from a point in K.\€2, with I = 0, will converge to (S*, 0).

Now if a starting point in K\ 2 satisfies I > 0, then by hypothesis H2, B I (¢) > 0,
for all # > 0. Hence from the first equation the trajectory will enter 2 and then con-
verge to the DFE. This proves the global asymptotic stability of the DFE (S*, 0) in
the nonnegative orthant. O

2.3.2 Model with rank one WAIFW matrix B = o BT

With rank one WAIFW matrix B = « 87 the system is

{ S = A — diag(us) S+ As S — (8| 1) diag(e) S, -

[=(B|I)Pdiag(er) S — diag(us +y1) I + A .

Theorem 2.2 Consider system (7). If Ro < 1, thenthe DFE is globally asymptotically
stable on the nonnegative orthant. If Ro > 1, the DFE is unstable.

We consider the following function
VS, = (Bl —A;' 1)

We compute the derivative along the trajectories in €2

V=11 (B - A;' P ding(e) S~ (B11)

=10 (81 - 47" P diag@) s) - 1)
< (BIDRy =1 <0

e For Ry < 1, the largest invariant set contained in the set V = 0 contained in
the compact set €2, satisfies (8 |1) = 0. Since AI is Metzler stable, this set is
reduced to I = 0, which in turn, by invariance, implies § = S$*. By LaSalle invari-
ance’s principle, since we are in a positively invariant compact set (LaSalle 1976;
Bhatia and Szeg6 1967), the DFE is globally asymptotically stable in 2. A similar
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argument, as in the proof of Theorem 2.1, permits to conclude to the global stability
in the nonnegative orthant.s
e For Ry = 1, we can write

V=811 (81 - A7 Pdiag@) $) — (B1 1)

(81— 47" P diag(e) 5™ — A7" P diag(@) (5 - )~ 1)

(,3 | — A7 P diag(@) S*> n <,8 | — A7! P diag(e) (S — s*)> _ 1)
— (B|1) (Ro 14 </3 | — A7! P diag(e) (S — S*)>)

—(BI1) <,3 | — A;' P diag(a) (S — S*)>.
Therefore V(S , I) = 0 if and only if
(BI)=0 or <,3 | — A7 P diag(e) (S — S*)> —0.

Let (S, I) € L the largest invariant set contained in {(S, I) € Q:V(S, 1) = 0}. If
(B 1) = 0 then we conclude as in the case Rg < 1. Otherwise, we define f(S) =

<,3 | — A7 P diag(e) s> - <diag(a) PT (—ATHT B s>. The map £(S) is not iden-
tically null since f(S*) = Ry. Hence the vector diag(er) PT (=A; )T B > 0, ie.,
it has at least one nonzero component, say, (diag(c«) P r (—Al_l)T B)i # 0 for some
iefl,...,n}.

Thus <,3| — A7' P diag(@) (S — s*)> = 0 implies at least that S;(1) = S*. The
equation governing the evolution of S;(¢) is (e; being the ith vector of the canonical
basis of R™):

Si = —pus; (Si(t) = §7) + el As () = $*) = (B (1) i Si (1)

Since S;(t) = Sl.* , the matrix Ag is a Metzler matrix and S < §* in 2, we obtain
e,.TAS (S(t) = 8*) = (B|1(t)) ;S = 0. In particular we have (8| 1(¢)) = 0 and so
we can conclude as in the case Rg < 1.

2.4 Endemic equilibrium

The proofs for the two systems are similar and use the same principle. However the
computations are different so we distinguishes the two proofs.

2.4.1 Model with rank one stochastic distribution matrix P = p 17

Theorem 2.3 There exists a unique endemic equilibrium in the nonnegative orthant
for system (5) if and only if Ry > 1.

@ Springer



B. Bonzi et al.

Proof We look for an equilibrium (S, I) with I > 0. From the relations

[ 0= A — diag(us) S + Ag S — diag(B 1) S, ®

0=(BI|S)p+AI
we deduce, since A; is Metzler stable, that ] = (B I | S) (—A;l) p. From the second
relation of (8) and taking the inner product with p we obtain, setting || p||% =(p|p)

IpI3(BI|S)=—(A;1]p).

Finally

_ 1 - - -
I=———F(Ar1 —A . 9
o AT (=A) p ©)

Then to compute / it is sufficient to find —(Ag
(—

ent to find — p)-
Again with the expression I = (B 1 | S) 1)

I
A7) p, we get
(BI|S)=(BI|S) <B(—A;‘)p|§>.

The condition (L_? I | S ) = 0 implies, since A ; is Metzler stable, I = 0, hence S = S*.
We obtain the DFE and not an endemic equilibrium.
Then if (B I | S) # 0, by simplifying the preceding relation, we get

(B(-4;")p13)=1. (10)
From the first equation in (8) we have
§ = — [—diag (us + BI) + As] ' A (1)

Using the value of BI from relation (9) gives
-1

MB(—AI_I)[) + Ag A

I1plI3

i
I

—diag | us +

I
|
<

(<A iim) " a (12)

Where we have set, for x > 0

. X ~_
M (x) = —diag| us + 5 B <_A1 l)p + Ag
Ipl>
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The matrix M (x) is a stable Metzler matrix depending linearly on the positive
value x. B
Replacing in relation (10), S by the expression given by (12) gives

~_1 - —1
B(—A, )pl —M(—(A11|p)) A)=1.
In other words the scalar —(A~ 1% | p) is a solution of H(x) = 1 with
H(x) = <B (—A,—l) p’ — M) A>.

We claim that that H (x) is a strictly decreasing function. The derivative of H is given

by
B (—A*l)
;1 )P

H'(x) = <B (—A;l) pl ~ M)~ diag T
2

M(x)™! A>.

On the one hand, we have B ( —Afl) p > 0 thanks to hypothesis H2. On the other
hand hypothesis H1 implies —M (x) "' A > 0. Therefore H'(x) < 0. This proves that
H (x) is strictly decreasing.

The function H (x) satisfies limy_, yoo H(x) = 0. Then a unique positive solu-
tion exists if and only if H(0) > 1. So we have a unique positive solution since
H(0) =Ry > 1.

From (11) we have $* > § > 0 and from (9), with —(A; I | p) > 0and hypothesis
H2 we deduce 7 > 0, and then the equilibrium is endemic. An endemic equilibrium
such that 7 > 0 is also called a strongly endemic equilibrium (Thieme 2003).

From the preceding analysis we see that if Ro = 1 then the unique equilibrium is
the DFE. In the case Rg < 1 we have I < 0, which means that the equilibrium is not
biologically feasible. O

2.4.2 Model with rank one WAIFW matrix B = o BT

Theorem 2.4 There exists a unique endemic equilibrium in the nonnegative orthant,
for system (7) if and only if Ry > 1.

Proof The proof is in the same spirit as the proof for the case of rank one stochastic
distribution matrix. We have the relations for an equilibrium (S, I)

[O:A—i—ASS—(ﬂlI)dlag(oz)S, 13

0= (B|I)Pdiaga) S+ A; I.
Where as usual we set AS = —diag(us) + As and the analogous setting for A I.
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From the first equation we deduce, since the matrix —diag(us) — (8 | 1) diag(ar) +
Ag is Metzler stable for any I,

§ = — [~diag(us) — (8 11) diag(e) + As] "
=—MB| 1) A. (14)

Where have set
M(x) = —diag (1us + x @) + As,

as a stable Metzler matrix, depending linearly on x > 0.
From the second equation, since A; is Metzler stable, we get

=@ (—A;‘) P diag(a) S. (15)

Then it is sufficient to determine (S | I) in order to compute (S, ).
Using relation (15) we have

11 =811 (B (~47") Pdiag(@) 5).

If (8 | I) = 0, then the relations (13) imply / = 0 and § = S*, i.e., the DFE.
Otherwise we can simplify and obtain

(81 (~A7") P diag(@) §) = 1.
Replacing § by its value in (14)
(81 (<A7") Pdiag(@) [-M(p 1 TN~ A)=1.
In other words the scalar (8 | I) is a solution of H (x) = 1 with
H) = (Bl (—A7") P diag(e) [-M@ '] A).

We claim that H (x) is a strictly decreasing function. The proof is identical to preced-
ing proof of Theorem 2.3, we have just to check carefully that the derivative H'(x is
negative.

H'(x) = <ﬂ| (—A,—l) P diag(a) M(x)~" (—diag(a)) M(x)_1A>

By hypothesis H1, we have — M (x) ™ 'A >0, andsince o >> 0, we have dlag(oz)M(x) 1
(—diag(a)) M(x)~ 'A > 0. Therefore, by hypothesis H2, we conclude (— A )P
diag(a) M (x)~!( —diag(a)) M (x) "' A <« 0. This, with 8 > 0, implies H’(x) < 0.
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Al A2 A3 A—l’l
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!'I'R

Fig. 2 The n susceptible classes and m infected classes model

Since H (x) satisfies limy_, y 5o H(x) = 0, a unique positive solution exists if and
only if H(0) > 1. Since H(0) = Rp > 1, we then have a unique positive solution.
Since, from (14) we have $* > S > 0 and from (15), with (8 | I) > 0, we get I>0.
Hence the equilibrium is strongly endemic.

From the preceding analysis we see that if g = 1 then the unique equilibrium is
the DFE. In the case R¢ < 1 we have I < 0, which means that this equilibrium is not
biologically feasible. O

3 Global stability of the endemic equilibrium for differential susceptibility
and staged progression infectivity models

To prove the global stability of the endemic equilibrium we need to use in more details
the structure of A; and Ag. We will treat in this section a differential susceptibility
with staged progression infectivity model. This system has the same form as system
(5) with Ag = 0 (Fig. 2).

As before some [; can be infected and non infectious compartments. For the sta-
bility analysis, we discard the removed compartments, by the argument given in the
introduction.

The model is given by the following system of ordinary differential equations.
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We write for simplicity A in lieu of A;.

(16)

S = A —diag(us) S — diag(BI) S
I=(BI|S)ei+Al

With e the first vector of the canonical basis of R” and A the matrix given by

—a; 0 0 . 0
yio—w 0 0

Al 0 » —a - 0
0 T 0 Ym—1 —OUpy

Where we have set o; =y, + oy, and y; = yy,.
Using coordinates, system (16) can be written as follows

Si = A; _,U«S,»Si_Zj-:rlnﬁijSi I; fori=1...n

I =321 02 By Silj — e I

jjzyj—llj—l_aj]j forj=2...m
For system (16), the stability of the DFE is addressed by Theorem 2.1.

Theorem 3.1 If Ro > 1 then the unique endemic equilibrium of system (16) is glob-
ally asymptotically stable on Rffrm\{(S , 1) : I = 0} the nonnegative orthant minus
the stable manifold of the disease free equilibrium.

The stable manifold of the DFE is the set {(S, I) € R™":1 = 0}.

Proof We use the following Lyapunov function on the positive orthant. This kind of
Lyapunov function has been used, in a different way, in Adda et al. (2007), Bame
et al. (2008), De Leenheer and Pilyugin ((2008)), Iggidr et al. (2006), Iggidr et al.
(2007), Korobeinikov and Maini (2004), Korobeinikov and Wake (2002) and Lin and
So (1993). The challenge is actually to prove that its derivative is nonpositive.

Veg(S, 1) = (S — diag(3) In § 1) + <B (—A—l) (I — diag(7) InT) | §> —.

where ITis given by IT = (S —diag(S) In S| 1)+ (B(—A~") (I — diag(/) In1) |S).
With the matrix A in this section, we have (—Ail) e1 > 0, hence from Sect. 2.4 we
have I > 0. An equilibrium such that 7 >> 0 is called a strongly endemic equilibrium.
We know that S > 0. Then the assumption B > 0 implies B” S > 0. Since A is
Metzer stable —A~! > 0 we conclude that —(A~")” BT § > 0. Therefore V (S, I) is
nonnegative and that the endemic equilibrium satisfies V (S, I) = 0.
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The derivative Vg along the trajectories of (16) is given by
Ver = (A |1) — (diag(us) S| 1) — (diag(BI) S| 1)
— (S |diag($)™" A) + (S| us) + (] diag($)~" diag(BI) )

+(BI|S) <B(—A_1)e1 |§>+<B(—A—1)A1 | S)
-1 I_l G =1y 33 NA; -1 q
—(BI]S) <B(—A )]—e1|s>—<3(—A ) diag (I )diag(1) AI|S>.
1
This can be written
Vee = (A1) — (S| ps) — (BI'S) — (diag($)"'S|A) + (S| us) + (S| BI)
F(BIS) <B(—A_1)e1|5‘>—(BI|S‘)

I , i} _
—(BI|S) <B(—A—1) I—‘ el S> — (B(—A~ Y diag(I)diag(I)~' AT|S).
1
Using the relation (10), (B(—A~ ) e1 | §) = 1, we have

Vep = (A1) = (S| us) — (diag($) 7' S| A) + (S| )

I

(BI]S) — <B(—A—‘) diag(I)diag(1)"" A1 | S> .
1

Using the relation A = diag(uus) S + diag(B I) S we obtain

Vee = (S|ps) +(BT1S) — (S|us)
— (diag($)" 'S | diag(us) S) — (diag(S)~'S |diag(B 1) S) + (S | us)
I_l 1\ q: = —1 R
—7 (BI|S)— <B(—A ) diag(1)diag(I)™' A | S>.
Vip = <diag(us) 512 — diag($)~'5 — diag(5)™! S>
+(B1|S)— (diag(S)~'S| diag(B I) S)

- % (B118) (B (~A7") diag(Ddiag(n) ™" A115).

The first line of the previous equation is non positive. We will prove that the sum of the
4 remaining expressions is also non positive. We will express the different expressions.
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m

Ql=<Bi|S>=ZZﬁi,-§if,

n m _ S,
—(diag($)”'S| diag(BI)S) =~ > D" ;5 I i

i=1 j=1

93=—I—1 (B11S) = stn——ZZm,‘ 51,

i=1 j=2

fl:ll %)
’Nl ~|
\N'l\

We will rewrite the last expression
Q= —<B(—A_1)diag(l_)diag(l)_l Al S>.
—ayg ex + Yk ex+1 and for the last

We have, fork = 1, ...m — 1, the relations A ¢, =
index A e,, = —ay, ¢,,. Then

Qi =~ > I (B(~A7") diag(Ddiag(D) ™" Aex|5)
k=1

= I (B(=a"" e 5) - Zl v "*‘ = (Beahan )
k=1

Let uy be defined by uy = (B(—A™") ex | S). We claim that the following relation

holds fork =2,....m

m

Veoruk k1= ) Ij (Bej| S). (17)
j=k
We will prove this expression later. For the moment we assume this relation. If we take

into account oy I, = Vik—1 Ix—1 fork =2, ..., m and oy I = (BI | S) we obtain

m m m—1 Ik I_k : m
- _ " - _
Q=2 (D Ij(Bejl) —ZITI— > Ij(Bei|8) ).
=1 \j—=k k=1 kLN S
nom m j—1 -
o 7 I Irt1
= Z J ,szS I Z BijSil; I_ I_+
i=1 j=1 i=1 j=2 ke Skl
Then we get for the sum of these four expressions
4 n
o 7 Si S
Q= 1Sl |2——— =
o225 -5
i=1 i=1
n m a
5 - Si S L Ir Tt
Z Z Pty Si Si 11 Ij po Ik Ik-‘rl

i=1 j=2
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Using the comparison between the arithmetical and the geometrical means we see that
VE £ < 0. It must be noticed however that VE E 18 not negative definite since some B;;
can be zero.

The endemic equilibrium satisfies

(A1) —(usS|1)+ (A1) =0

Since (Al | 1) = =yl — (1| 1), and using the definition of ;o (Lemma 2.2),
we get (S| +(1]1) < % which proves that the endemic equilibrium (S, )
belongs to K, for all ¢ > 0.

Let £ be the largest invariant subset of K., contained in Vegg = 0. Each element
(S, I) of £ must satisfy

<diag(u5) 12— diag($)"'5 — diag(5)~! S> ~0

Since g >> 0 this implies § = S, and so in L, we must have diag(B1) S=A-
diag(us) S. On the other hand we have diag(BI) S = A —diag(us) S. Thus in £, the
dynamics of I are governed by

I=(BI|S)—AI

Since A is stable the largest invariant set £ is then reduced to { (S, I)}. This proves
the global asymptotic stability of the endemic equilibrium (S, 7) in the interior of K,
by Lasalle’s invariance principle (LaSalle 1976; Bhatia and Szegt 1967). The global
asymptotic stability of the endemic equilibrium on R} x R'Y\{(S, 0)} follows from
the fact that the set K, is an absorbing set and that the boundary of the positive orthant
minus the stable manifold of the DFE is not invariant by (16).

To end the proof we have to prove our Claim 17. The proof of the validity of our
claim is made by induction on k.

We prove the claim for k = 2. We have, using (B (—A~!) ¢; | §) = 1, the following
equalities

Aey = —ajer +yre2
—a1 (A e+ 71 (=4 h e
nh (BAer|S)=arh (B(=aer|5) =T (B(=aer15)

—ey

viurly =1 Iy — I

punh = (B A e S) 71+ 3 (B A e )
i=2
m

viuply = Z<B (—A e | 5)

i=2
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We now suppose that

m
Yootk o= <B (—A e |§>
j=k—1
Then
Aej_| = —aj_1e—1+ V1€

—ex—1 = —ag—1 (A N er1 + p—1 (AN e
Vi1 Ix—1 <B (—A e §> = a1 Tk <B (—A e | S)

—fet (B(=Ah e 1)
Vit Uk Te—1 = gy Iy ug—1 — I <B (—A Yer 1| §>

Vit Uk D=1 = Vi—2 Tk—2 ug—1 — Ix—1 <B (—A Y ey |§>

m
vrulor = Y (B(=a")elS) = It (B(=A™) e 1)
j=k—1
m
Vi—t g l—1 = Z<B (—A e | S>
j=k
This ends the proof of the theorem. O

4 Summary and discussion

We have formulated a general differential susceptibility and infectivity model. Genetic
variation of susceptible individuals may lead to differentiation of susceptibility on
infection. For example it has been observed a resistance to Dengue hemorrhagic fever
(DHF) in Cubans of African descent. Different behaviors, susceptibility varying with
age ...are also sources of heterogeneousness, and give rationale for introducing dif-
ferent classes of susceptible individuals.

There have been studies on variable infectivity (Hyman and Li 2005b; Hyman and
Li 1994; Hyman et al. 2001; Iggidr et al. 2007; Hyman et al. 1999; Jacquez et al. 1988;
Ma et al. 2003), but few models are incorporating variable susceptibility (Hyman and
Li 2006; Fall et al. 2007; Hyman and Li 2005a).

In reference Hyman and Li (2005a) differential susceptibility is introduced with
one class of infective. The authors derived an explicit formula for the basic reproduc-
tion ratio Rg. They prove, in the bilinear case, that the DFE is globally asymptotically
stable when R¢ < 1. They prove the existence and uniqueness of an endemic equi-
librium when %y > 1, and prove the global asymptotic stability when there is no
disease-induced mortality.
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The studies in Hyman et al. (1999) and Hyman and Li (2005a,b) give insight into
the transmission dynamics of diseases with differential susceptibility or differential
infectivity but not both. For many disease transmissions, the susceptibility and infec-
tivity factors are coupled and cannot be completely separated. In Hyman and Li (2006)
the authors propose a combined differential susceptibility and infectivity model. The
susceptible individuals are divided into n susceptible groups. The infective individ-
uals are divided into m groups, a susceptible S;, upon infection, enters groups /;
with probability g;; until becoming recovered or immune. There is no flows between
the different susceptible compartments nor between the different infective compart-
ments. The authors give an explicit formula for R and show that the DFE is globally
asymptotically stable if Ry < 1, for the bilinear incidence or for constant total popu-
lation.

In Hyman and Li (2005a, 2006) there are no flows between the different compart-
ments of susceptibles, and no flows between the different compartments of infected
individuals. But in many diseases the infectivity or the susceptibility can evolve. This
is, for example, the case of diseases where stage progression are considered (Hyman
and Li 2005b; Hyman et al. 1999). The case of hepatitis B virus (HBV) infection is
an illuminating example. Infection with HBV can lead to long-term carriage of the
virus, often resulting in chronic liver damage or hepatocellular carcinoma. The risk for
chronic infection varies according to the age at infection and is greatest among young
children. According to CDC approximately 90% of infants will remain chronically
infected with HBV. By contrast, approximately 95% of adults recover completely from
HBYV infection and do not become chronically infected. Then there is a need for other
models. For example, a model for HBV transmission can be derived from the flow
graph of Fig. 3. When a susceptible is infected, he moves either in a latent compart-
ment evolving to chronicity or to a latent compartment evolving to acute infection,
according to the probability indicated in the flow graph. The given figures are taken
from CDC data.

This model has five classes of susceptible individuals and four classes of infected/
infectious individuals. There are flows between different classes of susceptible individ-
uals and between different classes of infected individuals. This model can be written
under the form of the general model (1) and satisfies hypotheses H1 and H2. If we
assume, as it is generally considered (Edmunds et al. 1996; Wilson et al. 1998, 2000)
that chronic are relatively less infectious, independently of the susceptible class, the
rank one hypothesis is satisfied. It must be noticed that this HBV model does not fit
the form of the models introduced in Hyman and Li (2005b) and Hyman et al. (1999)
whereas models introduced in Hyman and Li (2005b) and Hyman et al. (1999) can be
put under the form of model (1), with hypotheses H1 and H2 and rank one assumption
satisfied for the WAIFW matrix.

We give an explicit formula for R, we prove that if Ry < 1 then the DFE is glob-
ally asymptotically stable, and if R > 1 there exists a unique endemic equilibrium.
This contains the analogous results of Hyman and Li (2005b) and Hyman et al. (1999),
for the bilinear case or for the constant population models. We prove the global sta-
bility of the endemic equilibrium when the infective compartments evolve according
to a staged progression model, hence generalizing analogous result of Hyman and Li
(2005a).
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Fig. 3 A model for transmission of HBV

It would be interesting, but a difficult challenge, to prove the global asymptotic
stability of the endemic equilibrium of the model considered in Hyman and Li (2006),
where the infective compartments are represented in a differential infectivity setting.

Finally we would like to notice that our model does not take into account diseases
with no immunity or non permanent immunity, then cannot deal, for example, with
the models considered in Arino et al. (2003).
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