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application à la transmission du virus de l’hépatite B
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Résumé

L’objectif de cette étude est la modélisation, la validation, l’analyse mathématique

et la simulation de modèles de transmission de l’hépatite B en Afrique en général et au

Sénégal en particulier.

Nous proposons de nouveaux modèles basés sur les connaissances actuelles de l’histoire

naturelle de la transmission du virus de l’hépatite B. Ainsi, nous présentons deux modèles

de la transmission du VHB 1, un modèle sans transmission verticale et un autre où la

transmission verticale de la maladie est prise en compte.

Ce second modèle est justifié par la controverse, en ce qui concerne l’incidence des

transmissions verticale ou périnatale au niveau de la zone Afrique ; entre d’une part,

l’Organisation Mondiale de la Santé et d’autre part les spécialistes de l’hépatite B au

Sénégal.

Ces modèles, nous ont conduit à étudier des modèles épidémiologiques avec une diffé-

rentiabilité, au niveau des susceptibles, et progression de stade pour les infectieux. Nous

obtenons une analyse complète de la stabilité de ces modèles à l’aide des techniques de

Lyapunov suivant la valeur du taux de reproduction de base R0. Ce qui nous conduit

à l’étude d’un modèle épidémiologique beaucoup plus général qui englobe ceux proposés

pour la modélisation de la transmission du virus de l’hépatite B.

Nous illustrons à la fin de ce travail ces modèles par des simulations numériques.

Ces dernières sont faites à partir de nos modèles confrontés aux données recueillies du

programme de lutte contre l’épidémie de l’hépatite B au Sénégal et dans la littérature.

Elles permettrons l’évaluation de l’incidence de la transmission verticale/périnatale du

virus de l’hépatite B sur les politiques de Santé Publique.

Mots clés : Modélisation, systèmes dynamiques non linéaires, méthode de Lyapunov,

taux de reproduction de base R0, stabilité globale, modèles épidémiologiques, infectivité

et susceptibilité différentielles, maladies infectieuses, virus de l’Hépatite B, transmission

verticale, simulation numérique, santé publique, Sénégal.

1. virus de l’Hépatite B
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Abstract

The objective of this thesis is modelling the transmission of hepatitis B in Africa in

general and, Senegal in particular.

We propose new models based on the state of art and the epidemiology currently

known from the transmission of the hepatitis B virus. Thus, we present two models of the

transmission of HBV 2, a model without vertical transmission and another in which the

vertical transmission of the disease is taken into account. This second model is justified

by the controversy, with regard to the incidence of the vertical and perinatal transmission

of the virus in some parts of Africa ; between the World Health Organization on one hand

and hepatitis B’s specialists in Senegal on the other hand. These models helped us to

analyse epidemiological models with a differential susceptibility of the population, and

stagged progression of infectious. We present a thorough analysis of the stability of the

models using the Lyapunov techniques and obtain the basic reproduction ratio, R0 which

allows into the study of general epidemiological models including those proposed for the

transmission of the hepatitis B virus.

Numerical simulations are done to illustrate the behaviour of the model, using data

collected during the campaign against epidemic hepatitis B in Senegal and from published

literature. These models enable the evaluation of the incidence of the vertical and perinatal

transmission of the hepatitis B virus on the policies of Public health.

Keywords : Modelling, nonlinear dynamical system, Lyapunov methods, basic reproduc-

tion ratio R0, global stability, epidemiological models, Stability of Differential Suscepti-

bility and Infectivity, Infectious diseases, Hepatitis B virus (HBV), vertical transmission,

numerical simulation, public health, Senegal.

2. Hepatitis B virus
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ix Etude de quelques modèles épidémiologiques :
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4.2.2 Le modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Le nombre de reproduction de base . . . . . . . . . . . . . . . . . . 31
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application à la transmission du virus de l’hépatite B
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Chapitre 1

Introduction générale

« Tout seul, on va plus vite,
ensemble, on va plus loin ! »

Proverbe Africain

Au fil des siècles, avec le développement de la technologie, les moyens de transport

ont progressé, favorisant les contacts entre humains et leurs intrusions dans tous les éco-

systèmes. L’époque moderne a connu les déplacements de dizaines de millions d’individus

sur des espaces régionaux, continentaux, transcontinentaux ou intercontinentaux (armées,

migrations massives, commerces, tourisme) avec la mondialisation.

Lors de ces déplacements, les êtres humains ont souvent amené avec eux, volontaire-

ment ou non, des animaux, des plantes, des micro-organismes, des virus, des bactéries et

des maladies qui se sont révélés néfastes aux terres d’accueil, et y ont apporté de nouvelles

maladies infectieuses et épidémies...

Avec ce flux de voyageurs de plus en plus rapide et des échanges commerciaux floris-

sants, ces risques de contamination pourraient même augmenter. Au-delà des tragédies

humaines qu’elles provoquent, ces maladies infectieuses déstabilisent, voire aggravent la

situation économique des pays touchés, en particulier les pays à faible revenu ou pays en

voie de développement.

Malgré le progrès des sciences durant le XXe siècle, notamment le développement

important des traitements et des vaccins efficaces contre les maladies infectieuses et trans-

missibles, on constate que les épidémies sont loin d’être contrôlées entièrement. Il s’agit,

en effet, de faire face non seulement aux maladies endémiques mortelles comme le palu-

disme, le choléra en Afrique, des maladies émergentes, mais également à des mutations de

virus et au bioterrorisme.

1
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Vu ce contexte, les activités de recherches et la collaboration interdisciplinaires entre les

différentes branches de la science doivent s’intensifier pour l’amélioration de la prévention

et de la lutte : la recherche médicale d’une part et la recherche fondamentale d’autre

part portant sur la description, l’analyse et la modélisation mathématique des maladies

infectieuses.

Les maladies infectieuses sont l’un des domaines où les fondements théoriques ont été

les plus développés en épidémiologie. La théorie mathématique des épidémies fournit ainsi

un cadre de référence pour la reconstitution historique des pandémies passées, contribuant

à une meilleure compréhension des mécanismes de transmission, une alerte plus précoce

vis-à-vis des phénomènes émergents, et désormais la prévision de la diffusion épidémique

dans le temps et l’espace.

La modélisation des maladies infectieuses a une longue histoire. Le premier modèle

a été développé par Bernoulli en 1760 pour la variole. Les fondements de l’approche de

l’épidémiologie basée sur les modèles compartimentaux ont étés établis par des médecins

de santé publique comme Sir Ronald Ross, W. H. Hamer, W. O. Kermack ...

Ronald Ross peut être considéré comme le père fondateur de la modélisation actuelle.

On lui a attribué le prix Nobel en 1902 pour sa preuve que le paludisme était transmis

par les anophèles. C’est lui en 1911 qui a publié le premier modèle dynamique de la

transmission du paludisme. Il a prouvé qu’en dessous d’un certain seuil de population des

moustiques, le paludisme disparaissait.

La modélisation mathématique des maladies infectieuses est une science relativement

nouvelle. Si l’épidémiologie a une longue histoire, ce n’est que récemment que les ma-

thématiciens, les épidémiologistes, les immunologistes ont commencé à collaborer pour

créer des modèles susceptibles de prédire l’évolution d’une maladie. Pour les maladies

transmissibles, le paradigme central est celui de la contagion inter-humaine.

Les modèles des maladies infectieuses ont d’abord été utilisés pour comprendre la

dynamique temporelle et spatiale d’une épidémie, puis pour envisager une stratégie thé-

rapeutique ou de lutte contre la maladie.

Les modèles mathématiques sont de plus en plus fréquemment utilisés en médecine,

dans des domaines d’application de plus en plus variés. Formalisant des phénomènes bio-

logiques complexes, ils permettent d’évaluer des hypothèses en fournissant des éléments

de compréhension ou de prédiction.

Actuellement, les modèles des maladies infectieuses sont de plus en plus souvent utilisés

2 Etude de quelques modèles épidémiologiques :
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pour prévoir un éventail de possibilités futures, afin d’aider et soutenir le développement

des connaissances et le processus décisionnel au niveau scientifique, médical et sanitaire.

Pour parvenir à ces objectifs, de nouvelles méthodologies, en provenance d’autres do-

maines, ont été développées et adaptées et des études de validation de modèles ont été

conduites concernant différentes maladies infectieuses ou des vaccins. Depuis, beaucoup

de maladies ont été modélisées, avec divers degré de sophistication et de succés.

La compréhension des degrés d’hétérogénités, comme l’âge, l’appartenance sociopro-

fessionnelle, le sexe ou les mécanismes qui conduisent à l’exposition des populations à

des risques environnementaux, sanitaires et professionnels mobilisent l’épidémiologie, la

modélisation mathématique, les sciences de la vie et de la nature et les sciences humaines

et sociales (telles que la démographie, la géographie, la sociologie, l’économie...).

La mâıtrise de tous ces facteurs peut permettre d’élaborer des politiques de prévention

et de lutte contre les épidémies et ainsi contribuer aux efforts de santé publique.

L’objectif de ce travail est la mise au point de modèles mathématiques de la transmis-

sion de l’hépatite B au niveau des zones de haute prévalence 1 en général et au Sénégal en

particulier.

La modélisation se fera à partir de l’épidémiologie connue actuellement de l’hépatite

B. Nous proposons des modèles nouveaux basés sur une bonne compréhension des méca-

nismes de transmission du virus de l’hépatite B.

Avec ces modèles, nous obtenons des simulations numériques en partant de données

recueillies au niveau du Sénégal, dans le cadre du programme national de lutte contre

l’hépatite B. Nous allons aussi mettre en évidence la transmission verticale de la maladie

au niveau du Sénégal, en accord avec les résultats obtenus par le professeur A.S. Diallo.

En effet, il y a des divergences en ce qui concerne l’incidence de la transmission ver-

ticale du virus de l’hépatite B au niveau de la zone Afrique en général et du Sénégal en

particulier, au sein de la communauté scientifique. L’OMS 2 estime que la transmission

verticale de l’hépatite B n’a pas une très grande incidence en Afrique. Cette estimation

est basée sur l’utilisation de certains marqueurs. Le professeur Diallo a montré que ces

marqueurs n’étaient pas significatifs en Afrique, elle a montré, en utilisant les présences

1. prévalence ≥ 8%
2. Organisation Mondiale de le Santé

3 Etude de quelques modèles épidémiologiques :
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ADN, qu’au Sénégal, la transmission verticale était importante. L’OMS recommande un

protocole de vaccination différent de celui du continent Asiatique qui est aussi une zone de

haute prévalence de l’HBV où elle prend en compte la transmission verticale mère-enfant.

On verra que cela à d’importantes conséquences au niveau de la transmission.

Ce travail est organisé de la façon suivante :

– Après l’introduction générale, dans le deuxième chapitre nous rappelons la problé-

matique de l’hépatite B pour justifier les modèles que nous allons proposer dans ce

travail. Nous ferons ainsi, un rapide survol de l’histoire naturelle de la transmission

de l’hépatite B, basée sur le consensus actuel concernant cette maladie infectieuse.

Nous nous sommes reférés aux sources de l’OMS et du CDC 3 les plus récentes.

– Dans le chapitre 3, nous faisons l’état de l’art concernant la modélisation et les li-

mites des modèles actuels. Par rapport à d’autres maladies transmissibles, l’hépatite

B a été relativement peu modélisée mathématiquement.

– Dans le chapitre 4, nous proposons une première étude sur des modèles épidémiolo-

giques avec différentiabilité au niveau des susceptibles et progression de stage pour

les infectieux. Nous obtenons une analyse complète de la stabilité de ces modèles à

l’aide de techniques de Lyapunov.

– Dans le chapitre 5, nous proposons des modèles réalistes de la transmission du

HBV. En particulier, nous distinguons les susceptibles suivant leur classe d’âge et

les infectieux suivant leur statut symptomatique.

– Dans le chapitre 6, nous introduisons une classe générale de modèle qui englobe les

modèles précédents. Nous faisons l’analyse de la stabilité de ces modèles.

– Le chapitre 7 présente les simulations des modèles de l’hépatite B que nous avons

proposé au chapitre 5. En particulier, nous ferons la différence entre ceux avec trans-

mission verticale et ceux sans transmission verticale et nous confronterons ces mo-

dèles aux données du Sénégal.

– Nous concluerons ce travail en faisant le bilan des différentes simulations et sur

l’éventualité d’une transmission verticale et périnatale.

– Enfin, les annexes rappellent les résultats mathématiques que nous utilisons dans

ce travail et les différents résultats contenus dans ce travail, qui ont été publiés à

travers des articles, des journaux et des conférences internationaux.

3. Center for Disease Control
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Chapitre 2

l’hépatite B, épidémiologie et
histoire naturelle

” L’infection du virus de
l’hépatite B arrive au deuxième
rang, après le tabac, des agents
cancérogènes connus pour
l’homme ”...

OMS

2.1 Introduction

L’hépatite B est une des maladies virales les plus fréquentes à travers le monde. Le

risque de passage à la chronicité qui entrâıne l’apparition de carcinome hépatocéllulaire 1

ou de cirrhose du foie en font une pathologie grave. L’hépatite est, en particulier en Afrique,

un problème majeur de santé publique, et elle constitue un frein pour le développement

économique.

Dans le monde, deux milliards d’individus ont déjà rencontré le virus de l’hépatite B

(HBV) et environ 347 millions en sont porteurs chroniques ; parmi eux, 13% des femmes et

40% des hommes mourront d’une maladie hépatique liée au virus de l’hépatite B, soit plus

d’un million de décès par an. L’infection du virus de l’hépatite B arrive au deuxième rang,

après le tabac, des agents cancérigènes connus pour l’homme. En Afrique, l’hépatite B,

associée à l’hépatocarcinome, est la première cause de tumeur cancérigène.

Sa distribution géographique est hétérogène, avec des zones de haute incidence (20

nouveaux cas/100 000 habitants par an en Asie du Sud-Est et Afrique) et des zones de

1. cancer du foie
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faible incidence (cinq nouveaux cas/100 000 habitants par an en Europe et aux États-

Unis) [93].

Les prévalences sont estimées à partir de plusieurs marqueurs sérologiques. Parmi ces

marqueurs, on cherche la présence d’antigène de surface du virus de l’hépatite B : AgHBs.

La distribution de la prévalence du portage du marqueur AgHBs permet de diviser la

planète en 3 zones de prévalence différentes, correspondant à des modes de transmission

et des niveaux de risque différents [3].

Figure 2.1 – Distribution géographique de la prévalence de l’hépatite B année : 2006
Source : http ://wwwn.cdc.gov/travel/yellowbook/ch4/hep-b.aspx

Dans les zones de forte endémie, où la prévalence de l’AgHBs est supérieure à 8%

(Afrique subsaharienne, Asie du Sud Est, Chine méridionale, bassin Amazonien, soit en-

viron 45% de la population mondiale), le risque d’acquérir l’infection au cours d’une vie

entière est supérieur à 60% et la majorité des sujets (cas) contaminés le sont à la naissance

6 Etude de quelques modèles épidémiologiques :
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2.2. EPIDÉMIOLOGIE

ou au cours des premières années de vie. Quarante trois pour cent de la population vit dans

des zones de prévalence intermédiaire comprise entre 2 et 7% (Proche Orient, Amérique

Centrale et du Sud, Asie Centrale, sous-continent Indien, certains pays de l’Europe du Sud

et de l’Est). Dans ces zones de prévalence intermédiaire, le risque d’acquérir l’infection au

cours d’une vie entière est compris entre 20 et 60%, et la contamination survient à tous

les âges de la vie. Douze pour cent de la population vit en zone de faible endémie avec une

prévalence inférieure à 2%, zone incluant essentiellement les pays industrialisés (Europe

de l’ouest et du Nord, Amérique du Nord, Australie). Le risque d’acquérir l’infection au

cours d’une vie entière est inférieur à 20%, et la contamination survient surtout à l’âge

adulte [4].

Le développement d’un vaccin fortement immunogène, ayant peu d’effets indésirables,

aurait dû représenter une avancée certaine dans le contrôle, voire l’éradication de l’hépa-

tite B. L’efficacité de ce vaccin est telle qu’on a pu parler du ”premier vaccin contre un

cancer ”. Cependant son coût est, à l’heure actuelle encore, un obstacle aux vaccinations

de masse là où elles seraient le plus justifiées, essentiellement dans les pays en voie de

développement. Il est donc nécessaire de conduire une réflexion sur la meilleure politique

vaccinale à appliquer.

2.2 Epidémiologie

Le terme hépatite signifie « inflammation du foie ». L’hépatite B est un virus transmis-

sible pouvant causer des ulcérations au foie, des insuffisances hépatiques, et des maladies

hépatiques comme la cirrhose ou le cancer du foie. Il se transmet par voie sexuelle mais

aussi par des contacts des liquides biologiques dans les petites communautés. Par exemple

dans le milieu familial, le virus est hautement contagieux. À l’échelle mondiale, l’hépatite

B est très fréquente.

Le réservoir du virus de l’hépatite B semble strictement humain et le virus peut résister

dans le milieu extérieur pendant plus de 7 jours.

L’hépatite B est difficilement soignable. La plupart des gens infectés n’auront aucun

symptôme de l’infection. On les appelle porteurs asymptomatiques, ils jouent un rôle

important dans la transmission de cette maladie. Il s’agit d’individus qui sont porteurs du

virus, et ne manifestent pas de symptômes cliniques. Un dépistage sérologique coûteux est

nécessaire. C’est pourquoi, bon nombre de personnes infectées par l’hépatite B pourraient

7 Etude de quelques modèles épidémiologiques :
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ne jamais le savoir et la transmettre.

L’hépatite B se présente sous deux formes, aiguë (à court terme) ou chronique (à long

terme).

Lorsqu’une personne est d’abord infectée par le virus de l’hépatite B, elle développe une

infection « aiguë ». Cette infection aiguë peut présenter différentes formes de symptômes.

Les symptômes de l’hépatite aiguë peuvent souvent être légers et peuvent ressembler (à

s’y méprendre) à ceux de la grippe. Ceux-ci se manifestent par la fatigue, des douleurs

articulaires, des douleurs dans la région de l’estomac, une perte d’appétit, la nausée et

un sentiment général de malaise. Dans certains cas, l’hépatite B peut également causer la

jaunisse, qui est un signe de troubles du foie. Il peut aussi arriver que la personne infectée

ne présente aucun symptôme.

Schématiquement, l’hépatite chronique B est caractérisée par trois phases (Lok et coll.,

2001 ; EASL, 2003) [82] :

1. une première phase dite de « tolérance immunitaire » avec une forte réplication vi-

rale (grande quantité d’ADN VHB détectable dans le sérum) et une faible activité de

l’hépatite chronique (transaminases normales ou peu élevées et lésions histologiques

d’hépatiques de nécrose et d’inflammations absentes ou minimes) ;

2. une deuxième phase dite de « réaction immunitaire » avec une réplication virale

modérée (quantité modérée d’ADN VHB dans le sérum) et une forte activité de

l’hépatite chronique (transaminases élevées et lésions histologiques marquées) ;

3. une troisième phase dite « non réplicative » avec une faible réplication virale (faible

quantité d’ADN VHB) et l’absence d’activité de l’hépatite chronique (transaminases

normales et absence de lésions d’activité histologique).

Les deux premières phases ont une durée très variable (de quelques mois à des dizaines

d’années) en fonction de la date de contamination et du statut immunitaire. En cas de

contamination périnatale, la phase d’immunotolérance est très prolongée et le passage à la

phase de « réaction immunitaire » est peu fréquent et tardif. En cas de contamination à

l’âge adulte, le passage à la phase de « réaction immunitaire » est fréquent et précoce. Le

passage à la phase « non réplicative » est d’autant plus fréquent et rapide que la réaction

immunitaire est plus forte, avec une activité de l’hépatite chronique plus marquée. Le

passage de la deuxième phase à la troisième s’accompagne généralement d’une « hépatite

de séroconversion HBe » avec un pic de transaminases suivi de la négativation de l’antigène
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HBe (AgHBe) et la positivation de l’anticorps anti-HBe. Cette exacerbation de l’hépatite

chronique peut être sévère, voire fulminante. La troisième phase correspond au statut de

« porteur inactif de l’antigène HBs » : le patient reste AgHBs positif, mais est AgHBe

négatif et anti-HBe positif avec un ADN VHB sérique inférieur à 100 000 copies par ml et

des transaminases normales. Il est important de confirmer le statut de « vrai » porteur

inactif en vérifiant l’absence de signe clinique, biologique ou échographique évocateur

d’une fibrose hépatique évoluée ou d’une cirrhose. En effet, une fibrose évoluée, voire une

cirrhose a pu se constituer au cours de la phase d’hépatite chronique active, avant le

stade de porteur inactif. Cette distinction est essentielle car les « vrais » porteurs inactifs

de l’AgHBs ont un excellent pronostic avec un risque quasiment nul de complications (en

particulier d’hépatocarcinome) alors que le risque de complication est non négligeable chez

les « faux » porteurs inactifs. En cas de doute, une ponction biopsie hépatique peut être

proposée. Dans tous les cas, une surveillance régulière est recommandée (EASL, 2003).

L’AgHBs disparâıt rarement spontanément et tardivement (incidence d’environ 1% par

an).

Dans ce cas, les anticorps anti-HBs n’apparaissent pas toujours (séroconversion HBs) et

le sujet peut ne garder que des anticorps anti-HBc détectables. Cela correspond à la gué-

rison de l’hépatite chronique B bien que l’on sache qu’il ne s’agit généralement pas d’une

éradication de l’infection par l’hépatite B, puisque de l’ADN VHB peut rester détectable

dans le foie, voire dans le sérum, avec des méthodes sensibles (Chemin et coll., 2001).

Chez les porteurs inactifs de l’AgHBs, une proportion relativement importante (environ

20% à 30%) peut avoir une réactivation de l’hépatite chronique avec augmentation de la

réplication virale (ADN VHB supérieur à 100 000 copies par ml) et augmentation des

transaminases ; cette réactivation est généralement modérée mais peut être sévère, voire

fulminante (surtout en cas de cirrhose sous-jacente), et elle peut se prolonger ou se répé-

ter. L’AgHBe peut rester négatif, correspondant à l’apparition d’une hépatite chronique

active AgHBe négatif due à un VHB variant (« mutant pré-C ») incapable d’exprimer

l’AgHBe (Hadziyannis et Vassilopoulos, 2001). L’hépatite chronique active AgHBe négatif

apparâıt tardivement au cours de l ’histoire naturelle de la maladie, ce qui explique qu’on

la diagnostique le plus souvent chez des sujets ayant une contamination ancienne et que

la proportion des sujets atteints de cette forme d’hépatite chronique B soit prédominante

dans les régions où la plupart des malades ont été contaminés il y a longtemps (80%à

100% des cas dans le bassin méditerranéen). L’hépatite chronique active AgHBe négatif
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est caractérisée par un taux faible de rémission durable spontanée et par une évolution

sévère (risque élevé de complications, cirrhose et hépatocarcinome) (Zarski et coll., 1994 ;

Hadziyannis et Vassilopoulos, 2001 ; Brunetto et coll., 2002). Il faut noter qu’en France, la

proportion de malades atteints d’hépatite chronique AgHBe négatif augmente : elle était

de 20% il y a 10 ans (Zarski et coll., 1994) et elle semble être maintenant de l’ordre de

50%.

La proportion de cas symptomatiques de l’hépatite aiguë B augmente avec l’âge alors que

le risque de passage à une infection chronique diminue (McMahon et coll., 1985) [90]. En

effet, lorsqu’elle a lieu à la naissance ou durant la petite enfance, l’infection par l’hépatite B

entrâıne en règle générale une hépatite aiguë asymptomatique mais est associée à un risque

élevé (de 90% à la naissance à 30% à 4 ans) d’évolution vers une infection chronique (source

OMS et CDC). Inversement, lorsqu’elle a lieu après 5 ans, l’infection par l’hépatite B peut

entrâıner une hépatite aiguë symptomatique (30% à 50% des cas) et est associée à un risque

faible d’évolution vers une infection chronique (5% à 10%).

Figure 2.2 – Évolution de la maladie suivant l’âge d’infection
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2.3 Modes de transmissions

La contagiosité de l’hépatite B est liée à sa présence dans les liquides biologiques des sujets

infectés : sang, salive, sperme et sécrétions vaginales (Anonyme, 1999 ; Expertise collective

Inserm, 1997a). Chez les sujets ayant une infection chronique par l’hépatite B, la virémie

est très variable mais peut, dans certains cas, être très élevée (jusqu’à 109 virions par ml

de sang).

Il existe quatre principaux modes de contamination par le virus de l’hépatite B :

– les relations sexuelles, hétérosexuelles ou homosexuelles ;

– les contacts avec du sang ou des dérivés du sang lors d’actes médicaux (transfusion

sanguine, chirurgie, hémodialyse, actes invasifs, acupuncture, soins dentaires) ou de

toxicomanie intraveineuse, ou tatouages ou piercing ;

– la transmission de la mère à l’enfant lors de l’accouchement ;

– les contacts dans la famille ou dans une collectivité.

La transmission se fait rarement par la salive et plus souvent par le partage d’objets

de toilette (brosse à dent, rasoir) ou par lésions cutanées (par exemple contact avec des

suintements de plaies ouvertes).

L’importance relative de ces différents modes de transmission est extrêmement variable

en fonction des zones géographiques et est liée à la prévalence de l’infection chronique par

le virus VHB dans la population concernée. Dans les zones de haute prévalence (8% à

20%) (Asie du Sud-Est, Afrique sub-saharienne, Chine et Amazonie), la contamination a

généralement lieu à la naissance (transmission verticale) ou au cours des premières années

de vie (transmission périnatale). Le risque est plus élevé chez les enfants nés de mères

ayant un antigène HBe positif : l’incidence de l’infection varie de 70% à 90% au cours des

6 premiers mois après la naissance (Stevens et coll., 1979). Chez les enfants nés de mères

ayant un antigène HBe négatif, l’incidence de l’infection varie de 40% à 70% (Stevens et

coll., 1979 ; Beasley et Hwang, 1983 ; Xu et coll., 1985 ; Hurie et coll., 1992) [7].

La transmission du virus de l’hépatite B s’explique par :

– la longueur de la phase d’incubation (2 à 6 mois), le sang étant infectant dans la

seconde partie de cette phase ;

– le très haut titre infectieux du sang (0,0001ml de plasma peut transmettre le VHB) ;

– le grand nombre de porteurs asymptomatiques ;

– la présence du virus dans tous les liquides biologiques : liquide séminal (sperme),
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sécrétions vaginales, sueur, larmes, salive, urine (alors que l’infectiosité des selles est

négligeable) ;

– Le virus de l’hépatite B est 50 à 100 fois plus infectieux que le VIH.

Les différents modes de transmission de l’hépatite B peuvent être classés en deux

sous groupes : les transmissions verticale, périnatale et horizontale. Nous incluerons la

transmission verticale avec la transmission périnatale car nous avons vu le rôle important

de l’âge où est acquis l’infection.

La présence d’AgHBs a été démontrée dans le lait maternel mais le risque de trans-

mission par le lait maternel est considéré comme négligeable en comparaison du risque

par exposition aux liquides biologiques maternels lors de l’accouchement [28].

2.4 Politiques de santé publique contre l’hépatite B

En 1991, l’OMS recommandait l’inclusion du vaccin contre l’hépatite B dans les pro-

grammes de vaccination nationaux. Aujourd’hui plus de 150 pays ont suivi cette recom-

mandation. Cependant, en raison du coût important du vaccin, de nombreux pays pauvres

n’y ont pas accès et c’est souvent là où la prévalence du virus de l’hépatite B est la plus

forte.

L’Organisation mondiale de la santé (OMS) avait recommandé la mise en place de

programmes de vaccination généralisée contre l’hépatite B avant 1995 dans les pays de

forte endémie et avant 1997 dans les pays de faible endémie. Après les États-Unis, le

Canada et l’Italie, la France a adopté une stratégie de vaccination orientée vers une double

cible : les nourrissons et les pré-adolescents avant l’âge de 13 ans. Mis en place en 1994,

ce programme complétait l’immunisation des sujets à risques et permettait d’envisager

une diminution de 90% de l’incidence de l’hépatite B dans les vingt années à venir et son

élimination à long terme. Cependant on dispose de différentes politiques de Santé publique

selon les pays.

Dans les pays du Tiers Monde à forte endémicité d’hépatite B, l’important est d’obtenir

une immunité le plus vite possible. Ainsi deux schémas ont été élaborés par l’OMS selon

l’endémicité : vaccination dès la naissance (zone d’hyperendémie type Asie du Sud-Est)

ou associée avec les autres vaccins (type Afrique sub-saharienne). Il est donc indispensable

de se soumettre aux règles édictées par chaque pays qui combinent à la fois les stratégies

du Programme Elargi de la Vaccination (PEV) et les recommandations locales établies
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d’après l’épidémiologie.

En raison de ces différences épidémiologiques géographiques, deux types de politique

de vaccination ont été mis au point. Dans les pays à forte endémicité, la stratégie a été

de vacciner tous les nouveau-nés. Plusieurs de ces pays comme la Chine, la Thäılande

et l’Indonésie ont déjà mis en place d’ambitieux programmes nationaux. En revanche,

dans les pays à faible endémicité, dont la France, la vaccination introduite en 1981 a été

initialement orientée vers les groupes à risque. Malheureusement, cette stratégie n’a pas

permis d’obtenir la régression attendue de l’incidence de l’infection. L’une des principales

explications est la sous-vaccination des groupes à risque. La seule exception est le succès

de la vaccination rendue obligatoire en 1991 dans les établissements de soins et les écoles

médicales et paramédicales. Les autres groupes à risque restent difficiles à repérer et

vacciner de façon exhaustive.

2.4.1 Vaccination systématique des nourrissons

Cette vaccination systématique des nourrissons consiste à vacciner les bébés dès leurs

plus jeune âge. Il faudrait accorder de très grands efforts à la vaccination systématique des

nourrissons, parce que la plupart des infections chroniques sont contractées pendant la plus

petite enfance, surtout dans les pays à moyenne ou forte endémicité. Elle est également

une priorité élevée dans les pays à faible endémicité car c’est la seule stratégie permettant

d’éviter l’infection de toutes les classes d’âge (enfants, adolescents et adultes). Dans ces

pays, la majorité des infections chroniques sont contractées pendant l’adolescence ou à

l’âge adulte, mais les infections qui interviennent pendant la petite enfance jouent un rôle

important dans le maintien de la charge de l’infection chronique.

2.4.2 Prévention de la transmission périnatale du virus de l’hé-
patite B

Pour ce qui est de la prévention de la transmission périnatale de l’hépatite B, la

première dose de vaccin anti-hépatite B doit être administrée aussitôt que possible après

la naissance de préférence dans les 24 heures qui suivent. La stratégie la plus facile consiste

à administrer une dose de vaccin à tous les nouveaux-nés. L’autre méthode consiste aussi

à dépister la présence de marqueurs du virus de l’hépatite B chez la femme enceinte

et à vacciner automatiquement à la naissance les enfants de femmes infectées. L’obstacle

majeur est que le dépistage chez la femme enceinte et la recherche des nourrissons de mères
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infectées sont des opérations qui nécessitent des ressources considérables, ce qui est parfois

onéreux pour la plupart des pays de forte prévalence. La prévention de la transmission

périnatale de l’hépatite B est d’une importance majeure car selon les estimations, 90%

des enfants infectés à la naissance, deviennent chroniques à l’âge adulte.

2.4.3 Vaccination de rattrapage pour les sujets plus âgés

La vaccination de rattrapage consiste à vacciner les groupes à risques pour prévenir l’in-

fection de l’hépatite B. Lorsque le vaccin anti-hépatite B est incorporé dans les calendriers

de vaccination infantile systématique, il faudrait évaluer la nécessité d’une vaccination de

rattrapage pour les classes d’âge supérieures à un an. En particulier, il convient de noter

que les agents de santé exposés à une contamination par le sang courent un risque élevé

d’infection à l’hépatite B. La nécessité d’une vaccination de rattrapage pour les sujets

plus âgés dans d’autres groupes variera en fonction du degré d’endémicité de cette infec-

tion dans chaque pays. Il est particulièrement important que la vaccination de rattrapage

dans les classes d’âge supérieures ne fasse pas obstacle aux efforts visant à parvenir à la

vaccination complète des nourrissons et à empêcher la transmission mère-enfant du virus

en administrant à ce dernier une dose de vaccin à la naissance [12].

2.5 Conclusion

L’hépatite B se caractérise par la présence de porteurs chroniques asymptomatiques. Ces

porteurs chroniques jouent un rôle important dans la transmission de la maladie.

L’évolution vers le portage chronique dépend de l’âge à laquelle on a contracté la maladie.

Du point de vue de la modélisation, il est naturel de distinguer différentes classes d’infec-

tieux. Il est communément admis que l’infectiosité des asymptomatiques est inférieure à

celle des infections aiguës (en tout cas certainement différentes).

Par ailleurs, on va distinguer des classes différentes de susceptibles. La différence dépendra

de l’âge puisque, à la suite d’un contact infectieux, l’évolution de la maladie sera différente.

Si une politique de vaccination existe, on introduira une autre classe de susceptibles : les

vaccinés, car tout vaccin ne protège pas à 100%.
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Chapitre 3

Etat de l’art : modélisation de la
transmission de l’hépatite B

« Tous les modèles sont faux,
mais certains sont utiles. »

G. Box

3.1 Introduction

La modélisation mathématique appliquée à l’étude de la dynamique des maladies in-

fectieuses semble un outil intéressant pour aider à la conception de stratégies de contrôle

ou d’éradication d’une maladie comme l’hépatite B. Elle permet de tester « in silico »

(sur ordinateur) différents scénarios de prévention avant de les mettre en oeuvre et ainsi

d’aider la décision de santé publique [29].

Par définition, un modèle est une représentation simplifiée de la réalité ; il repose

donc sur des paradigmes et sur une théorie. La modélisation mathématique des maladies

infectieuses est une science relativement nouvelle. Si l’épidémiologie a une longue histoire,

ce n’est que récemment que les mathématiciens, les épidémiologistes, les immunologistes,

les médecins ont commencé à collaborer pour créer des modèles susceptibles de prédire

l’évolution d’une maladie.

Pour les maladies transmissibles, le paradigme central est celui de la contagion inter-

humaine. Depuis, diverses maladies ont été modélisées, avec un succès variable. L’épi-

démiologie classique utilise des variables pour décrire l’état d’une population qui a été

exposée à une pathologie infectieuse. Le nombre de variables dépend de la maladie étu-

diée, ainsi que de la complexité souhaitée pour la modélisation. Les paramètres incorporés
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représentent des facteurs de base, comme le taux de transmission de l’agent infectieux,

le taux de mortalité, et autres données suivant le contexte sociologique, géographique et

culturel.

Depuis les années 1911, toute la théorie mathématique déterministe des épidémies de

maladies transmissibles repose sur les travaux de Ronald Ross, W. O. Kermack et A. G.

McKendrick, c’est-à-dire sur des modèles compartimentaux. Par exemple, on considère des

modèles de type SEIR, qui partagent la population en sujets susceptibles de contracter la

maladie (S), sujets latents (E), sujets infectieux (I) et sujets retirés (R).

La plupart des modèles sont complexes. Il est possible de prendre en compte de très

nombreux facteurs, qui seront inclus dans des équations, avec des limites toutefois. Un

modèle incluant des douzaines de variables pourra être très réaliste, mais sera souvent

ingérable en raison du grand nombre de paramètres à déterminer. Un compromis doit

souvent être adopté. Ces modèles peuvent être utilisés non seulement pour prédire l’impact

d’une maladie infectieuse, mais également pour simuler un traitement ou un vaccin, pour

en évaluer l’impact parfois même économique.

Par exemple, la modélisation mathématique des maladies infectieuses à un niveau

cellulaire ou moléculaire est fondée sur un principe similaire. Chez un patient, il y a des

cellules infectées, des cellules susceptibles de le devenir, des cellules qui ne le seront pas,

il y aura une réponse immunitaire dont les composantes peuvent être incorporées.

En fonction de notre niveau de compréhension de la biologie de la maladie, il est

possible de construire des modèles réalistes, qui permettront de déterminer les meilleurs

traitements, ainsi que l’impact respectif des facteurs qui influencent cette maladie.

3.2 Quelques définitions en modélisation des épidé-

mies

Définition 1 : On appellera contact adéquat tout contact à l’issue duquel l’infection

est effectivement déclarée.

Définition 2 : Un susceptible est un individu de la population qui n’est ni malade, ni

immunisé contre la maladie et qui, suite à un contact dit adéquat avec un individu malade,

est susceptible de contracter la maladie.

Définition 3 : On appellera infecté (latent) tout individu ayant été contaminé par le

pathogène de la maladie mais ne pouvant encore la transmettre.
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Définition 4 : En effet, il existe une période dite période de latence pendant laquelle

le développement des organismes responsables de la maladie est purement interne. Durant

cette période, les infectés sont dits latents et ne peuvent pas transmettre la maladie à

d’autres individus.

Définition 5 : Un individu est dit infectieux s’il est infecté par le virus de la maladie

et s’il peut transmettre la maladie à un susceptible par un contact adéquat.

Définition 6 : Le nombre de reproduction de base R0 est le nombre moyen de cas

secondaires produits par un individu infectieux typique placé dans une population consti-

tuée entièrement d’individus susceptibles, durant toute sa période d’infectivité.

Intuitivement, on a l’impression que l’introduction d’un cas infectieux pourra mener à une

épidémie lorsque cette valeur est supérieure à 1 ; le cas R0 inférieur à 1 correspondra en

revanche à un défaut de transmission, menant à la disparition de la maladie. Ceci a été

démontré mathématiquement par Diekmann et al. En fait, le nombre de reproduction de

base R0 est un seuil.

Grâce à cette caractérisation, il est possible de mesurer l’efficacité d’une intervention

pour prévenir une épidémie par l’effet qu’elle aura sur le taux de reproduction de base.

Le nombre de reproduction de base R0 peut intégrer l’effet des interventions selon leur

efficacité à réduire le taux de contact (quarantaine), la transmission lors des contacts

(protection individuelle, meilleure hygiène, vaccination) ou la durée de la période infec-

tieuse (diagnostic, traitement). L’obtention d’une expression analytique du nombre de

reproduction de base R0 est, de ce point de vue, intéressante.

3.3 Modèles mathématiques pour les épidémies

La théorie mathématique des épidémies fournit de nombreux systèmes d’équations

différentielles ou aux dérivées partielles. D’autre part, on a une idée intuitive du com-

portement de ces phénomènes, de la propagation de ces maladies. Y interviennent des

phénomènes de contamination, de diffusion...

Il existe deux grands types de modèles mathématiques pour l’étude de la dynamique

épidémique d’une maladie transmissible : les modèles déterministes et les modèles sto-

chastiques. Les modèles déterministes, que l’on vient de décrire à propos du modèle SEIR,

reposent sur des systèmes d’équations différentielles non linéaires dont la programmation
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et la résolution, devenues aisées grâce au progrès de l’informatique, permettent de dis-

poser très rapidement de résultats. Ils présentent cependant le grand inconvénient de ne

pas prendre en compte des événements aléatoires inéluctables lors des démarrages épidé-

miques.

L’impact de tels événements aléatoires sur les courbes épidémiques peut être évalué à

l’aide d’une autre méthodologie appelée «stochastique». Nous ne détaillerons pas ici les

nombreuses techniques de modélisation stochastique, mais elles reposent toutes sur des

simulations effectuées sur de puissants calculateurs où l’on peut programmer les contacts

entre chaque individu d’une population avec un maximum de précision sur les probabilités

de contacts inter-individuels. Ces probabilités ainsi que d’autres paramètres du modèle

(durée d’incubation, durée des symptômes, délais de prise en charge par le système de

soin) sont souvent variables et les programmes permettent pour chaque simulation de tenir

compte de cette variabilité en la modélisant. Ainsi, chaque paramètre ne prend pas une

valeur constante comme c’est le cas dans les modèles déterministes, mais prend une valeur

différente à chaque simulation, cette valeur fluctuant à l’intérieur d’une loi de distribution

qui reproduit au mieux la réalité des fluctuations de ce paramètre dans la nature. Chaque

simulation reproduit donc le cours d’une épidémie avec ce jeu de paramètres. On peut

alors réitérer sur l’ordinateur plusieurs centaines ou milliers de simulations, toutes avec

des jeux de paramètres différents, et l’on obtient alors des intervalles de confiance autour

des projections du modèle. Ces modèles sont donc particulièrement adaptés à l’étude

d’épidémies de nouveaux agents infectieux pour lesquels on connâıt encore peu l’impact

des événements aléatoires initiaux. Ils sont cependant dépendants de la précision des lois

de distribution des paramètres, comme nous l’avons expliqué ci-dessus, mais dans le cas

des phénomènes émergents, on ne connâıt pas toujours exactement ces lois de distribution.

Par ailleurs, ces modèles sont souvent d’un maniement très lourd et difficiles à analyser

mathématiquement.
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3.4 Présentation de quelques modèles sur la trans-

mission de l’hépatite B

La littérature mondiale concernant le sujet est relativement restreinte comparée à celle

sur les autres infections comme le VIH 1, la tuberculose ou le paludisme. Nous avons ana-

lysé les publications sur les modèles mathématiques déterministes, sur la transmission du

virus de l’hépatite B, en dimension finie en utilisant les bases de données : Mathscinet,

Zentralbllatt, Medline, ISI Thomson. Nous résumons ici les travaux publiés par quatre

équipes concernant l’étude par des modèles mathématiques de l’impact de stratégies vac-

cinales contre l’hépatite B dans des pays européens de faible endémie (Cvjetanovic et coll.,

1984 et 1987 ; Pasquini et Cvjetanovic, 1987 ; Pasquini et coll., 1987 ; Williams et coll.,

1996a et b ; Garuz et coll., 1997 ; Medley et coll., 2001 ; Kretzschmar et coll., 2002).

3.4.1 Modèle d’Anderson-May

Il s’agit là probablement du premier modèle utilisant les équations différentielles or-

dinaires sur la transmission du virus de l’hépatite B. Dans la référence [2], Anderson et

May considèrent la transmission du virus de l’hépatite B à partir des porteurs chroniques

de la maladie. Ils supposent que l’infection va dépendre de la réponse immunitaire de

l’individu. Une réponse immunitaire adéquate stimule la production des anticorps pour

stopper l’infection et une réponse immunitaire inadéquate favorise la réplication virale

d’où l’évolution de la maladie vers la chronicité. Ils divisent la population des susceptibles

en deux groupes, avec une proportion, (1 − π) de cette population qui va développer

une infection aiguë, puis guérir et une proportion, π de cette population qui va devenir

infectée ou chronique. Ils introduisent donc des compartiments d’infectieux I (infection ai-

guë) et C comme chronique, les porteurs asymptomatiques. Ils supposent que les porteurs

chroniques sont moins infectieux.

Ils introduisent le modèle suivant :

1. virus de l’immunodéficience humaine
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Figure 3.1 – Modèle May-Anderson avec infectivité différentielle

où π1 + π2 = 1

Ce qui conduit au système différentiel suivant :


Ṡ = µN − (β1 I + β2C)S − µS
İ = π1 (β1 I + β2C)S − (µ+ γ1) I

Ċ = π2 β2 (β1 I + β2C)S − (µ+ γ2)C

Ṙ = γ1 I + γ2C − µR

(3.1)

où

– βi désigne le coefficient de contact adéquat pour être contaminé soit par un infecté

I (i = 1) ou un chronique C (i = 2).

– γi le taux de guérison des malades.

– µ caractérise le taux de mortalité supposé égal au taux de naissance.
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En fait, ce modèle appartient à la catégorie des modèles à infectivité différentielle

[49,50,84]. Nous y reviendrons plus loin.

S

I1 Ik In

R

b1I1+...+bnIn

p1

m1

mR

mS

L

mk mn

pk pn

Figure 3.2 – Infectivité différentielle

Dans le même ouvrage, ces deux auteurs proposent un autre modèle, tenant compte cette

fois-ci de la transmission verticale. Ils distinguent maintenant les susceptibles suivant leur

réaction à l’infection et ils supposent que les porteurs asymptomatiques vont donner nais-

sance à une proportion ν de porteurs asymptomatiques. Le diagramme de la transmission

du virus de l’hépatite B dans ce cas est le suivant :

S1

I C

S2

R

β1I+β2C
β1I+β2C

μ

μ
μ

μ

μ
γ1 γ2

π1μN-π1νμC π2μN-π2νμC
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Figure 3.3 – Modèle du virus l’hépatite B avec une transmission verticale
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Avec la condition suivante : π1 +π2 = 1 Ce modèle suppose que la population des suscep-

tibles est divisée en deux groupes de proportion π1 et π2. Les S1 donnent après infection

des infections aiguës, les S2 des porteurs chroniques.


Ṡ1 = π1 µN − π1 µ ν C − (β1 I + β2C)S1 − µS1

Ṡ2 = π2 µN − π2 ν µC − (β1 I + β2C)S2 − µS2

İ = (β1 I + β2C)S1 − (µ+ γ1) I

Ċ = (β1 I + β2C)S2 − (µ+ γ2)C + µ ν C

Ṙ = γ1 I + γ2C − µR

(3.2)

Ce modèle suppose également que les susceptibles ont le même taux d’infectiosité vis à

vis d’un infectieux ou d’un chronique.

3.4.2 Modèle de Cvjetanovic et coll. (Cvjetanovic et coll., 1984
et 1987 ; Pasquini et Cvjetanovic, 1987 ; Pasquini et coll.
1987) [17,18,95,96]

Cvjetanovic et al utilisent les modèles multi-stades discrets pour modéliser l’histoire

naturelle de l’infection du virus de l’hépatite B. Le modèle construit est composé de douze

états épidémiologiques avec une structure d’âge discrète : des nouveau-nés (pour simuler

la transmission verticale), une immunité maternelle de 9 mois, un état susceptible, une

incubation non infectieuse (30 jours), une incubation infectieuse (60 jours), une atteinte

hépatique infraclinique (infectieuse, 30 jours), une maladie déclarée (60 jours), un portage

infectieux (20 ans), une atteinte chronique infectieuse (15 ans), un état d’immunité post-

infectieuse (à vie), un état d’immunité post vaccinale (20 ans), une mortalité liée au virus

de l’hépatite B (VHB), une mortalité par autre cause. Ils considèrent des taux de transfert

d’un état à un autre. Ils utilisent le modèle pour simuler les situations endémiques et

épidémiques de la maladie. Les simulations faites avec les données Italiennes de l’époque

les avaient conduit à la conclusion suivante : la vaccination des groupes à risque n’avait

pas d’impact sur les taux d’infection par le virus de l’hépatite B.

Plus tard, en 1987, Cvjetanovic et al. améliorent leur modèle en introduisant une struc-

ture d’âge plus détaillée, ce qui est beaucoup plus réaliste en ce qui concerne l’infection

du virus de l’hépatite B car, on l’a vu, l’âge d’infection est important. Dans ce modèle

structuré en âge, la population est composée des nourrissons et le reste est subdivisé

en tranches d’âge de cinq ans. Avec ce modèle, ils disent pouvoir simuler le cours natu-

rel de la maladie, les politiques d’intervention publique, l’immunisation d’une population
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appropriée et les mesures de prévention sanitaire.

3.4.3 Modèle de Edmunds-Medley-Nokes [25]

Leur modèle porte sur l’étude de la corrélation entre l’âge d’infection du virus de

l’hépatite et la probabilité de devenir chronique. Ils établissent ainsi un modèle qui donne

une loi de probabilité de devenir chronique suivant l’âge. Ainsi, ils proposent le modèle

suivant : {
p(a) = exp(−r.as) si a ≥ 6 mois

pperi = 0.885(95% C.L 0.84− 0.93) si a ≤ 6 mois
(3.3)

Les paramètres du modèle sont estimés à partir du maximum de vraisemblance, en utili-

sant les données de la surveillance épidémiologique de l’hépatite B en Gambie et donnent :

r = 0.645 et s = 0.455, ce qui nous conduit à la relation suivante :

{
p(a) = exp(−0.645.a0.455) si a ≥ 6 mois

pperi = 0.885(95% C.L 0.84− 0.93) si a ≤ 6 mois
(3.4)

Ce résultat est important car nous allons l’utiliser avec les données épidémiologiques du

Sénégal pour avoir une idée sur les paramètres de notre modèle pour les besoins de nos

simulations.

3.4.4 Modèle de Medley et coll. (Williams et coll., 1996a et b ;
Medley et coll., 2001) [24,91,112]

Williams et coll. (1996a) ont proposé un modèle mathématique très complet appli-

qué aux données du Royaume-Uni. Ce modèle déterministe, structuré en 12 classes d’âge,

prend en compte les transmissions verticale et sexuelle du virus de l’hépatite B. Ils consi-

dèrent, de façon séparée et indépendante, la dynamique épidémique chez les hétérosexuels

et les homosexuels masculins.

La population est répartie en six compartiments, les susceptibles, les personnes infec-

tées en période de latence, les personnes atteintes d’hépatite aiguë, les personnes immu-

nisées après infection, les porteurs chroniques du virus, et les personnes immunisées par

vaccination. Les paramètres relatifs aux nombres de contacts sexuels sont issus d’enquête

sur le comportement sexuel des Britanniques. Les valeurs du taux de reproduction de base

(R0) ont été estimées un peu au-dessus de 1 chez les hétérosexuels et de l’ordre de 4 chez

les homosexuels (soit des valeurs très inférieures aux valeurs estimées pour la rubéole 7
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ou la rougeole 16). Différentes stratégies de vaccination ont été simulées, et leurs impacts

évalués. La vaccination de masse des nourrissons est la mesure la moins coût-efficace, alors

que la vaccination des nouveau-nés de mère infectée est la mesure la plus coût-efficace. La

vaccination de masse des adolescents est plus rapidement efficace que celle des nourris-

sons, puisqu’elle concerne une population plus proche de la maturité sexuelle. Il n’a pas

été possible d’analyser avec précision l’impact d’une vaccination orientée vers les groupes

à haut risque, en raison du manque de données disponibles. Un second papier de Williams

et coll. (1996b) indique qu’il faudrait attendre 40 années de mise en oeuvre d’un pro-

gramme de vaccination de masse des nourrissons pour obtenir une meilleure efficacité que

la vaccination ciblée sur les sujets à haut risque chez les hétérosexuels (et 50 ans chez les

homosexuels).

En 2001, Medley et coll. ont proposé, à partir de méthodologies similaires, une étude

du rôle de l’âge au portage sur le niveau d’endémicité : plus cet âge est élevé et moins

l’endémicité est importante. Ces auteurs ont aussi analysé le rôle des afflux de porteurs de

virus par l’immigration venant de pays de forte endémie. Ce rôle apparâıt primordial dans

les pays de faible endémie, notamment dans la circulation du virus de l’hépatite B, mais

aussi dans le risque que ces porteurs de virus font courir à la région d’accueil de passer à un

niveau d’endémicité plus élevé. Ce risque pourrait justifier des stratégies d’immunisation

de masse moins efficientes à court terme que les stratégies ciblées sur les populations à

risque, mais cependant intéressantes sur le plan de la santé publique à long terme.

Ce modèle est un modèle à infectivité différentielle et à susceptibilité différentielle

avec les paramètres suivants : Susceptibles (S), Latents (E), Infectés (I), Chroniques (C),

Vaccinés (V), Guéris (R). La variable µi représente la mortalité dans les différents com-

partiments. Le paramètre p représente la probabilité de devenir susceptible à la naissance

(pas de transmission verticale) et 1− p la probabilité de devenir latent ou la transmission

verticale à la naissance.
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Figure 3.4 – Le modèle Edmunds, Medley, Nokes (Nature 2001)

3.4.5 Modèle de Kretzschmar et coll. (2002) [69]

Cette équipe néerlandaise a développé une application légèrement modifiée du mo-

dèle de Williams et coll. (1996a). Il s’agit d’un modèle compartimental déterministe qui

prend en compte les contacts sexuels (homosexuels et hétérosexuels) et la transmission

verticale comme le modèle Anglais, mais aussi désormais, qui tient compte de l’afflux de

porteurs de virus par voie d’immigration issue de pays de forte endémie. Ainsi, sans tenir

compte de l’immigration, le taux de reproduction de base R0 reste inférieur à la valeur

1 (donc inférieur au seuil de déclenchement épidémique) dans la population néerlandaise

hétérosexuelle (il est de 2,7 dans la population homosexuelle). C’est donc l’immigration

des porteurs de virus qui déterminerait le maintien de la circulation de l’infection par

le virus de l’hépatite B aux Pays-Bas selon les résultats de ce modèle, et qui limiterait

les bénéfices de la vaccination (tant que la prévalence dans les pays d’où l’immigration

provient reste élevée). En conclusion, ils affirment que les nouvelles infections par le virus

de l’hépatite B aux Pays-Bas pourraient être contrôlées efficacement par la vaccination de

masse des enfants, mais seulement 5 à 10 % des contaminations pourraient être prévenues

par une telle stratégie en raison de l’afflux continuel de nouveaux immigrants infectés.
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application à la transmission du virus de l’hépatite B
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CHAPITRE 3. ETAT DE L’ART : MODÉLISATION DE LA
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3.5 Conclusion

Les modèles que nous avons présentés ne tiennent pas compte de l’évolution de l’infection

qui dépend de l’âge. Ces modèles sont assez simples et comprennent peu de compartiments.

La plupart de ces modèles ont été développés pour de zones de faible endémicité pour le

portage du virus de l’hépatite B.

Une synthèse des informations de ces différents modèles, adaptée aux zones de haute

prévalence, sera faite dans le cadre de nos modèles que nous proposons dans les chapitres

suivants.
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Chapitre 4

Modèles épidémiologiques et
fonction de Lyapunov

Nous donnerons quelques résultats de stabilité globale de quelques modèles comparti-

mentaux épidémiologiques en utilisant les méthodes de Lyapunov. Nous allons revoir les

méthodes classiques et donner une preuve simple basée sur les techniques de Lyapunov.

Après l’examen du modèle classique de Lajmanovitch et Yorke [70], nous nous inté-

resserons à un modèle avec susceptibilité différentielle et progression de stade pour les

infectés/infectieux. La motivation pour cette étude est que l’infection au virus de l’hépa-

tite B fait apparâıtre naturellement les modèles avec une susceptibilité et une infectivité

différentielles. Ce résultat est nouveau et a fait l’objet de deux publications. Un premier

résultat sur la stabilité du DFE, a été publié dans les actes de la conférence CARI’08 1 ;

la généralisation de ce dernier, dans le journal MMNP 2.

Nous donnons un nouveau résultat sur les modèles à susceptibilité différentielle et une

progression de stades des infectés, avec la loi d’action de masse et un nombre arbitraire

de compartiments. Ces modèles viennent compléter les modèles DI (modèles d’infectivités

différentielles ”Differential Infectivity”) et SP(modèles de stades sanguins ”Stagged Pro-

gression”). Dans tous les cas, nous allons montrer que si le taux de reproduction de base

R0 ≤ 1 alors le DFE 3 (point d’équilibre sans maladie) est globalement asymptotiquement

stable. Si le taux de reproduction de base R0 > 1, il existe un unique point d’équilibre

endémique.

1. 9eme Colloque Africain sur la Recherche en Informatique
2. Mathematical Modelling of Natural Phenomena
3. Disease Free Equilibrium
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4.1 Introduction

Ana Lajmonovitch et James A. Yorke [70] sont les premiers à étudier les modèles

multi-groupes. Ils fournissent dans leur étude une description complète de la dynamique

de n groupes de systèmes SIS à population constante. Ils utilisent dans leur étude des

fonctions de Lyapunov pour montrer que toutes les trajectoires issues de Rn
+ tendent

vers 0, sinon il y a un seul et unique équilibre endémique x̄ dans l’orthant positif et les

trajectoires dans Rn
+ \ {0} tendent vers x̄.

Il existe une riche littérature sur les modèles multi-groupes [44,61,80,105,106].

Les modèles de progression à stades sont des modèles avec une seule classe de suscep-

tibles (non infectés) et dans lequel les infectés passent par une série de stades d’infectivité.

Exemple de modèles à progression de stade. (J.A. Jacquez [60]).

Ces modèles ont été introduit pour la modélisation du VIH Sida.

S

I1

In

1I1+...+ nIn

1 1+μ

n+μ

n-1

μ

.

.

.

Figure 4.1 – Progression dans les stades d’infectiosité
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La dynamique est représentée par le système d’équations différentielles :

Ṡ = Λ− µS − S
n∑
j=1

βj Ij

İ1 = S
n∑
j=1

βj Ij − (γ1 + µ+ α1) I1

İ2 = γ1 I1 − (γ2 + µ+ α2) I2
...

İj = γj−1 Ij−1 − (γj + µ+ αj) Ij
...

İn = γn−1 In−1 − (µ+ αn) In

(4.1)

Le paramètre γj représente la vitesse de transfert du compartiment j au stade j + 1. Les

termes Ij représentent les différentes classes d’infectieux, S le compartiment des suscep-

tibles, αi représente la mortalité due à l’infection et µ la mortalité naturelle.

4.2 Le modèle Lajmanovich et Yorke

4.2.1 Notations

On identifie les vecteurs de Rn par les vecteurs colonnes n×1. Le produit scalaire eucli-

dien noté par 〈.|.〉 et ‖z‖2
2 = 〈z|z〉 est la norme euclidienne usuelle. La famille {e1, . . . , en}

désigne la base canonique de Rn. On note par 1 le vecteur dont toutes les composantes

sont égales à 1, i.e. 1 = e1 + · · ·+ en. De façon standard si x ∈ Rn, on note par xi sa i-ème

composante. De manière équivalente, nous avons l’égalité : xi = 〈x|ei〉.
Pour une matrice A, on note A(i, j), l’élément à la i-ème ligne et à la j-ème colonne. Pour

deux matrices A, B de même dimension, on écrit A ≤ B si A(i, j) ≤ B(i, j) pour tout i

et pour tout j ; A < B si A ≤ B et A 6= B ; A� B si A(i, j) < B(i, j) pour tout i et j.

La notation AT désigne la transposée de A et on a 〈v1|v2〉 = vT1 v2. Si x ∈ Rn, nous notons

diag(x), la matrice diagonale dont les éléments diagonaux sont donnés par les coordon-

nées du vecteur x. On rappelle qu’une matrice est stable si ses valeurs propres ont des

parties réelles strictement négatives. Une matrice de Metzler A est une matrice dont les

termes A(i, j) ≥ 0 pour tout i 6= j. Ces matrices sont souvent appelées des matrices

quasi-positives [103]. Les matrices de Metzler stables sont les opposées des M -matrices

inversibles [10,108]. Dans notre propos, nous préférons utiliser les matrices de Metzler car

elles apparaissent naturellement dans les systèmes compartimentaux.
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4.2.2 Le modèle

Considérons le système suivant :

ẋ = [D +B − diag(x)B]x (4.2)

ou D est une matrice de Metzler stable et B ≥ 0 est une matrice positive irréductible.

Pour justifier le choix d’un tel système, nous allons considérer n compartiments à

population constante et une maladie qui ne confère aucune immunité après la guérison

des malades. Les contacts sont modélisés par une loi d’action de masse.

Si on note, Si et Ii respectivement le nombre de susceptibles et d’infectés dans un

compartiment i, Ni = Si + Ii la population totale dans ce compartiment, le système pour

i = 1, · · · , n est donné par :


Ṡi = µiNi − µi Si −

∑n
j=1 βi,j

Si

Ni
Ij + γi Ii

İi =
∑n

j=1 βi,j
Si

Ni
Ij − (γi + µi) Ii

(4.3)

Puisque la population est constante, il suffit de connâıtre les Ii.

Si nous posons : xi =
Ii
Ni

, β̃i,j = βi,j
Nj

Ni

et αi = γi + µi

Nous obtenons l’équation différentielle suivante :

ẋi = (1− xi)
∑

β̃i,j xj − αi xi (4.4)

donc nous pouvons alors l’écrire sous une forme beaucoup plus compacte :

ẋ = [D +B − diag(x)B]x (4.5)

avec

B =
(
β̃i,j

)
et D = −diag(αi)

Ce système est celui, qui est utilisé dans la référence [70] de la bibliographie, il a la

même structure que le système différentiel (4.2). Dans ce modèle, la matrice B décrit les

interactions entre les différents compartiments.

Définition 7 : Une matrice A de dimension n × n, n ≥ 2 est dite irréductible, si pour

tout sous ensemble propre I de {1, · · · , n}, on a pour tout i ∈ I et j 6∈ I alors A(i, j) 6= 0.
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4.2.3 Le nombre de reproduction de base

On notera ρ(A), le rayon spectral de la matrice A qui est définie, si Sp(A) représente le

spectre de A, par :

ρ(A) = max{|λ| | λ ∈ Sp(A)}

et le module de stabilité de α(A) par :

α(A) = max{<λ | λ ∈ Sp(A)}

En utilisant les mêmes notations dans [108], la matrice −D−1B, représente le ” next

generation matrix” du modèle (4.2) et le nombre de reproduction de base est donnée par :

R0 = ρ(−D−1B).

Nous allons maintenant utiliser le résultat du théorème de Varga [109,110].(Voir annexe )

Définition 8 : (Décomposition régulière d’une matrice)

Soit une matrice réelle M, M = Λ + N est une décomposition régulière de M si Λ

est une matrice de Metzler stable et N ≥ 0 une matrice positive.

4.2.4 Existence et unicité d’un état d’équilibre endémique

Nous allons maintenant montrer qu’il existe un unique point d’équilibre endémique x̄� 0

si et seulement si R0 > 1. S’il existe un tel point d’équilibre tel que x̄ � 0, il est appelé

point d’équilibre endémique. La preuve est inspirée par méthode développée dans le livre

de Thieme [44,105,107].

Soit B une matrice de Metzler irréductible. Le point d’équilibre éventuel x̄ vérifie :

x̄ = −D−1B x̄+ diag(x̄)D−1B x̄.

PuisqueD est une matrice de Metzler, alors nous avons−D−1 > 0 [103]. Comme la matrice

B est irréductible et −D−1 est une matrice à diagonale positive, on a alors −D−1B est

aussi irréductible. Donc −D−1B x̄ � 0 et d’après les relations précédentes, on peut dire

que x̄� 0. Une des conséquences est :

diag(x̄)D−1B x̄� 0.

Finalement, nous obtenons :

x̄ < −D−1B x̄
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ce qui veut dire, en d’autres termes que :

R0 = ρ(−D−1B) > 1

Maintenant, il reste à montrer si R0 > 1 alors il existe un unique point d’équilibre endé-

mique.

Le point d’équilibre vérifie :

(D +B) x̄ = diag(x̄)B x̄

qui équivaut à :

x̄+ diag(x̄) (−D−1B x̄) = x̄+ diag(−D−1B x̄) x̄ = −D−1B x̄

ce qui peut s’écrire sous la forme :

[I + diag (−D−1B x̄)]x̄ = −D−1B x̄

x̄ = [diag (1−D−1B x̄)]−1 (−D−1B) x̄

Ce qui nous amène à chercher le point fixe de l’application : H : [0, 1]n dans [0, 1]n

H(x) = [diag (1−D−1B x)]−1 (−D−1B) x

Soit à A = −D−1B la matrice de nouvelle génération.

PuisqueR0 = ρ(−D−1B) et A = −D−1B est une matrice positive irréductible, d’après

le théorème de Perron-Frobenius, il existe un vecteur v � 0 tel que :

Av = R0 v

Nous allons choisir ε suffisamment petit tel que, pour tout indice i, nous avons :

1 + εR0 vi ≤ R0

ce choix est justifié car R0 > 1. On en déduit que :

1 ≤ R0

1 + εR0 vi
et

ε vi ≤
R0εvi

1 + εR0 vi
=

(Aε v)i
1 + (Aε v)i

Nous avons prouvé qu’il existe ε > 0 tel que ε v ≤ H(ε v). Nous avons aussi ε ≤ 1, ε v ≤ v.
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Avec un raisonnement similaire, on peut choisir λ avec 0 < λvi ≤ 1 et λ assez grand tel

que :

R0

1 +R0 λ vi
≤ 1.

Ce qui équivaut à :
R0 − 1

R0

≤ λ vi. Ceci implique :H(λ v) ≤ λ v. En choisissant ε ≤ λ, nous

avons alors ε v ≤ H(ε v) et H(λ v) ≤ λ v ≤ 1, donc H laisse invariant le parallélépipède :

K = {x | ε v ≤ x ≤ λ v} ⊂]0, 1[n.

Par le théorème du point fixe de Brouwer, on peut dire que H à un point fixe ω dans K.

Ce qui représente l’équilibre endémique car 0� ε v ≤ ω.

Montrons alors l’unicité du point d’équilibre endémique.

Lemme 1 : Si ω � 0 est un point d’équilibre endémique, si x̄ est un autre point d’équi-

libre endémique alors x̄ ≤ ω

Preuve : Soit ξ = max
i=1,··· ,n

x̄i
ωi

. Nous avons alors x̄ ≤ ξω et il existe une indice i0 tel que

x̄i0 = ξ ωi0 . Comme A est une matrice positive et x̄ un point fixe de H alors, nous avons

les inégalités suivantes :

x̄i0 =
(Ax̄)i0

1 + (Ax̄)i0
≤

(Aξ ω)i0
1 + (Aξ ω)i0

=
ξ (Aω)i0

1 + ξ (A ω)i0

Supposons par l’absurde que ξ > 1. De la dernière inégalité, nous avons :

x̄i0 <
ξ (Aω)i0

1 + (A ω)i0

mais, comme ω̄ est un point fixe :

x̄i0 <
ξ (Aω)i0

1 + (A ω)i0
= ξ ωi0 = x̄i0

ce qui est une contradiction.

2
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Nous avons besoin d’une lemme pour terminer la preuve.

Lemme 2 : Si ω > 0 est un équilibre endémique, si A est irréductible alors ω � 0.

Preuve : Comme ω > 0 et A irréductible, nous avons Aω � 0, comme toutes les

composantes de ω sont données par :

ωj =
(Aω)j

1 + (A ω)j
> 0

Nous avons alors la conclusion. 2

Les deux lemmes prouvent qu’il existe un unique point d’équilibre endémique.

4.2.5 Un théorème de stabilité

Pour étudier la stabilité, nous avons besoin du résultat suivant, qui peut être considéré

comme étant un résultat dual d’un théorème de Lasalle [71].

Théorème 1 : Soit G un ensemble ouvert, contenant l’origine, positivement invariant

pour le système ẋ = A(x).x où A(x) est une matrice de Metzler, continue en x. Nous

supposons qu’il existe cT � 0 tel que cT A(x) � 0 pour tout vecteur x ∈ G, x 6= 0.

L’origine de l’ensemble ouvert G est globalement asymptotiquement stable dans G.

Preuve : Considérons V (x), une fonction de Lyapunov dans G

V (x) =
n∑
i=1

ci | xi |

On définie εz = sign(z), i.e. |xi| = εxi xi.

Cette fonction est une fonction localement lipschitzienne. On peut alors la dériver au sens

de Dini [71].

Nous avons :
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V̇ =
n∑
i=1

ci εxi ẋi

=
n∑
i=1

ci εxi

n∑
j=1

aij xj

=
n∑
i=1

n∑
j=1

ci εxi aij xj

=
n∑
j=1

εxjxj

n∑
i=1

ci εxjεxi aij

=
n∑
j=1

εxjxj

[
cj ajj +

∑
i 6=j

ci εxjεxi aij

]

≤
n∑
j=1

εxjxj

[
cj ajj +

∑
i 6=j

ci aij

]
=

n∑
j=1

|xj| (cT A)j ≤ 0

comme cTA(x) � 0 dans G, la fonction V̇ est définie négative dans G. On peut alors

conclure avec le théorème Lyapunov. 2

4.2.6 Stabilité globale du point d’équilibre sans maladie (DFE)

Nous avons le résultat suivant :

Théorème 2 : L’origine, qui est le DFE du système (4.2) est globalement asymptotique-

ment stable, si et seulement si R0 ≤ 1.

Preuve : La condition est nécessaire, car si R0 > 1 alors le DFE est instable. Comme

R0 = ρ(−D−1B) ≤ 1, nous avions vu dans la proposition (Varga, 1962, Theorem 3.13,

[110]), c’est équivalent à D +B stable. D’après le théorème de Perron-Frobenius, comme

D +B est irréductible, alors il existe un vecteur propre c� 0 tel que :

(D +B)T c = α(D +B) c

Choisissons la fonction de Lyapunov suivante :

V (x) = 〈c | x〉

qui est définie positive sur l’orthant positif Rn
+ et nous avons :

V̇ (x) = 〈(D +B)T c | x〉 − 〈diag(x)Bx | c〉 ≤ 0
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si D+B est stable, c’est-à-dire α(D+B) < 0, la démonstration est terminée, puisque ce

terme est défini négatif. Il reste à voir le cas où α(D + B) = 0, qui est aussi équivalent à

R0 = 1.

Nous allons appliquer le théorème d’invariance de Lasalle. Nous considérons L le plus

grand ensemble invariant contenu dans :

E = {x | diag(x)Bx = 0}.

L’irréductibilité B implique : L = {0}.
En effet, si x ∈ L ⊂ E, nous avons pour tout (i, j), xi

∑
j

βij xj = 0, les quantités sont

positives, ce qui implique que pour tout couple d’indices (i, j), on a : βij xi xj = 0.

Par l’absurde, nous supposons que si i0 est tel que xi0 6= 0. Il existe un indice i1 tel que

βi1,i0 6= 0, à partir de l’irréductibilité de B. Il s’ensuit que xi1 = 0. Les trajectoires x(t)

de x, vérifient pour tout intervalle de temps suffisamment petit x(t)i0 6= 0. Dorénavant,

x(t)i1 = 0.

Par l’invariance de L, nous avons :

ẋi1 = −
∑
j

βi1,j xj.

Ce qui implique à son tour xi2 = 0, pour tout βi1,i2 6= 0. En d’autres termes si le noeud i2

est connecté dans un espace orienté à un autre noeud i1, alors xi2 = 0. Par une induction

finie, nous déduisons que nous avons xi = 0 pour tout noeud connecté à un autre noeud

i1. Par l’irréductibilité [10], le graphe associé à B est fortement connecté, nous avons alors

xi0 = 0, qui est une contradiction.

2

4.2.7 Stabilité globale de l’équilibre endémique

Théorème 3 : L’équilibre endémique du système (4.2) est globalement asymptotiquement

stable dans Rn/{0}, si et seulement si R0 > 1.

Preuve : Comme R0 > 1, il existe un unique point d’équilibre endémique ω � 0. Nous

notons l’égalité (4.5) avec de nouvelles coordonnées x = X + ω. En utilisant la définition

de ω : (D +B)ω − diag(ω)Bω = 0, nous avons :

Ẋ = [D + diag(1−X − ω)B − diag(B ω)]X (4.6)
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comme ω est dans ]0, 1[n qui est un ensemble absorbant, ce qui est suffisant pour considérer

le système (4.2) dans cet ensemble, ou c’est équivalent quand x ≤ 1. Dans ce cas diag(1−
X − ω) = diag(1− x) la matrice définie par :

A(X) = D + diag(1−X − ω)B − diag(B ω)

est une matrice de Metzler. Le vecteur X est dans l’ensemble compact −ω + [0, 1]n.

On applique le théorème (1), comme nous savons pour toute matrice irréductible B ≥ 0,

pour toute matrice de Metzler stable D telle que ρ(−D−1B) > 1 il existe ω � 0 tel que :

(D − diag(B ω) +B)ω = 0

En d’autres termes A(−ω) vérifie A(−ω)ω = 0. A partir de la proposition (matrice

irréductible), on en déduit que α(A(−ω)) = 0. Comme cette matrice est une matrice

irréductible, et transposable, nous savons qu’il existe c� 0 tel que :

cT A(−ω) = cT (D − diag(B ω) +B) = 0

alors pour X + ω � 0 (i.e. x� 0, nous avons :

cT A(X) = −cT (X + ω)B � 0

Ce qui prouve la stabilité dans ]0, 1[n. Comme le champ des vecteurs est strictement

entrant, c’est la fin de la preuve dans Rn \ {0}.
2
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4.3 Modèles épidémiologiques à susceptibilité et in-

fectivité différentielles (DSDI)

Nous considérons un modèle où l’on distingue n classes de susceptibles. Chaque classe de

susceptibles a un recrutement et une mortalité. Ces quantités sont strictement positives

de façon a assurer un équilibre démographique. A l’équilibre chaque classe atteint une

valeur strictement positive.

Nous distinguons m classes d’infectés ou infectieux. Chaque classe a une mortalité et le

graphe des flots entre les compartiments infectés/infectieux est représenté par une matrice

de Metzler. En raison des bilans de matière, cette matrice est somme de colonnes nulle.

Si l’on rajoute la diagonale des mortalités, on obtient donc une matrice de Metzler stable.

Le flot des susceptibles vers les infectieux/infectés est représenté par l’infection.

S1

I1

I2

Ij

Im

Si SnSusceptibles

Infectés/infectieux

Figure 4.2 – Modèle à susceptibilité et infectivité différentielles

Nous allons utiliser tout au long de cette partie les notations suivantes : Si x est un

vecteur de Rn, alors diag(x) sera une matrice diagonale n × n dont les composantes de

la diagonale sont les éléments du vecteur x. On notera 〈 | 〉 le produit scalaire de Rn. On

notera {e1, · · · , en} la base canonique de Rn. Nous choisirons 1 le vecteur qui est donné

par 1 = (1, · · · , 1)T = e1 + · · · + en, où T représente la transposée. Nous allons utiliser

38 Etude de quelques modèles épidémiologiques :
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l’ordre Rn généré par le cône de Rn
+. Nous allons écrire x ≤ y, si y − x ∈ Rn

+ et x < y si

x ≤ y et x 6= y. Finalement x� y équivaut à xi < yi pour tout i.

Considérons le modèle généralisé suivant :


Ṡ = Λ− diag(µ)S − diag(B I)S

İ = 〈B I | S〉 b+ AI,

(4.7)

où S ∈ Rn
+ représente les états des individus susceptibles. I ∈ Rm

+ représente les différents

stades d’infection. Le vecteur Λ est le recrutement dans le compartiment des susceptibles.

Par conséquent on a : Λ ∈ Rn
+. La matrice B > 0 représente les coefficients d’infectivité,

avec B(i, j) = βij qui est les coefficients de contacts de la classe des infectés Ij à la

classe Si. Soit b ≥ 0 est un vecteur de Rm
+ . Il représente la transmission de la classe des

susceptibles à la classe des infectés d’où
m∑
i=1

bi = 1 à cause de la loi d’action de masse.

Enfin, A est une matrice de Metzler stable et elle représente l’évolution des infectés suivant

les stades infectieux. L’hypothèse de stabilité de A s’exprime simplement, quand il n’y

a pas de transmission, l’infection disparâıt. De plus, puisque A est obtenu par analyse

compartimentale, nous supposons que A est une matrice compartimentale [58]. En d’autre

termes, nous supposons pour tout indice i = 1, · · · ,m nous avons aii +
∑
j 6=i

aij < 0. Le

terme aii est la somme des sorties du compartiment d’infectieux i avec le taux de mortalité

du compartiment.

Nous supposons que B > 0. Cette hypothèse permet de considérer les compartiments

d’individus qui ne sont pas infectieux, les individus par exemple infectés ou latents.

Ce modèle vient compléter les modèles d’infectivité différentielles et de progression à

stades (DI, SP). Nous généraliserons les résultats obtenus dans [6, 37,48,52].

4.3.1 Un ensemble positivement invariant pour le système

Nous allons montrer maintenant qu’il existe un ensemble positivement invariant et absor-

bant K pour le système (4.7). Un ensemble absorbant pour le système dynamique est un

ensemble K tel que, pour n’importe quelle condition initiale, le trajectoire finit par aller

dans l’ensemble K suivant le temps.

On note N(t) la population totale à l’instant t. Nous avons alors N = 〈S|1〉+ 〈I|1〉 et
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Ṅ = 〈Λ|1〉 − 〈µ|S〉+ 〈AI|1〉 = 〈Λ|1〉 − 〈µ|S〉+
m∑
j=1

(
m∑
i=1

aij

)
Ij.

Soit µ0 définie par µ0 = min
i

(
µi,−

m∑
i=1

aij

)
> 0 alors nous avons :

Lemme 3 : Pour tout ε > 0, le sous-ensemble Kε de l’orthant positif Rn
+ × Rm

+ , définie

par :

Kε = {(S, I)|S ≥ 0 ; I ≥ 0 ;N ≤ (〈Λ + ε, 1〉)/µo}

est un compact positivement invariant pour le système (4.7).

Preuve : On vérifie facilement que l’orthant positif est positivement invariant par le

système (4.7). Si on remarque que Ṅ ≤ 〈Λ|1〉 − µ0N, d’où le résultat.

Nous avons aussi : S∗ ∈ Kε où S∗ = (diag(µ)−1Λ, 0).

4.3.2 Nombre de reproduction de base

Pour calculer la valeur de R0, nous allons utiliser les techniques de Van Den Driessche

dans [108].

Soit Fi(S, I), le taux d’apparition des nouveaux infectieux dans le compartiment I et

Vi(S, I), le taux de transfert des individus à l’intérieur et à l’extérieur du compartiment

S et I par tout autre moyen.

Avec nos définitions, nous avons F(S, I) qui est définie par :

F(S, I) =

[
0

〈BI|S〉e1

]
et V(S, I) qui est donné par :

V(S, I) =

[
Λ− diag(µ)S − diag(BI)S

AI

]
Le jacobien de chacune de ces matrices est :

DF(S, I) =

[
0 0

e1(BI)T e1S
TB

]
et DV(S, I) =

[
−µI − diag(BId)S −diag(S)B

0 A

]
Au DFE on a :

DF(S∗, 0) =

[
0 0
0 e1(S∗)TB

]
et DV(S∗, I∗) =

[
0 −diag(S∗)B
0 A

]
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Ce qui nous conduit à :

F = e1S
∗TB et V = A.

Le nombre de reproduction de base étant le rayon spectral de la ”next generation matrix”

c’est-à-dire −FV −1, on a :

R0 = ρ(−FV −1) = ρ(e1S
∗TB(−A−1))

Or la matrice e1S
∗TB(−A−1) est de rang 1 et la seule valeur propre non nulle est donnée

par S∗TB(−A−1)e1 qui est naturellement le R0.

Comme A est une matrice de Metzler, on a : (−A−1) > 0, ce qui nous conduit à :

R0 = 〈B(−A−1) e1 | S∗〉 (4.8)

4.3.3 Stabilité globale du point d’équilibre sans maladie (DFE)

Nous avons le théorème suivant :

Théorème 4 : Pour le système (4.7), si R0 ≤ 1 alors le DFE est globalement asympto-

tiquement stable suivant l’orthant positif. Si R0 > 1, le DFE est instable.

Preuve : Si M est une matrice réelle positive, on note L = lnM , la matrice réelle

définie par L(i, j) = ln(M(i, j)). Nous pouvons maintenant définir la fonction de Lyapunov

candidate dans Rn
+ × Rm

+ \ {S∗} × Rm
+ :

VDFE(S, I) = R0 〈1 | S − S∗〉 − R0 〈S∗ | lnS − lnS∗〉+ 〈B(−A−1) I | S∗〉.

Cette fonction est une fonction positive suivant l’orthant positif et elle est nulle au DFE.

Puisque S∗ � 0, alors les coefficients de S dans VDFE sont positifs. On peut vérifier que

(−A−T BT S∗ > 0. Dorénavant, au moins un des coefficients de Ij est non nul dans VDFE.

Cette fonction est bien une fonction de Lyapunov [38,71].

Nous avons, en utilisant le fait que : Λ = diag(µ)S∗ :

V̇DFE = diag(µ)R0 〈1 | S∗〉 − diag(µ)R0 〈1 | S〉 − R0 〈1 | diag(BI)S〉

− diag(µ)R0 〈S∗ | diag(S)−1 S∗〉+ diag(µ)R0 〈S∗ | 1〉+ R0 〈S∗ | diag(BI) 1〉

+ 〈BI | S〉 〈B(−A−1) b | S∗〉 − 〈BI | S∗〉. (4.9)
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En tenant compte de la formule (4.8) de R0, avec les relations suivantes :

〈1 | diag(BI)S〉 = 〈BI | S〉, 〈diag(BI) 1 | S∗〉 = 〈BI | S∗〉 et 〈1 | S〉 = 〈S∗ | diag(S∗)−1 S〉

l’équation (4.9) devient :

V̇DFE = diag(µ)R0 〈2− diag(S)−1 S∗ − diag(S∗)−1 S | S∗〉+ (R0 − 1) 〈BI | S∗〉.

L’inégalité de la moyenne arithmétique et géométrique et R0 ≤ 1 implique V̇DFE ≤ 0.

Soit L le plus grand ensemble invariant contenu dans l’ensemble :

L = {(S, I) ∈ Kε | V̇DFE(S, I) = 0}

satisfait la relation S = S∗.

Dans l’ensemble L, on a diag(B I) = 0. Comme A est une matrice de Metzler stable, le

plus grand ensemble invariant contenu dans L est réduit au point {(S∗, 0)}.
En appliquant le principe d’invariance de Lasalle [71], le DFE est globalement asympto-

tiquement stable dans Kε. Comme Kε est absorbant, on a donc la stabilité asymptotique

globale dans tout l’orthant positif.

Ξ

4.3.4 Existence d’un équilibre endémique

Théorème 5 : Pour le système (4.7), il existe un unique point d’équilibre endémique

dans l’orthant positif si et seulement si R0 > 1.

Preuve : Nous cherchons un point d’équilibre (S̄, Ī) avec Ī > 0. A partir des relations
0 = Λ− diag(µ) S̄ − diag(B Ī) S̄,

0 = 〈B Ī | S̄〉 b+ A Ī
(4.10)

Comme A est une matrice Metzler stable, nous avons Ī = 〈B Ī | S̄〉 (−A−1) b. En utilisant

la deuxième relation du système (4.10) et avec le produit scalaire de b, noté ‖b‖2
2 = 〈b | b〉,

nous avons :

‖b‖2
2 〈B Ī | S̄〉 = −〈A Ī | b〉.

Finalement
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Ī = − 1

‖b‖2
2

〈A Ī | b〉 (−A−1) b. (4.11)

Pour calculer Ī, il faut avoir l’expression −〈A Ī | b〉.

Avec l’expression de Ī = 〈B Ī | S̄〉 (−A−1) b, nous avons

〈B Ī | S̄〉 = 〈B Ī | S̄〉 〈B(−A−1)b | S̄〉.

La condition 〈B Ī | S̄〉 = 0 implique A Ī = 0 et comme A est une matrice de Metzler stable,

Ī = 0 alors S̄ = S∗. Ainsi, nous avons le DFE mais pas le point d’équilibre endémique.

D’où 〈B Ī | S̄〉 6= 0, alors on a :

〈B(−A−1)b | S̄〉 = 1. (4.12)

Avec la première équation du système (4.10), on a :

S̄ = [diag(µ +BĪ)]−1Λ = [diag(1 + diag(µ)−1BĪ)]−1 S∗. (4.13)

En utilisant la valeur de S̄ et de BĪ dans l’égalité (4.11), nous avons

g〈B(−A−1)b g| [diag(1− 〈A Ī|b〉‖b‖22
diag(µ)−1B(−A−1)b)]−1 S∗g〉 = 1.

Autrement dit, le scalaire −〈A Ī | b〉 est une solution de H(x) = 1 avec la fonction H(x)

définie par :

H(x) = g〈B(−A−1)bg|[diag(1 + x 1
‖b‖22

diag(µ)−1B(−A−1)b)]−1 S∗g〉.

Il est clair que H(x) est une fonction strictement décroissante vérifiant lim
x→+∞

H(x) = 0. Il

existe une unique solution positive si et seulement si H(0) > 1. Comme H(0) = R0, alors

nous avons une unique solution positive.

De la première équation du système (4.10), nous avons S∗ > S̄ � 0 et à partir de l’égalité

(6.15), avec −〈A Ī | b〉 > 0, Ī > 0, alors l’équilibre est un équilibre endémique. De plus

〈B̄ Ī | S̄〉 6= 0 > 0.

D’après ce qui précède, nous avons vu que si R0 = 1 alors l’unique point d’équilibre est

le DFE. Dans le cas ou R0 < 1, nous avons Ī < 0, alors cet équilibre n’est pas intéressant

d’un point de vue biologique. 2
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4.3.5 Stabilité globale de l’équilibre endémique, dans un cas par-
ticulier : le cas n = 2, k = 2

Pour voir la stabilité globale du système, nous aurons à utiliser la structure de la matrice

A, qui représente la matrice d’évolution dans les classes d’infectés. Dans cette partie,

nous allons traiter un exemple, le cas ou n = 2 et k = 2, c’est-à-dire, nous considérons un

modèle avec deux classes de susceptibles et deux classes d’infectés avec une progression

de stades. Nous donnerons ensuite le cas général qui s’obtient assez facilement.

S1 S2

I1

I2

R

p1L p2L

g1

g2

m

m+d1

m+d2

m m

b11I1+b12I2 b21I1+b22I2

Figure 4.3 – Modèle avec deux classes de susceptibles et deux classes d’infectieux
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Le système différentiel est donné par :

Ṡ1 = p1 Λ− µS1 − β11 I1 S1 − β12 I2 S1

Ṡ2 = p2 Λ− µS2 − β21 I1 S2 − β22 I2 S2

İ1 = β11 I1 S1 + β12 I2 S1 + β21 I1 S2 + β22 I2 S2 − (µ+ γ1) I1

İ2 = γ1 I1 − (µ+ γ2) I2

Ṙ = γ2 I2 − µR

(4.14)

Théorème 6 : Si R0 > 1, l’unique point d’équilibre endémique du système (4.14) est

globalement asymtotiquement stable. Le nombre de reproduction de base est donné par :

R0 =
γ1(β12S

∗
1 + β22S

∗
2) + (µ+ γ2)(β11S

∗
1 + β21S

∗
2)

(µ+ γ1)(µ+ γ2)

Preuve : Le nombre de reproduction de base R0 est obtenu en appliquant la formule (4.8)

de R0. A partir de ce qui précède, nous avons l’existence d’un unique point d’équilibre

endémique qui vérifie les relations suivantes :

p1 Λ = µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1

p2 Λ = µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2

β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2 = (µ+ γ1) Ī1

γ1 Ī1 = (µ+ γ2) Ī2

γ2Ī2 = µR̄

(4.15)

Considérons maintenant la fonction de Lyapunov candidate suivante :

VEE = (S1 − S̄1 ln S1) + (S2 − S̄2 ln S2) + (I1 − Ī1 ln I1) + (
β12S̄1 + β22S̄2

(µ+ γ2)
) (I2 − Ī2 ln I2)

Posons d = β12S̄1+β22S̄2

(µ+γ2)
, la dérivée de la fonction candidate de Lyapunov V le long de

trajectoires du système différentiel ordinaire (4.14) est donnée par :

V̇EE = [p1 Λ− µS1 − β11 I1 S1 − β12 I2 S1 − p1 Λ S̄1

S1
+ µS̄1 + β11 I1 S̄1 + β12 I2 S̄1]

+[p2 Λ− µS2 − β21 I1 S2 − β22 I2 S2 − p2 Λ S̄2

S2
+ µS̄2 + β21 I1 S̄2 + β22 I2 S̄2]

+[β11 I1 S1 + β12 I2 S1 + β21 I1 S2 + β22 I2 S2 − (µ+ γ1) I1

−β11 Ī1 S1 − β12 I2
Ī1
I1
S1 − β21 Ī1 S2 − β22 I2

Ī1
I1
S2 + (µ+ γ1) Ī1]

+d [γ1 I1 − (µ+ γ2) I2 − γ1 I1
Ī2
I2

+ (µ+ γ2) Ī2]
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En utilisant les relations du système au point d’équilibre endémique du système (4.15),

nous avons :

V̇EE = [µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1 − µS̄1
S1

S̄1

−(µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1) S̄1

S1
+ µS̄1 + β11 I1 S̄1 + β12 I2 S̄1]

+[µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2 − µS̄2
S2

S̄2

−(µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2) S̄2

S2
+ µS̄2 + β21 I1 S̄2 + β22 I2 S̄2]− (µ+ γ1) I1

−β11 Ī1 S̄1
S1

S̄1
− β12 Ī2S̄1

S1

S̄1

Ī1
I1

I2
Ī2

+ β21 Ī1 S̄2
S2

S̄2
− β22 Ī2S̄2

S2

S̄2

Ī1
I1

I2
Ī2

+β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2

+d [γ1 I1 − (µ+ γ2) I2 − γ1 I1
Ī2
I2

+ γ1 Ī1]

= µS̄1[2− S̄1

S1
− S1

S̄1
] + µS̄2[2− S̄2

S2
− S2

S̄2
]

+β11 Ī1 S̄1[2− S̄1

S1
− S1

S̄1
] + β12 Ī2 S̄1)[2− S̄1

S1
− S1

S̄1

Ī1
I1

I2
Ī2

]

+β21 Ī1 S̄2[2− S̄2

S2
− S2

S̄2
] + β22 Ī2 S̄2[2− S̄2

S2
− S2

S̄2

Ī1
I1

I2
Ī2

]

+(β11 S̄1 + β21 S̄2 + d γ1 − (µ+ γ1)) I1

+(β12S̄1 + β22 S̄2 − d (µ+ γ2)) I2 − d γ1 Ī1
I1
Ī1

Ī2
I2

+ d γ1 Ī1

D’une part, en exploitant l’expression de d, nous avons :

β12S̄1 + β22 S̄2 − d (µ+ γ2) = 0

et

β11 S̄1 + β21 S̄2 + d γ1 − (µ+ γ1) = β11 S̄1 + β21 S̄2 + β12S̄1+β22S̄2

(µ+γ2)
γ1 − (µ+ γ1)

= (µ+γ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)
(µ+γ2)

− (µ+ γ1)

= (µ+ γ1)[ (µ+γ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)
(µ+γ1)(µ+γ2)

− 1]

= 0

D’autre part, si on utilise les relations endémiques du système (4.15), nous observons dans

la troisième équation que :

β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2 = (µ+ γ1) Ī1

β11 Ī1 S̄1 + β12
γ1

(µ+γ2)
Ī1 S̄1 + β21 Ī1 S̄2 + β22

γ1

(µ+γ2)
Ī1 S̄2 = (µ+ γ1) Ī1

(β11 S̄1 + β21 S̄2 + γ1

(µ+γ2)
(β12 S̄1 + β22 S̄2)) = (µ+ γ1)

(µ+γ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)
(µ+γ1)(µ+γ2)

= 1
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d γ1 Ī1 = β12S̄1+β22S̄2

(µ+γ2)
γ1 Ī1

= γ1

(µ+γ2)
(β12Ī1S̄1 + β22Ī1S̄2)

= β12Ī2S̄1 + β22Ī2S̄2

En utilisant ces relations dans l’expression de V̇EE, on obtient :

V̇EE = µS̄1[2− S̄1

S1
− S1

S̄1
] + µS̄2[2− S̄2

S2
− S2

S̄2
]

+β11 Ī1 S̄1[2− S̄1

S1
− S1

S̄1
] + β12 Ī2 S̄1)[3− S̄1

S1
− S1

S̄1

Ī1
I1

I2
Ī2
− I1

Ī1

Ī2
I2

]

+β21 Ī1 S̄2[2− S̄2

S2
− S2

S̄2
] + β22 Ī2 S̄2[3− S̄2

S2
− S2

S̄2

Ī1
I1

I2
Ī2
− I1

Ī1

Ī2
I2

]

≤ 0

L’inégalité de la moyenne arithmétique et géométrique nous permet de conclure que V̇EE

est définie négative. CQFD

2

4.4 Conclusion

Dans cette partie, nous avons montré, pour une classe de modèle DSDI, c’est des mo-

dèles avec susceptibilité différentielle et progression de stade pour les infectés/infectieux,

que si le taux de reproduction de base R0 ≤ 1 alors le DFE 4 (point d’équilibre sans

maladie) est globalement asymptotiquement stable. Si R0 > 1, il existe un unique point

d’équilibre endémique. Pour ce qui est de la stabilité asymptotique globale sur l’orthant

positif en dehors de la variété stable du point d’équilibre endémique, nous n’avons pas

pour le moment, un résultat général, mais il existe des cas où on peut se prononcer comme

dans l’exemple de la section (4.3.5).

4. Disease Free Equilibrium
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Chapitre 5

Modèles de la transmission du virus
de l’hépatite B

5.1 Introduction

Comme nous l’avons constaté dans le chapitre sur l’épidémiologie de l’hépatite B, il y

a des discussions en ce qui concerne l’incidence de la transmission verticale de la maladie

en Afrique sub-saharienne en général, au Sénégal en particulier. C’est ce qui nous a poussé

à faire deux modèles de l’hépatite B. Ainsi, nous proposons un modèle sans transmission

verticale et un autre dans lequel cette transmission verticale est prise en compte dans

l’élaboration du modèle.

5.2 Modèle de l’hépatite B sans transmission verti-

cale

Ce modèle va tenir compte de l’histoire de la maladie. Par exemple l’âge auquel est

un individu est infecté influe sur son devenir en terme de chronicité de la maladie. Il est

donc nécessaire de diviser les individus susceptibles en classe d’âge. On pourrait envisager

un modèle continu, ce qui donnerait un système distribué. Mais en raison des données

connues, en particulier celle de l’OMS ou du CDC, il est naturel de se restreindre à 5

classes d’âge.
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Figure 5.1 – Modèle HBV sans transmission verticale

Le modèle ci dessus représente un modèle de la transmission du virus de l’hépatite B, il

est composé de 10 classes.

Il présente cinq compartiments de susceptibles :

– Le compartiment S1 représente la classe des bébés de 0 à 1 mois. Dans ce compar-

timent, nous avons toutes les naissances de la population totale qui est de Λ. Il en

ressort les bébés qui grandissent avec une proportion p1 pour entrer dans le compar-

timent S2. Il en ressort aussi les bébés qui meurent avec une proportion qui est de

µS1 et aussi les bébés qui sont infectés par transmission verticale (mère-enfant) avec

une proportion β1,i. Ces derniers deviennent latents infectés EI avec une probabilité
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α1 et latents chroniques EC avec une probabilité (1 − α1). Dans la littérature on

estime que (1− α1) = 90%.

– Le compartiment S2 représente les nourrissons âgés de 1 à 6 mois. Dans ce compar-

timent, il y entre les bébés issus du compartiment S1 avec une proportion p1 et il en

ressort les nourrissons qui grandissent avec une proportion de p2 pour passer dans le

compartiment S3 ; ceux qui se sont infectés avec un coefficient β2,i suivant l’infectant.

La mortalité au niveau de ce compartiment est de µS2. Dans le flux de sortie, il y a

aussi les susceptibles du compartiment S2 qui ont été en contact avec la maladie et

deviennent latents infectés EI (c-à-d qui vont évoluer vers un état infecté) avec une

probabilité α2 et latents chroniques EC avec une probabilité (1− α2).

– Le compartiment S3 représente les enfants de 7 à 12 mois. L’entrée de ce compar-

timent est constituée des nourrissons qui ont grandi dans le compartiment S2 avec

une proportion p2. La sortie est constituée de la mortalité µS3 ; des enfants qui

grandissent avec une proportion p3 et des susceptibles qui ont été infectés avec une

proportion β3,i suivant l’infectant.

– Le compartiment S4 représente les enfants qui sont âgés de 1 à 5 ans. Le flux qui

entre dans ce compartiment est caractérisé par les enfants qui ont grandi dans le

compartiment S3 avec une proportion p3. Le flux de la sortie de ce compartiment

est constitué par les enfants qui grandissent pour aller dans le compartiment S5

avec une proportion de p4 ; de la mortalité µS4 des susceptibles. Il faut aussi noter

dans cette sortie les susceptibles qui sont infectés avec la proportion β4,i suivant

l’infectant. Ces derniers passent dans le compartiment des latents infectés EI avec

une probabilité de α4 et latent chronique EC avec une probabilité (1− α4).

– Le compartiment S5 est constitué d’enfants de plus de 5 ans, des adolescents et des

adultes susceptibles. Le flux d’entrée de ce compartiment est p4S4, qui représente

les enfants qui grandissent dans le compartiments S4 avec une proportion p4. Le

flux de sortie est constitué par la mortalité µS5 des susceptibles et des infectés

qui s’infectent avec la proportion β4,i suivant l’infectant. Ce flux rentre dans le

compartiment EI avec une probabilité de α5 ; dans le compartiment EC avec la

probabilité complémentaire qui est de (1− α5).

Le fait de diviser la population des susceptibles en 5 compartiments est une bonne ap-

proximation de la réalité vue l’épidémiologie de l’hépatite B, car le pronostic de l’évolution

de la maladie dépend de l’âge auquel on a contracté le virus de la maladie.
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Nous avons deux compartiments de latents :

– le compartiment EI qui représente les latents infectieux, c’est-à-dire des latents qui

vont évoluer vers un état infectieux. L’entrée de ce compartiment est caractérisée

par les susceptibles qui ont été infectés suivant les proportions αiβi,j. La sortie est

constituée d’une part, par la mortalité µEI , et d’autre part, par l’évolution vers un

état infectieux avec une proportion γ.

– le compartiment EC représente les latents chroniques EC , c’est-à-dire des latents qui

vont évoluer vers un état chronique. Le flux de la sortie est constitué par la mortalité

µEC et l’évolution vers l’état chronique avec la proportion γ.

On a un compartiment d’infectés I qui est caractérisé par une entrée γEI et une sortie qui

est composée par la mortalité (une mortalité naturelle et une mortalité due à la maladie)

µI et la guérison γ3I.

Le compartiment C représente les malades chroniques, l’entrée de ce compartiment est

δEC et la sortie est composée de la mortalité (mortalité naturelle et mortalité due à la

maladie) µC et la guérison γ4I.

Le compartiment R représente ceux qui sont guéris de la maladie et immunisés. Ce qui

nous conduit au système différentiel suivant :

Ṡ1 = Λ− µ1 S1 − β1,1EI S1 − β1,2EC S1 − β1,3 I3 S1 − β1,4 I4 S1 − p1S1

Ṡ2 = p1S1 − µ2 S2 − β2,1EI S2 − β2,2EC S2 − β2,3 I3 S2 − β2,4 I4 S2 − p2S2

Ṡ3 = p2S2 − µ3 S3 − β3,1EI S3 − β3,2EC S3 − β3,3 I3 S3 − β3,4 I4 S3 − p3S3

Ṡ4 = p3S3 − µ4 S4 − β4,1EI S4 − β4,2EC S4 − β4,3 I3 S4 − β4,4 I4 S4 − p4S4

Ṡ5 = p4S4 − µ5 S5 − β5,1EI S5 − β5,2EC S5 − β5,3 I3 S5 − β5,4 I4 S5

ĖI = α1(β1,1EI S1 + β1,2EC S1 + β1,3 I3 S1 + β1,4 I4 S1) + ...

+α2(β2,1EI S2 + β2,2EC S2 + β2,3 I3 S2 + β2,4 I4 S2) + ...

+α3(β3,1EI S3 + β3,2EC S3 + β3,3 I3 S3 + β3,4 I4 S3) + ...

+α4(β4,1EI S4 + β4,2EC S4 + β4,3 I3 S4 + β4,4 I4 S4) + ...

+α5(β5,1EI S5 + β5,2EC S5 + β5,3 I3 S5 + β5,4 I4 S5)− µEEI − γiEI
ĖC = (1− α1)(β1,1EI S1 + β1,2EC S1 + β1,3 I3 S1 + β1,4 I4 S1) + ...

+(1− α2)(β2,1 IEI S2 + β2,2EC S2 + β2,3 I3 S2 + β2,4 I4 S2) + ...

+(1− α3)(β3,1EI S3 + β3,2EC S3 + β3,3 I3 S3 + β3,4 I4 S3) + ...

+(1− α4)(β4,1EI S4 + β4,2EC S4 + β4,3 I3 S4 + β4,4 I4 S4) + ...

+(1− α5)(β5,1EI S5 + β5,2EC S5 + β5,3 I3 S5 + β5,4 I4 S5)− µIEI − γCEC
İ3 = γiEI − (µI + γ3)I3

İ4 = γCEC − (µC + γ4)I4

Ṙ = γ3I3 + γ4I4 − µR
(5.1)
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5.2. MODÈLE DE L’HÉPATITE B SANS TRANSMISSION VERTICALE

Si on pose I1 = EI , I2 = EC , I3 = I et I4 = C, nous obtenons alors le système suivant :

Ṡ1 = Λ− µ1 S1 − β1,1 I1 S1 − β1,2 I2 S1 − β1,3 I3 S1 − β1,4 I4 S1 − p1S1

Ṡ2 = p1S1 − µ2 S2 − β2,1 I1 S2 − β2,2 I2 S2 − β2,3 I3 S2 − β2,4 I4 S2 − p2S2

Ṡ3 = p2S2 − µ3 S3 − β3,1 I1 S3 − β3,2 I2 S3 − β3,3 I3 S3 − β3,4 I4 S3 − p3S3

Ṡ4 = p3S3 − µ4 S4 − β4,1 I1 S4 − β4,2 I2 S4 − β4,3 I3 S4 − β4,4 I4 S4 − p4S4

Ṡ5 = p4S4 − µ5 S5 − β5,1 I1 S5 − β5,2 I2 S5 − β5,3 I3 S5 − β5,4 I4 S5

İ1 = α1(β1,1 I1 S1 + β1,2 I2 S1 + β1,3 I3 S1 + β1,4 I4 S1) + ...

+α2(β2,1 I1 S2 + β2,2 I2 S2 + β2,3 I3 S2 + β2,4 I4 S2) + ...

+α3(β3,1 I1 S3 + β3,2 I2 S3 + β3,3 I3 S3 + β3,4 I4 S3) + ...

+α4(β4,1 I1 S4 + β4,2 I2 S4 + β4,3 I3 S4 + β4,4 I4 S4) + ...

+α5(β5,1 I1 S5 + β5,2 I2 S5 + β5,3 I3 S5 + β5,4 I4 S5)− µEI1 − γiI1

İ2 = (1− α1)(β1,1 I1 S1 + β1,2 I2 S1 + β1,3 I3 S1 + β1,4 I4 S1) + ...

+(1− α2)(β2,1 I1 S2 + β2,2 I2 S2 + β2,3 I3 S2 + β2,4 I4 S2) + ...

+(1− α3)(β3,1 I1 S3 + β3,2 I2 S3 + β3,3 I3 S3 + β3,4 I4 S3) + ...

+(1− α4)(β4,1 I1 S4 + β4,2 I2 S4 + β4,3 I3 S4 + β4,4 I4 S4) + ...

+(1− α5)(β5,1 I1 S5 + β5,2 I2 S5 + β5,3 I3 S5 + β5,4 I4 S5)− µII1 − γCI2

İ3 = γiI1 − (µI + γ3)I3

İ4 = γCI2 − (µC + γ4)I4

Ṙ = γ3I3 + γ4I4 − µR

(5.2)

Puisque la dernière équation en Ṙ = γ3I3 + γ4I4− µR ne dépend que de I3 et de I4 et

les autres équations du système ne dépendent pas de R, on peut écrire le système sans la

dernière équation. Ce qui nous donne le système suivant :
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

Ṡ1 = Λ− µ1 S1 − β1,1 I1 S1 − β1,2 I2 S1 − β1,3 I3 S1 − β1,4 I4 S1 − p1S1

Ṡ2 = p1S1 − µ2 S2 − β2,1 I1 S2 − β2,2 I2 S2 − β2,3 I3 S2 − β2,4 I4 S2 − p2S2

Ṡ3 = p2S2 − µ3 S3 − β3,1 I1 S3 − β3,2 I2 S3 − β3,3 I3 S3 − β3,4 I4 S3 − p3S3

Ṡ4 = p3S3 − µ4 S4 − β4,1 I1 S4 − β4,2 I2 S4 − β4,3 I3 S4 − β4,4 I4 S4 − p4S4

Ṡ5 = p4S4 − µ5 S5 − β5,1 I1 S5 − β5,2 I2 S5 − β5,3 I3 S5 − β5,4 I4 S5

İ1 = α1(β1,1 I1 S1 + β1,2 I2 S1 + β1,3 I3 S1 + β1,4 I4 S1) + ...
+α2(β2,1 I1 S2 + β2,2 I2 S2 + β2,3 I3 S2 + β2,4 I4 S2) + ...

+α3(β3,1 I1 S3 + β3,2 I2 S3 + β3,3 I3 S3 + β3,4 I4 S3) + ...

+α4(β4,1 I1 S4 + β4,2 I2 S4 + β4,3 I3 S4 + β4,4 I4 S4) + ...

+α5(β5,1 I1 S5 + β5,2 I2 S5 + β5,3 I3 S5 + β5,4 I4 S5)− µEI1 − γiI1

İ2 = (1− α1)(β1,1 I1 S1 + β1,2 I2 S1 + β1,3 I3 S1 + β1,4 I4 S1) + ...

+(1− α2)(β2,1 I1 S2 + β2,2 I2 S2 + β2,3 I3 S2 + β2,4 I4 S2) + ...

+(1− α3)(β3,1 I1 S3 + β3,2 I2 S3 + β3,3 I3 S3 + β3,4 I4 S3) + ...

+(1− α4)(β4,1 I1 S4 + β4,2 I2 S4 + β4,3 I3 S4 + β4,4 I4 S4) + ...

+(1− α5)(β5,1 I1 S5 + β5,2 I2 S5 + β5,3 I3 S5 + β5,4 I4 S5)− µII2 − γCI2

İ3 = γiI1 − (µI + γ3)I3

İ4 = γCI2 − (µC + γ4)I4

(5.3)

Ecrivons ce système sous une forme compacte.


Ṡ = Λ− diag(µ)S + ASS − diag(B I)S

İ = Pdiag(B I)S + AI

(5.4)

tels que :

S =


S1

S2

S3

S4

S5

 ∈ R5
+, I =


I1

I2

I3

I4

 ∈ R4
+, Λ =


Λ
0
0
0
0

 ∈ R5
+

La matrice B > 0 représente les coefficients d’infectivité, avec B(i, j) = βij qui sont

les coefficients de contacts de la classe des infectés Ij à la classe Si avec 0 ≤ i ≤ 5 et

0 ≤ j ≤ 4.

Le vecteur µS représente ici la mortalité des différentes classes de susceptibles Si. La

matrice AS est définie par l’expression suivante :
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application à la transmission du virus de l’hépatite B
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AS =


−p1 0 · · · 0

p1 −p2
... 0

...
... −p4 0

0 · · · p4 0

 ∈M5(R), µS =


µ1

µ2

µ3

µ4

µ5

 ∈ R5
+

La matrice A est définie par :

A =


−µE − γi 0 0 0
0 −µI − γC 0 0
γi 0 −µI − γ3 0
0 γC 0 −µC − γ4

 ∈M4(R)

Pour ce qui concerne le modèle ci-dessus, on a la première colonne et la deuxième

colonne de la matrice B qui sont nulles car ces dernières représentent les coefficients

d’infection des latents. En effet, les latents sont infectés mais pas infectieux, donc ils ne

participent pas à la transmission de la maladie. Ce qui nous conduit à :

B =


0 0 β1,3 β1,4

0 0 β2,3 β2,4

0 0 β3,3 β3,4

0 0 β4,3 β4,4

0 0 β5,3 β5,4

 ∈ R4
+ × R5

+, P =


0.1 0.2 0.45 0.7 0.9
0.9 0.8 0.55 0.3 0.1
0 0 0 0 0
0 0 0 0 0

 ,∈ R5
+ × R4

+

D’où l’écriture du système (5.3) sous une forme beaucoup plus compacte :
Ṡ = Λ− diag(µ)S + ASS − diag(B I)S

İ = Pdiag(B I)S + AI

(5.5)
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5.3 Modèle de l’hépatite B avec transmission verti-

cale

Ce modèle avec transmission verticale sera un peu différent du modèle précédent.

Il y aura une modification au niveau des naissances de la population totale Λ. Cette

modification aura une incidence au niveau de la classe ou compartiment des porteurs

latents chroniques. En effet, la transmission verticale du virus de l’hépatite B se fait

souvent au niveau des porteurs chroniques de la maladie. Ainsi, une partie des naissances

provenant des chroniques, c’est-à-dire pbC, va aller au niveau du compartiment des latents

chroniques.

S1 S2 S3 S4 S5

Λ

0-1mois 1- 6 mois 7-12 mois 1-5  ans

Ei

I

Ec

R

γ δ

μS1

μEi
μEc

μCμI
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μS2
μS3

μS4 μS5

C

γ3 γ4

p
1

p
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p
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4

     >5 ans

0.1

0.9 0.8

0.2
0.55
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Figure 5.2 – Modèle HBV avec transmission verticale
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On suppose que le recrutement général est constant. On va supposer que les chroniques

participent avec quantité(1 − p)bC à leur nombre (ou densité) aux naissances et une

proportion pbC va aller dans les chroniques.

On remarque qu’ici, l’introduction d’une transmission verticale diminue les naissances

d’une quantité pbC qui ne deviennent plus susceptibles car les bébés issus de ces naissances

deviennent chroniques avec la transmission verticale, ce qui fait que l’on voit apparâıtre

au niveau de EC cette quantité pbC. Ainsi, nous avons le système suivant :



Ṡ1 = Λ− µ1 S1 − β1,1EI S1 − β1,2EC S1 − β1,3 I3 S1 − β1,4 I4 S1 − p1S1 − pbI4

Ṡ2 = p1S1 − µ2 S2 − β2,1EI S2 − β2,2EC S2 − β2,3 I3 S2 − β2,4 I4 S2 − p2S2

Ṡ3 = p2S2 − µ3 S3 − β3,1EI S3 − β3,2EC S3 − β3,3 I3 S3 − β3,4 I4 S3 − p3S3

Ṡ4 = p3S3 − µ4 S4 − β4,1EI S4 − β4,2EC S4 − β4,3 I3 S4 − β4,4 I4 S4 − p4S4

Ṡ5 = p4S4 − µ5 S5 − β5,1EI S5 − β5,2EC S5 − β5,3 I3 S5 − β5,4 I4 S5

ĖI = α1(β1,1EI S1 + β1,2EC S1 + β1,3 I3 S1 + β1,4 I4 S1) + ...

+α2(β2,1EI S2 + β2,2EC S2 + β2,3 I3 S2 + β2,4 I4 S2) + ...

+α3(β3,1EI S3 + β3,2EC S3 + β3,3 I3 S3 + β3,4 I4 S3) + ...

+α4(β4,1EI S4 + β4,2EC S4 + β4,3 I3 S4 + β4,4 I4 S4) + ...

+α5(β5,1EI S5 + β5,2EC S5 + β5,3 I3 S5 + β5,4 I4 S5)− µEEI − γiEI

ĖC = (1− α1)(β1,1EI S1 + β1,2EC S1 + β1,3 I3 S1 + β1,4 I4 S1) + ...

+(1− α2)(β2,1 IEI S2 + β2,2EC S2 + β2,3 I3 S2 + β2,4 I4 S2) + ...

+(1− α3)(β3,1EI S3 + β3,2EC S3 + β3,3 I3 S3 + β3,4 I4 S3) + ...

+(1− α4)(β4,1EI S4 + β4,2EC S4 + β4,3 I3 S4 + β4,4 I4 S4) + ...

+(1− α5)(β5,1EI S5 + β5,2EC S5 + β5,3 I3 S5 + β5,4 I4 S5)− µIEI − γCEC + pbI4

İ3 = γiEI − (µI + γ3)I3

İ4 = γCEC − (µC + γ4)I4

Ṙ = γ3I3 + γ4I4 − µR
(5.6)
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5.4 Calcul du DFE et du R0 du modèle avec la trans-

mission verticale

Le dernier compartiment R ne dépends que des compartiments I et C, nous pouvons

l’ignorer dans l’analyse du système.

S =


S1

S2

S3

S4

S5

 , Λ =


Λ
0
0
0
0

 ∈ R5
+, I =


EI
EC
I3

I4

 ∈ R4
+,

AS =


−p1 0 · · · 0

p1 p2
... 0

...
... −p4 0

0 · · · p4 0

 ∈M5(R)

Nous avons le système suivant :
Ṡ = Λ− diag(µ)S + ASS − diag(B I)S −MS

vertI

İ = Pdiag(B I)S + AI +M I
vertI

(5.7)

Avec les notations suivantes :

P =


0.1 0.2 0.45 0.7 0.9
0.9 0.8 0.55 0.3 0.1
0 0 0 0 0
0 0 0 0 0

 ,MI
vert =


0 0 0 pb
0 0 0 0
0 0 0 0
0 0 0 0

 ∈M4(R)

A =


−µI1 − γi 0 0 0
0 −µI2 − γC 0 0
γi 0 −µI3 − γ3 0
0 γC 0 −µI4 − γ4

 ∈M4(R),

B =


0 0 β1,3 β1,4

0 0 β2,3 β2,4

0 0 β3,3 β3,4

0 0 β4,3 β4,4

0 0 β5,3 β5,4

 ∈ R4
+ × R5

+, MS
vert =


0 0 0 pb
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∈ R4
+ × R5

+
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5.4. CALCUL DU DFE ET DU R0 DU MODÈLE AVEC LA
TRANSMISSION VERTICALE

5.4.1 Calcul du DFE (point d’équilibre sans maladie)

Il existe un unique point d’équilibre sans maladie (DFE) pour le système (5.6). Ce

DFE est donné par (S∗, 0) ∈ R5
+ × R4

+ où

S∗ = − (diag(−µS) + AS))−1 Λ.

Nous avons, S∗ = − (diag(−µS) + AS))−1 Λ � 0 si Λ � 0 car nous avons la matri-

cequi est (diag(−µS) + AS) qui est une matrice Metzler-Hurwitz. Dans le cas général, si

Λ > 0, il peut arriver, pour le DFE, que certaines des composantes de S∗ soient égales à

zéro.

5.4.2 Calcul du R0

Notons que notre matrice V , pour le calcul de R0, est l’opposée de la matrice V qui

est utilisée dans [108].

On a :

Fvert(S, I) =

[
0

Pdiag(B I)S +M I
vertI

]
et

V(S, I) =

[
Λ− diag(µ)S + ASS − diag(B I)S +MS

vertI

A I

]
.

Les jacobiennes de ces matrices sont données respectivement par :

DFvert(S, I) =

[
0 0

Pdiag(B I) Pdiag(S)B +M I
vert

]
,

et

DV(S, I) =

[
−diag(µS) + AS − diag(BI) −diag(S)B +MS

vert

0 A

]
.

Au DFE nous avons :

DFvert(S∗, 0) =

[
0 0

0 Pdiag(S∗)B +M I
vert

]
,

et

DV(S∗, 0) =

[
−diag(µS) + AS −diag(S∗)B +MS

vert

0 A

]
.
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D’où le nombre de reproduction de base est donné par :

Rvert
0 = ρ(−FvertV −1)

avec

Fvert = Pdiag(S∗)B +M I
vert = F +M I

vert et V = A

Nous allons utiliser ce résultat pour calculer la valeur de R0 dans les simulations.

Remarque 1 : Nous pouvons remarquer que :

Rvert
0 ≥ R0

car M I
vert ≥ 0

5.5 Conclusion

Dans ce chapitre, nous avons développé deux modèles mathématiques déterministes

pour la transmission du virus de l’hépatite B. Ces modèles découlent de l’état de l’art

et de l’épidémiologie actuelle du virus de l’hépatite B. Le fait de proposer deux modèles

avec ou sans transmission verticale pour l’hépatite B, va nous permettre de faire une

étude comparative des modèles avec les simulations numériques que nous allons faire dans

la dernière partie de ce travail. Ainsi, nous allons évaluer l’incidence des transmissions

verticale ou/et périnatale sur l’endémie de l’hépatite B.
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Chapitre 6

Un modèle général à susceptibilité et
infectivité différentielles

Dans ce chapitre, nous allons étudier une forme générale de systèmes. Cette forme contien-

dra, comme cas particuliers, les systèmes du chapitre cinq, excepté le modèle avec trans-

mission verticale du (5.6).

Pour ces systèmes, nous calculerons R0, nous prouverons la stabilité du DFE si R0 < 1,

l’existence et l’unicité d’un équilibre endémique quand R0 > 1. Ces résultats sont publiés

dans un article 1 publié dans JMB 2.

6.1 Introduction

Pour un bon nombre de maladies infectieuses, un des défis que rencontre la modélisa-

tion en épidémiologie est la prise en compte des hétérogénéités. L’hypothèse que les indivi-

dus se rencontrent au hasard n’est pas réaliste. Beaucoup de populations sont divisées en

sous-populations à l’intérieur desquelles, on peut admettre l’hypothèse de rencontre aléa-

toire. En revanche, les rencontres entre groupes différents sont soumises à une certaine

structuration. La division en groupes se fait selon le mode de transmission, la période

de latence, la période infection, la période infectieuse, l’âge, la susceptibilité génétique,

le comportement ou la réaction par rapport à la vaccination mais aussi sur les facteurs

sociologiques, culturels, économiques, démographiques voire géographiques.

Chaque groupe (compartiment ou classe) est composé d’individus qui ont des caracté-

ristiques presque identiques. L’étude mathématique des maladies sexuellement transmis-

sibles, comme le VIH Sida, est à l’origine des modèles multi-groupes. En effet, les études

1. http ://www.springerlink.com/content/0612425711325kh4/
2. Journal of Mathematical Biology
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cliniques de la transmission du VIH montrent une variabilité de l’infectivité au cours de la

longue période asymptomatique où l’individu séropositif n’a pas encore déclaré un SIDA.

Ce type de modèle est applicable aux maladies qui changent d’infectivité suivant leurs

périodes infectieuses telles que le VIH Sida ou l’hépatite B (HBV) qui sont des maladies

avec des porteurs asymptomatiques. L’infectivité différentielle vient du fait que la popu-

lation d’infectés est subdivisée en différent sous groupes, suivant leur taux d’infectivité.

6.2 Modèle général

Ce modèle ne prend pas en compte la transmission verticale.

On considère le modèle suivant :


Ṡ = Λ− diag(µS)S + AS S − diag(B I)S

İ = P diag(B I)S − diag(µI + γI) I + AI I

Ṙ = L I − diag(µR)R + ARR

(6.1)

où S ∈ Rn
+ représente l’état des individus susceptibles, I ∈ Rm

+ les individus infectés,

R ∈ Rp
+ les individus guéris ou immunisés. Le recrutement dans le compartiment des

susceptibles est modélisé par le vecteur positif Λ > 0. Le vecteur positif µS � 0 représente

le taux de mortalité dans les différentes classes de susceptibles. La matrice AS modélise

les différents flots entre les classes de susceptibles. Jacquez appelle les coefficients de AS,

coefficients de transferts [58]. Comme la matrice AS représente seulement les transferts

dans les compartiments S, AS est une matrice compartimentale, une matrice de Metzler,

dans laquelle, la somme des éléments de chaque colonne est nulle. La matrice B > 0

modélise les coefficients des contacts entre les différents compartiments de I et de S,

B(i, j) = βij est le contact adéquat de l’infecté du compartiment Ij au compartiment

de susceptibles Si. La matrice B est souvent appelée la matrice « WAIFW » (Who

Acquire Infection From Whom [2]). La matrice P est une matrice colonne-stochastique

de dimension m× n :

P =


p11 p12 . . . p1n

p21 p22 . . . p2n
... . . .

. . . . . .
pm1 pm2 . . . pmn


Cette matrice représente la distribution des individus susceptibles, après leur infection

dans les différents compartiments des infectés Ij de I. Un susceptible qui est infecté du
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6.2. MODÈLE GÉNÉRAL

compartiment Si passe dans le compartiment des infectés Ij avec une probabilité pji, d’où
m∑
j=1

pji = 1.

Par analogie à ce qui précède, la matrice AI représente les échanges entre le différents

compartiments des infectés I. Les vecteurs µI � 0 et γI > 0 représentent respectivement

le taux de mortalité et le taux de guérison des individus infectés et/ou infectieux des

différents compartiments d’infectés de I. On suppose que le vecteur γI est positif ou nul,

parce qu’un individu infecté peut ne pas guérir et plus généralement passer dans un autre

compartiment d’infecté.

Enfin, la matrice L représente la distribution des infectés de I vers le compartiment R.

Le vecteur µR et la matrice AR correspondent de façon analogue aux mouvements entre

les compartiments de R.

On peut remarquer avec nos hypothèses que la matrice B ≥ 0, car dans le modèle (6.1), il

peut y exister des compartiments d’infectés et non infectieux que l’on appelle des individus

latents. Ceux-ci ne transmettent pas l’infection. Par conséquent, dans ces compartiments,

il n’y a pas de transmission de la maladie, c’est-à-dire dans un compartiment Ij sans

transmission, on a Bi,j = 0, pour tout i. En d’autres termes, la matrice B peut contenir

des colonnes dont tous les éléments sont nuls.

En effet, pour tout i ∈ {1, . . . , n}, il existe k ∈ {1, . . . ,m} tel que Bi,k 6= 0, ou s’il existe

un indice i0 tel que Bi0,k = 0 pour tout k ∈ {1, . . . ,m}, c’est-à-dire les individus du

compartiment Si0 ne seront pas infecté et ne sont pas susceptibles.

En utilisant le théorème Gershgorin, il est clair que les matrices :

−diag(µS) + AS, −diag(µI) + AI , et − diag(µR) + AR

sont des matrices de Metzler stables et en particulier non singulières. Ceci implique que

quand il n’y a pas d’infection, les individus du compartiment I et R disparaissent.

Nous utilisons la propriété suivante : une matrice de Metzler M est stable si et seulement

si −M−1 > 0 [10,103].

Ceci a comme conséquence que si x� 0 alors −M−1 x� 0.

Il y a deux écoles en ce qui concerne cette catégorie de matrice. La première utilise

les matrices de Metzler qui sont aussi appelées matrices quasi-positives. Cette école est

représentée par J.A. Jacquez, D. Luenberger, H.L. Smith ou H. Thieme [57, 58, 83, 103,

107]. La deuxième école, représentée par Bermans et Plemmons ou Van Den Driessche
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( [10,108]), utilise les M -matrices. L’opposée d’une matrice de Metzler inversible est une

M -matrice.

Nous avons choisi l’approche de Jacquez, qui est plus adaptée pour la modélisation

compartimentale où notre matrice A va représenter les échanges entre les différents com-

partiments.

Pour l’étude de la stabilité, nous omettons la dernière équation :

Ṙ = L I − diag(µR)R + ARR.

car la variable R ne figure pas dans les deux premières équations. Donc pour l’étude de la

stabilité du système, nous pouvons réduire le système original (6.1) au système suivant :
Ṡ = Λ− diag(µS)S + AS S − diag(B I)S

İ = P diag(B I)S − diag(µI + γI) I + AI I,

(6.2)

Soit la matrice A définie par :

A = −diag(µI + γI) + AI

Il existe un unique point d’équilibre sans maladie (DFE) pour le système (6.2). Le DFE

est donné par (S∗, 0) ∈ Rn
+ × Rm

+ où

S∗ = − (diag(−µS) + AS))−1 Λ.

En effet, au point d’équilibre endémique nous avons le système suivant :

0 = Λ− diag(µS)S∗ + AS S
∗

Λ = −(diag(−µS) + AS )S∗

comme la matrice −(diag(−µS)+AS) est inversible (théorème de Gershgorin) : nous avons

le résultat.

Nous avons, S∗ = −(diag(−µS) +AS)−1Λ� 0 si Λ� 0 car la matrice (diag(−µS) +AS)

est une matrice de Metzler. Dans le cas général, si Λ > 0, il peut arriver, pour le DFE,

que certaines composantes de S∗ soient égales à zéro.

Dans ce cas, cela veut dire, pour le système général, que la population de certains com-

partiments de susceptibles tend asymptotiquement vers zéro. Alors, nous pouvons négliger
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ces compartiments et nous supposons dans la suite que S∗ � 0. Plutôt que de donner une

condition compliquée sur Λ et AS, nous préférons donner une condition simple que nous

allons vérifier au cas par cas suivant les modèles.

Hypothèses supplémentaires : Pour notre système général, nous ajoutons des hy-

pothèses supplémentaires pour le rendre biologiquement raisonnable. Pour formuler ces

hypothèses, nous avons besoin de quelques définitions de la théorie des graphes [10]. En ce

qui concerne notre système, nous allons l’associer à un graphe orienté de façon classique.

Nous avons m+n sommets : n sommets correspondent aux compartiments de suscep-

tibles et les m autres sommets correspondent à des compartiments d’infectés/infectieux.

Nous pouvons écrire le système (6.2) sous une forme canonique de système comparti-

mental [58] :

[
Ṡ

İ

]
=

[
Λ

0

]
+

[
−diag(µS) + AS − diag(BI) 0

0 diag(S)B − diag(µI + γI) + AI

] [
S

I

]
(6.3)

La matrice qui apparâıt dans cette équation est une matrice de Metzler, dite comparti-

mentale [58].

On note M(S, I) cette matrice :

M(S, I) =

[
−diag(µS) + AS − diag(BI) 0

0 diag(S)B − diag(µI + γI) + AI

]

Dans le graphe associé au système, un arc mène du sommet j au sommet i 6= j si

M(S, I)i,j > 0 pour un certain (S, I). On dit alors que j est accessible depuis i, si dans

le graphe, il y a un chemin orienté de j vers i. Ceci équivaut à dire que pour un entier

p > 0, Mp(S, I)i,j > 0 [10].

Nous utilisons la notation duale de la notation habituelle, ceci pour nous adapter au

produit matriciel. Autrement dit, il y a un arc du sommet j vers le sommet i si il existe

un flot de matière de j vers i.

On va maintenant supposer l’hypothèse suivante.

Hypothèse 1 : Nous supposons pour la suite que, tout compartiment « susceptible » est

accessible depuis un compartiment de « susceptible avec recrutement ».
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Cette propriété dépend seulement de la matrice AS et du recrutement Λ. Pour tout vecteur

x ≥ 0, la matrice −diag(µS) + AS − diag(x) est une matrice de Hurwitz-Metzler.

Lemme 4 : Pour tout x ≥ 0, nous avons :

−[−diag(µS) + AS − diag(x)]−1 Λ� 0

Ceci implique, en particulier que le point d’équilibre sans maladie (DFE) du système (6.2),

donné par (S∗, 0) = (−[AS − diag(µS)]−1 Λ, 0) vérifie S∗ � 0.

Nous considérons seulement les composantes connexes issues d’un recrutement. Autrement

dit, tous les sommets sont accessibles depuis un compartiment avec recrutement. Nous

notons par e1, le vecteur de la base canonique correspondant au compartiment où il y a

recrutement (on peut toujours le faire), par M(x) la matrice −[diag(µS)+AS −diag(x)]−1.

Nous allons prouver pour tout ei accessible à partir de e1, nous avons :

〈−M(x)−1 e1|ei〉 > 0

Comme M(x), pour vecteur x fixé et constant, est une matrice de Hurwitz, on a :

〈−M(x)−1 e1|ei〉 =

∫ ∞
0

〈exp(tM(x)) e1|ei〉 dt

L’expression sous l’intégrale est positive ou nulle pour un certain t ≥ 0, car M(x) est Metz-

ler. Comme l’expression sous l’intégrale est analytique en t, il suffit pour que l’intégrale

soit strictement positive, de prouver que pour tout k > 0 :

dk

dtk
〈exp(tM(x)) e1|ei〉


t=0

= 〈M(x)k e1|ei〉 > 0

Ce qui est vrai pour un certain k puisque j est accessible à partir de 1. En effet, choisissons

k tel qu’il vérifie 〈AkS e1 | ei〉 > 0 et 〈ApS e1 | ei〉 = 0 pour 0 ≤ p < k. En se référant à

l’hypothèse (1), on voit un tel k existe. Alors, nous avons :

dk

dtk
〈etM(x) e1 | ei〉


t=0

= 〈M(x)k e1 | ei〉

〈M(x)k e1 | ei〉 =
∑k

p=0 C
p
k (−1)k−p(µS1 + x1)k−p〈ApS e1 | ei〉 = 〈AkS e1 | ei〉 > 0.

Ce qui complète la preuve du lemme.

Ξ
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Il existe dans le modèle des compartiments dans lesquels, nous avons des individus in-

fectés et non infectieux, nous ainsi avons la possibilité d’ajouter des compartiments Ij

pour lesquels Bi,j = 0. On peut dire que les individus infectieux n’apparaissent qu’en

évoluant à partir d’une transmission. Si nous avons une classe typique de susceptibles,

nous aurons une proportion c � 0 d’individus susceptibles qui deviennent infectés avec

une distribution de P ∗ c dans les compartiment infectés-infectieux. Ces individus nou-

vellement infectés évolueront dans les compartiments d’infectés-infectieux. Nous pouvons

formuler cette hypothèse d’une autre manière :

Hypothèse 2 : Tout compartiment d’infecté-infectieux est accessible à partir d’un com-

partiment avec une « entrée d’infection ».

Une « entrée d’infection » est un flux qui provient des classes susceptibles. Il s’agit d’indi-

vidus qui viennent d’être infectés par un contact adéquat avec les infectieux. C’est-à-dire

si i est l’indice de ce compartiment, alors la composante pi de P 1 est positive.

Une des conséquences de cette hypothèse (2) est : −A−1 P c � 0 pour tout c � 0. La

preuve est semblable à celle du lemme précédent.

Remarque 2 : Avec ces deux hypothèses, lorsque nous avons une infection, alors toutes

les trajectoires du système sont dans l’orthant positif. Cependant, notre hypothèse est plus

faible que celle de l’irréductibilité du graphe de notre système.

6.2.1 Le taux de reproduction de base R0

Pour calculer le taux de reproduction de base R0, nous utilisons les techniques qui sont

développées dans [22, 23, 40, 41, 108], puisque R0 est donné par le rayon spectral de la

matrice de seconde génération « next generation matrix ». En général, il est impossible

d’obtenir son expression analytique.

Cependant, il y a deux cas où nous pouvons aboutir à une formule explicite. Il s’agit des

cas où la matrice distribution stochastique P ou la matrice du « WAIFW » B sont de

rang 1.

6.2.1.1 Modèle avec distribution stochastique P de rang 1

Nous supposons dans ce cas que, nous pouvons considérer que P = p1T ou p ∈ Rm est

un vecteur stochastique positif non nul, c’est-à-dire
m∑
i=1

pi = 1 et 1 = (1, · · · , 1)T ∈ Rn.
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En effet, d’après le théorème de Perron-frobenius, nous pouvons écrire P = u vT , pour

deux vecteurs positifs u ∈ Rn, v ∈ Rm. Comme une nouvelle infection est représentée

par un mouvement d’un compartiment S vers un compartiment I, nous avons v � 0. En

utilisant le fait P est un vecteur stochastique, nous avons le résultat suivant :

p1T diag(B I)S = 〈1 | diag(B I)S〉 p = 〈B I | S〉 p,

Nous obtenons le système suivant :
Ṡ = Λ− diag(µS)S + AS S − diag(B I)S

İ = 〈B I | S〉 p− diag(µI + γI) I + AI I,

(6.4)

Ce modèle ne prends pas en compte l’origine des individus susceptibles à l’infection. Une

fois infectés, les individus entrent dans le compartiment I et sont distribués suivant le

vecteur stochastique p dans I.

Dans ce cas particulier, l’hypothèse (2) a pour conséquence −A−1
I p � 0, qui implique à

son tour −BA−1
I p� 0.

Pour obtenir l’expression de nombre de reproduction de base R0, nous utilisons les tech-

niques développées dans [108].

Nous avons :

R0 = 〈B (−A−1) p | S∗〉 = S∗T B (−A−1) p. (6.5)

où la matrice A est définie par :

A = −diag(µI + γI) + AI .

Nous utilisons l’expression (−A−1), pour insister sur le fait que (−A−1) > 0 car cette

matrice est Metzler stable. En utilisant les notations de [108] (au signe près), on note par

Fi(S, I) le taux d’apparition de nouvelles infections dans le compartiment I et par Vi(S, I),

le taux de transfert des individus dans ou en dehors du compartiment I pour tout autre

raison. La matrice V représente les transferts des flux dans les différents compartiments

de I.

Remarque 3 : Notons que notre matrice V est l’opposée de la matrice qui est utilisée

dans [108].
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application à la transmission du virus de l’hépatite B
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On a :

F(S, I) =

[
0

〈B I | S〉 p

]
,

et

V(S, I) =

[
Λ− diag(µS)S + AS S − diag(B I)S

A I

]
.

Les jacobiennes de ces matrices sont données respectivement par :

DF(S, I) =

[
0 0

p (BI)T p ST B

]
,

et

DV(S, I) =

[
−diag(µS) + AS − diag(BI) −diag(S)B

0 A

]
.

Notons, en comparaison avec [108], que nous avons mis les variables dans l’ordre opposé.

On obtient alors : F = p S∗T B et V = A. Ceci est explicite dans [108]. Le nombre de

reproduction de base R0 est alors donné par le rayon spectral de la matrice de seconde

génération notée −FV −1, calculée au point d’équilibre sans maladie (DFE).

Remarque 4 : Le signe - vient du fait que l’on a utilisé une matrice de Metzler à la

place de M-matrices de [108].

Donc, le nombre de reproduction de base est donné par :

R0 = ρ(−FV −1) = ρ(p S∗T B (−A−1)).

Il est évident que p S∗T B (−A−1) est une matrice de rang 1, et que la seule valeur propre

non nulle est : S∗T B (−A−1) p.

D’où le nombre de reproduction de base est donné par : R0 = S∗T B (−A−1) p.

6.2.1.2 Modèle avec une matrice WAIFW B de rang 1

Dans ce cas, on note B = αβT , où α� 0 est un vecteur positif de Rn et β > 0 est un

vecteur strictement positif de Rm
+ . Du point de vue de la modélisation, cela veut dire que

pour un compartiment donné de susceptible Si, les coefficients de contact adéquats aux

différents compartiments d’infectés sont multipliés par le même coefficient αi.

En utilisant B = αβT , nous pouvons réécrire le modèle (6.2) sous la forme suivante :
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
Ṡ = Λ− diag(µS)S + AS S − 〈β|I〉 diag(α)S,

İ = 〈β|I〉P diag(α)S − diag(µI + γI) I + AI I.

(6.6)

Pour ce modèle

R0 =
〈
β
(−A−1)P diag(α)S?

〉
La preuve est identique à la preuve précédente.

6.2.2 Un ensemble compact positivement invariant et absor-
bant pour le système

Nous allons montrer qu’il existe un compact positivement invariant et absorbant K

pour le système (6.2). Un ensemble absorbant K pour un système dynamique est tel

que, pour toute condition initiale, toute trajectoire issue de cette condition initiale finit

par rentrer, sans en ressortir, suivant le temps dans l’ensemble K. On note par N(t) la

population totale au temps t, alors nous avons : N = 〈S| 1〉+ 〈I|1〉.
En utilisant le fait que les matrices AS, AI sont des matrices telles que la somme de

chaque colonne est nulle et que pour P , la somme de chaque colonne vaut 1, nous avons

les relations suivantes :

〈AS S|1〉 = 〈S|ATS 1〉 = 0 , 〈AI I|1〉 = 〈I|ATI 1〉 = 0 ,

et

〈P diag(B I)S|1〉 = 〈diag(B I)S|P T 1〉 = 〈diag(B I)S|1〉 = 〈B I | S〉.

Nous obtenons alors :

Ṅ = 〈Λ|1〉 − 〈diag(µS)S|1〉 − 〈diag(µI + γI) I|1〉.

Lemme 5 : Soit µ0 définie par µ0 = min (µS, µI + γI) > 0, c’est-à-dire :

Ṅ ≤ 〈Λ|1〉 − µ0N

Pour tout ε > 0, le sous ensemble Kε de l’orthant positif Rn
+ × Rm

+ , définie par :

Kε =
{

(S, I)
S ≥ 0 ; I ≥ 0 ;N ≤ (〈Λ|1〉+ ε)/µo

}
,

est un compact positivement invariant et absorbant pour le système (6.2).
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Il est simple de voir que l’orthant positif est positivement invariant pour le système (6.2).

Si on utilise la relation Ṅ ≤ 〈Λ|1〉 − µ0N , on voit nettement la preuve du lemme.

Nous pouvons remarquer que (S∗, 0) ∈ Kε. Car nous avons 〈Λ|1〉 = 〈µS|S?〉 et µ0 ≤ µS.

Nous avons ainsi un ensemble positivement invariant contenu dans Kε.

Lemme 6 : L’ensemble Ω définie par :

Ω =
{

(S, I) ∈ Kε

S ≤ S∗
}
,

est un compact positivement invariant pour le système (6.2).

Sur le bord, S = S∗ alors nous avons Ṡ = −diag(B I)S∗ ≤ 0. Ce qui prouve que Ω

est positivement invariant.

6.2.3 Stabilité globale du point d’équilibre sans maladie (DFE)

Nous allons prouver la stabilité globale de DFE pour les deux catégories de modèles.

6.2.3.1 Modèle avec distribution stochastique P = p 1T de rang 1

Théorème 7 : Si R0 ≤ 1 alors le DFE du système (6.4) est globalement asymptotique-

ment stable sur l’orthant positif. Si R0 > 1, le DFE est instable.

Preuve : SiR0 > 1, l’instabilité du DFE est classique et elle découle des résultats contenus

dans [22].

Maintenant, on suppose R0 < 1, et nous considérons la fonction de Lyapunov candi-

date suivante :

VDFE(S, I) = 〈B(−A−1) I | S∗〉.

Cette fonction est positive sur l’orthant positif et elle est nulle au DFE. La dérivée de

cette fonction le long des trajectoires du système (6.2) est donnée par :

V̇DFE = 〈BI | S〉 〈B(−A−1) p | S∗〉 − 〈BI | S∗〉 = 〈BI | R0 S − S∗〉.

En tenant compte de la formule de (6.5) pourR0, il est évident de voir que dans le compact

Ω, nous avons V̇DFE ≤ 0.

Soit L, le plus grand ensemble invariant contenu dans {(S, I) ∈ Ω | V̇DFE(S, I) = 0}.
Puisque R0 < 1 et S∗ � 0 (par l’hypothèse H1), nous avons si S ≤ S∗, la relation

R0 S − S∗ � 0. Ce qui implique que BI = 0, d’où İ = AI. Puisque A est une matrice
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de Metzler stable, le plus grand ensemble invariant contenu dans L satisfait I = 0, par

conséquent, on a : S = S∗.

Par le principe d’invariance de Lasalle [71](on peut aussi voir [11], Theorem 3.7.11, page

346), puisque nous sommes dans un compact positivement invariant, le DFE est globale-

ment asymptotiquement stable dans Ω si R0 < 1.

Pour le cas R0 = 1, nous avons :

V̇DFE = 〈BI | S − S∗〉 ≤ 0, pour tout (S, I) ∈ Ω.

Pour cela, il suffit de montrer que L est réduit à {(S∗, 0)}. Soit (S, I) ∈ L, la trajectoire

du système (6.4) issue de ce point initial vérifie 〈BI(t) | S(t)− S∗〉 = 0, pour tout t ≥ 0.

Supposons I > 0, par l’hypothèse (2), nous avons :

B I(t)� 0 pour tout t > 0 et S(t)− S∗ = 0 pour tout t > 0.

Ceci, combiné avec la première équation du système (6.4), implique BI(t) ≡ 0, ce qui

est une contradiction avec I > 0. D’où, si (S, I) ∈ L alors, on a nécessairement I = 0 et

S = S∗ grâce à la première équation du système (6.4).

Si V̇DFE = 0, alors le système (6.4), nous donne le système suivant :

{
Ṡ = ÃS(S − S∗)− diag(S∗)B I

İ = (p S∗T B + A) I
= J

(
S − S∗

I

)
. (6.7)

où

J =

(
ÃS −diag(S∗)B

0 p S∗T B + A

)
, et ÃS = −diag(µS) + AS

Le module de stabilité de la matrice J est égal à zéro puisque 1 = R0 = ρ(p S∗T B (−A−1)).

Par conséquent, le DFE est globalement asymptotiquement stable dans Ω quand R0 = 1.

Nous avons démontré la stabilité globale sur Ω.

Comme Kε est absorbant, il reste maintenant à examiner les trajectoires qui commencent

dans l’ensemble Kε \ Ω.

L’ensemble définie par I = 0 est invariant par le système. Par conséquent toute trajectoire

qui commence par un point contenu dans l’ensemble Kε \ Ω, avec I = 0, convergera vers

(S∗, 0).
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Maintenant, si une trajectoire commence par un point de Kε \ Ω, on a I > 0 alors avec

l’hypothèse (2), nous avons B I(t)� 0, pour tout t > 0. De ce fait, à partir de la première

équation, la trajectoire va entrer dans Ω et alors va converger vers le DFE. Ce qui prouve

que le DFE (S∗, 0) est globalement asymptotiquement stable dans l’orthant positif.

2

6.2.3.2 Modèle avec une matrice WAIFW B = αβT de rang 1

Théorème 8 : Si R0 ≤ 1, alors le DFE du système (6.6) est globalement asymptotique-

ment stable sur l’orthant positif. Si R0 > 1, le DFE du système (6.6) est instable.

Preuve : Considérons la fonction de lyapunov candidate suivante :

V (S, I) = 〈β| − A−1 I〉

Calculons la dérivée de V (S, I) le long des trajectoires du système (6.6) dans Ω.

V̇ = 〈β| I〉 〈β| − A−1 P diag(α)S〉 − 〈β| I〉
= 〈β| I〉 (〈β| − A−1 P diag(α)S〉 − 1)
= 〈β| I〉 (R0 − 1) ≤ 0

• R0 ≤ 1, le plus grand ensemble invariant contenu dans l’ensemble V̇ = 0 qui est contenu

dans Ω, vérifie 〈β| I〉 = 0. Comme A est une matrice de Metzler stable, cet ensemble est

réduit à I = 0. Par conséquent, on a S = S∗. Par le principe d’invariance de Lasalle, comme

nous travaillons dans un compact positivement invariant [11,71], le DFE est globalement

asymptotiquement stable dans Ω. La fin de la preuve du théorème (7), nous permet de

conclure sur la stabilité globale du système dans l’orthant positif.

• Si R0 = 1, nous pouvons écrire :

V̇ = 〈β| I〉
〈
β| − A−1 P diag(α)S

〉
− 〈β| I〉

= 〈β| I〉
( 〈
β| − A−1 P diag(α)S∗ − A−1 P diag(α) (S − S∗)

〉
− 1
)

= 〈β| I〉
( 〈
β| − A−1 P diag(α)S∗

〉
+
〈
β| − A−1 P diag(α) (S − S∗)

〉
− 1
)

= 〈β| I〉
(
R0 − 1 + 〈β| − A−1 P diag(α) (S − S∗)〉

)
= 〈β| I〉 〈β| − A−1 P diag(α) (S − S∗)〉 .

Par conséquent V̇ (S, I) = 0 si et seulement si :

〈β| I〉 = 0 or 〈β| − A−1 P diag(α) (S − S∗)〉 = 0.
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Soit (S, I) ∈ L où L est le plus grand ensemble invariant contenu dans :

E = {(S, I) ∈ Ω : V̇ (S, I) = 0}

Si 〈β| I〉 = 0 alors nous pouvons conclure comme dans le cas où R0 < 1.

Soit f l’application définie par :

f(S) =
〈
β| − A−1 P diag(α)S

〉
=
〈
diag(α)P T (−A−1)T β|S

〉
L’application f(S) n’est pas identiquement nulle car f(S∗) = R0. Puisque le vecteur

diag(α)P T (−A−1)T β > 0, c’est-a-dire, il existe au moins des composantes non nulles, en

d’autres termes, (diag(α)P T (−A−1)T β)i 6= 0 pour quelques i ∈ {1, . . . , n}.
Donc 〈β| − A−1 P diag(α) (S − S∗)〉 = 0 implique qu’il existe au moins Si(t) ≡ S∗i . Donc

l’équation qui d’écrit l’évolution de Si(t) est :

Ṡi = −µSi
(Si(t)− S∗i ) + eTi AS (S(t)− S∗)− 〈β| I(t)〉αiSi(t)

Comme Si(t) ≡ S∗i , la matrice AS est une matrice de Metzler et S ≤ S∗ dans Ω, on obtient

alors eTi AS (S(t) − S∗) = 〈β| I(t)〉αiS∗i = 0. En particulier, nous avons 〈β| I(t)〉 = 0 et

alors nous pouvons conclure dans le cas où R0 ≤ 1.

6.2.3.3 Existence et unicité d’un équilibre endémique

La preuve, pour les deux cas, est similaire et on y utilise le même principe. Cependant,

les calculs sont différents, c’est pourquoi nous allons faire la preuve pour chaque cas.

6.2.3.4 Modèle avec distribution stochastique P = p 1T de rang 1

Théorème 9 : Il existe un unique point d’équilibre endémique dans l’orthant positif pour

le système (6.4), si et seulement si R0 > 1.

Preuve : Nous cherchons un équilibre (S̄, Ī) avec Ī > 0. Il doit satisfaire les relations

suivantes : 
0 = Λ− diag(µS) S̄ + AS S − diag(B̄ Ī) S̄,

0 = 〈B̄ Ī | S̄〉 p+ A Ī
(6.8)

Nous en déduisons, puisque A est une matrice de Metzler stable, que

Ī = 〈B̄ Ī | S̄〉 (−A−1) p.
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A partir de la seconde équation du système (6.8) et du produit scalaire avec p nous

obtenons :

‖p‖2
2 = 〈p | p〉

‖p‖2
2 〈B̄ Ī | S̄〉 = −〈A Ī | p〉.

Finalement,

Ī = − 1

‖p‖2
2

〈A Ī | p〉 (−A−1) p. (6.9)

Pour le calcul de Ī, nous avons besoin de l’expression de −〈A Ī | p〉.
D’autre part, avec l’expression de Ī = 〈B̄ Ī | S̄〉 (−A−1) p, nous avons :

〈B̄ Ī | S̄〉 = 〈B̄ Ī | S̄〉 〈B(−A−1)p | S̄〉.

La condition 〈B̄ Ī | S̄〉 = 0 implique, puisque A est une matrice de Metzler stable, Ī = 0,

alors S̄ = S∗. Ce qui correspond au DFE et non à un point d’équilibre endémique

Alors, si 〈B̄ Ī | S̄〉 6= 0, en faisant une simplification des relations précédentes, nous avons :

〈B(−A−1)p | S̄〉 = 1. (6.10)

A partir de la première équation du système (6.8), nous avons :

S̄ = −
[
− diag

(
µS +BĪ

)
+ AS

]−1
Λ (6.11)

En utilisant la valeur de Ī à partir de la relation (6.9), nous avons :

S̄ = −
[
−diag

(
µS +

(−〈A Ī | p〉)
‖p‖2

2

B (−A−1) p

)
+ AS

]−1

Λ

= −M
(
−〈A Ī | p〉

)−1
Λ.

(6.12)

Où M(x) est définie par, pour x ≥ 0 :

M(x) = −diag
(
µS +

x

‖p‖2
2

B (−A−1) p

)
+ AS

La matrice M(x) est une matrice de Metzler stable dépendant du réel positif x.

En remplaçant S̄, par son expression donnée dans l’égalité (6.12), dans la relation (6.10),

on obtient : 〈
B(−A−1) p

 −M(−〈A Ī | p〉)−1 Λ

〉
= 1.
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En d’autres termes, le scalaire −〈A Ī | p〉 est une solution de l’équation H(x) = 1 avec

H(x) =

〈
B(−A−1) p

−M(x)−1 Λ

〉
.

H(x) est une fonction strictement décroissante en x. La dérivée de H est donnée par :

H ′(x) =

〈
B(−A−1) p

−M(x)−1 diag

(
B (−A−1) p

‖p‖2
2

)
M(x)−1 Λ

〉
.

D’une part, nous avons B (−A−1) p� 0 avec l’hypothèse (2). Et d’autre part, l’hypothèse

(1) implique que −M(x)−1Λ � 0, alors, on a H ′(x) < 0. Ce qui prouve que H(x) est

strictement décroissante.

La fonction H(x) vérifie lim
x→+∞

H(x) = 0. Alors il existe une unique solution positive si et

seulement si H(0) > 1. Comme H(0) = R0 > 1, nous avons une unique solution positive.

A partir de la relation (6.11), nous avons S∗ > S̄ > 0 et de l’égalité (6.9), tel que

−〈A Ī | p〉 > 0. Avec l’hypothèse (2), nous en déduisons Ī � 0, d’où le point d’équilibre

est un équilibre dit fortement endémique.

De l’analyse précédente, nous avons vu que si R0 = 1, il existe un unique point d’équilibre

qui est le DFE. Dans le cas où R0 < 1, nous avons Ī < 0, ce cas n’est pas biologiquement

acceptable.

2

6.2.3.5 Modèle avec une matrice WAIFW B = αβT de rang 1

Théorème 10 : Il existe un unique point d’équilibre endémique sur l’orthant positif pour

le système (6.6) si et seulement si R0 > 1.

Preuve : Cette preuve est analogue au cas du modèle avec distribution stochastique

P = p 1T de rang 1. Nous avons les relations suivantes pour l’équilibre (S̄, Ī).

 0 = Λ + ÃS S̄ − 〈β|Ī〉 diag(α) S̄,

0 = 〈β|Ī〉P diag(α) S̄ + A Ī.
(6.13)

Posons ÃS = −diag(µS) + AS et par analogie A.

A partir de la première équation, nous avons :

−diag(µS)− 〈β|Ī〉 diag(α) + AS est une matrice de metzler stable pour tout Ī,
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S̄ = −
[
−diag(µS)− 〈β|Ī〉 diag(α) + AS

]−1
Λ

= −M(〈β | Ī〉)−1 Λ.

(6.14)

où la matrice M est définie par :

M(x) = −diag (µS + xα)) + AS,

est une matrice de Metzler stable, dépendant linéairement de x > 0

A partir de la deuxième équation de (6.13), puisque A est une matrice de Metzler stable,

nous avons :

Ī = 〈β | Ī〉 (−A−1)P diag(α) S̄. (6.15)

Pour calculer (S̄, Ī), il suffit de déterminer 〈β | Ī〉.

En utilisant les relations du système (6.15), nous avons :

〈β | Ī〉 = 〈β | Ī〉
〈
β
(−A−1)P diag(α) S̄

〉
.

Si 〈β | Ī〉 = 0, alors la relation (6.13) implique Ī = 0 et S̄ = S∗, c’est-à-dire, le DFE.

Alors, nous pouvons simplifier l’expression en remplaçant par les valeurs
〈
β
(−A−1)P diag(α) S̄

〉
par 1. En remplaçant S̄ par sa valeur dans l’égalité (6.14) :

〈
β
(−A−1)P diag(α)

[
−M(〈β | Ī〉)−1

]
Λ
〉

= 1

En d’autres termes, 〈β | Ī〉 est une solution de l’équation H(x) = 1 avec

H(x) =
〈
β
(−A−1)P diag(α) [−M(x)−1] Λ

〉
.

H(x) est une application strictement décroissante. La preuve est presque identique à celle

qui se trouve dans le théorème (9). Il nous reste seulement à montrer que la dérivée H ′(x)

est négative.

H ′(x) =
〈
β
(−A−1)P diag(α)M(x)−1(−diag(α))M(x)−1Λ

〉
Par l’hypothèse (1), nous avons −M(x)−1Λ� 0, et α� 0. Nous avons aussi

diag(α)M(x)−1(−diag(α))M(x)−1Λ� 0

De plus, en utilisant l’hypothèse (2), nous avons :

(−A−1)P diag(α)M(x)−1(−diag(α))M(x)−1Λ� 0
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Ce qui implique H ′(x) < 0 car β > 0.

Comme H(x) vérifie lim
x→+∞

H(x) = 0, il existe une unique solution positive si et seulement

si H(0) > 1. Comme H(0) = R0, nous avons un unique équilibre endémique. Puisque

d’après l’égalité (6.14), nous avons S∗ > S̄ � 0 et de l’égalité (6.15), avec 〈β | Ī〉 > 0,

Ī � 0, alors l’équilibre est un équilibre endémique. De plus 〈B̄ Ī | S̄〉 6= 0 > 0.

D’après ce qui précède, nous avons vu que si R0 = 1 alors l’unique point d’équilibre

est réduit au DFE. Dans le cas où R0 < 1, nous avons Ī < 0, alors ce point n’est pas

biologiquement intéressant.
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6.3 Stabilité globale de l’équilibre endémique d’un

modèle avec une susceptibilité différentielle et

une infectivité en progression de stades

Pour montrer la stabilité de l’équilibre endémique, nous utilisons les propriétés des

matrices AI et AS. Nous étudierons la stabilité globale de l’équilibre endémique d’un

modèle avec une susceptibilité différentielle et une infectivité en progression de stades. Ce

modèle est de la même forme que le modèle (6.4) avec AS = 0.

S1 S2 S3 Sn

Λ1 Λ2 Λ3 Λn

μ1 μ2 μ3 μn

μΙ1

μΙ2

μR

μΙm

γΙ1

γΙ2

γΙm-1

γΙm

β11I1+β12I2+ ...+β1mIm βn1I1+βn2I2+ ...+βnmIm

β31I1+ ...+β3mIm

I1

I2

Im

R

.

.

.

.

.

Figure 6.1 – Modèle à susceptibilité différentielle et une infectivité en progression de
stades : n classes susceptibles et m classes d’infectés
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On peut avoir dans le modèle quelques Ii qui peuvent être infectés et non infectieux.

Le modèle est donné par le système différentiel ordinaire suivant :



Ṡ1 = Λ1 − µ1S1 − β11 I1 S1 − β12 I2 S1 − ....− β1m Im S1

Ṡ2 = Λ2 − µ2S2 − β21 I1 S2 − β22 I2 S2 − ....− β2m Im S2

Ṡ3 = Λ3 − µ3S3 − β31 I1 S3 − β32 I2 S3 − ....− β3m Im S3

...

Ṡn = Λn − µnSn − βn1 I1 Sn − βn2 I2 S3 − ....− βnm Im Sn

İ1 = β11 I1 S1 + β12 I2 S1 + ....+ β1m Im S1 + .....+

+βn1 I1 Sn + βn2 I2 S3 + ....+ βnm Im Sn − (µ+ γI1) I1

İ2 = γI1 I1 − (µI1 + γI2) I2

...

İm = γIm−1 Im−1 − (µIm−1 + γIm) Im

Ṙ = γIm Im − µIm R

(6.16)

Pour l’analyse de la stabilité globale du système, nous omettons le compartiment des R

puisqu’il n’interviennent pas dans les deux premières équations. Le système (6.16) peut

s’écrire sous une forme beaucoup plus compacte, en utilisant les notations matricielles de

Scilab :


Ṡ = Λ− diag(µS)S − diag(B I)S

İ = 〈B I | S〉 e1 + AI

(6.17)

S =


S1

S2
...
Sn

 ∈ Rn
+ , Λ =


Λ1

Λ2
...
Λn

 ∈ Rn
+ , I =


I1

I2
...
Im

 ∈ Rm
+

Les vecteurs µS et µI représentent ici respectivement la mortalité des classes ou compar-

timents susceptibles et infectés. La matrice A est définie par :

A =


−µI1 − γ1 0 0 · · · 0

γ1 −µI2 − γ2 0 · · · 0
0 γ2 −α3 · · · 0
...

. . . . . . . . .
...

0 · · · 0 γm−1 −µIm − γm

 ∈Mm(R)
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Pour simplifier l’écriture, on écrit A au lieu de A.
Ṡ = Λ− diag(µS)S − diag(B I)S

İ = 〈B I | S〉 e1 + AI.

(6.18)

où le vecteur S ∈ Rn
+ représente les états des individus susceptibles. Le vecteur I ∈ Rk

+

représente les différents stades d’infection. Le vecteur Λ est le recrutement dans le com-

partiment des susceptibles par conséquent on a : Λ ∈ Rn
+. La matrice B ≥ 0 représente

les coefficients d’infectivité. Le terme B(i, j) est le taux de contact et l’infectivité de Ij

avec le compartiment Si.

La matrice A est une matrice de Metzler stable et représente l’évolution à travers les

stades infectieux. En effet, A décrit les échanges entre les compartiments infectés et les

mortalités éventuelles. C’est donc une matrice de Metzler. Dire qu’elle est stable revient

à dire que sans transmission, l’infection disparâıt.

Nous avons généralisé le modèle obtenu dans [48, 52]. Avec e1 le premier vecteur de la

base canonique de Rm et la matrice A est la matrice donnée par :

A =


−α1 0 0 · · · 0
γ1 −α2 0 · · · 0
0 γ2 −α3 · · · 0
...

. . . . . . . . .
...

0 · · · 0 γm−1 −αm

 ∈Mm(R).

Nous avons posé αi = γIi + µIi et γi = γIi . La matrice B est définie par :

B =


β1,1 β1,2 β1,3 . . . β1,n

β2,1 β2,2 β2,3 . . . β2,n
...

...
... . . . . . .

βm,1 βm,2 β4,3 . . . βm,n

 ∈ Rn
+ × Rm

+

On va vérifié que l’orthant positif est positivement invariant pour le système et qu’il existe

un ensemble compact positivement invariant et absorbant sur cet orthant positif.

Le point d’équilibre sans maladie (DFE) est donné par :

(S∗, 0) ∈ Rn
+ × Rm

+ ou S∗ = diag(µS)−1 Λ

En effet, au point d’équilibre sans maladie, on a I∗ = 0 donc le système (6.2) devient :

Λ− diag(µS) S∗ = 0
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La stabilité du système au DFE est donné par le théorème (7). La variété stable du DFE

est dans l’ensemble {(S, I) ∈ Rn+m
+ : I = 0}.

Théorème 11 : Si R0 > 1, alors l’unique point d’équilibre endémique du système (6.18)

est globalement asymptotiquement stable dans Rn+m
+ \ {(S, I) : I = 0}, l’orthant positif

moins la variéte stable du point d’équilibre sans maladie (DFE).

Preuve :

Nous utilisons la fonction de Lyapunov VEE(S, I) suivante dans l’orthant positif. Ce même

type de fonction de Lyapunov a été utilisée par différents auteurs, par exemple dans

[1,6,20,54,56,65,67,80]. Nous montrons que la dérivée de cette fonction de Lyapunov

VEE(S, I) est négative le long des trajectoires.

VEE(S, I) =
〈
S − diag(S̄) lnS |1

〉
+
〈
B(−A−1)

(
I − diag(Ī) ln I

)
| S̄
〉
− Π.

où Π est donnée par :

Π = 〈S̄ − diag(S̄) ln S̄ |1〉+ 〈B(−A−1)
(
Ī − diag(Ī) ln Ī

)
| S̄〉.

Avec la matrice A donnée dans cette partie, nous avons (−A−1) e1 � 0.

En se référant à la section (6.2.3.3), on a Ī � 0.

Puisque S̄ � 0, alors l’hypothèse B > 0 implique BT S̄ > 0. La matrice A étant une

matrice de Metzler stable −A−1 > 0, nous pouvons conclure que : −(A−1)T BT S̄ > 0. Par

ailleurs, la fonction V (S, I) est positive et le point d’équilibre endémique vérifie V (S̄, Ī) =

0.

La dérivée de V̇EE le long des trajectoires du système (6.18) est donnée par :

V̇EE = 〈Λ |1〉 − 〈diag(µS)S |1〉 − 〈diag(BI)S |1〉
−〈S̄ | diag(S)−1 Λ〉+ 〈S̄ |µS〉+ 〈S̄ | diag(S)−1 diag(BI)S〉
+〈BI |S〉 〈B(−A−1) e1 | S̄〉+ 〈B(−A−1)AI | S̄〉

−〈B I |S〉 〈B(−A−1)
Ī1

I1

e1 | S̄〉 − 〈B(−A−1) diag(Ī)diag(I)−1AI | S̄〉 .

on peut aussi écrire

V̇EE = 〈Λ |1〉 − 〈S |µS〉 − 〈BI |S〉 − 〈 diag(S)−1S̄ |Λ〉+ 〈µS | S̄〉+ 〈S̄ |B I〉
+〈B I |S〉 〈B(−A−1) e1 | S̄〉 − 〈B I | S̄〉

−〈B I |S〉 〈B(−A−1)
Ī1

I1

e1 | S̄〉 − 〈B(−A−1) diag(Ī)diag(I)−1AI | S̄〉 .
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En utilisant la relation (6.10), nous avons 〈B(−A−1) e1 | S̄〉 = 1, d’où :

V̇EE = 〈Λ |1〉 − 〈S |µS〉 − 〈 diag(S)−1S̄ |Λ〉+ 〈S̄ |µS〉

− Ī1

I1

〈B I |S〉 −
〈
B(−A−1) diag(Ī)diag(I)−1AI | S̄

〉
.

Comme Λ = diag(µS) S̄ + diag(B Ī) S̄, nous avons alors

V̇EE = 〈S̄ |µS〉+ 〈B Ī | S̄〉 − 〈S |µS〉
−〈 diag(S)−1S̄ | diag(µS) S̄〉 − 〈 diag(S)−1S̄ | diag(B Ī) S̄〉+ 〈S̄ |µS〉

− Ī1

I1

〈B I |S〉 −
〈
B(−A−1) diag(Ī)diag(I)−1AI | S̄

〉
.

V̇EE =
〈
diag(µS) S̄ |2− diag(S)−1S̄ − diag(S̄)−1 S

〉
+〈B Ī | S̄〉 − 〈 diag(S)−1S̄ | diag(B Ī) S̄〉

− Ī1

I1

〈B I |S〉 −
〈
B(−A−1) diag(Ī)diag(I)−1AI | S̄

〉
.

L’inégalité de la moyenne arithmétique et géométrique, nous permet de dire que :〈
diag(µS) S̄ |2− diag(S)−1S̄ − diag(S̄)−1 S

〉
est définie négative.

Ainsi, pour montrer que V̇EE est définie négative, il suffit d’établir que le reste de l’ex-

pression de V̇EE, les quatre autres expressions sont, chacune, définies négatives. Pour cela,

nous posons :

Ω1 = 〈B Ī | S̄〉 =
n∑
i=1

m∑
j=1

βijS̄i Īj .

Ω2 = −〈 diag(S)−1S̄ | diag(B Ī) S̄〉 = −
∑n

i=1

∑m
j=1 βijS̄i Īj

S̄i

Si
.

Ω3 = − Ī1

I1

〈B I |S〉 = −
n∑
i=1

βi1 S̄iĪ1
Si
S̄i
−

n∑
i=1

m∑
j=2

βijS̄i Īj
Si
S̄i

Ī1

I1

Ij
Īj

et enfin la dernière expression :

Ω4 = −
〈
B(−A−1) diag(Ī)diag(I)−1AI | S̄

〉
.
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nous avons, pour k = 1, · · ·m− 1, les relations Aek = −αk ek + γk ek+1 et pour le dernier

indice Aem = −αm em. D’où,

Ω4 = −
m∑
k=1

Ik

〈
B(−A−1) diag(Ī)diag(I)−1Aek | S̄

〉
=

m∑
k=1

αk Īk

〈
B(−A−1) ek | S̄

〉
−

m−1∑
k=1

Ik γk
Īk+1

Ik+1

〈
B(−A−1) ek+1 | S̄

〉
.

Soit uk définie par : uk = 〈B(−A−1) ek | S̄〉. Il en découle les relations suivantes :

γk−1 uk Īk−1 =
m∑
j=k

Īj 〈B ej | S̄〉, k = 2, · · · ,m. (6.19)

Nous montrerons cette relation (6.19) à la fin de cette partie, nous l’admettons pour le

moment.

Si nous tenons compte du fait que : αk Īk = γk−1 Īk−1 pour k = 2, · · · ,m et α1 Ī1 =

〈BĪ | S̄〉, nous obtenons :

Ω4 =
m∑
k=1

(
m∑
j=k

Īj 〈B ej | S̄〉

)
−

m−1∑
k=1

Ik
Īk

Īk+1

Ik+1

(
m∑

j=k+1

Īj 〈B ej | S̄〉

)
,

=
n∑
i=1

m∑
j=1

j βijS̄i Īj −
n∑
i=1

m∑
j=2

βijS̄i Īj

(
j−1∑
k=1

Ik
Īk

Īk+1

Ik+1

)
.

alors nous avons la somme de ces quatre expressions :

4∑
i=1

Ωi =
n∑
i=1

βi1 S̄i Ī1

[
2− S̄i

Si
− Si
S̄i

]

+
n∑
i=1

m∑
j=2

βij S̄i Īj

[
j + 1− S̄i

Si
− Si
S̄i

Ī1

I1

Ij
Īj
−

j−1∑
k=1

Ik
Īk

Īk+1

Ik+1

]
.

En utilisant l’inégalité de la moyenne arithmétique et géométrique, on a :[
2− S̄i

Si
− Si
S̄i

]
≤ 0

et [
j + 1− S̄i

Si
− Si
S̄i

Ī1

I1

Ij
Īj
−

j−1∑
k=1

Ik
Īk

Īk+1

Ik+1

]
≤ 0

d’où

V̇EE ≤ 0
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6.3. STABILITÉ GLOBALE DE L’ÉQUILIBRE ENDÉMIQUE D’UN
MODÈLE AVEC UNE SUSCEPTIBILITÉ DIFFÉRENTIELLE ET UNE

INFECTIVITÉ EN PROGRESSION DE STADES

A l’équilibre endémique, nous avons les relations suivantes à partir du système :

〈Λ |1〉 − 〈 diag(µS)S̄ |1〉+ 〈AĪ |1〉 = 0

Puisque 〈AĪ |1〉 = −γmĪm − 〈µI Ī |1〉, et en utilisant la définition de µ0 du Lemme (5),

nous avons 〈 S̄ |1〉 + 〈 Ī |1〉 ≤ 〈Λ |1〉
µ0

ce qui prouve que l’équilibre endémique (S̄, Ī) est

dans Kε pour tout ε ≥ 0.

Soit L, le plus grand sous ensemble invariant de Kε, contenant V̇EE = 0. Tout élément

(S, I) de L doit satisfaire :〈
diag(µS) |2− diag(S)−1S̄ − diag(S̄)−1 S

〉
= 0.

Puisque µS � 0, alors nous avons S = S̄, et il est dans l’ensemble L, il en découle que

diag(BI) S̄ = Λ − diag(µS) S̄. D’autre part, nous avons diag(BĪ) S̄ = Λ − diag(µS) S̄.

Alors dans L, la dynamique de I est définie par :

İ = 〈B Ī | S̄〉 − AI

La matrice A étant une matrice de Metzler stable, alors le plus grand ensemble invariant

L est réduit à {(S̄, Ī)}. Avec le principe d’invariance de Lasalle, ceci prouve la stabilité

globale de l’équilibre endémique (S̄, Ī) qui est dans l’intérieur de Kε [11,71]. La stabilité

asymptotique globale de l’équilibre endémique dans Rn
+ ×Rm

+ \ {(S, 0)} vient du fait que

Kε est un ensemble absorbant et en dehors de la variété stable de DFE la frontière de

l’orthant positif n’est pas invariant par le système (6.18).

Pour terminer la preuve, nous allons établir la relation de l’égalité (6.19). Pour ce faire,

nous procédons par récurrence sur k.

• Pour k = 2, en utilisant l’égalité : 〈B (−A−1) ei | S̄〉 = 1, nous avons les égalités sui-

vantes :

Ae1 = −α1 e1 + γ1 e2

−e1 = −α1 (−A−1) e1 + γ1 (−A−1) e2

γ1 Ī1 〈B (−A−1) e2 | S̄〉 = α1 Ī1 〈B (−A−1) e1 | S̄〉 − Ī1 〈B (−A−1) e1 | S̄〉

γ1 u2 Ī1 = α1 Ī1 − Ī1

γ1 u2 Ī1 = 〈B (−A−1) e1 | S̄〉 Ī1 − Ī1 +
m∑
i=2

〈B (−A−1) ei | S̄〉

γ1 u2 Ī1 =
m∑
i=2

〈B (−A−1) ei | S̄〉
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• Supposons maintenant que la relation est vraie pour k−2, c’est-à-dire que, nous avons :

γk−2 uk−1 Īk−2 =
m∑

j=k−1

〈B (−A−1) ei | S̄〉

alors, on a la relation suivante :

Aek−1 = −αk−1 ek−1 + γk−1 ek

−ek−1 = −αk−1 (−A−1) ek−1 + γk−1 (−A−1) ek

γk−1 Īk−1 〈B (−A−1) ek | S̄〉 = αk−1 Īk−1 〈B (−A−1) ek−1 | S̄〉

− Īk−1 〈B (−A−1) ek−1 | S̄〉

γk−1 uk Īk−1 = αk−1 Īk−1 uk−1 − Īk−1 〈B (−A−1) ek−1 | S̄〉

γk−1 uk Īk−1 = γk−2 Īk−2 uk−1 − Īk−1 〈B (−A−1) ek−1 | S̄〉

γk−1 uk Īk−1 =
m∑

j=k−1

〈B (−A−1) ei | S̄〉 − Īk−1 〈B (−A−1) ek−1 | S̄〉

γk−1 uk Īk−1 =
m∑
j=k

〈B (−A−1) ei | S̄〉

Ce qui montre que la relation est vraie pour k − 1, donc on a bien la relation :

γk−1 uk Īk−1 =
m∑
j=k

〈B (−A−1) ei | S̄〉

Ξ

6.4 Conclusion

Nous avons étudié un modèle général dans lequel, on considère une différentiabilité au

niveau des susceptibles de même qu’au niveau dans les infectieux. Comme on a montré,

l’existence et l’unicité de l’équilibre endémique il est souvent difficile de se prononcer sur

la stabilité de l’équilibre endémique des systèmes dans le cas général. Par contre, on peut

parfois montrer la stabilité de l’équilibre endémique pour des cas particuliers en utilisant

la structure des matrices de transmission comme nous l’avons fait dans la dernière partie

de ce chapitre. A défaut de cela, on peut faire des simulations numériques pour avoir une

idée sur la stabilité, ce que nous allons faire dans le chapitre suivant pour les modèles de

l’hépatite B.
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en Afrique subsaharienne (Sénégal).



Chapitre 7

Application des modèles à
l’hépatite B et simulations
numériques

”Donnez-moi cent paramètres et
je vous ferai un éléphant.
Donnez-m’en un cent-unième et
je lui ferai remuer la queue !”

éléphant de Hadamard

Dans ce chapitre, nous analysons numériquement les modèles formulés dans la section

(5.1, 5.6). Nous proposons une estimation des différents paramètres collectés du modèle

dans la littérature et provenant du programme de lutte contre l’hépatite B au Sénégal.

Ensuite, nous utilisons ces données pour vérifier la validité des résultats théoriques ob-

tenus avec l’étude du système général (6.1). Nous concluons par le bilan des simulations

numériques.

7.1 Introduction

Tout modélisateur se retrouve à un moment ou un autre de son analyse face à une

série de données correspondant à un certain échantillonnage de grandeurs qui varient de

façon continue ou non dans l’espace et/ou dans le temps. Dans de nombreux domaines

(scientifiques, économiques, épidémiologiques...), on a besoin de connâıtre certaines ca-

ractéristiques d’une population. Mais, en règle générale, il n’est pas facile de les évaluer

du fait de l’effectif trop important des populations concernées. Que ce soit pour réaliser

l’analyse de ces données, pour les représenter graphiquement ou pour ajuster un mo-
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dèle numérique, il est alors souvent nécessaire de les interpoler pour en reconstituer les

variations continues.

De nombreux modèles ont été publiés pour évaluer l’épidémiologie et les stratégies

de contrôle de l’hépatite B. Ces modèles reposent sur des hypothèses fortes concernant

les paramètres de l’histoire naturelle de l’hépatite B, ses modes de transmission et sur

l’efficacité des mesures de contrôle. En complément des travaux de modélisation, il est

important de documenter ces paramètres dans la vie réelle, via des études observationnelles

et des stratégies visant à mesurer, par exemple, l’incidence du virus de l’hépatite B, le

pronostic suivant l’âge d’infection vers un état d’infection chronique, le taux de guérison,

etc.

7.2 Identification de paramètres

Le Sénégal fait partie de la liste des pays de haute endémicité pour le portage du

virus de l’hépatite B. La prévalence du portage du virus de l’hépatite B au niveau de la

population sénégalaise est estimée à 17% selon certains professionnels de la santé publique.

Les responsables du programme estiment que 85% de la population ont déjà été en contact

avec le virus de l’hépatite B.

Le taux brut de natalité de la population Sénégalaise selon l’ANSD 1 est estimé à 40, 6

pour mille habitants. La mortalité infantile est estimée à 58, 3 pour mille pour l’année

2008 et la mortalité générale à 10, 72 pour mille habitants.

Dans la période 2001-2005, 61 bébés vivants sur 1000 sont décédés avant d’atteindre

leur premier anniversaire, dont 35 pour mille entre 0 et 1 mois et 26 pour mille entre 1 et

12 mois. Parmi les enfants âgés d’un an, 64 pour mille n’ont pas atteint leur cinquième

anniversaire. Durant cette même période, le risque global de décès entre la naissance et le

cinquième anniversaire est estimé à 121 sur 1000, soit plus d’un enfant sur dix [97].

Les indicateurs de mortalité présentés ici sont calculés à partir d’informations sur l’histo-

rique des naissances recueillies. Au cours de leurs enquêtes, ont été enregistrées toutes les

naissances vivantes de la femme et certaines de leurs caractéristiques, notamment le sexe,

l’âge, l’état de survie, ainsi que l’âge au décès pour les enfants morts. L’âge au décès est

déterminé de la manière la plus précise possible (au jour près pour les décès de moins d’un

mois, au mois près pour ceux de moins de deux ans, et en années pour les décès survenus

1. Agence Nationale de la Statistique et de la Démographie Août 2007
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Table 7.1 – Mortalité infantile dans la période 2001-2005

Tranches d’âges Taux de mortalité sur 1000 enfants de même tranches d’âges Source
moins de 1 mois 35 [97]
1 mois à 1 ans 26 [97]
1 ans à 5 ans 64 [97]

supérieur à 5 ans 10,72 [21]

Source : Enquête démographique et de santé Sénégal 2007 et ANSD

à deux ans ou plus) pour le calcul exact de ces indicateurs.

Les professionnels de santé ont pu évaluer le risque d’évolution vers un état chronique

suivant l’âge d’infection. Cette évaluation se résume dans le graphe suivant :

Source : CDC(Center of Disease Control) et A. S. Diallo

Figure 7.1 – Risque d’évolution vers un portage chronique suivant l’âge d’infection.
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SIMULATIONS NUMÉRIQUES

Avec ce graphe, on voit que l’estimation de la probabilité de passage à la chronicité

décrôıt avec l’âge. Par ailleurs, on voit que la probabilité de passage à une hépatite chro-

nique est 9 fois supérieure pour les nouveaux-nés à celle des enfants âgés de plus de 5

ans.

Nous avons eu à collecter un ensemble paramètres de notre modèle de transmission de

l’hépatite B, à travers la littérature, portant sur des études de la sous région de l’Afrique

de l’ouest, correspondant à une zone de haute transmission de même caractéristique que

le Sénégal. Les paramètres recueillis sont présentés dans le tableau suivant :

Table 7.2 – Quelques paramètres recueillis dans la littérature

paramètres valeur estimée
force d’infection relative des chroniques/infections 0.16

taux de passage des latents 6 par ans
taux de guérison des infections aiguë 4,8 par an

taux de guérison des infections chroniques 0.023 par an (durée 2.5 par mois)
force d’infection âge 0-1 an 0.159
force d’infection âge 1-5 ans 0.144
force d’infection âge 5-10 ans 0.116
force d’infection âge 15-80 ans 0.030

Source : CDC

Pour ces paramètres, les données de la littérature montrent que la force d’infection est

décroissante suivant l’âge. En effet, on voit que la force d’infection des enfants qui sont

âgés de 0 à 1 an est de 0.159, et va décrôıtre à 0.144 pour les enfants qui sont âgés de 1 à

5 ans et ainsi de suite.

Pour nos simulations, nous avons besoin de la distribution de l’infection de l’hépatite B

dans la population Sénégalaise. En exploitant les données récentes et les publications sur

l’hépatite B, nous avons fait les estimations qui se trouvent dans le tableau suivant.

L’estimation de cette distribution de portage de l’hépatite B s’est faite sur des tranches

d’âges qui ne sont pas uniformes. Ceci est justifié par les besoins de nos modèles de la

transmission de l’hépatite B avec ou sans transmission verticale. Une enquête réalisée chez

2962 enfants sénégalais âgés de moins de 5 ans montre que 38% d’entre eux présentent la

présence des marqueurs du virus de l’hépatite B et que 59,4% d’entre eux ont au moins

un de ces marqueurs [98].
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application à la transmission du virus de l’hépatite B
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Table 7.3 – Prévalence de virus de l’hépatite B dans la population

Tranches d’âges Taux de prévalence de l’antigène AgHBs
moins de 1 an 11.5 %

2 à 4 ans 12 à 14 %
4 à 6 ans 14 %
6 à 8 ans 14 à 16 %
8 à 10 ans 12 à 16 %
11 à 14 ans 11 %
15 à 19 ans 11 à 12 %
20 à 24 ans 11.5 %
25 à 29 ans 11.5 %
29 à 34 ans 8 %
35 à 39 ans 6 %

plus de 40 ans 5%

Source : littérature

7.3 Simulations

Dans cette partie, nous envisageons différents scénarios pour voir l’impact de la trans-

mission verticale ou périnatale dans la transmission du virus de l’hépatite B dans une zone

de haute endémicité comme l’Afrique subsaharienne en général et le Sénégal en particulier.

7.3.1 Effet de la transmission périnatale

Pour ce cas, nous simulons le modèle sans transmission verticale en faisant varier les

coefficients de transmission de la matrice B, qui caractérisent la transmission périnatale

dans le modèle. Les paramètres correspondant à la transmission périnatale sont représentés

par les coefficients de contacts des compartiments S1, S2, S3, S4, correspondant aux

enfants âgés de moins de cinq ans.
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0 50 100 150 200 250 300 350 400 450 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

taux de prevalence des infectes et de chroniques

/mois

ta
ux

 d
e 

pr
ev

al
en

ce
 

Infectes
Chroniques

Figure 7.2 – Prévalence des infectés et des chroniques du modèle sans transmission
verticale. cas : transmission périnatale normale

• La simulation du modèle sans la transmission verticale donne un état d’équilibre

endémique correspondant à 19% de prévalence de la maladie (infectés et chroniques) de

la population générale. Les simulations que l’on a faite, indique que cet état d’équilibre

est atteint au bout de 230 pas de temps qui est égal à 20 ans car le pas de temps est de

un mois.
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Figure 7.3 – Prévalence des infectés et des chroniques du modèle sans transmission
verticale. cas : Transmission périnatale normale amoindrie de 0.09

• La diminution légère, d’amplitude maximale de 0.09 des coefficients correspondant à

la transmission périnatale, donne un état d’équilibre endémique correspondant à une pré-

valence de 9% de malades de la population. Avec le même état initial que précédemment,

la population se stabilise à son point d’équilibre au bout de 175 mois, environ 15 ans.
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Figure 7.4 – Prévalence des infectés et des chroniques du modèle sans transmission
verticale. cas : Transmission perinatale normale + amplifiée de 0.09

• Une augmentation légère, d’amplitude maximale de 0.09 des coefficients de la matrice

B correspondant à la transmission périnatale, fait passer l’état d’équilibre endémique, au

bout de 19 ans, de 20% à 26% de prévalence de malades dans la population générale.

Avec la variation de ces paramètres qui caractérisent la transmission périnatale, nous

voyons que celle-ci jouerait un rôle important sur la prévalence de la maladie dans la

population générale ; sur le temps au bout duquel, nous obtenons l’état d’équilibre endé-

mique.

7.3.2 Effet de la transmission verticale

Pour cette partie, l’objectif est de mesurer l’incidence de la transmission verticale

dans le maintien de l’endémicité de l’épidémie du virus de l’hépatite B. Pour ce faire,

nous simulons le modèle avec transmission verticale en faisant varier la probabilité de

cette forme de transmission. Nous commençons par le cas pvert = 0, qui correspond au

modèle sans transmission verticale, puis nous faisons varier la probabilité de transmission

verticale.
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Figure 7.5 – cas : prévalence des infectés et des chroniques du modèle sans transmission
verticale (pvert = 0)

• En prenant pvert = 0, ce qui correspond au modèle sans transmission verticale, nous

avons un état d’équilibre endémique correspondant à une prévalence de 19% de malades

(infectés et chroniques) dans la population totale.
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Figure 7.6 – Prévalence des infectés et des chroniques du modèle avec transmission
verticale (pvert = 0.2).

• Si nous faisons varier pvert de 0 à 20%, nous observons un état d’équilibre endémique

de la maladie au bout de 19 ans ; une prévalence de malades (infectés et chroniques) de

la population totale qui passe de 19% à 21.5%.
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Figure 7.7 – Prévalence des infectés et des chroniques du modèle avec transmission
verticale (pvert = 0.4).

• Lorsque pvert passe de 0 à 40%, le temps au bout duquel on a l’état d’équilibre endémique

est toujours de 19 ans ; la prévalence de malades (infectés et chroniques) dans la population

totale passe de 19% à 24.5%. De ces simulations, il ressort que la transmission verticale est

un facteur important du maintien de l’endémicité dans les zones démunies de programme

de lutte contre la transmission mère-enfant.

7.3.3 Effet des transmissions verticale et périnatale

Simulons le modèle avec transmission verticale, en faisant varier simultanément les

coefficients de la transmission périnatale et la probabilité de transmission verticale afin

de mesurer l’incidence des transmissions verticale et périnatale.
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Figure 7.8 – Prévalence des infectés et des chroniques du modèle avec transmission
verticale (pvert = 0.1) et une petite perturbation positive sur la transmission périnatale.

• Une transmission verticale avec une valeur de pvert à 10%, associée à une légère aug-

mentation des coefficients de la matrice B correspondant à la transmission périnatale, fait

passer à l’état d’équilibre endémique définie dans la section (7.3.2) de la prévalence des

malades (infectes et chroniques) de 19% à 31% de la population.

A la lumière de ces résultats, on déduit que le contrôle de l’épidémie de l’hépatite B passe

par une diminution, voire une éradication de la transmission verticale et de la transmission

périnatale.

7.4 Conclusion

Dans cette partie, nous avons fait varier les différents paramètres des transmissions

verticale et/ou périnatale pour voir leurs incidences sur le pronostic de l’évolution de

l’épidémie de l’hépatite B.

En faisant varier la probabilité pvert, qui représente la transmission verticale, on re-
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marque que lorsque pvert augmente, on a la proportion de chroniques de la population

générale qui augmente à l’équilibre endémique, de même que la prévalence de malades

(infectés et chroniques). Cela explique l’importance de la transmission verticale dans la

transmission du virus de l’hépatite B.

Une variation des paramètres d’infection suivant l’âge des susceptibles montre que si

la transmission périnatale est faible, la proportion de chroniques diminue à l’équilibre

endémique ; la prévalence de malades dans la population diminue aussi. La corrélation

entre l’âge d’infection, la proportion de chroniques et le taux de prévalence montre que

la transmission périnatale est un facteur important dans le maintien de l’endémicité de

l’épidémie de l’hépatite B dans une zone donnée.

Nos simulations montrent que la transmission verticale, contrairement à la transmis-

sion périnatale, ne change pas le temps au bout duquel l’équilibre endémique est atteint.

La combinaison des transmissions verticale et périnatale conduit à une augmentation

significative (de 20% à 31%) de la prévalence de malades. De ce fait, avec nos données que

nous avons eu à utiliser dans nos simulations, nous pouvons suggérer pour le contrôle de

la transmission du virus de l’hépatite B, une bonne mâıtrise de la transmission verticale

et périnatale mais aussi de la transmission horizontale.
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Chapitre 8

Conclusion et perspectives

Les travaux exposés dans cette thèse ont pour objet la modélisation et l’analyse de la

transmission de l’hépatite B dans une zone de haute endémicité en l’occurrence l’Afrique

subsaharienne de façon globale, le Sénégal en particulier. Nous avons essayé de cerner

l’incidence des transmissions verticale et périnatale de la maladie afin d’aider à améliorer

les politiques de santé publique pour la lutte et la prévention de l’hépatite B dans cette

zone. Nous avons eu à faire une synthèse des différents travaux sur l’épidémiologie et sur

la modélisation de la transmission du virus de l’hépatite B. C’est ainsi que nous avons pu

identifier, dans les publications [17, 18, 24, 91, 95, 96, 112] sur la transmission de l’hépatite

B, deux éléments déterminants que sont la susceptibilité différentielle et les transmissions

verticale et périnatale, qui ne sont pas pris en compte dans les modèles précédents.

Pour ce qui concerne les publications sur la modélisation du virus de l’hépatite B,

les différents auteurs ont négligé un facteur important, à savoir l’évolution de la maladie

suivant l’âge d’infection.

Notre effort de modélisation, nous a conduit à étudier, des modèles à susceptibilité

différentielle et à infectivité en progression de stades, mais aussi des modèles à susceptibi-

lité et infectivité différentielles. Ces modèles sont applicables aux maladies qui changent

d’infectivité suivant leurs périodes infectieuses telle que le VIH Sida ou l’hépatite B qui

sont des maladies avec des porteurs asymptomatiques. L’infectivité différentielle vient du

fait que la population infectée est subdivisée en différents sous groupes suivant leur taux

d’infectivité. La susceptibilité différentielle est justifiée par le fait que la population de

susceptibles est divisée en tranches d’âges. Pour ces deux modèles, qui ont fait l’objet de

deux publications dans MMNP 1 et JMB 2, nous avons pu montrer la stabilité globale
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de l’équilibre sans maladie (DFE) si le nombre de reproduction de base R0 est inférieur à

1 et l’existence d’un point d’équilibre endémique si R0 est supérieur à 1.

Pour tenir compte de ces insuffisances notées dans les modèles du chapitre de l’état de

l’art et aussi de l’épidémiologie actuelle de la transmission du virus de l’hépatite B, nous

avons formulé deux modèles mathématiques déterministes pour décrire la dynamique de

transmission du virus de l’hépatite B. Un premier modèle sans transmission verticale, qui

est justifié par la position de l’Organisation Mondiale de la Santé (OMS) qui préconise

que la transmission verticale du virus de l’hépatite B n’a pas trop d’incidence au niveau de

la zone de haute endémicité Afrique contrairement au continent Asiatique. Le deuxième

modèle, avec transmission verticale est justifié par la position des professionnels de Santé

de la lutte contre transmission du virus de l’hépatite B au Sénégal. Avec ces modèles, nous

avons divisé la population de susceptibles en cinq compartiments pour prendre compte

l’âge d’infection. Dans ces modèles, la population qui est en contact avec le virus est divisée

en quatre compartiments, deux compartiments de latents (EI , EC) et deux compartiments

d’infectieux (I, C).

L’élaboration des ces modèles de transmission de l’hépatite B, nous a conduit à des

simulations, justifiées par le fait que dans nos modèles généraux, nous avons seulement

montré l’existence de l’équilibre endémique. Dans ces différents cas étudiés, la stabilité

de l’équilibre endémique n’a pu être établie. Pour mettre en oeuvre les simulations numé-

riques, une étape préliminaires et nécessaire, nous a conduit à faire une identification des

différents paramètres de nos modèles. Nous avons rencontré pas mal de problèmes dans

cette identification, d’une part en raison de la structure des données disponibles, mais

aussi en raison du manque d’information concernant certains paramètres.

Les résultats obtenus lors des simulations numériques des modèles avec les jeux de pa-

ramètres utilisés dans les modèles sans transmission verticale ou périnatale, nous montrent

que la transmission verticale ou périnatale joue un rôle dans le maintien de la haute endé-

micité. Notamment, dans les zones où il n’y pas de protocoles de lutte contre la transmis-

sion mère-enfant et aussi de la transmission durant la petite enfance en milieu familial et

scolaire. Effectivement, ces observations suggèrent que le contrôle de l’épidémie du virus

de l’hépatite B, dans les zones comme l’Afrique subsaharienne en général, le Sénégal en

particulier, se fera avec des protocoles de vaccination et de lutte contre deux modes de

transmission.
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En perspective pour ce travail, nous pensons pouvoir intégrer dans l’élaboration de la

modélisation une vaccination, car on note souvent des politiques de vaccination, même si

c’est parfois ponctuel au niveau du Sénégal, pour en évaluer leur impact pour le contrôle

de la transmission de la maladie mais aussi la prévention et la surveillance. Il serait aussi

intéressant de voir le comportement de nos modèles et faisant varier la population totale

car dans la réalité la démographie n’est pas constante.

Par ailleurs, avec une bonne collaboration avec les professionnels de santé, nous pensons

pouvoir concevoir, avec nos modèles des outils pour fournir des informations importantes

en matière de santé publique pour le contrôle de l’épidémie du virus de l’hépatite B.

Enfin il reste à étudier mathématiquement les modèles généraux avec une transmission

verticale.
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application à la transmission du virus de l’hépatite B
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Annexe A

Quelques outils Mathématiques

La modélisation épidémiologique conduit à l’analyse des systèmes dynamiques. Ces sys-

tèmes pouvant être différentiels, discrets ou à dérivées partielles. Les systèmes différentiels

étudiés dans cette thèse sont en général non linéaires. La plupart des résultats que nous

allons énoncés, sont des résultats classiques liés au systèmes dynamiques [10,11,71,103].

A.1 Notations et pré-requis

L’espace vectoriel ordonné Rn

De façon standard si x ∈ Rn est un vecteur, on désigne par xi sa i-ème composante.

Définition 1 : On définit un ordre sur Rn par x ≥ y si pour tout indice i on a l’inégalité

xi ≥ yi

Il est facile de voir que cette relation est une relation d’ordre qui fait de Rn est espace

vectoriel ordonné.

On note Rn
+ l’orthant positif. On a l’équivalence x ≥ y et x− y ∈ Rn

+, en particulier

x ≥ 0 ⇐⇒ pour tout indice i, on a xi ≥ 0

La notation x > 0 signifie x ≥ 0 et x 6= 0

On notera x� 0 si x est dans l’intérieur de Rn
+ soit

x� 0 ⇐⇒ pour tout indice i, on a xi > 0
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De même on étend ces notations aux matrices en assimilant l’espace vectoriel des matrices

M(n, n,R) avec Rn2
. On note A ≥ B si pour tout coupe d’indices (i, j) on a ai,j ≥ bi,j et

l’on a l’analogue pour A > B et A� B.

Pour cet ordre sur Rn on définit l’intervalle fermé

[a,b] = {x ∈ Rn | a ≤ x ≤ b} = [a1,b1]× · · · × [an,bn]

Cette notation est utilisée pour ne pas confondre avec le segment

[a, b] = {ta+ (1− t)b | 0 ≤ t ≤ 1}

On définit de même l’intervalle ouvert

]]a,b[[= {x ∈ Rn | a� x� b} =]a1,b1[× · · ·×]an,bn[

Si E et F sont des sous-ensembles de Rn, on définit classiquement

R+E = {λx | λ ∈ R+ x ∈ E}

et

E + F = {x+ y | x ∈ E y ∈ F}

On notera 〈x | y〉 le produit scalaire de deux vecteurs. Si A est une matrice AT désignera

sa transposée. Si l’on identifie les vecteurs de Rn et les vecteurs colonnes n × 1, on a

l’expression du produit scalaire 〈x | y〉 = xT y

On notera par ei le i-ème vecteur de la base canonique de Rn.

A.2 Stabilité et point d’équilibres

A.2.1 Généralités et définitions

Définition 2 :

Un point x0 est appelé point d’équilibre si pour tout t, on a

f(t, x0) = x0
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Si f est localement Lipschitz alors pour tout t ∈ R, x(t, t0, x0) = x0.

On dit aussi que x0 est un point singulier ou encore un point critique.

On considérera maintenant le cas des systèmes autonomes.

Définition 3 : [stabilité]

On dit que x0, point d’équilibre du système ẋ = f(x) est stable (au sens de Lyapunov) si

pour tout ouvert U contenant x0, il existe un ouvert V de conditions initiales, V ⊂ U tel

que pour tout y ∈ V et pour tout t ≥ 0, on ait : x(t, y) ∈ U

Définition 4 : [attractivité]

On dit que x0 est attractif sur l’ouvert V si pour tout y ∈ V

lim
t→+∞

x(t, y) = x0

Définition 5 : [stabilité asymptotique]

On dit que x0 est asymptotiquement stable (localement) s’il est stable et s’il existe un

ouvert V de x0 pour lequel il est attractif.

Remarque 5 :

Attention l’attractivité n’implique pas la stabilité. Cependant c’est vrai pour les systèmes

linéaires ẋ = Ax.

A.2.2 Propriétés dynamiques

Soit Ω un sous ensemble de Rn. Considérons l’équation différentielle autonome définie par

ẋ = f(x) (A.1)

Définition 9 : (ensemble absorbant)

Supposons que le système (A.1) est tel que f est de classe C1 et que Ω est un ouvert de

Rn. Supposons de plus que cette équation admet des solutions quel que soit t ≥ 0. Un

voisinage D de Ω est dit absorbant suivant (A.1) si tout voisinage borné de K de Ω

satisfait f(t,K) ⊂
◦
D pour tout t ≥ 0(resp. t ≤ 0).

On considère maintenant que le système autonome (A.1) est de classe C1 et qu’il satisfait

f(t,K) ⊂
◦
D. On peut, quitte à reparamétrer les trajectoires considérer qu’il est complet.

Cela signifie que l’on peut trouver une fonction ϕ(x) telle que ẋ = ϕ(x) f(x) soit complet.

107 Etude de quelques modèles épidémiologiques :
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en Afrique subsaharienne (Sénégal).
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Définition 6 : [ensemble invariant]

On dit qu’un ensemble M est positivement invariant pour le système ẋ = f(x) si pour

tout x0 ∈M on a x(t, x0) ∈M pour tout t ≥ 0

On définit de façon analogue négativement invariant. On dit qu’un ensemble est invariant

s’il est positivement et négativement invariant.

Définition 7 : [orbite]

On appelle orbite positive γ+(x0) issue de x0 l’ensemble

{x(t, x0) | t ≥ 0}

L’orbite est définie par :

γ(x0) = {x(t, x0) | t ∈ R}

Un ensemble est positivement invariant si γ+(M) ⊂ M , invariant s’il contient l’orbite de

chacun de ses points.

Définition 8 :

Un point p est appelé point ω-limite de l’orbite γ(x0), s’il existe une suite strictement

croissante de réels t1, . . ., tk telle que

lim
k→+∞

x(tk, x0) = p

Cette définition ne dépend que de l’orbite γ et non de x0.

Théorème 12 :

Si l’orbite positive γ+(x0) est bornée alors l’ensemble des points ω-limites, ω(γ) est un

ensemble non vide, compact, connexe, invariant.

A.2.3 Poincaré-Bendixson

Théorème 13 : [Poincaré-Bendixson]

On considère l’équation ẋ = f(x) dans R2. On suppose que γ+ est une orbite positive

bornée et que ω(γ+) ne contient pas de points singuliers (équilibres). Alors ω(γ+) est une

orbite périodique. Si ω(γ+) 6= γ+ cette orbite périodique s’appelle un cycle-limite.
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A.2.4 Linéarisation

Définition 9 :

Soit un système autonome ẋ = f(x) de classe C1 et un point d’équilibre x0, on appelle

système linéarisé en x0 le système linéaire

ẋ = Df(x0)x

où Df(x0) est la dérivée de f en x0.

Théorème 14 : [Poincaré-Lyapunov]

On considère le système C1, ẋ = f(x) et x0 un point d’équilibre.

1. Si Df(x0) a toute ses valeurs propres à partie réelle strictement négative, alors x0

est asymptotiquement stable.

2. Si Df(x0) a (au moins) une valeur propre à partie réelle strictement positive alors

x0 est instable.

A.3 Matrices de Metzler

Définition 10 : [Matrice de Metzler]

Une matrice dont les termes hors de la diagonale sont positifs, i.e. si i 6= j alors aij ≥ 0

est appelée une matrice de Metzler.

Le terme de la diagonale est donné par :

DA(i, i) = −f0i −
∑
j 6=i

fji ≤ 0 (A.2)

Autrement dit le terme A(i, i) est obtenu en retranchant la somme des termes de la colonne

i au terme −f0i. La matrice A a la propriété que la somme de chaque colonne est négative.

Une matrice de Metzler, qui en plus vérifie que la somme des termes de chaque colonnes

est négative (donc nécessairement la diagonale est négative) est dite matrice compar-

timentale. [57]

On va montrer que les matrices de Metzler, considérées comme un champ de vecteurs

linéaire, laissent « dynamiquement » invariant l’orthant positif et que cela les caractérise.

Plus précisément, on va étudier les systèmes linéaires ẋ = Ax et chercher parmi ces

systèmes ceux qui laissent positivement invariant l’orthant positif.
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Théorème 15 : Le système linéaire ẋ = Ax laisse invariant l’orthant positif si et seule-

ment si A est une matrice de Metzler.

Preuve :

La condition est suffisante. En effet le système s’écrit

ẋi = aii xi +
∑
j 6=i

ai,j xj

Sur la face xi = 0 de l’orthant on a ẋi = D
∑

j 6=i ai,j xj ≥ 0, comme A est Metzler et

puisque sur la face de l’orthant xj ≥ 0. Le champ est bien rentrant ou tangent. Aucune

solution ne peut sortir par cette face.

Réciproquement sur toute face de l’orthant le champ Ax doit soit être tangent soit pointer

vers l’intérieur de l’orthant. Sur la face Hi = {x ≥ 0 | xi = 0} on doit avoir pour tout x,

ẋi ≥ 0. Autrement dit pour tout x ∈ Rn
+ on a (Ax)i ≥ 0. En particulier, pour j 6= i on a

(Aej)i = 〈Aej | ei〉 = ai,j ≥ 0. La matrice doit être une matrice de Metzler.

Ξ

Proposition 1 :

Le système linéaire ẋ = Ax + b laisse invariant l’orthant positif si et seulement si A est

une matrice de Metzler et b ≥ 0

La démonstration est analogue à la précédente. Il est évident que la condition est suffisante

par le théorème de la barrière (17). La condition est nécessaire il suffit de regarder à

l’origine pour obtenir b ≥ 0 et suffisamment loin de l’origine pour les coefficients de A. En

effet λ ai,j + bi ≥ 0 pour tout λ ≥ 0 entrâıne ai,j ≥ 0 pour A Metzler.

Il existe un analogue discret de ce résultat. On se demande quelles sont les matrices A

telles que le système discret xn+1 = Axn laisse positivement invariant l’orthant positif. Il

est clair que l’on recherche les matrices A qui laissent invariant l’orthant ARn
+ ⊂ Rn

+. Il

est immédiat que ce sont les matrices positives A ≥ 0.

Les matrices positives laissent l’orthant positif invariant, quand on les considère comme

des opérateurs linéaires. Par conséquent, elles respectent la relation d’ordre associée. On

a ainsi démontré une relation entre l’infinitésimal et le global : les matrice de Metzler

comme champ de vecteurs, engendrent des matrices positives.
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application à la transmission du virus de l’hépatite B
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A.3.1 Matrices de Metzler-Hurwitz : Caractérisation

Le livre de Berman et Plemmons donne 50 conditions équivalentes pour qu’une matrice

de Metzler soit une matrice d’Hurwitz [10].

Théorème 16 : Si A est une matrice de Metzler, les conditions suivantes sont équiva-

lentes

1. La matrice de Metzler A est une matrice d’Hurwitz

2. La matrice de Metzler A est inversible et −A−1 ≥ 0

3. Si b est un vecteur tel que b� 0 alors il existe x� 0 tel que Ax+ b = 0

4. Il existe c > 0 tel que Ac� 0

5. Il existe c� 0 tel que Ac� 0

Preuve :

(1⇒ 2) :

On choisit une norme sur Rn. Puisque A est une matrice d’Hurwitz on sait [46] qu’il existe

une constante K telle que pour tout x0 et tout t ≥ 0 on ait

‖etA x0‖ ≤ K eα(A) t x0

Cela entrâıne que l’intégrale

∫ +∞

0

etA x0 dt

est normalement convergente pour tout x0.

On en déduit l’existence de D
∫ +∞

0
etA dt.

La matrice A étant une matrice d’Hurwitz on aD limt→+∞ e
tA = 0. Elle est aussi inversible.

On en déduit

−A−1 =

∫ +∞

0

etA dt =
[
A−1etA

]+∞
0

En utilisant que la composante (i, j) de −A−1 est donnée par 〈−A−1 ej | ei〉, on obtient

(−A−1)i,j =

∫ +∞

0

〈etA ej | ei〉 dt ≥ 0

En effet d’après le théorème (15), on a etA ej ≥ 0

111 Etude de quelques modèles épidémiologiques :
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(2⇒ 3) :

La solution de Ax + b = 0 est donnée, si A est inversible, par −A−1b. Comme b � 0 et

−A−1 ≥ 0 et qu’aucune ligne de −A−1 ne peut être identiquement nulle ; on en déduit

x = −A−1b� 0

(3⇒ 4) :

On choisit b� 0 d’après 3, il existe c > 0 tel que Ac+ b = 0 (on a affaibli la conclusion)

et donc Ac = −b� 0

(4⇒ 5) :

Il suffit de perturber 4. En effet soit ε > 0 et c1 = c+ ε
∑n

i=1 ei � 0.

Alors Ac1 = Ac+ ε
∑n

i=1Aei. Par continuité on peut choisir ε > 0 suffisamment petit tel

que Ac1 � 0.

(5⇒ 1) :

On considère sur l’orthant positif l’équation différentielle ẋ = AT x. On choisit

V (x) = 〈c | x〉

Puisque c� 0 la fonction V est définie positive sur Rn
+.

V̇ = 〈c | Ax〉 = 〈AT c | x〉

cette dernière quantité est nulle si et seulement si x = 0. Cela prouve la stabilité asympto-

tique de AT sur Rn
+ par le théorème de Lyapunov (22). Comme toute condition initiale x0

peut s’écrire x0 = x+
0 − x−0 avec x+

0 et x−0 dans l’orthant, on en déduit que etAx0 converge

vers l’origine. Cela prouve que AT donc A est une matrice d’Hurwitz .

Ξ

A.3.2 Les barrières

On va démontrer un résultat concernant les champs de vecteurs Lipschitziens. Intuitive-

ment cela dit que si un champ de vecteur pointe vers l’intérieur où est tangent à une

hypersurface, le demi-espace fermé dont la frontière est l’hypersurface est positivement

invariant.
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Figure A.1 – Champ pointant vers l’intérieur

Théorème 17 : On considère une fonction H : Rn −→ R. On suppose qu’en tout point

x tel que H(x) = 0, on a ∇H(x) 6= 0 et

〈X(x) | ∇H(x)〉 ≤ 0

Alors l’ensemble G = {x ∈ Rn | H(x) ≤ 0} est positivement invariant par X

En fait, on va démontrer que aucune trajectoire ne peut quitter le demi-espace par l’en-

semble des points de la frontière où

〈X(x) | ∇H(x)〉 ≤ 0

Théorème 18 :

Soit Ω un ouvert contenant un point x0 de la frontière de G, ∂G = {x | H(x) = 0}. On

suppose qu’en tout point x de ∂G ∪ Ω on a ∇H(x) 6= 0 et
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application à la transmission du virus de l’hépatite B
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〈X(x) | ∇H(x)〉 ≤ 0

Alors aucune trajectoire de X ne sort de G par ∂G ∪ Ω.

Preuve :

On va décomposer la démonstration en deux cas. Dans le premier cas, on suppose qu’en

x0 on a :

〈X(x0) | ∇H(x0)〉 < 0

Par un argument de continuité, il existe ε > 0 et une boule de centre η telle que pour tout

y ∈ B(x0, η) on ait :

〈X(y) | ∇H(y)〉 < ε < 0

On considère la trajectoireXt(x0) issue de x0. Pour t ≥ 0 suffisamment petit, elle reste

dans la boule B(x0, η). On a

d

dt
H(Xt(x0) = 〈∇H(Xt(x0) | X (Xt(x0))〉 < ε < 0

Ce qui prouve que Xt(x0) ∈
◦
G

Supposons maintenant que 〈X(x0) | ∇H(x0)〉 = 0. On considère le champ

Xε(x) = X(x)− ε ∇H(x)

‖∇H(x)‖
Ce champ vérifie, pour tout ε > 0 l’hypothèse de la démonstration suivante sur Ω ∪ ∂G.

Soit η tel que la boule fermée B(x0, η) soit dans Ω. On choisit t ≤ T suffisamment petit tel

que Xt(x0) ∈ B(x0, η). Comme Xε est un champ ε-approché de X, on applique le lemme

de Gronwall :

‖Xε
t (x0)−Xt(x0)‖ ≤ ε

eLT − 1

L

Ceci prouve qu’en choisissant T suffisamment petit on aura

Xε
t (x0)−Xt(x0) ∈ B(x0, η)
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A.3. MATRICES DE METZLER

Ceci montre par le même argument que la Preuve précédente que Xε
t (x0) ∈

◦
G, par consé-

quent Xt(x0) est limite de points de G qui est fermé, donc dans G. La trajectoire issue

de x0 ne peut quitter G localement. Comme ceci est vrai pour tout point x0 de ∂G, on a

montré le résultat sur Ω.

Ξ

A.3.2.1 Matrices irréductibles

Définition 11 : [Matrices irréductibles]

Une matrice A ∈Mn(K) est dite réductible si :

– n = 1 et A = 0 ou

– n ≤ 2, il existe une matrice de permutation P ∈Mn(K) et un entier naturel r avec

1 ≤ r ≤ n− 1 tel que :

P T AP =

[
A1 A2

0 A4

]
ou A1 ∈Mr(K), A2 ∈Mr,n−r(K), A4 ∈Mn−r(K) et 0 ∈Mn−r,r(K)

Une matrice non réductible est dit irréductible.

Exemple : Une matrice positive ayant tous ses coefficients non nuls est irréductible.

A.3.2.2 Matrices de Metzler irréductibles

On va caractériser par une propriété dynamique l’irréductibilité des matrices de Metzler.

Une matrice de Metzler laisse positivement invariant l’orthant positif. Que se passe t-il à

la frontière, autrement dit sur les faces de l’orthant ?

On va d’abord démontrer une première proposition.

La définition d’irréductibilité, pour les matrices de Metzler est équivalente à la propriété

suivante :

Proposition 2 : [Matrices de Metzler irréductibles]

La matrice de Metzler A est irréductible si et seulement si, pour tout vecteur x > 0

appartenant à une face F de Rn
+, où F est définie par :

F = {x ≥ 0 | i ∈ I 〈ei | x〉 = 0}

il existe un indice i ∈ I tel que 〈ei | x〉 = 0 et 〈ei | Ax〉 > 0.
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Preuve : On va montrer que la condition est nécessaire. D’après la remarque suivant le

théorème (19), on peut toujours remplacer A par A+ λ I pour λ suffisamment grand. La

condition d’irréductibilité est équivalente, comme la condition du théorème. S’il existe i tel

que 〈ei | x〉 = 0 et 〈ei | Ax〉 > 0 alors c’est équivalent à 〈ei | x〉 = 0 et 〈ei | (A+λI )x〉 > 0.

On va donc supposer que A ≥ 0.

La condition est suffisante.

En effet, supposons que pour tout i tel que 〈ei | x〉 = 0, on ait 〈ei | Ax〉 = 0. Soit

Fx = R+ [0, x] la face engendrée par x. Puisque A ≥ 0, on a AFx = R+ [0, Ax]. La face

Fx est caractérisée par un ensemble d’indices I. On a Fx = {x ≥ 0 | 〈ei | x〉 = 0. Pour ces

indices on a 〈ei | Ax〉 = 0. Et donc AFx ⊂ Fx. La matrice A n’est pas irréductible.

La condition est nécessaire.

Si A est réductible, il existe une face, que l’on peut écrire Fx, telle que AFx ⊂ Fx.

Pour tout indice tel que 〈ei | x〉 = 0 on a donc 〈ei | Ax〉 = 0.

Ξ

Définition 12 : Un graphe orienté G = (X,U) est un couple constitué par un ensemble

X = {x1, · · · , xn} et une partie U de X ×X
Les éléments de X s’appellent les sommets du graphe. Un élément (x, y) ∈ U s’appelle un

arc, x est son origine et y son extrémité.

Un graphe est donc un ensemble de sommets avec des flèches liant certains sommets.

Définition 13 : Un chemin est une une suite d’arcs (u1, · · · , up) tel que chaque arc ui

ait pour l’extrémité terminale l’origine de ui+1. On dit que le chemin joint l’origine de u1

à l’extrémité de up

Un graphe est dit fortement connexe si tout couple de sommets distincts peut être joint

par un chemin

On peut maintenant associer à toute matrice un graphe.

Définition 14 : On considère une matrice carrée A = (aij). On considère le graphe

avec n sommets X = {1, · · · , n}. Un arc joint le sommet i au sommet j si aji 6= 0.

On notera l’inversion des coefficients. Nous utilisons cette définition pour être en accord

avec les notations des modèles compartimentaux. Ce n’est pas important car la notation

alternative introduit la transposée ce notre matrice et cela revient à changer le sens des
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arcs du graphe. On verra plus loin qu’une matrice est irréductible si sa transposée est

irréductible.

Réciproquement à tout graphe d’ordre n, on associe une matrice n × n, où aij = 1 s’il

existe un arc entre i et j et aij = 0 sinon.

On peut caractériser l’irréductibilité d’une matrice de façon élégante, par une propriété

de son graphe associé :

Théorème 19 :

La matrice A est irréductible si et seulement si son graphe G(A) est fortement connexe.

Preuve :

La condition est nécessaire. Supposons que la matrice A soit irréductible. Soit i un sommet.

On définit I l’ensemble des sommets, différents de i, que l’on peut atteindre à partir du

sommet i, c’est à dire l’ensemble des sommets j 6= i tels qu’il existe un chemin de joignant

i à j.

L’ensemble I est non vide. En effet si on considère l’ensemble J le complémentaire du

singleton {i}, puisque A est irréductible il existe k 6∈ J et j ∈ J tel que ajk 6= 0. Mais vu

la définition de J cela veut dire qu’il existe j 6= i tel que aji 6= 0. Autrement dit il existe

un arc allant de i à j.

Supposons par l’absurde que I 6= {1, · · · , n}. Par l’irréductibilité de A, il existe j ∈ I
et k 6∈ I tel que akj 6= 0. Il y a un arc allant de j à k. Mais comme j est dans I il est

accessible depuis i, donc k est accessible depuis i. C’est une contradiction

La condition est suffisante. On suppose par l’absurde que le graphe associé est fortement

connexe et que A est réductible. Il existe donc un sous-ensemble propre d’indices I, tel

que si l’on note J son complémentaire, on ait aji = 0 pour tout i ∈ I et j ∈ J . On choisit

un indice i ∈ I et un indice j ∈ J . C’est possible puisque I est propre. Il existe un chemin

joignant i à j. Il existe donc une ensemble d’indices {k1, · · · , kp} tels que les coefficients

suivants soient tous non nuls :

aj,k1 , ak1,k2 , · · · , akp,i

Avec les hypothèses sur I et J on en déduit que, puisque akp,i 6= 0, kp 6∈ J , soit kp ∈ I. Mais

si kp ∈ I le même raisonnement appliqué à akp−1,kp prouve que kp−1 ∈ I. Un raisonnement

par récurrence finie montre que j ∈ I, une contradiction.
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Ξ

Remarque 6 : Une conséquence du théorème précédent c’est que l’irréductibilité ne dé-

pend que des termes hors diagonale. Il est équivalent d’étudier l’irréductibilité de A où de

A+ λ I.

Si une matrice A est réductible elle peut se mettre sous une forme triangulaire bloc

P T AP =


A11 A12 · · · A1p

0 A22 · · · A2p
...

...
. . .

...
0 0 · · · App


où les blocs diagonaux Aii sont des matrices irréductibles et P une matrice de permutation

Il suffit d’appliquer le processus de réduction un nombre fini de fois.

Proposition 3 : Si A est une matrice de Metzler irréductible alors aucune trajectoire ne

peut rester dans une face.

Plus précisément A est une matrice de Metzler irréductible si et seulement si pour tout

t > 0, on a : etA � 0.

Preuve : On suppose que cela est faux. Il existe donc t > 0 tel que et A ∈ ∂Rn2

+ . Mais

pour tout s, tel que 0 ≤ s ≤ t, on a e(t−s)A esA. La matrice e(t−s)A est positive (théorème

15 ). Elle est inversible. Par conséquent si esA � 0 cela entrâıne et A � 0. On vient de

montrer que esA n’est pas fortement positive pour tout 0 ≤ s ≤ t. Il existe un x > 0 de

la frontière de l’orthant, tel que et A x, soit dans la frontière de l’orthant.

D’après la proposition (2), il existe un indice i tel que 〈ei|et A x〉 = 0 et 〈ei|Aet A x〉 > 0.

La fonction ϕ(s) = 〈ei|esA x〉 est positive pour tout s. Elle s’annule en t = s. C’est un

minimum, donc sa dérivée s’annule en t. Or

ϕ′(t) = 〈ei|Aet A x〉 > 0

C’est la contradiction cherchée.

Réciproquement si A est réductible, alors A peut s’écrire :

P T AP =

[
A1 A2

0 A4

]
d’où
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P T et A P =

[
Det A1 M(t)

0 Det A4

]
La matrice et A est réductible et positive, il existe donc un vecteur de la frontière x > 0

tel que et A x soit dans la frontière de l’orthant. et A ne peut vérifier et A � 0.

Ξ

A.3.3 Quelques propriétés des matrices compartimentales linéaires

Théorème 20 : [disques de Gerschgorin]

Le spectre d’une matrice A est contenu dans la réunion des disques

{z | |z − aii| ≤
∑
j 6=i

|aij| i = 1, · · · , n}

Preuve :

On va d’abord montrer que si une matrice A est inversible alors il existe un indice i0 tel

que :

|ai0i0 | ≤
∑
j 6=i0

|ai0j|

En effet si A n’est pas inversible, soit x 6= 0 tel que Ax = 0. Soit i0 un indice tel que

xi0 : ‖x‖∞. On a

ai0i0 xi0 = −
∑
j 6=i0

ai0j xj

Ce qui donne

|ai0i0| ‖x‖∞ ≤
∑
j 6=i0

|ai0j| |xj|

et

|ai0i0| ≤
∑
j 6=i0

|ai0j|
|xj|
‖x‖∞

≤
∑
j 6=i0

|ai0j|

Si on applique de résultat à la matrice A−λ I, qui n’est pas inversible pour λ ∈ Spec(A),

on en déduit qu’il existe un i0 tel que
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en Afrique subsaharienne (Sénégal).
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|λ− ai0i0| ≤
∑
j 6=i

|ai0j|

Ce qui termine la démonstration Ξ

Remarque 7 : On a un résultat analogue pour les rayons des disques : en la somme des

valeurs absolues des termes hors diagonaux colonnes. Il suffit de remarquer que le spectre

de AT est égal au spectre de A et d’appliquer le théorème précédent à AT .

Corollaire 1 : [spectre d’une matrice compartimentale]

Le spectre d’une matrice compartimentale est contenu dans la réunion du demi-plan ouvert

gauche du plan complexe et du singleton {0}.

En effet, en prenant le résultat en colonne, la relation (A.2) et le théorème de Gerschgorin,

on obtient que le spectre de A est contenu dans des disques centré sur l’axe ds x négatif

et passant au plus par l’origine.

On dit que A est à diagonale dominante.

Le spectre est constitué de nombre complexes à partie réelle strictement négative et peut-

être de la valeur propre 0.

Définition 15 : On dit qu’un modèle compartimental est «outflow connected» si de tout

compartiment, on a un chemin vers un compartiment qui a une sortie vers l’extérieur.

Proposition 4 : La matrice d’un modèle compartimental linéaire «outflow connected»

est une matrice d’Hurwitz.

Preuve : On va montrer que la matrice est inversible, 0 ne sera pas valeur propre, cela

démontrera la proposition en raison du corollaire précédent.

On raisonne par l’absurde. Si A n’est pas inversible, AT aussi. Si AT n’est pas inversible,

soit x 6= 0 tel que AT x = 0. Soit i0 un indice quelconque qui est tel que xi0 : ‖x‖∞. On a

ai0i0 xi0 = −
∑
j 6=i0

ai0j xj

Ce qui donne
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|ai0i0| ‖x‖∞ ≤
∑
j 6=i0

|ai0j| |xj|

et

|ai0i0| ≤
∑
j 6=i0

|ai0j|
|xj|
‖x‖∞

≤
∑
j 6=i0

|ai0j| ≤ |ai0i0| (A.3)

Nous avons la dernière inégalité parce que A est une matrice compartimentale.

Si i0 est indice pour lequel le compartiment à une sortie extérieure, la dernière égalité est

stricte, ce qui est une contradiction.

Si ce n’est pas le cas, alors on a l’égalité de tous les termes et en particulier

∑
j 6=i0

|ai0j|
(

1− |xj|
‖x‖∞

)
= 0

Autrement dit |xj| = ‖x‖∞ pour tout indice pour lequel ai0j 6= 0, c’est à dire un indice tel

qu’il ait un chemin venant de i0. Pour ces indices là, la relation (A.3) est satisfaite. On

recommence. On finit par atteindre un indice de compartiment où il y a une sortie, qui

vérifie (A.3) avec inégalité stricte : contradiction.

Ξ

Corollaire 2 : Un système compartimental «outflow connected» linéaire avec entrées

constantes est stable.

Le système ẋ = Ax + b admet comme équilibre −A−1 b, puisque A est inversible. En

faisant le changement de variable x̄ = −A−1 b et X = x− x̄ on obtient Ẋ = AX qui est

asymptotiquement stable.

A.3.4 Compléments sur les matrices de Metzler

On va démontre un résultat dû à Varga [109,110] qui est important dans l’élaboration du

concept de R0.

Définition 16 : [décomposition régulière] Soit une matrice de Metzler A inversible. On

appelle décomposition régulière de A toute décomposition de A de la forme

A = F + V

où F ≥ 0 et V est une matrice de Metzler-Hurwitz
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On a le théorème suivant démontré par Varga

Théorème 21 : Il est équivalent de dire, pour toute décomposition régulière d’une ma-

trice de Metzler inversible.

– A est une matrice d’Hurwitz

– ρ(−F V −1) < 1

Preuve : Supposons que A est une matrice d’Hurwitz. Alors d’après le théorème (16), on

a −A−1 ≥ 0.

Les matrices V = A− F et A étant inversibles, on peut écrire

−F V −1 = −F (A− F )−1 = −F A−1 (I − F A−1)

On note G = −F A−1. C’est une matrice positive. Pour chercher son rayon spectral,

d’après Perron-Frobenius, il suffit de se restreindre aux vecteurs positifs. Soit v > 0 un

vecteur propre de G correspondant à une valeur propre λ ≥ 0, soit Gv = λ v. On a

−F V −1 v = G(I +G)−1 v =
λ

1 + λ
v

La matrice −F V −1 est positive. Réciproquement soit µ ≥ 0 une valeur propre relative-

ment à un vecteur propre v > 0. Alors G(I + G)−1 v = µ v. Les matrice G et (I + G)−1

commutent, on en déduit Gv = µ (I +G) v. Cela entrâıne que nécessairement µ 6= 1 et v

est un vecteur propre de G relativement à la valeur propre D µ
1−µ .

La fonction de R+ dans [0, 1[, définie par x 7→ D x
1+x

est une bijection entre les valeurs

propres de G = −F A−1 sur celles de −F V −1. C’est une fonction monotone. Par consé-

quent on a

ρ(−F V −1) =
ρ(G)

1 + ρ(G)
< 1

Réciproquement supposons ρ(−F V −1) < 1. Alors la matrice −I − F V −1 est inversible,

c’est une matrice de Metzler. Puisque ρ(−F V −1) < 1 on a s(−I −F V −1) < 1. C’est une

matrice de Metzler-Hurwitz. Son inverse est positive et par conséquent

−A−1 = (−I − F V −1)−1 V −1 ≥ 0

Ce qui montre que A est Metzler-Hurwitz d’après le théorème (16). Cela termine la dé-

monstration.

122 Etude de quelques modèles épidémiologiques :
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Remarque 8 : En fait ce théorème est démontré par Varga en 1960, et présent dans son

livre en 1964 [110]. Ce résultat est cité dans Berman et Plemmons [10](1974). C’est la

condition O47 du fameux théorème aux 50 équivalences pour qu’une matrice de Metzler

soit une matrice d’Hurwitz. Berman et Plemmons les énoncent en terme de M-matrices,

il suffit de changer de signe !

Ξ

A.4 Méthodes de Lyapunov

Définition 17 : [fonction de Lyapunov]

On appelle fonction de Lyapunov en x0, point d’équilibre du système ẋ = f(x), une

fonction V telle que

– V (x0) ≥ 0

– V (x) = 0 si et seulement si x = x0

– il existe un voisinage de x0 tel que sur ce voisinage on ait

V̇ (x) = 〈∇V (x) | f(x)〉 ≤ 0

Une fonction qui vérifie les deux première propriétés est dite définie positive en x0

Théorème 22 : [Lyapunov]

Si x0 est un point d’équilibre du système autonome ẋ = f(x), s’il existe une fonction de

Lyapunov en x0 pour ce système alors x0 est un point d’équilibre stable.

Si en outre V̇ est définie négative, i.e. si V̇ (x) = 0 si et seulement si x = x0 alors x0 est

un point d’équilibre asymptotiquement stable.

Théorème 23 : [LaSalle]

Si V est une fonction de Lyapunov propre alors le plus grand ensemble invariant contenu

dans

L = {x | V̇ (x) = 0}

est un ensemble attractif.

Si L = {x0} alors x0 est globalement asymptotiquement stable.
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Ce théorème a été longtemps ignoré par les biomathématiciens. Il est prouvé dans le livre

de Diekmann en 2000 [23] Théorème 6.13, avec une référence à Nold en 1980 [94]. On

retrouve une démonstration dans [108] en 2002.

A.4.1 Systèmes triangulaires

On considère un système triangulaire, plus précisément il s’agit d’un système sur Rn×Rm

du type

{
ẋ1 = f1(x1)
ẋ2 = f2(x1, x2)

(A.4)

où f1 est une application de Rn dans Rn et f2 de Rn × Rm dans Rm. On supposera que

les conditions sont vérifiées pour l’existence et l’unicité des solutions (par exemple f1 et

f2 de classe C1).

Les trajectoires ont toutes la mÍme projection sur Rn × {0}, ce sont celle du système

ẋ1 = f1(x1) sur Rn.

On voit bien pourquoi on a donné le nom de triangulaire. En fait la jacobienne du système

est triangulaire inférieure par blocs. Ces systèmes sont aussi appelés hiérarchiques. On va

démontrer un résultat de stabilité du théorème de Vidyasagar [111]. La version que nous

présentons est dans le cas autonome. C’est beaucoup plus simple que le cas général de

Vidyasagar.

Théorème 24 On considère un système de classe C1

{
ẋ1 = f1(x1)
ẋ2 = f2(x1, x2)

(A.5)

Tel que l’origine de Rn est globalement asymptotiquement stable (GAS) pour le système

isolé ẋ1 = f1(x1) sur Rn et tel que l’origine de Rm est GAS pour ẋ2 = f2(x1, x2).

Alors l’origine est asymptotiquement stable.

Si toutes les trajectoires sont bornées alors l’origine est GAS sur Rn × Rm.

preuve

On va montrer la stabilité. Soit le voisinage de l’origine

B(0, ε) = {(x1, x2) | ‖x1‖ ≤ ε, ‖x2‖ ≤ ε}.
Puisque les équilibres des systèmes isolés sont GAS, que les systèmes sont de classe C1 on

peut appliquer la réciproque du théorème de Lyapunov. Il existe des fonctions de classe

C1 définies positives V1(x1) et V2(x2) telles que
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V̇1 = 〈∇V1(x1)|f1(x1)〉 ≤ 0

V̇2 = 〈∇V2(x2)|f2(0, x2)〉 ≤ 0

et ces deux fonctions V̇1 et V̇2 sont définies négatives sur B(0, ε) pour ε suffisamment petit.

Puisque f1 et V1 sont de de classe C1 soit

L = max
(x1,x2)∈B(0,ε)

∂f1

∂x1

(x1, x2)

et

M = max
(x1,x2)∈B(0,ε)

∇V2(x2)

Puisque V2 est une fonction de Lyapunov, on peut choisir δ1 <
ε
2

suffisamment petit tel

que

max
‖x2‖≤δ1

V2(x2) < min
ε
2
≤‖x2‖≤ε

V2(x2)

V̇2(x2) = 〈∇V2(x2)|f2(x1, x2)〉 = 〈∇V2(x2)|f2(0, x2)〉+ 〈∇V2(x2)|f2(x1, x2)− f2(0, x2)〉

On a la relation

f2(x1, x2)− f2(0, x2) =

∫ 1

0

∂f2

∂x1

(t x1, x2)x1 dt

qui entrâıne sur B(0, ε)

‖f2(x1, x2)− f2(0, x2)‖ ≤ L ‖x1‖

et

V̇2(x2) ≤ 〈∇V2(x2)|f2(0, x2)〉+ LM ‖x1‖ (A.6)

la fonction 〈∇V2(x2)|f2(0, x2)〉 est définie négative, par conséquent si l’on définit la fonction

ϕ par

ϕ(c) = min
c≤‖x2‖≤ε

−〈∇V2(x2)|f2(0, x2)〉
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application à la transmission du virus de l’hépatite B
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La fonction ϕ, définie sur R, est continue croissante, tend vers 0 quand c tend vers 0 et

vérifie ϕ(c) > 0 pour tout c > 0.

Puisque le système ẋ1 = f1(x1) est asymptotiquement stable, on peut choisir δ2 ≤ δ1 tel

que si la condition initiale vérifie ‖x1(0)‖ ≤ δ2 alors on a pour tout t ≥ 0, l’inégalité

‖x1(t)‖ ≤ ϕ(δ1)
LM

.

Si on a ‖x1‖ ≤ δ2 et ‖x2‖ ≥ δ1, avec l’inégalité (A.6), on en déduit la relation

〈∇V2(x2)|f2(0, x2)〉+ LM ‖x1‖ < 0 (A.7)

Soit maintenant 0 < δ3 < δ2 tel que

max
‖x1‖≤δ3

V1(x1) < min
δ2≤‖x1‖≤ε

V1(x1)

Considérons l’ouvert U défini par

U = {(x1, x2)| ‖x1‖ ≤ δ3; ‖x2‖ ≤ δ3}

Si x1(0) ≤ δ3, comme V1 est décroissante, l’inégalité précédente montre que ‖x1(t)‖ ≤ δ2

(aucune trajectoire ne peut atteindre la sphère de rayon δ2 dans Rn).

Soit ‖x2(0)‖ ≤ δ3. Comme

max
‖x2‖≤δ3

V2(x2) ≤ max
‖x2‖≤δ1

V2(x2) < min
ε
2
≤‖x2‖≤ε

V2(x1)

La trajectoire issue de (x1(0), x2(0)) tant qu’elle vérifie ‖x2(t)‖ ≤ δ1

V2(x2(t)) ≤ min
δ1≤‖x2‖≤ε

V2(x1)

On a vu ci-dessus que l’ on a ‖x1(t)‖ ≤ δ2. Ceci entrâıne, dès que ‖x2(t)‖ ≥ δ1, en vertu

de l’inégalité (A.7), l’inégalité V̇2(x2) ≤ 0.

Comme V2 est décroissante sur les trajectoires contenues dans l’anneau

‖x1‖ ≤ δ2, δ1 ≤ ‖x2‖ ≤ ε
2
, on en déduit qu’une trajectoire ne peut atteindre la sphère

de rayon ε
2

dans Rm. On a prouvé ‖x1(t)‖ ≤ δ2 < ε et ‖x2(t)‖† ≤ ε
2
. Ceci termine la

démonstration de la stabilité.

On va démontrer l’attractivité locale par le principe d’invariance de LaSalle. Puisque

l’origine est stable il existe un voisinage compact U , de l’origine positivement invariant.

On va se restreindre U .
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On considère la fonction V1. C’est une fonction de Lyapunov-LaSalle. Par hypothèse

V̇1 = 〈∇V1(x1)|f1(x1)〉 ≤ 0

On considère dans E = {†(x1, x2) ∈ U | V̇1(x1) = 0} le plus grand ensemble invariant.

C’est évidemment ({0}×Rm)∩U . Par hypothèse le système ẋ2 = f2(0, x2) est globalement

asymptotiquement stable sur {0} × Rm. Ceci implique que toute trajectoire négative du

système de U \ {0} sort de U .

En effet, si ce n’est pas le cas, il existe une trajectoire complète γ dans U . L’ensemble

des points α-limites de γ est invariant. Par stabilité asymptotique et invariance, cet en-

semble contient l’origine. Cela signifie que la trajectoire part aussi pŕIt que l’on veut de

l’origine pour y retourner. La fermeture de cette trajectoire étant compacte, cela contredit

la stabilité. La propriété énoncée est vraie.

Cela signifie que le plus grand ensemble invariant contenu dans E est réduit {0}. Cela

montre l’attractivité dans U .

Si une trajectoire est relativement compacte, alors les poins ω-limites sont dans {0}×Rm.

En effet pour tn → ∞ on a x1(tn) → 0. Si toutes les trajectoires sont compactes, alors

l’ensemble des points ω-lmites sont dans {0}×Rm. Par asymptotique stabilité sur {0}×Rm

l’origine est un point ω-limite. Toute trajectoire s’approche aussi près que l’on veut de

l’origine. Par stabilité elle est piégée dans l’ouvert U défini ci-dessus. Elle tend donc vers

l’origine.

Ξ

Remarque 9 Si les trajectoires ne sont pas bornées alors on ne peut conclure qu’avec la

locale asymptotique stabilité. L’exemple suivant dans R2, Seibert et Suarez [99], en fourni

un contre-exemple.

{
ẋ = −x
ẏ = y (x2 y2 − 1)

(A.8)

Il est facile de voir que 0 est bien un équilibre globalement asymptotiquement stable du

premier système et du système ẏ = −y. Par symétrie il suffit de considérer les trajectoires

dans l’orthant positif.

On considère la famille de fonctions HK(x, y) = x y − k
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en Afrique subsaharienne (Sénégal).
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Ḣk =

〈
∇Hk


[

−x
y (x y − 1)

]〉
= x y (x2 y2 − 2)

On voit que les hyperboles xy−
√

2 = 0 sont invariantes. Les hyperboles xy−a o˘ a >
√

2

sont des frontières et le champ pointe vers les xy croissants. L’origine n’est pas un équilibre

globalement asymptotiquement stable . On obtient la figure

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure A.2 – asymptotique stabilité locale

A.5 Calcul du taux de reproduction de base R0

Le nombre de reproduction de base R0 est un concept clé en épidémiologie et sans

conteste une des idées importantes que les mathématiques ont apporté à la théorie des

épidémies.

Cette quantité, sans dimension, est le nombre moyen de cas secondaires, engendré par un

individu infectieux typique durant sa période d’infectiosité, quand il est introduit dans

une population constituée entiérement de susceptibles. On suppose également qu’il y a

pas eu d’intervention.

Ce concept est utilisé en écologie, démographie et en épidémiologie. L’apparition de R0

est relativement récente en épidémiologie et date des années 80. Depuis une trentaine
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d’années R0 est de plus en plus utilisé dans les situations de plus en plus réalistes et sur

des modéles de plus en plus compliqués.

Le concept trouve sa base en démographie. Le directeur de bureau des statistiques de

Berlin, Richard Böckh introduit et calcule ce qu’il appelle ”la propagation totale de la

population” (K. Dietz). Dans ce contexte R0 est le nombre moyen de naissance de filles

produit par une femme durant sa vie entiére. C’est A. Lokta (1913) qui introduit la

notation R0 et reconnâıt la formule de Böckh

R0 =

∫ ∞
0

p(a)δ(a)da

où p(a) désigne la probabilité pour une femme de survivre à l’âge a et β(a) le taux de

naissance des filles à l’âge a.

En épidémiologie la premiére note qui anticipe la notion de R0 est due à Theophil Lotz

(1980) (Nichiura, Dietz, Eichner 2006). Il se trouve que R0 est un seuil. A savoir si

R0 < 1 l’équilibre sans maladie est localement asymptotiquement stable et si R0 > 1

il est instable. Mais bien d’autres quantités peuvent jouer ce rôle, par exemple Rn
0 pour

n > 0. C’est Ross qui décrit le premier modéle différentiel et donne les conditions de

seuil. Mais le concept en lui-même n’est pas dégagé. La notion fut d’abord introduite par

MacDonald dans le contexte du paludisme (1952). En 1975 quatre articles qui montrent

l’importance du concept (Dietz, Hethcote, Becker). L’atelier de Dahlem, organisé par

May et Anderson en 1982 popularise la notion. Enfin l’article de Diekmann et al. fonde

mathématiquement le concept pour toute une série de modéles.

Définition 10 : Le nombre de reproduction de base est le nombre de cas secondaires

produit par un individu infectieux typique au cours de sa période d’infectivité, dans une

population constituée entiérement de susceptibles.

A.5.1 Algorithme de calcul de R0

Dans ce paragraphe, nous allons considéré la définition du R0 suivant l’article de P.

Van Den Driessche et J. Watmough [108]. On considére le systéme épidémiologique com-

portant n classes ou compartiments homogénes. Le vecteur x représente l’état du systéme,

et xi est le nombre (ou concentration) d’individus dans le compartiment i. On donne les

compartiments de façon que les derniers compartiments correspondent aux compartiments

des individus infectés (latents, infectieux...). Les m premiers compartiments sont les indi-
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vidus libres de l’infection.

Soit Fi(x) la vitesse d’apparition des infectieux dans le compartiments i. On note V+
i la

vitesse de transfert des individus dans le compartiment i par tout autre moyen et V−i la

vitesse de transfert hors du compartiment i. On a donc

ẋ = Fi(x) + V+
i − V−i

On suppose que les fonctions sont au moins C1. On dit qu’un état du systéme x0 est sans

maladie si les compartiments ”infectés” sont vides, ie (x0)i = 0 pour i > m.

On dit qu’un équilibre est un DFE si X(x0) = 0 et x0 est un état sans maladie.

Pour des raisons biologiques évidentes, on a les propriétés suivant pour ces fonctions

1. x ≥ 0, Fi(x) ≥ 0, V+
i (x) ≥ 0, V−i (x) ≥ 0

2. si xi = 0 alors V−i = 0. Cela dit simplement qu’il ne peut rien sortir d’un comparti-

ment vide.

3. Si i ≤ m alors Fi(x) = 0. Cela signifie qu’il ne rentre pas d’infectés dans les

compartiments, non infectés.

4. Si x0 est un état sans maladie alors Fi(x0) = 0 et pour i > m V+
i (x0) = 0. Quand

il n’y a aucun infecté, il ne peut y avoir de maladie, donc on reste sans infection.

On va essayer de définir le nombre moyen de ré-infections produit par un individu typique

infecté dans une population au voisinage d’un DFE.

Pour cela on va considérer la dynamique du systéme linéarisé au voisinage du DFE, avec

la ré-infection bloquée :

ẋ = DV(x0)(x− x0) = DV+(x0)(x− x0)−DV−(x0)(x− x0)

Le lemme suivant précise la structure du systéme linéarisé DX(x0).

Lemme 1 : (P. Van Driessche et J. Watmough [108])

Si x0 est un DFE, alors les matrices DF(x0) et DV(x0) se décomposent en blocs

DF(x0) =

[
0 0
0 F

]
et

DV(x0) =

[
J1 J2

0 V

]
où F ≥ 0 et est une matrice de Metzler.
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Preuve : De part la propriété (3) de F alors ∂Fi

∂xj
(x0) = 0 si i ≤ m. En effet la propriété

(3) implique Fi(x) = 0 si i ≤ m.

De même de la propriété (2), on a ∂Fi

∂xj
(x0) = 0 si j ≤ m. En effet, on a d’aprés la propriété

(2) et puisque x0 est un état sans maladie

Fi(x1
0, · · · , xm0 , · · · , x

j
0 + h, · · · , xn0 ) = Fi(0, · · · , 0, xm0 , · · · , x

j
0 + h, · · · , xn0 ) = 0

La positivité de F vient du fait que Fi(x)−Fi(x0) = Fi(x) ≥ 0

Si ej désigne jiéme vecteur de la base canonique de Rn, on a :

∂Vi
∂xj

(x0) = lim
h→0+

Vi(x0 + hej)− Vi(x0)

h

mais pour i > m et j ≤ m on a V+
i (x0 + tej) = 0 car (x0 + tej est un état sans maladie et

en raison de la propriété (4). De même V−i (x0 + tej) = 0, car les compartiments à partir

de m sont vides (propriétés 2). Cela montre pour i ≥ m et j ≤ m, on a

∂Vi
∂xj

(x0) = 0

Maintenant pour i > m on a encore Vi(x0) = 0. Si de plus i 6= j, alors la iéme composante

de x0 +hej est nulle, par conséquent d’aprés la propriété (2), on a Vi(x0 +hej) = V+
i (x0 +

hej) ≥ 0. Ce qui prouve bien que les éléments hors diagonale de V sont positifs par

passage à la limite de quantité positives. La matrice V est bien une matrice de Metzler.

Ce qui achéve la preuve du lemme.

On suppose maintenant que V est une matrice stable. Si xi(0) est un petit nombre

d’individus infectés dans le compartiment i > m au départ. Alors au bout du temps t, la

ré-infection étant bloquée on aura pour j > m, en raison de la structure de la structure

de DV(x0)

x(t)(m+ 1 : n) = (etV x0(m+ 1 : n))

où l’on note (x(t)(m+ 1 : n) les coordonnées de m+ 1 à n d’un vecteur x.

Pour obtenir le nombre moyen de cas engendrés, il suffit de calculer∫ +∞

0

FetV x0(m+ 1 : n)dt = −FV −1x0(m+ 1 : n)

car on a supposé V stable. De plus −V −1 ≥ 0 car V est Metzler stable. On peut main-

tenant interpréter la matrice −FV −1. Considérons un individu infecté introduit dans un
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en Afrique subsaharienne (Sénégal).
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compartiment k > m d’une population sans maladie. L’entrée (j, k) de la matrice −V −1

est le temps moyen des individu passera dans le compartiment j au cours de sa vie, en

supposant que la population reste prés du DFE et que l’on bloque la ré-infection. La

valeur (i, j) de la matrice F est la vitesse à laquelle un infecté dans le compartiment j

produit des infections dans le compartiment i. Par conséquent l’entrée (i, k) de −FV −1

est le nombre espéré de nouvelles infections dans le compartiment i produit par un indi-

vidu infecté introduit originellement dans le compartiment k. On appellera cette matrice

la ”next generation matrix”.

Définition 11 : on appelle nombre de reproduction de base le rayon spectral de −FV −1

R0 = ρ(−FV −1)
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Département des maladies infectieuses, Institut de veille sanitaire, 12, rue

du Val d’Osne, 94415 St Maurice Cedex, vol. 13 n ◦ 1, janvier-fevrier 2006.

[5] J. Arino, C. C. McCluskey, and P. van den Driessche. Global results for an epidemic

model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math.,

64(1) :260–276, 2003.

[6] N. Bame, S. Bowong, J. Mbang, G. Sallet, and J.J. Tewa. Global stability for SEIS

models with n latent classes. Math. Biosci. Eng., 5(1) :20–33, 2008.

[7] R P Beasley, L Y Hwang, C C Lin, M L Leu, C E Stevens, W Szmuness, and K P

Chen. Incidence of hepatitis b virus infections in preschool children in taiwan. J

Infect Dis, 146(2) :198–204, 1982 Aug.

[8] E. Beretta and V. Capasso. On the general structure of epidemic systems. Global

asymptotic stability. Comput. Math. Appl., Part A, 12 :677–694, 1986.

[9] E. Beretta and Y. Takeuchi. Global stability of lotka-volterra diffusion models with

continuous time delay. SIAM J. Appl. Math., 48 :627–651, 1988.

[10] Abraham Berman and Robert J. Plemmons. Nonnegative matrices in the mathe-

matical sciences. SIAM, 1994.

133



BIBLIOGRAPHIE
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BIBLIOGRAPHIE

[24] W J Edmunds, G F Medley, and D J Nokes. The transmission dynamics and control

of hepatitis B virus in the gambia. Stat Med, 15(20) :2215–2233, 1996.

[25] W J Edmunds, G F Medley, D J Nokes, A J Hall, and H C Whittle. The influence

of age on the development of the hepatitis B carrier state. Proc R Soc Lond B Biol

Sci, 253(1337) :197–201, 1993.

[26] W J Edmunds, G F Medley, D J Nokes, C J O’Callaghan, H C Whittle, and A J

Hall. Epidemiological patterns of hepatitis b virus (hbv) in highly endemic areas.

Epidemiol Infect, 117(2) :313–325, 1996.

[27] A. Fall, A. Iggidr, G. Sallet, and J. J. Tewa. Epidemiological models and Lyapunov

functions. Mathematical Modelling of Natural Phenomena, 2(1) :55–73, 2007.
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en Afrique subsaharienne (Sénégal).
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application à la transmission du virus de l’hépatite B
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Abstract. We give a survey of results on global stability for deterministic compartmental epidemi-
ological models. Using Lyapunov techniques we revisit a classical result, and give a simple proof.
By the same methods we also give a new result on differential susceptibility and infectivity models
with mass action and an arbitrary number of compartments. These models encompass the so-called
differential infectivity and staged progression models. In the two cases we prove that if the basic
reproduction ratio R0 ≤ 1, then the disease free equilibrium is globally asymptotically stable. If
R0 > 1, there exists an unique endemic equilibrium which is asymptotically stable on the positive
orthant.
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1. Introduction
The primary objective of this paper is to give two results on global stability for some epidemiolog-
ical models using Lyapunov techniques. Using a new result for systems of the type ẋ = A(x) x,
we revisit a celebrated result of Lajmanovitch and Yorke [39] and give a simple proof. The second
result is for differential susceptibility and infectivity models with mass action. We generalize a
result of [28, 24]. But before we will give an overview of the literature concerning the problem of
stability in epidemiological models
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In [59] J.A. Jacquez says :

A major project in deterministic epidemiological modeling of heterogeneous popula-
tions is to find conditions for local and global stability of the equilibria and to work
out the relations among these stability conditions, the threshold of epidemic take-off,
and endemicity, and the basic reproduction.

We denote in this paper by R0 the basic reproduction number. The basic reproduction number, a
key concept in epidemiology, is defined as the expected number of new cases of infection caused
by a typical infected individual in a population of susceptibles only and is an ingredient in almost
all papers using mathematical modeling for infectious diseases. An abundant literature have been
devoted to R0 (see [8, 10, 67, 17, 18, 34, 59, 66] and the references therein) after the seminal paper
[9].

The citation before was written in 1982, at this time no too many results was known. What
is the situation 25 year later ? As early as 1976 the stability analysis for the classic SIR or SIRS
models was well known [20, 19]. The reason was that the study of stability for these models was
reduced to the study of 2-dimensional systems, hence phase methods could be used : Poincaré-
Bendixson theorem. Periodic orbits are ruled out using Dulac criteria or condition of Busenberg
and van den Driessche [7].

For many infectious diseases the transmission occurs in a heterogeneous population, so the
epidemiological model must divide the population into subpopulations or groups, in which the
members have similar characteristics. This division into groups can be based not only on mode of
transmission, contact patterns, latent period, infectious period, genetic susceptibility or resistance,
and amount of vaccination or chemotherapy, but also on social, cultural, economic, demographic,
or geographic factors. This is the rationale for the introduction of multi-group models. In the
epidemiological literature, the term “multi-group” usually refers to the division of a heterogeneous
population into several homogeneous groups based on individual behaviour. The interest in multi-
group endemic models origina lly stems from sexual transmitted diseases such as gonorrhea or
HIV/AIDS. The pioneering paper of Lajmanovitch and Yorke in 1976 [39] provides a complete
description of the dynamics of n groups of SIS systems for subpopulations of constant size. The
authors use Lyapunov techniques to prove that either all trajectories in Rn

+ tends to 0, or else there
is a unique endemic equilibrium x̄ in the positive orthant and trajectories in Rn

+\{0} tends to x̄.
Other types of high dimensional systems are the so-called differential infectivity (DI) and

staged progression (SP) models. The staged progression model [59, 29, 34] has a single unin-
fected compartment, and infected individuals progress through several stages of the disease with
changing infectivity. This model is applicable to disea se with changing infectivity during the in-
fectious period such that HIV or disease with asymptomatic carriers such that HBV or tuberculosis.
The differential infectivity model has been also introduced to take into account some specificity of
HIV/AIDS. In a DI model the infected population is subdivided into subgroups of different infec-
tivity. Upon infection, an individual enters some subgroup with a certain probability and stays in
this subgroup until becoming inactive in transmission.

For multigroup SEIRS models of constant size many results have demonstrated the global
stability of the disease free equilibrium when R0 < 1 and the local asymptotic stability of an
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unique endemic equilibrium when R0 > 1 [21, 64, 65]. The most difficult task is the global
stability of the endemic equilibrium when R0 > 1, when this is possible. Actually for general
multigroup models the uniqueness of the endemic equilibrium non longer holds and the disease
free equilibrium may be locally, but not globally, asymptotically stable [67, 34, 59].

The global stability when R0 > 1 of SEIR models with constant size has long been conjectured
but only proven in 1995 [43]. The proof relies heavily on the competitive structure of the system,
and the fact that 3 dimensional competitive systems satisfy the Poincaré-Bendixson theorem [22,
61, 60]. When the system is not competitive another approach consists to show that the system
satisfies a Bendixson criterion which is robust under C1 perturbation [44, 62, 41, 48].

Since these path-breaking papers numerous results of global stability for the endemic equilib-
rium have been obtained for low dimensional systems;

• For SEIRS systems, with fraction of classes (then the system reduces to a 3-dimensional
systems) for small or large temporary immunity [45],

• For SEIR model with vertical transmission [46]. The study of stability is reduced to a 3-
dimensional system. Since this system is not competitive the second approach is used,

• For SEIR model with varying population size [42] for the system of fraction of classes,

• For SIRV models (V for vaccinate class) with constant population size and mild parameters
constraints [2],

• For SVEIR models [14] with small mortality,

• For Staged progression models in dimension 3 and 4 [53],

• For SEI models with immigration of latent and infectious [54],

• A model of dengue which is reduced to a 3 dimensional competitive system [67],

• A 5 dimensional staged progression model [13], for which the asymptotic stability of the en-
demic equilibrium reduces to a 3 dimensional system permitting to apply the Li-Muldowney
technique [44].

For arbitrary dimensional system, the most promising method may be that of Lyapunov. The
systematic use of Lyapunov function in studying stability problems is relatively recent. The excep-
tion is the result of Lajmanovitch and Yorke evoked before. However, Lasalle-Lyapunov theory
has been used in [50, 57, 34, 59] to study the stability of classic SIRS models.

In 2004, Korobeinikov and Maini using a Lyapunov function [36] demonstrate simply the
result of Li and Muldowney for the endemic equilibrium. The Lyapunov function used is V =

n∑

i=1

ai(xi − x̄ ln xi). This function has a long history of application to Lotka-Volterra models

[5, 12, 16, 63] and was originally discovered by Volterra himself, although he did not use the
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vocabulary and the theory of Lyapunov functions. Since epidemic models are “Lotka-Volterra”
like models, the pertinence of this function is not surprising. This Volterra-Lyapunov function has
been used in epidemiological models at the end of the eighties.

Beretta and Capasso [4] use a skew-symmetry condition on the Jacobian of the matrix of the
system to give a necessary condition for the global stability of the endemic equilibrium.

For a SIRS multigroup model with constant subgroup sizes, Lin and So [49] show that the en-
demic equilibrium is globally asymptotically stable if the contact rate between subgroups is small.
These two results are actually perturbation results of the situation where the endemic equilibrium
is known to be globally stable.

Since the publication of the result of Korobeinikov and Maini the “Volterra-like” Lyapunov
functions has been used to address the stability of high-dimensional systems with mass action.
The difficulty is in choosing the coefficient and in proving that the derivative is nonnegative. The
global stability of DI model with mass action is demonstrated in [52]. The global stability of SP
model, eventually with latent classes, with mass action is proved in [15, 32]. Stability of intra-host
models with different strains [30] (which contained as a particular case, SE1 · · ·EkIR models
with multiple strains) is treated in [1, 30]. The stability of differential and staged progression
latent classes, with one infectious class is solved in [32]. Two models of tuberculosis are studied
in [55]. The stability of a model with complex graph interaction between latent classes and one
infectious class is addressed in [56].

We give a brief outline of the paper. In Section 2, we consider a system similar to the system
in [39]. We compute R0 and prove that if R0 ≤ 1, the DFE is globally asymptotically stable and
if R0 > 1, then a unique equilibrium exists which is globally asymptotically stable on Rn

+\{0}.
In Section 3, we present a system with different classes of susceptible individuals and staged
progression through latency and infectious classes. Using a “Volterra-like” Lyapunov function we
obtain results as before : if R0 ≤ 1 the DFE is globally asymptotically stable and if R0 > 1 then a
unique equilibrium exists which is globally asymptotically stable on the positive orthant.

2. A n groups SIS model
Throughout the paper we will use the following classical notations. We identify vectors of Rn with
n × 1 column vectors. The Euclidean inner product is denoted by 〈 | 〉, then ‖z‖2

2 = 〈z | z〉 is the
usual Euclidean norm. The family {e1, · · · , en} denotes the canonical basis of the vector space
Rn. We denote by 1 the vector with all components equal to 1, i.e. 1 = e1 + · · · + en.

If x ∈ Rn we denote by xi the i-th component of x. Equivalently xi = 〈x | ei〉. For a matrix
A we denote by A(i, j) the entry in row i, column j. For matrices A,B we write A ≤ B if
A(i, j) ≤ B(i, j) for all i and j, A < B if A ≤ B and A (= B, A ) B if A(i, j) < B(i, j) for all
i and j. The notation AT denotes the transpose of A. Then 〈v1 | v2〉 = vT

1 v2. The notation A−T

will denote the transpose of the inverse of A. If x ∈ Rn, we denote by diag(x) the diagonal matrix
whose diagonal elements are given by x.

A Metzler matrix A is a matrix such that A(i, j) ≥ 0 for any indices i (= j [6, 33, 51]. These
matrices are also called quasipositive matrices [61]. Metzler matrices are the opposite of M -
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matrices [6, 67]. We prefer to use Metzler matrices since they appear naturally in compartmental
systems.

In this section we will consider the following system

ẋ =
[
D + B − diag(x) B

]
x. (2.1)

where D is a stable Metzler matrix and B ≥ 0 is a nonnegative irreducible matrix.
To motivate the consideration of such a system we consider n groups with constant population

size and a disease which confer no immunity after recovery. We model the contact by the mass
action law. If we denote by Si and Ii the respective number of susceptible and infectious individuals
in group i, Ni = Si + Ii, the system is, for i = 1, · · · , n






Ṡi = µi Ni − µi Si −
∑n

j=1 βi,j
Si
Ni

Ii + γi Ii

İ =
∑n

j=1 βi,j
Si
Ni

Ii − (γi + µi) Ii.
(2.2)

Since the population is constant, it is sufficient to know the Ii. If we set xi =
Ii

Ni
, β̃i,j = βi,j Nj

and αi = γi + µi we obtain a system of ODE

ẋi = (1 − xi)
∑

β̃i,j xj − αi xi. (2.3)

that we can write in compact form

ẋ =
[
D + B − diag(x) B

]
x. (2.4)

with B =
(
β̃i,j

)
and D = −diag(αi). This system is the system considered in [39], where the

system addressed has the structure of (2.1). In this model, the matrix B describes the contact
interaction between groups. We recall the following definition [6, 61, 66].

Definition 2..1. A matrix A of size n × n, n ≥ 2 is called irreducible if for any proper subset I of
{1, · · · , n} there are i ∈ I and j (∈ I such that A(i, j) (= 0.

Epidemiogically speaking the irreducibility of B (or Q) means that no group is contact isolated in
and out from the remaining groups. It is now easy to interpret the meaning of the system (2.1). The
matrix D describes the transfer of individuals out of compartments and B − diag(x) B the disease
transmission. The model can also be written ẋ = [D + diag(1 − x) B] x. It is clear that [0, 1]n is a
compact positively invariant absorbing set for this system.

2.1. The basic reproduction number
We denote by ρ(A) the spectral radius of a matrix A, which is defined, if Sp(A) denotes the
spectrum of A, by

ρ(A) = max{|λ| | λ ∈ (Sp(A)}
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and the stability modulus α(A)

α(A) = max{+(λ) | λ ∈ (Sp(A)}.

Using the framework of [67] the matrix −D−1B is the next generation matrix of (2.1) and the basic
reproduction number is R0 = ρ(−D−1B). We now will use a result of Varga [69, 68] (rewritten in
term of Metzler matrices)

Definition 2..2 (Regular splitting). : For a real Metzler matrix M, M = Λ + N is a regular
splitting if Λ is a Metzler stable matrix and N ≥ 0 is a nonnegative matrix.

Now we can give the following classical theorem.

Proposition 2..1 (Varga, 1962, Theorem 3.13, [69]). Let M = Λ + N be a regular splitting of M,
a real Metzler matrix. Then M is Metzler stable if and only if ρ(−NΛ−1) < 1.

The proof of Proposition 2..1 is in Varga (1960). It is also in Bermann and Plemmons [6]: the
condition N45 expressed in terms of M -matrices. We see from this proposition, by a continuity
argument, that for any regular splittings of a Metzler matrix M we have

α(M) < 0 ⇐⇒ ρ(−NΛ−1) < 1,

α(M) = 0 ⇐⇒ ρ(−NΛ−1) = 1.
(2.5)

Thus any regular splitting gives an equivalent threshold condition α(M) on the parameters. This
has a consequence for our system : D + B is a regular splitting and the stability of D + B is
completely related to R0 and its position relatively to 1. Since this equivalence is independent
from the splitting, we can replace the system (2.1) by the same system where we assume that D is
a diagonal matrix and incorporating the off-diagonal elements in B, this modification let the new
matrix B still irreducible. This does not change the generality of the conclusion. However only
the original ρ(−D−1B) has a biological meaning, the others are equivalent thresholds. From now
on we will assume that D is a diagonal matrix.

2.2. Existence and uniqueness of an endemic equilibrium
We will show that there exists a unique equilibrium x̄ . 0 if and only if R0 > 1. An equilibrium
such that x̄ . 0 is called a strongly endemic equilibrium. The method of proof is inspired by the
methods used by Thieme [21, 66, 64]. We show that if there exists an endemic equilibrium x̄ > 0
then R0 > 1. For the convenience of the reader we recall the following result on Metzler matrices
[6]

Theorem 2..1. Let A be an irreducible Metzler matrix

1. If there exists x > 0 such that Ax > λ x then α(A) > λ.
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2. If there exists x > 0 such that µx > A x then µ > α(A).

If A is only Metzler, the preceding relations hold with > replaced by ≥. If A is an irreducible
nonnegative matrix, we have analogous inequalities, obtained in replacing the stability modulus
α(A) by the spectral radius ρ(A) in the preceding inequalities.

If there exists an endemic equilibrium x̄ > 0 it satisfies

x̄ = −D−1B x̄ + diag(x̄) D−1B x̄.

Since D is a Metzler matrix, then −D−1 > 0 [61]. As B is irreducible and −D diagonal, with
positive diagonal terms, −D−1B is also irreducible. Therefore −D−1B x̄ . 0 and from the
preceding relation, we deduce x̄ . 0. A consequence is also diag(x̄) D−1B x̄ ) 0. Finally we
obtain

x̄ < −D−1B x̄.

which in turn implies using Theorem 2..1

R0 = ρ(−D−1B) > 1.

Conversely, we have to show that if R0 > 1, then there exists a unique strongly endemic equilib-
rium. An equilibrium satisfies

(D + B) x̄ = diag(x̄) B x̄,

equivalently,

x̄ + diag(x̄)
(
−D−1B x̄

)
= x̄ + diag(−D−1B x̄) x̄ = −D−1B x̄,

which can be written [
I + diag

(
−D−1B x̄

) ]
x̄ = −D−1B x̄.

Hence
x̄ =

[
diag

(
1 − D−1B x̄

) ]−1 (
−D−1B

)
x̄.

We are reduced to find a fixed point for the application H : [0, 1]n in [0, 1]n

H(x) =
[
diag

(
1 − D−1B x

) ]−1 (
−D−1B

)
x.

Let be A = D−1B the next generation matrix. Since R0 = ρ(−D−1B) and A = −D−1B is a
nonnegative irreducible matrix, from the Perron-Frobenius Theorem there exists v . 0 such that

Av = R0 v.

We choose ε sufficiently small such that for any index i

1 + εR0 vi ≤ R0.
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This is possible since R0 > 1. We deduce

1 ≤ R0

1 + εR0 vi
,

and

ε vi ≤
R0εvi

1 + εR0 vi
=

(A ε v)i

1 + (A ε v)i

.

We have proved that there exists ε > 0 such that ε v ≤ H(ε v). We also have ε > 1 and ε v ≤ v.

A similar argument shows that we can choose λ with 0 < λ vi ≤ 1 and λ large enough such
that

R0

1 + R0 λ vi
≤ 1,

which is equivalent to
R0 − 1

R0
≤ λ vi. This implies H(λ v) ≤ λ v. Choosing ε ≤ λ we have

ε v ≤ H(ε v) and H(λ v) ≤ λ v ≤ 1. Since H is a monotone function, H maps the parallelepiped

K = {x | ε v ≤ x ≤ λ v} ⊂ ]0, 1[n,

into itself. By Brouwer fixed point Theorem we know that H has a fixed point ω in K. This is an
endemic equilibrium since 0 ) ε v ≤ ω.

It remains to show the uniqueness.

Lemma 2..1. If ω . 0 is a strongly endemic equilibrium and if x̄ is another equilibrium then
x̄ ≤ ω.

Proof Let ξ = max
i=1,··· ,n

x̄1

ω1
. We have x̄ ≤ ξω and there exists an index i0 such that x̄i0 = ξ ωi0 .

Since A is nonnegative and x̄ a fixed point of H we have the following inequalities

x̄i0 =
(Ax̄)i0

1 + (Ax̄)i0

≤
(Aξ ω)i0

1 + (A ξ ω)i0

=
ξ (Aω)i0

1 + ξ (A ω)i0

.

By contradiction assume that ξ > 1. From the last inequality we have

x̄i0 <
ξ (Aω)i0

1 + (A ω)i0

.

But since ω̄ is a fixed point

x̄i0 <
ξ (Aω)i0

1 + (A ω)i0

= ξ ωi0 = x̄i0 .

Therefore we obtain a contradiction. !

We need a second lemma to end the proof.
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Lemma 2..2. If ω > 0 is an endemic equilibrium and if A is irreducible then ω . 0.

Proof Since ω > 0 and A is irreducible, then we have Aω . 0. Since components of ω are
given by

ωj =
(Aω)j

1 + (A ω)j

> 0,

the assertion of the lemma is obtained. !

The two lemmas prove that there exists an unique strongly endemic equilibrium.

2.3. A theorem on stability
To study the stability we need the following result which can be considered as a dual result to
LaSalle’s theorem [40].

Theorem 2..2. Let G be an open set, containing the origin, which is positively invariant for the
system ẋ = A(x).x, where A(x) is a Metzler matrix, depending continuously on x. We assume
that there exists cT . 0 such that cT A(x) ) 0 for any x ∈ G, x (= 0. Then the origin is globally
asymptotically stable on G.

Proof Let us consider on G the Lyapunov function

V (x) =
n∑

i=1

ci | xi | .

We define εz = sign(z), i.e. |xi| = εxi xi. This function is locally Lipschitz. The Dini derivative
can be defined [40]. We have

V̇ =
n∑

i=1

ci εxi ẋi

=
n∑

i=1

ci εxi

n∑

j=1

aij xj

=
n∑

i=1

n∑

j=1

ci εxi aij xj

=
n∑

j=1

εxjxj

n∑

i=1

ci εxjεxi aij

=
n∑

j=1

εxjxj

[
cj ajj +

∑

i "=j

ci εxjεxi aij

]

≤
n∑

j=1

εxjxj

[
cj ajj +

∑

i"=j

ci aij

]
=

n∑

j=1

|xj| (cT A)j ≤ 0.
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Since cT A(x) ) 0 on G, then the function V̇ is negative definite. This ends the proof by the
Lyapunov theorem.

!

2.4. Global stability of the DFE
We have the following result.

Theorem 2..3. The DFE of the system (2.1), which is the origin, is globally asymptotically stable
if and only if R0 ≤ 1.

Proof Assume that R0 = ρ(−D−1B) ≤ 1. We have seen from Proposition 2..1 that this is
equivalent to the stability of the matrix D + N . From the Perron-Frobenius theorem, since D + B
is irreducible, it follows that there exists an eigenvector c . 0 such that (D+B)T c = α(D+B) c.
We choose the Lyapunov function

V (x) = 〈c | x〉,

positive definite on Rn
+ and we have

V̇ (x) = 〈(D + B)T c | x〉 − 〈diag(x)Bx | c〉 ≤ 0.

If D + B is stable, i.e. α(D + B) < 0, the proof is finished, since this quantity is negative definite.
It remains to study the case where α(D + B) = 0, or equivalently R0 = 1.

We apply Lasalle’s invariance principle. We consider the largest invariant set contained in

E = {x | diag(x)Bx = 0}.

The irreducibility of B implies L = {0}. Indeed if x ∈ L ⊂ E we have for all (i, j),

xi

∑

j

βij xj = 0.

The quantities are positive, this implies that for any couple of indices βij xi xj = 0. By contradic-
tion assume that i0 is such that xi0 (= 0. There exists an index i1 such that βi1,i0 (= 0, from the
irreducibility of B. It follows xi1 = 0. The trajectory x(t) from x, satisfies for a small positive
time x(t)i0 (= 0. Hence x(t)i1 = 0. By invariance of L we must have

ẋi1 = −
∑

j

βi1,j xj = 0.

Which in turn implies xi2 = 0 for any βi1,i2 (= 0. In the other words, if the node i2 is connected
by an oriented path to the node i1, then xi2 = 0. By a finite induction we deduce that we have
xi = 0 for any node connected to the node i1. Since by irreducibility [6] the graph associated to B
is strongly connected, we have xi0 = 0. This gives a contradiction.

!
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2.5. Global stability of the endemic equilibrium
Theorem 2..4. The endemic equilibrium of the system (2.1) is globally asymptotically stable on
Rn \ {0} if and only if R0 > 1.

Proof Since R0 > 1, then there exists an unique equilibrium ω . 0. We write (2.4) under new
coordinates x + X + ω. Using the definition of ω : (D + B) ω − diag(x)Bx = 0, we get

Ẋ =
[
D + diag(1 − X − ω) B − diag(B ω)

]
X. (2.6)

Since ω is in ]0, 1[n which is an absorbing set, it is sufficient to consider (2.1) on this set, or
equivalently, when x ≤ 1. In this case diag(1 − X − ω) = diag(1 − x) and the matrix

A(X) = D + diag(1 − X − ω) B − diag(B ω)

is Metzler. X is in the compact set −ω + [0, 1]n.
We apply (2..2). We know that for any irreducible B ≥ 0, for any Metzler stable D such that

ρ(−D−1B) > 1 there exists ω . 0 such that

(D − diag(B ω) + B) ω = 0.

In other words A(−ω) satisfies A(−ω) ω = 0. From Proposition (2..1) we deduce α(A(−ω)) = 0.
Since this matrix is irreducible, and transposing, we know that there exists c . 0 such that

cT A(−ω) = cT (D − diag(B ω) + B) = 0.

Then for X + ω . 0 (i.e. x . 0, we have

cT A(X) = −cT (X + ω) B ) 0.

This proves the stability on ]0, 1[n. Since the vector field is strictly entrant, this ends the proof on
Rn \ {0}.

!

3. A differential susceptibility and infectivity model
We consider the following model






Ṡ = Λ − µS − diag(B I) S

İ = 〈B I | S〉 e1 + AI,
(3.1)

where S ∈ Rn
+ is the state of susceptible individuals and I ∈ Rk

+ is the state of infectious. The
matrix B ≥ 0 represents the coefficients of infectivity, actually B(i, j) is the contact and infectivity
of Ij in the group Si. As usual, e1 is the first vector of the canonical basis of Rk. Finally, A is
a stable Metzler matrix and represents the evolution through the infectious stages. This model

72



A. Fall et al. Epidemiological models and Lyapunov functions

encompass known models of DI, SP, or differential susceptibility models . We generalize the
results obtained in [28, 24].

It is straightforward to check that the nonnegative orthant is positively invariant by this system,
that there exists a compact positively invariant absorbing set. The DFE is given by (S∗, 0) ∈
Rn

+ × Rk
+ where S∗ = 1

µ Λ.

3.1. Basic reproduction ratio
We can give a simple elegant formula for the R0 (compare with [28, 24]). To obtain R0 we can
use the techniques developed in [67]. We claim that

R0 = 〈B(−A−1) e1 | S∗〉. (3.2)

We use the expression (−A−1) to put the emphasis on the fact that (−A−1) > 0 because A is
Metzler stable. Using the framework of [67], we denote by Fi(S, I) the rate of appearance of
new infections in compartment i, and by Vi(S, I) the rate of transfer of individuals in and out the
compartment i by all other means. The matrix V is the “mass” balance of the compartments. Note
that our V is the opposite of the same used in [67]. Then

F(S, I) =

[
0

〈B I | S〉 e1

]
,

and
V(S, I) =

[
Λ − µS − diag(B I) S

A I

]
.

The Jacobian matrices are

DF(x, y) =

[
0 0

e1 (BI)T e1 ST B

]
, DV(x, y) =

[
−µ I − diag(BI) −diag(S) B

0 A

]

Noting that we have sorted the variables in the reverse order in comparison with [67], we set
F = x∗ b βT and V = A. It is proved in [67] that the basic reproduction number is the spectral
radius of the next generation matrix for the model, namely −FV −1 computed at the DFE (the
minus sign comes from Metzler matrices used in place of M -matrices),

R0 = ρ(−FV −1) = ρ(e1 S∗T B (−A−1)).

It is clear that e1 S∗T B (−A−1) is a rank one matrix, the only nonzero eigenvalue is given by
S∗T B (−A−1) e1, which is exactly our claim.

3.2. Global stability of the DFE
We have the following theorem.
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Theorem 3..1. If R0 ≤ 1 then the DFE is globally asymptotically stable on the nonnegative
orthant. If R0 > 1 the DFE is unstable.

Proof We will introduce some notation to simplify the exposition of the proof. Actually these
notations are used in MATLAB and SCILAB. For two matrices M and N of same size we denote
by D = M./N the matrix which is defined by D(i, j) = M(i, j)/N(i, j). In the same spirit
L = ln M will denote the matrix defined by L(i, j) = ln(M(i, j)). We can now define the
Lyapunov-LaSalle function on Rn

+ × Rk
+ \ {S∗} × Rk

+:

VDFE(S, I) = R0 〈1 | S − S∗〉 − R0 〈S∗ | ln S − ln S∗〉 + 〈B(−A−1) I | S∗〉.

We have, using the fact that Λ = µS∗:

V̇DFE = µR0 〈1 | S∗〉 − R0 〈1 | diag(BI) S〉 − µR0 〈1 | S〉
− µR0 〈S∗./S | S∗〉 + R0 〈diag(BI)1 | S∗〉 + µR0 〈1 | S∗〉

+ 〈BI | S〉 〈B(−A−1) e1 | S∗〉 − 〈BI | S∗〉. (3.3)

Taking into account the formula (3.2) on R0 with the relations

〈1 | diag(BI) S〉 = 〈BI | S〉, 〈diag(BI)1 | S∗〉 = 〈BI | S∗〉

and 〈1 | S〉 = 〈S∗ | S./S∗〉 the preceding equation becomes

V̇DFE = µR0 〈2 − S∗./S − S./S∗ | S∗〉 + (R0 − 1) 〈BI | S∗〉.

The inequality between the arithmetic and the geometric means and R0 ≤ 1 imply V̇DFE ≤ 0. The
largest invariant set contained in the set {(S, I) | V̇DFE(S, I) = 0} satisfies the relation S = S∗.
Since A is a stable Metzler matrix, by Lasalle’s invariance principle [40] the DFE is globally
asymptotically stable. This ends the proof

!

3.3. Endemic equilibrium
Theorem 3..2. There exists a unique endemic equilibrium in the nonnegative orthant if and only if
R0 > 1.

Proof. We look for an equilibrium (S̄, Ī) with Ī > 0. From the relations





0 = Λ − µ S̄ − diag(B̄ Ī) S̄,

0 = 〈B̄ Ī | S̄〉 e1 + A Ī
(3.4)

we deduce, since A is Metzler stable, that Ī = 〈B̄ Ī | S̄〉 (−A−1) e1. From the second relation of
(3.4) and taking the inner product with e1 we obtain 〈B̄ Ī | S̄〉 = −〈A Ī | e1〉. Finally
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Ī = −〈A Ī | e1〉 (−A−1) e1. (3.5)

Then to compute Ī it is sufficient to find −〈A Ī | e1〉.
Again with the expression Ī = 〈B̄ Ī | S̄〉 (−A−1) e1, we get

〈B̄ Ī | S̄〉 = 〈B̄ Ī | S̄〉 〈B(−A−1)e1 | S̄〉.

If 〈B̄ Ī | S̄〉 (= 0 then we have

〈B(−A−1)e1 | S̄〉 = 1. (3.6)

From the first equation in (3.4) we have

S̄ =
[
diag(µ1 + BĪ)

]−1
Λ =

[
diag(1 +

1

µ
BĪ)

]−1
S∗. (3.7)

Using this value of S̄ and of BĪ in (3.6) gives
〈

B(−A−1)e1


[
diag(1 − 〈A Ī | e1〉

µ
B(−A−1)e1)

]−1
S∗

〉
= 1.

In other words −〈A Ī | e1〉 is a solution of H(x) = 1 with

H(x) =

〈
B(−A−1)e1


[
diag(1 +

x

µ
B(−A−1)e1)

]−1
S∗

〉
.

It is clear that H(x) is a strictly decreasing function satisfying limx→+∞ H(x) = 0 . Then a unique
positive solution exists if and only if H(0) > 1. Since H(0) = R0 we have a positive solution.
Since, from (3.7) we have S̄ . 0 and from (3.5), with −〈A Ī | e1〉 > 0, Ī > 0, then the equilibrium
is endemic. Moreover 〈B̄ Ī | S̄〉 (= 0 > 0. From the preceding analysis we see that if R0 = 1 then
the unique equilibrium is the DFE. In the case R0 < 1 we have Ī < 0, that is the equilibrium is
not biologically feasible. !

3.4. Global stability of the endemic equilibrium
To prove the global stability of the endemic equilibrium we need to study in more detail the struc-
ture of A. We will treat in this section one example. For the sake of brevity we will consider a
model of two susceptible classes and two infective classes with stage progression. It is not difficult,
but certainly more involved, to treat exactly in the same way the case of n susceptible compart-
ments and k infectious compartments. The compartimental model is represented in figure 3.4..
The model is given by the following system of ordinary differential equations.
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




Ṡ1 = p1 Λ − µS1 − β11 I1 S1 − β12 I2 S1

Ṡ2 = p2 Λ − µS2 − β21 I1 S2 − β22 I2 S2

İ1 = β11 I1 S1 + β12 I2 S1 + β21 I1 S2 + β22 I2 S2 − (µ + γ1 + δ1) I1

İ2 = γ1 I1 − (µ + γ1 + δ2) I2

Ṙ = γ2 I2 − µR.

(3.8)

Theorem 3..3. If R0 > 1, then the unique endemic equilibrium is globally asymptotically stable.
The basic reproduction number is given by

R0 =
γ1(β12S∗

1 + β22S∗
2) + (µ + γ1 + δ2)(β11S∗

1 + β21S∗
2)

(µ + γ1 + δ1)(µ + γ1 + δ2)
.

Proof. The basic reproduction ratio is obtained by applying (3.2). From the general theory we
know that there exists a unique endemic equilibrium which satisfies the following relations






p1 Λ = µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1

p2 Λ = µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2

β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2 = (µ + γ1 + δ1) Ī1

γ1 Ī1 = (µ + γ1 + δ2) Ī2

γ2Ī2 = µR̄.

(3.9)

Let us consider a possible Lyapunov function

VEE = (S1 − S̄1 ln S1) + (S2 − S̄2 ln S2) + (I1 − Ī1 ln I1) + (
β12S̄1 + β22S̄2

(µ + γ1 + δ2)
) (I2 − Ī2 ln I2)

Setting d = β12S̄1+β22S̄2

(µ+γ1+δ2)
, its derivative along the trajectories of (3.8) is

V̇EE = [p1 Λ − µS1 − β11 I1 S1 − β12 I2 S1 − p1 Λ S̄1
S1

+ µS̄1 + β11 I1 S̄1 + β12 I2 S̄1]

+[p2 Λ − µS2 − β21 I1 S2 − β22 I2 S2 − p2 Λ S̄2
S2

+ µS̄2 + β21 I1 S̄2 + β22 I2 S̄2]

+[β11 I1 S1 + β12 I2 S1 + β21 I1 S2 + β22 I2 S2 − (µ + γ1 + δ1) I1

−β11 Ī1 S1 − β12 I2
Ī1
I1

S1 − β21 Ī1 S2 − β22 I2
Ī1
I1

S2 + (µ + γ1 + δ1) Ī1]

+d [γ1 I1 − (µ + γ1 + δ2) I2 − γ1 I1
Ī2
I2

+ (µ + γ1 + δ2) Ī2].

By using the endemic relations in the system (3.9) we obtain,
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V̇EE = [µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1 − µS̄1
S1

S̄1

−(µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1)
S̄1
S1

+ µS̄1 + β11 I1 S̄1 + β12 I2 S̄1]

+[µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2 − µS̄2
S2

S̄2

−(µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2)
S̄2
S2

+ µS̄2 + β21 I1 S̄2 + β22 I2 S̄2] − (µ + γ1 + δ1) I1

−β11 Ī1 S̄1
S1

S̄1
− β12 Ī2S̄1

S1

S̄1

Ī1
I1

I2
Ī2

+ β21 Ī1 S̄2
S2

S̄2
− β22 Ī2S̄2

S2

S̄2

Ī1
I1

I2
Ī2

+β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2

+d [γ1 I1 − (µ + γ1 + δ2) I2 − γ1 I1
Ī2
I2

+ γ1 Ī1]

= µS̄1[2 − S̄1
S1

− S1

S̄1
] + µS̄2[2 − S̄2

S2
− S2

S̄2
]

+β11 Ī1 S̄1[2 − S̄1
S1

− S1

S̄1
] + β12 Ī2 S̄1)[2 − S̄1

S1
− S1

S̄1

Ī1
I1

I2
Ī2

]

+β21 Ī1 S̄2[2 − S̄2
S2

− S2

S̄2
] + β22 Ī2 S̄2[2 − S̄2

S2
− S2

S̄2

Ī1
I1

I2
Ī2

]

+(β11 S̄1 + β21 S̄2 + d γ1 − (µ + γ1 + δ1)) I1

+(β12S̄1 + β22 S̄2 − d (µ + γ1 + δ2)) I2 − d γ1 Ī1
I1
Ī1

Ī2
I2

+ d γ1 Ī1.

Using the expression for d, we observe that

β12S̄1 + β22 S̄2 − d (µ + γ1 + δ2) = 0

and

β11 S̄1 + β21 S̄2 + d γ1 − (µ + γ1 + δ1) = β11 S̄1 + β21 S̄2 + β12S̄1+β22S̄2

(µ+γ1+δ2)
γ1 − (µ + γ1 + δ1)

= (µ+γ1+δ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)
(µ+γ1+δ2)

− (µ + γ1 + δ1)

= (µ + γ1 + δ1)[
(µ+γ1+δ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)

(µ+γ1+δ1)(µ+γ1+δ2)
− 1]

= 0.

Substituting the endemic relations in the third equation of system (3.9), we obtain

β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2 = (µ + γ1 + δ1) Ī1,

(β11 S̄1 + β21 S̄2 + γ1

(µ+γ1+δ2)
(β12 S̄1 + β22 S̄2)) = (µ + γ1 + δ1),

(µ+γ1+δ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)
(µ+γ1+δ1)(µ+γ1+δ2)

= 1,

d γ1 Ī1 = β12S̄1+β22S̄2

(µ+γ1+δ2)
γ1 Ī1

= γ1

(µ+γ1+δ2)
(β12Ī1S̄1 + β22Ī1S̄2)

= β12Ī2S̄1 + β22Ī2S̄2.
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and finally we have the following expression for V̇EE

V̇EE = µS̄1[2 − S̄1
S1

− S1

S̄1
] + µS̄2[2 − S̄2

S2
− S2

S̄2
]

+β11 Ī1 S̄1[2 − S̄1
S1

− S1

S̄1
] + β12 Ī2 S̄1)[3 − S̄1

S1
− S1

S̄1

Ī1
I1

I2
Ī2
− I1

Ī1
Ī2
I2

]

+β21 Ī1 S̄2[2 − S̄2
S2

− S2

S̄2
] + β22 Ī2 S̄2[3 − S̄2

S2
− S2

S̄2

Ī1
I1

I2
Ī2
− I1

Ī1
Ī2
I2

]

≤ 0

Using the comparison between the arithmetical and the geometrical means we see that V̇EE is
negative definite. This ends the proof of the theorem.
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Figure 1: The two susceptible classes and two infectious classes model
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1 Introduction

The primary objective of this paper is to give results on global stability for epidemio-
logical models with differentiation in susceptibility for infection and differentiation in
infectivity. The first models with differential infectivity has been introduced for study-
ing HIV infection (Jacquez et al. 1991, 1988; Simon and Jacquez 1992) by Jacquez
et al. circa 1990s. The term differential infectivity has been coined by Hyman and Li
(2005a,b) and Hyman et al. (1999, 2001). Models with differential susceptibility has
been introduced in the references Hyman and Li (2005a, 2006).

The rationale to introduce differential infectivity and susceptibility is motivated by
the heterogeneity, concerning the mode of infection, for the individuals.

For many reasons difference in susceptibility to infection can occur : genetic vari-
ations, different social behaviors, different states of immunization, different vaccines
…

The infection by HBV, hepatitis B, is typically a disease where simultaneously
differential susceptibility and infectivity appear:

Hepatitis B virus (HBV) is a bloodborne and sexually transmitted virus. The liver
is the primary site of HBV replication. After a susceptible person is exposed, the virus
enters the liver via the bloodstream. Hepatitis B is one of the major diseases of man-
kind and is a serious global public health problem. Of the 2 billion people who have
been infected with the hepatitis B virus (HBV), more than 350 million have chronic
(lifelong) infections. Rates of new infection and acute disease are highest among
adults, but chronic infection is more likely to occur in persons infected as infants or
young children. These chronically infected persons are at high risk of death from cir-
rhosis of the liver and liver cancer, diseases that kill about one million persons each
year. According to CDC and WHO, risk for chronic infection is inversely related to
age at infection: approximately 90% of infected infants and 30% of infected children
aged under 5 years become chronically infected, compared with 5% of adults. This
difference in the evolution of infection introduces naturally differential susceptibility.

Indeed hepatitis B is a major public health problem in developing countries of Africa
and Asia (where prevalence is greater than 8%). In much of the developing world, (sub-
Saharan Africa, most of Asia, and the Pacific), most people become infected with HBV
during childhood, and 8–10% of people in the general population become chronically
infected. In these regions liver cancer caused by HBV figures among the first three
causes death by cancer in men.

Asymptomatic carriers play an important role in the transmission of HBV. Usually
asymptomatic carriers are considered as less infectious than acute carriers, which is
a reason for incorporating differential susceptibility. Vaccination is recognized as the
most efficient way of preventing hepatitis B. But the problem of imperfect vaccine
introduce naturally differential susceptibility. Even if HBV vaccine is very efficient it
does not offer 100% protection against infection. According WHO, Hepatitis B vac-
cine is 95% effective in preventing HBV infection and its chronic consequences, Then
vaccinated individuals form a class of individual with different susceptibility.

In Anderson and May (1991), May and Anderson consider a model of HBV infec-
tion. They distinguishes, in this model the susceptible individuals according to their
response. They assume that a proportion of births to infected carriers are themselves
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Fig. 1 A differential susceptibility and infectivity model

infected carriers, while the remaining fraction of these births give susceptibles in the
carrier carrier group. This model is clearly a differential susceptibility and infectivity
model.

In Edmunds et al. (1996), a SVEICR model is considered for modeling HBV infec-
tion (Fig. 1).

When different strains are taken into account differential susceptibility and infec-
tivity models are given in Wilson et al. (1998, 2000).

More generally the stage-progression HIV model with imperfect vaccine of Gumel
et al. (2006) is also a differential susceptibility systems and infectivity model.

We consider a general class of differential susceptibility systems and infectivity
models with bilinear mass action as in Hyman and Li (2005a) and give stability results.
We could have use a standard incidence mass action c(N ) β I

N (de Jong et al. 1995;
McCallum et al. 2001). The stability results of the disease free equilibrium remain
true by an easy adaptation. However the proof of existence and uniqueness of the
endemic equilibrium, as well as the stability of this endemic equilibrium, work only
with the bilinear mass action. This mass action becomes natural when N is constant
or c(N ) = c0 N or else when the model is dealing with proportions. For homogeneity
of exposition, we will use bilinear mass action throughout the paper.

The models considered in this paper address the issue of flows between the differ-
ent compartments of infected and infectious individuals as well as flows between the
different compartment of susceptible individuals. Moreover the differences of death-
rates between classes are also taken into account. These models encompass the models
with bilinear mass action of Gandon et al. (2001), Gandon and Troy (2007), Gumel
et al. (2006), Hyman and Li (2005a) and Hyman and Li (2006).

We give a brief outline of the paper. In Sect. 2 we introduce the class of system
considered. Our models are differential susceptibility and infectivity epidemic mod-
els. These models take into account flows between the different classes of susceptible,
infected and infectious compartments. The death rate can be different for each com-
partment. Since our model is presented in a general setting we add hypotheses for
biological soundness. These hypotheses are satisfied in the models in Gumel et al.
(2006), Hyman and Li (2005a) and Hyman and Li (2006). In this section we give, for
natural subclasses of our general systems, a simple analytical expression for the basic
reproduction ratio R0. We prove the global stability of the disease free equilibrium
(DFE) when R0 ≤ 1 and the existence and uniqueness of a strongly endemic equi-
librium when R0 > 1. The proof of the global stability of the endemic equilibrium
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is always a challenge. We give the global stability of the endemic equilibrium for a
differential susceptibility and infectivity epidemic model which generalizes the results
in Hyman and Li (2005a, 2006).

2 A general class of systems

Throughout this paper we will use the following notations. If x is a vector of R
n

then diag(x) will be the n × n diagonal matrix, whose diagonal elements are the
components of x . We will denote by 〈 | 〉 the usual inner product on R

n . In R
n Let

{e1, . . . , en} be the canonical basis of R
n . We will denote by 1 the vector given by

1 = (1, . . . , 1)T = e1 + · · · , en , where the superscript T denotes transpose.
We use the ordering in R

n generated by the cone R
n+. We write x ≤ y, if y−x ∈ R

n+
and x < y if x ≤ y and x �= y. Finally x � y will means xi < yi for any index i .

We consider the following general model

⎧
⎪⎨

⎪⎩

Ṡ = � − diag(µS) S + AS S − diag(B I ) S,

İ = P diag(B I ) S − diag(µI + γI ) I + AI I,

Ṙ = L I − diag(µR) R + AR R,

(1)

where S ∈ R
n+ is the state of susceptible individuals, I ∈ R

m+ is the state of infectious
and infected individuals and R ∈ R

p
+ the state of recovered and immune individu-

als. The recruitment, in each susceptible compartment, is described by a nonnegative
vector � > 0. The positive vector µS � 0 represents the death rate of the differ-
ent classes of susceptible individuals. The matrix AS represents the flows between
the susceptible compartments. In the words of Jacquez the coefficients of AI are the
fractional transfer coefficients Jacquez and Simon (1993). Since AS represents only
the movement between the S compartments, AS is a compartmental Metzler matrix,
whose column sums are zero, i.e., the sum of the elements of each column is zero.

The matrix B > 0 represents the coefficients of infectivity, actually B(i, j) = βi j

is the contact and infectivity of I j in the group Si . The matrix B is also known as
the WAIFW matrix (Who Acquire Infection From Whom Anderson and May (1991)).
The matrix P is a column-stochastic m × n matrix:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p11 p12 . . . p1n

p21 p22 . . . p2n

... . . .
. . . . . .

pm1 pm2 . . . pmn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

This matrix represents the distribution of susceptible individual after infection.
A susceptible individual in group Si enters group I j with probability p ji , hence∑m

j=1 p ji = 1.

Analogously as before, the matrix AI represents the movements between the I
compartments. The vector µI � 0 and γI > 0 represent respectively, the death rate
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and the recovery rate of the infectious-infected compartments Ii . The vector γI is
supposed only nonnegative, since an infected individual does not necessarily recover
and usually move in an infected compartment.

Finally, the matrix L represents the distribution of the I compartment toward the R
compartments. The vector µR and the matrix AR are defined as their corresponding
analogue in the S and I compartments.

We remark that in this setting, since B is a non zero nonnegative matrix, the
model (1) can contain compartments of infected individuals that are not infectious
or latent individuals. They are simply the I j compartments, with no transmission, i.e.,
for which Bi, j = 0, for any i . However the matrix B cannot contain a row whose
elements are all zero. In other words, for all i ∈ {1, . . . , n} there exist k ∈ {1, . . . , m}
such that Bi,k �= 0, otherwise if there is an index i0 such that Bi0,k = 0 for all
k ∈ {1, . . . , m} this would mean that the individuals of compartment Si0 can never be
infected and hence the individuals of Si0 would not be susceptible.

Using Gershgorin theorem it is clear that the matrices

−diag(µS) + AS, −diag(µI ) + AI , and − diag(µR) + AR

are stable Metzler matrices and are in particular non singular. This implies, that when
there is no transmission, the infected, infectious and the removed individuals disappear.

We will use the following properties repeatedly in the sequel: a Metzler matrix
(off-diagonal entries are nonnegative) M is stable if and only if −M−1 > 0 (Berman
and Plemmons 1994; Smith 1995). This also has for consequence that if x � 0 then
−M−1 x � 0. There are two schools for matrices like these matrices. The first one,
uses Metzler matrices (called also quasipositive matrices) and it is represented by
Jacquez (1999), Jacquez and Simon (1993), Luenberger (1979), Smith (1995) and
Thieme (2003). The second one uses M-matrices : the negative of a stable Metzler
matrix is a nonsingular M-matrix. This school is represented, for example, by Berman
and Plemmons (1994) or van den Driessche and Watmough (2002). We choose to
stick to the Jacquez formalism, natural for compartmental models, since our matrices
A represent the exchanges between compartments.

For the stability analysis we can discard the last equation

Ṙ = L I − diag(µR) R + AR R.

Since the variables R do not play a part in the preceding equations, the stability analysis
can be reduced to the system (1) without the last equation.

Therefore we will consider, from now on, the following system

{
Ṡ = � − diag(µS) S + AS S − diag(B I ) S

İ = P diag(B I ) S − diag(µI + γI ) I + AI I,
(2)

Throughout the paper, we shall use the matrix ÃI defined by

ÃI = −diag(µI + γI ) + AI
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Supplementary assumptions Our systems are general, we will add some hypothe-
ses for to be biologically consistent. For formulating these hypothesis we will use
some definitions from graph theory (Berman and Plemmons 1994). To our system we
associate a directed graph as usual. We have m + n vertices, n vertices correspond-
ing to susceptible compartments, m vertices for infected or infectious compartments.
Our system (2) can be rewritten under a canonical form for compartmental systems
(Jacquez and Simon 1993):

[
Ṡ
İ

]

=
[

�

0

]

+
[−diag(µS) + AS − diag(B I ) 0

0 diag(S)B − diag(µI + γI ) + AI

]

×
[

S
I

]

(3)

The matrix appearing in this equation is a compartmental Metzler matrix (Jacquez
and Simon 1993). We denote by M(S, I ) this matrix.

M(S, I ) =
[−diag(µS) + AS − diag(B I ) 0

0 diag(S)B − diag(µI + γI ) + AI

]

In our associated graph an edge leads from a vertex j to a different vertex i �= j if
M(S, I )i, j > 0 for some (S, I ). We say that j has an access to i , if in the graph there
is a path from j to i . This is equivalent to say that, for some p > 0, M p(S, I )i, j > 0
(Berman and Plemmons 1994). We thus shall assume that the following hypothesis is
fulfilled:

H1 We will assume in the sequel that any “susceptible” compartment is accessible
from a “susceptible” compartment with recruitment.

This property depends only of the matrix AS and the location of recruitment. For
any x ≥ 0, the matrix −diag(µS) + AS − diag(x) is a Hurwitz Metzler matrix.
Hypothesis H1 implies the following

Lemma 2.1 For any x ≥ 0, we have

−[−diag(µS) + AS − diag(x)]−1 � � 0.

This implies, in particular, that the disease free equilibrium (DFE) of system (2) given
by (S∗, 0) = (−[AS − diag(µS)]−1 �, 0

)
satisfies S∗ � 0.

Proof We have only to consider the connected components from the recruitment. If
we denote by e1, the vector of the canonical basis, corresponding to a recruitment
compartment, by M(x) the matrix [−diag(µS) + AS − diag(x)], we have to prove
that for any ei accessible from e1 we have

〈
− M(x)−1 e1 | ei

〉
> 0.
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Since the matrix M(x) is Hurwitz, it satisfies
∫ ∞

0 et M(x)dt = −M(x)−1. Thus we
can write

〈
−M(x)−1 e1 | ei

〉
=

∞∫

0

〈
et M(x) e1 | ei

〉
dt.

The expression under the integral, in the right hand side, is nonnegative and analytic

in t . Hence, it suffices to prove that dk

dtk 〈et M(x) e1 | ei 〉|t=0 > 0 for some k > 0. We

choose for k the integer satisfying 〈Ak
S e1 | ei 〉 > 0 and 〈Ap

S e1 | ei 〉 = 0 for 0 ≤ p < k.
This integer exists thanks to Assumption H1. We then have

dk

dtk
〈et M(x) e1 | ei 〉

⏐
⏐
⏐

t=0
= 〈M(x)k e1 | ei 〉

〈M(x)k e1 | ei 〉 =
k∑

p=0

C p
k (−1)k−p(µS1 + x1)

k−p〈Ap
S e1 | ei 〉 =

〈
Ak

S e1 | ei

〉
> 0.

This completes the proof of the lemma. ��
An entry-point compartment for infection is an infected-infectious compartment

with an edge coming from the susceptible compartments. Equivalently this is the
compartment with index for which the components of P 1 are positive.

Since this model can deal with infected people that are not infectious, i.e., we allow
the possibility of having some compartments I j for which Bi, j = 0, we must add
some hypotheses. The infectious individuals must appear from transmission. If we
have, a typical set of different susceptible, c � 0, becoming infected, then distributed
in the infected-infectious compartments as P c we assume that all these individuals
will evolve through all the infected-infectious compartments. This hypothesis is the
analogous of the preceding hypothesis. This can also be formulated in the following
manner:

H2 Any infected-infectious compartment is accessible from at least one compartment
which is an “entry-point” for infection.

A consequence of hypothesis H2 is − Ã−1
I P c � 0 for any c � 0. The proof is

similar to the proof of the preceding lemma.

Remark 2.1 With these two hypotheses, when there are some infection, then the tra-
jectories of our system are in the positive orthant. However our hypothesis are weaker
than an irreducibility hypothesis on the flow graph of our system.

This model encompasses known models of differential infectivity (DI) staged pro-
gression (SP), or differential susceptibility models, with bilinear mass action. We will
generalize the results obtained in Bame et al. (2008), Fall et al. (2007), Hyman and
Li (2005a) and Hyman and Li (2006). In particular, we shall prove the global asymp-
totic stability of the endemic equilibrium when R0 > 1. This has been conjectured in
Hyman and Li (2006) according to numerical simulations.
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2.1 Basic reproduction ratio

It is not difficult using the results on R0 (Diekmann et al. 1990; Heesterbeek and
Dietz 1996; Diekmann and Heesterbeek 2000; van den Driessche and Watmough
2002; Heesterbeek 2002) to obtain a formula for the basic reproduction ratio. Since
this formula expresses R0 as the spectral radius ρ(G) of the next generation matrix G,
we cannot expect, in general, to obtain an analytical expression.

Using the techniques developed in van den Driessche and Watmough (2002), we
claim that the basic reproduction ratio R0 for the general system (2) is

R0 = ρ
(
−P diag(S∗) B Ã−1

I

)
= ρ

(
− Ã−1

I P diag(S∗) B
)

. (4)

where

ÃI = −diag(µI + γI ) + AI .

We use the expression (− Ã−1
I ) to put the emphasis on the fact that the matrix (− Ã−1

I ) >

0 because the matrix A is Metzler stable. Using the framework of van den Driessche
and Watmough (2002), we denote by Fi (S, I ) the rate of appearance of new infections
in compartment i , and by Vi (S, I ) the rate of transfer of individuals in and out the
compartment i by all other means. The matrix V is the “mass” balance of the com-
partments. Note that our V is the opposite of the one used in van den Driessche and
Watmough (2002). Then

F(S, I ) =
[

0
P diag(B I ) S

]

,

and

V(S, I ) =
[

� − diag(µS) S + AS S − diag(B I ) S

ÃI I

]

.

The Jacobian matrices are

DF(S, I ) =
[

0 0

P diag(B I ) P diag(S) B

]

,

and

DV(S, I ) =
[−diag(µS) + AS − diag(B I ) −diag(S) B

0 ÃI

]

.

Noting that we have sorted the variables in the reverse order in comparison with van
den Driessche and Watmough (2002), we set F = P diag(S∗) B and V = ÃI . It is
proved in van den Driessche and Watmough (2002) that the basic reproduction number
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is the spectral radius of the next generation matrix for the model, namely −FV −1,
computed at the DFE (the minus sign comes from Metzler matrices used in place of
M-matrices). This proves our claim.

However there are two cases where we can get explicit formulas. These cases are
when the distribution stochastic matrix P or when the WAIFW matrix B are rank one
matrices. We will now specialize to these two subcategories. In these two cases we
can give a simple elegant formula for the basic reproduction ratio R0 (compare with
(Hyman and Li 2005a, 2006).

2.1.1 Model with rank one stochastic distribution matrix P

We claim that in this case, the stochastic distribution matrix P we can always be writ-
ten P = p 1T , where p ∈ R

m is a nonnegative stochastic vector, i.e.,
∑m

i=1 pi = 1
and 1 ∈ R

n . This is quite evident since we can write, by Perron-Frobenius, P = u vT

for two nonnegative vector u ∈ R
n , v ∈ R

m . Since upon infection a susceptible indi-
vidual moves in the I compartments, we have v � 0. Using the stochasticity of P ,
the result follows. With this expression for P and the fact that

p 1T diag(B I ) S = 〈1 | diag(B I ) S〉 p = 〈B I | S〉 p,

we obtain the following system

{
Ṡ = � − diag(µS) S + AS S − diag(B I ) S

İ = 〈B I | S〉 p − diag(µI + γI ) I + AI I,
(5)

This model does not take into account the origin of the susceptible individuals upon
infection. Once infected the individuals are distributed and enter the I compartment
according to the stochastic vector p.

In this peculiar case, the hypothesis H2 has for consequence − Ã−1
I p � 0, which

in turn implies −B Ã−1
I p � 0.

We claim that for system (5), the basic reproduction number R0 is given by

R0 =
〈
B

(
− Ã−1

I

)
p | S∗〉 = S∗T B

(
− Ã−1

I

)
p. (6)

Applying the preceding general formula (4) to system (5), we have

R0 = ρ
(
− p 1T diag(S∗) B Ã−1

I

)
= ρ

(
p S∗T

B
(
− Ã−1

I

))

It is clear that p S∗T B(− Ã−1
I ) is a rank one matrix. The only nonzero eigenvalue

is given by S∗T B(− Ã−1
I ) p, which is exactly our claim.
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2.1.2 Model with rank one WAIFW matrix B

In this case we can write B = α βT , where α � 0 is a positive vector of R
n and β > 0

is a nonzero nonnegative vector of R
m+. From the modeling point of view, this means

that for a given class of susceptible Si , the infectivity factor of the different classes of
infected is multiplied by a same coefficient αi .

For this model R0 = ρ((− Ã−1
I ) P diag(S∗) α βT )

We again have a rank one matrix, then the spectral radius is given by

R0 =
〈
β | −

(
Ã−1

I

)
P diag(α) S�

〉

2.2 A compact positively invariant absorbing set

We will show that there exists a compact positively invariant absorbing set K for (2).
An absorbing set K for a dynamical system is a set K such that, for any initial con-
dition, the forward trajectory starting from the initial condition enters for a positive
time the set K .

We denote by N (t) the total population at time t . We have N = 〈S |1〉 + 〈I |1〉.
Using the fact that AS , AI are zero column sum matrices and P is a one column

sum matrix we have the relations

〈AS S |1〉 = 〈S | AT
S 1〉 = 0 , 〈AI I |1〉 = 〈I | AT

I 1〉 = 0 ,

and

〈P diag(B I ) S |1〉 = 〈diag(B I ) S | PT 1〉 = 〈diag(B I ) S |1〉 = 〈B I | S〉.

We get

Ṅ = 〈� |1〉 − 〈µS | S〉 − 〈µI + γI | I 〉.

Let µ0 be defined by µ0 = min (µS, µI + γI ) > 0, then we have

Ṅ ≤ 〈� |1〉 − µ0 N

Lemma 2.2 Let µ0 = min (µS, µI + γI ) > 0. For any ε > 0, The subset Kε of the
nonnegative orthant R

n+ × R
m+, defined by

Kε = {(S, I )|S ≥ 0; I ≥ 0; N ≤ (〈� |1〉 + ε)/µo} ,

is a positively invariant compact absorbing set for (2)

It is straightforward to check that the nonnegative orthant is positively invariant by
the system (2). If we use the relation Ṅ ≤ 〈� |1〉 − µ0 N , then the lemma follows.
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We also remark that (S∗, 0) ∈ K0. Indeed we have 〈� |1〉 = 〈µS | S�〉, the conclu-
sion follows from µ0 1 ≤ µS .

We have also a positively invariant set contained in Kε.

Lemma 2.3 The set � defined by

� = {
(S, I ) ∈ Kε|S ≤ S∗} ,

is a positively invariant compact set for system (2).

On the boundary S = S∗ we have Ṡ = −diag(B I ) S∗ ≤ 0. This proves the positive
invariance of �.

2.3 Global stability of the DFE

We will prove the global stability of the DFE for each category of models.

2.3.1 Model with rank one stochastic distribution matrix P = p 1T

Theorem 2.1 If R0 ≤ 1 then the DFE of system (5) is globally asymptotically stable
on the nonnegative orthant. If R0 > 1 the DFE is unstable.

Proof If R0 > 1 the instability of the DFE is classical and is a consequence of the
results of Diekmann et al. (1990).

We suppose now that R0 ≤ 1, and we consider the following candidate Lyapunov
function

VDF E (S, I ) =
〈
B

(
− Ã−1

I

)
I | S∗〉 .

This function is nonnegative on the positive orthant and is zero at the DFE. The deriv-
ative of V along the trajectories is given by

V̇DF E = 〈B I | S〉
〈
B

(
− Ã−1

I

)
p | S∗〉 − 〈

B I | S∗〉 = 〈
B I | R0 S − S∗〉 .

Taking into account the formula (6) for R0, it is clear that on the compact set � we
have V̇DF E ≤ 0.

We consider the largest invariant set L, contained in the set

{
(S, I ) ∈ � | V̇DF E (S, I ) = 0

}
.

• For R0 < 1, using S∗ � 0 (by hypothesis H1) we have if S < S∗ the relation
R0 S − S∗ � 0. This implies B I = 0, which gives İ = ÃI I . Since ÃI is Metzler
stable, the largest invariant set contained in � satisfies I = 0, which in turn implies
S = S∗. By Lasalle’s invariance principle (LaSalle 1976) (one can also see (Bhatia
and Szegö 1967), Theorem 3.7.11, p 346) since we are in a positively invariant
compact set, the DFE is globally asymptotically stable in � when R0 < 1.
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• When R0 = 1, we have

V̇DF E = 〈B I | S − S∗〉 ≤ 0, for all (S, I ) ∈ �.

Once again, it is sufficient to show that L = {(S∗, 0)}. Let (S, I ) ∈ L, the trajec-
tory of (5) corresponding to this initial point satisfy 〈B I (t) | S(t) − S∗〉 = 0, for
all t ≥ 0. Suppose I (0) > 0, then by hypothesis H2, B I (t) � 0 for all t > 0
and hence, S(t) − S∗ = 0 for all t > 0. This, together with the first equation of
(5), would imply B I (t) ≡ 0 which contradict I > 0. Hence, if (S, I ) ∈ L then
necessarily I = 0 and so S = S∗ thanks to the first equation of (5). Therefore, the
DFE is globally asymptotically stable in � when R0 = 1.

Since Kε is absorbing, it remains to examine the trajectories starting in the set
Kε\�.

The set defined by I = 0 is invariant by the system. Therefore, any trajectory
starting from a point in Kε\�, with I = 0, will converge to (S∗, 0).

Now if a starting point in Kε\� satisfies I > 0, then by hypothesis H2, B I (t) � 0,
for all t > 0. Hence from the first equation the trajectory will enter � and then con-
verge to the DFE. This proves the global asymptotic stability of the DFE (S∗, 0) in
the nonnegative orthant. ��

2.3.2 Model with rank one WAIFW matrix B = α βT

With rank one WAIFW matrix B = α βT the system is

{
Ṡ = � − diag(µS) S + AS S − 〈β | I 〉 diag(α) S,

İ = 〈β | I 〉 P diag(α) S − diag(µI + γI ) I + AI I.
(7)

Theorem 2.2 Consider system (7). If R0 ≤ 1, then the DFE is globally asymptotically
stable on the nonnegative orthant. If R0 > 1, the DFE is unstable.

We consider the following function

V (S, I ) = 〈β | − Ã−1
I I 〉

We compute the derivative along the trajectories in �

V̇ = 〈β | I 〉
〈
β | − Ã−1

I P diag(α) S
〉
− 〈β | I 〉

= 〈β | I 〉
(〈

β | − Ã−1
I P diag(α) S

〉
− 1

)

≤ 〈β | I 〉 (R0 − 1) ≤ 0

• For R0 < 1, the largest invariant set contained in the set V̇ = 0 contained in
the compact set �, satisfies 〈β | I 〉 = 0. Since ÃI is Metzler stable, this set is
reduced to I = 0, which in turn, by invariance, implies S = S∗. By LaSalle invari-
ance’s principle, since we are in a positively invariant compact set (LaSalle 1976;
Bhatia and Szegö 1967), the DFE is globally asymptotically stable in �. A similar
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argument, as in the proof of Theorem 2.1, permits to conclude to the global stability
in the nonnegative orthant.s

• For R0 = 1, we can write

V̇ = 〈β | I 〉
〈
β | − Ã−1

I P diag(α) S
〉
− 〈β | I 〉

= 〈β | I 〉
(〈

β | − Ã−1
I P diag(α) S∗ − Ã−1

I P diag(α) (S − S∗)
〉
− 1

)

= 〈β | I 〉
(〈

β | − Ã−1
I P diag(α) S∗〉 +

〈
β | − Ã−1

I P diag(α) (S − S∗)
〉
− 1

)

= 〈β | I 〉
(
R0 − 1 +

〈
β | − Ã−1

I P diag(α) (S − S∗)
〉)

= 〈β | I 〉
〈
β | − Ã−1

I P diag(α) (S − S∗)
〉
.

Therefore V̇ (S, I ) = 0 if and only if

〈β | I 〉 = 0 or
〈
β | − Ã−1

I P diag(α) (S − S∗)
〉
= 0.

Let (S, I ) ∈ L the largest invariant set contained in {(S, I ) ∈ �: V̇ (S, I ) = 0}. If
〈β | I 〉 = 0 then we conclude as in the case R0 < 1. Otherwise, we define f (S) =〈
β | − Ã−1

I P diag(α) S
〉
=

〈
diag(α) PT (− Ã−1

I )T β | S
〉
. The map f (S) is not iden-

tically null since f (S∗) = R0. Hence the vector diag(α) PT (− Ã−1
I )T β > 0, i.e.,

it has at least one nonzero component, say, (diag(α) PT (− Ã−1
I )T β)i �= 0 for some

i ∈ {1, . . . , n}.
Thus

〈
β | − Ã−1

I P diag(α) (S − S∗)
〉

= 0 implies at least that Si (t) ≡ S∗
i . The

equation governing the evolution of Si (t) is (ei being the ith vector of the canonical
basis of R

n):

Ṡi = −µSi (Si (t) − S∗
i ) + eT

i AS (S(t) − S∗) − 〈β | I (t)〉αi Si (t)

Since Si (t) ≡ S∗
i , the matrix AS is a Metzler matrix and S ≤ S∗ in �, we obtain

eT
i AS (S(t) − S∗) = 〈β | I (t)〉αi S∗

i = 0. In particular we have 〈β | I (t)〉 = 0 and so
we can conclude as in the case R0 < 1.

2.4 Endemic equilibrium

The proofs for the two systems are similar and use the same principle. However the
computations are different so we distinguishes the two proofs.

2.4.1 Model with rank one stochastic distribution matrix P = p 1T

Theorem 2.3 There exists a unique endemic equilibrium in the nonnegative orthant
for system (5) if and only if R0 > 1.
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Proof We look for an equilibrium (S̄, Ī ) with Ī > 0. From the relations

{
0 = � − diag(µS) S̄ + AS S − diag(B̄ Ī ) S̄,

0 = 〈B̄ Ī | S̄〉 p + ÃI Ī
(8)

we deduce, since ÃI is Metzler stable, that Ī = 〈B̄ Ī | S̄〉 (− Ã−1
I ) p. From the second

relation of (8) and taking the inner product with p we obtain, setting ‖p‖2
2 = 〈p | p〉

‖p‖2
2 〈B̄ Ī | S̄〉 = −〈 ÃI Ī | p〉.

Finally

Ī = − 1

‖p‖2
2

〈 ÃI Ī | p〉
(
− Ã−1

I

)
p. (9)

Then to compute Ī it is sufficient to find −〈 ÃI Ī | p〉.
Again with the expression Ī = 〈B̄ Ī | S̄〉 (− Ã−1

I ) p, we get

〈B̄ Ī | S̄〉 = 〈B̄ Ī | S̄〉
〈
B

(
− Ã−1

I

)
p | S̄

〉
.

The condition 〈B̄ Ī | S̄〉 = 0 implies, since ÃI is Metzler stable, Ī = 0, hence S̄ = S∗.
We obtain the DFE and not an endemic equilibrium.

Then if 〈B̄ Ī | S̄〉 �= 0, by simplifying the preceding relation, we get

〈
B

(
− Ã−1

I

)
p | S̄

〉
= 1. (10)

From the first equation in (8) we have

S̄ = − [−diag
(
µS + B Ī

) + AS
]−1

� (11)

Using the value of B Ī from relation (9) gives

S̄ = −
⎡

⎣−diag

⎛

⎝µS +
(
−〈 ÃI Ī | p〉

)

‖p‖2
2

B
(
− Ã−1

I

)
p

⎞

⎠ + AS

⎤

⎦

−1

�

= −M
(
−〈 ÃI Ī | p〉

)−1
�. (12)

Where we have set, for x ≥ 0

M(x) = −diag

(

µS + x

‖p‖2
2

B
(
− Ã−1

I

)
p

)

+ AS
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The matrix M(x) is a stable Metzler matrix depending linearly on the positive
value x .

Replacing in relation (10), S̄ by the expression given by (12) gives

〈

B
(
− Ã−1

I

)
p
⏐
⏐
⏐ − M

(
−〈 ÃI Ī | p〉

)−1
�

〉

= 1.

In other words the scalar −〈 ÃI Ī | p〉 is a solution of H(x) = 1 with

H(x) =
〈
B

(
− Ã−1

I

)
p
⏐
⏐
⏐ − M (x)−1 �

〉
.

We claim that that H(x) is a strictly decreasing function. The derivative of H is given
by

H ′(x) =
〈

B
(
− Ã−1

I

)
p
⏐
⏐
⏐ − M(x)−1 diag

⎛

⎝
B

(
− Ã−1

I

)
p

‖p‖2
2

⎞

⎠ M(x)−1 �

〉

.

On the one hand, we have B (− Ã−1
I ) p � 0 thanks to hypothesis H2. On the other

hand hypothesis H1 implies −M(x)−1� � 0. Therefore H ′(x) < 0. This proves that
H(x) is strictly decreasing.

The function H(x) satisfies limx→+∞ H(x) = 0. Then a unique positive solu-
tion exists if and only if H(0) > 1. So we have a unique positive solution since
H(0) = R0 > 1.

From (11) we have S∗ > S̄ > 0 and from (9), with −〈 ÃI Ī | p〉 > 0 and hypothesis
H2 we deduce Ī � 0, and then the equilibrium is endemic. An endemic equilibrium
such that Ī � 0 is also called a strongly endemic equilibrium (Thieme 2003).

From the preceding analysis we see that if R0 = 1 then the unique equilibrium is
the DFE. In the case R0 < 1 we have Ī < 0, which means that the equilibrium is not
biologically feasible. ��

2.4.2 Model with rank one WAIFW matrix B = α βT

Theorem 2.4 There exists a unique endemic equilibrium in the nonnegative orthant,
for system (7) if and only if R0 > 1.

Proof The proof is in the same spirit as the proof for the case of rank one stochastic
distribution matrix. We have the relations for an equilibrium (S̄, Ī )

{
0 = � + ÃS S̄ − 〈β | Ī 〉 diag(α) S̄,

0 = 〈β | Ī 〉 P diag(α) S̄ + ÃI Ī .
(13)

Where as usual we set ÃS = −diag(µS) + AS and the analogous setting for ÃI .
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From the first equation we deduce, since the matrix −diag(µS)−〈β | Ī 〉 diag(α)+
AS is Metzler stable for any Ī ,

S̄ = − [−diag(µS) − 〈β | Ī 〉 diag(α) + AS
]−1

�

= −M(〈β | Ī 〉)−1 �. (14)

Where have set

M(x) = −diag (µS + x α)) + AS,

as a stable Metzler matrix, depending linearly on x > 0.

From the second equation, since ÃI is Metzler stable, we get

Ī = 〈β | Ī 〉
(
− Ã−1

I

)
P diag(α) S̄. (15)

Then it is sufficient to determine 〈β | Ī 〉 in order to compute (S̄, Ī ).
Using relation (15) we have

〈β | Ī 〉 = 〈β | Ī 〉
〈
β|

(
− Ã−1

I

)
P diag(α) S̄

〉
.

If 〈β | Ī 〉 = 0, then the relations (13) imply Ī = 0 and S̄ = S∗, i.e., the DFE.
Otherwise we can simplify and obtain

〈
β|

(
− Ã−1

I

)
P diag(α) S̄

〉
= 1.

Replacing S̄ by its value in (14)

〈
β|

(
− Ã−1

I

)
P diag(α)

[
−M(〈β | Ī 〉)−1

]
�

〉
= 1.

In other words the scalar 〈β | Ī 〉 is a solution of H(x) = 1 with

H(x) =
〈
β|

(
− Ã−1

I

)
P diag(α)

[
−M(x)−1

]
�

〉
.

We claim that H(x) is a strictly decreasing function. The proof is identical to preced-
ing proof of Theorem 2.3, we have just to check carefully that the derivative H ′(x is
negative.

H ′(x) =
〈
β|

(
− Ã−1

I

)
P diag(α) M(x)−1 ( −diag(α)) M(x)−1�

〉

By hypothesis H1, we have−M(x)−1��0, and sinceα�0, we have diag(α)M(x)−1

(−diag(α)) M(x)−1� � 0. Therefore, by hypothesis H2, we conclude (− Ã−1
I ) P

diag(α) M(x)−1(−diag(α)) M(x)−1� � 0. This, with β > 0, implies H ′(x) < 0.
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Fig. 2 The n susceptible classes and m infected classes model

Since H(x) satisfies limx→+∞ H(x) = 0, a unique positive solution exists if and
only if H(0) > 1. Since H(0) = R0 > 1, we then have a unique positive solution.
Since, from (14) we have S∗ > S̄ � 0 and from (15), with 〈β | Ī 〉 > 0, we get Ī � 0.
Hence the equilibrium is strongly endemic.

From the preceding analysis we see that if R0 = 1 then the unique equilibrium is
the DFE. In the case R0 < 1 we have Ī < 0, which means that this equilibrium is not
biologically feasible. ��

3 Global stability of the endemic equilibrium for differential susceptibility
and staged progression infectivity models

To prove the global stability of the endemic equilibrium we need to use in more details
the structure of AI and AS . We will treat in this section a differential susceptibility
with staged progression infectivity model. This system has the same form as system
(5) with AS = 0 (Fig. 2).

As before some Ii can be infected and non infectious compartments. For the sta-
bility analysis, we discard the removed compartments, by the argument given in the
introduction.

The model is given by the following system of ordinary differential equations.
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We write for simplicity A in lieu of ÃI .

{
Ṡ = � − diag(µS) S − diag(B I ) S

İ = 〈B I | S〉 e1 + A I.
(16)

With e1 the first vector of the canonical basis of R
m and A the matrix given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−α1 0 0 · · · 0
γ1 −α2 0 · · · 0
0 γ2 −α3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 γm−1 −αm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Where we have set αi = γIi + µIi and γi = γIi .

Using coordinates, system (16) can be written as follows

⎧
⎪⎪⎨

⎪⎪⎩

Ṡi = �i − µSi Si − ∑ j=m
j=1 βi j Si I j for i = 1 . . . n

İ1 = ∑i=n
i=1

∑ j=m
j=1 βi j Si I j − α1 I1

İ j = γ j−1 I j−1 − α j I j for j = 2 . . . m

For system (16), the stability of the DFE is addressed by Theorem 2.1.

Theorem 3.1 If R0 > 1 then the unique endemic equilibrium of system (16) is glob-
ally asymptotically stable on R

n+m+ \{(S, I ) : I = 0} the nonnegative orthant minus
the stable manifold of the disease free equilibrium.

The stable manifold of the DFE is the set {(S, I ) ∈ R
n+m+ :I = 0}.

Proof We use the following Lyapunov function on the positive orthant. This kind of
Lyapunov function has been used, in a different way, in Adda et al. (2007), Bame
et al. (2008), De Leenheer and Pilyugin ((2008)), Iggidr et al. (2006), Iggidr et al.
(2007), Korobeinikov and Maini (2004), Korobeinikov and Wake (2002) and Lin and
So (1993). The challenge is actually to prove that its derivative is nonpositive.

VE E (S, I ) = 〈
S − diag(S̄) ln S |1〉 +

〈
B

(
−A−1

) (
I − diag( Ī ) ln I

) | S̄
〉
− 	.

where 	 is given by 	 = 〈S̄ −diag(S̄) ln S̄ |1〉+〈B(−A−1)
(
Ī − diag( Ī ) ln Ī

) | S̄〉.
With the matrix A in this section, we have (−A−1) e1 � 0, hence from Sect. 2.4 we

have Ī � 0. An equilibrium such that Ī � 0 is called a strongly endemic equilibrium.
We know that S̄ � 0. Then the assumption B > 0 implies BT S̄ > 0. Since A is

Metzer stable −A−1 > 0 we conclude that −(A−1)T BT S̄ > 0. Therefore V (S, I ) is
nonnegative and that the endemic equilibrium satisfies V (S̄, Ī ) = 0.
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The derivative V̇E E along the trajectories of (16) is given by

V̇E E = 〈� |1〉 − 〈diag(µS) S |1〉 − 〈diag(B I ) S |1〉
− 〈S̄ | diag(S)−1 �〉 + 〈S̄ | µS〉 +

〈
S̄ | diag(S)−1 diag(B I ) S

〉

+〈B I | S〉
〈
B(−A−1) e1 | S̄

〉
+

〈
B(−A−1) A I | S̄

〉

− 〈B I | S〉
〈

B(−A−1)
Ī1

I1
e1 | S̄

〉

−
〈
B(−A−1) diag( Ī )diag(I )−1 A I | S̄

〉
.

This can be written

V̇E E = 〈� |1〉 − 〈 S | µS〉 − 〈B I | S〉 − 〈 diag(S)−1 S̄ | �〉 + 〈S̄ | µS〉 + 〈S̄ | B I 〉
+ 〈B I | S〉

〈
B(−A−1) e1 | S̄

〉
− 〈B I | S̄〉

− 〈B I | S〉
〈

B(−A−1)
Ī1

I1
e1 | S̄

〉

− 〈B(−A−1) diag( Ī )diag(I )−1 A I | S̄〉.

Using the relation (10), 〈B(−A−1) e1 | S̄〉 = 1, we have

V̇E E = 〈� |1〉 − 〈 S | µS〉 −
〈
diag(S)−1 S̄ | �

〉
+ 〈S̄ | µS〉

− Ī1

I1
〈B I | S〉 −

〈
B(−A−1) diag( Ī )diag(I )−1 A I | S̄

〉
.

Using the relation � = diag(µS) S̄ + diag(B Ī ) S̄ we obtain

V̇E E = 〈S̄ | µS〉 + 〈B Ī | S̄〉 − 〈 S | µS〉
− 〈 diag(S)−1 S̄ | diag(µS) S̄〉 − 〈 diag(S)−1 S̄ | diag(B Ī ) S̄〉 + 〈S̄ | µS〉

− Ī1

I1
〈B I | S〉 −

〈
B(−A−1) diag( Ī )diag(I )−1 A I | S̄

〉
.

V̇E E =
〈
diag(µS) S̄ | 2 − diag(S)−1 S̄ − diag(S̄)−1 S

〉

+〈B Ī | S̄〉 − 〈 diag(S)−1 S̄ | diag(B Ī ) S̄〉

− Ī1

I1
〈B I | S〉 −

〈
B

(
−A−1

)
diag( Ī )diag(I )−1 A I | S̄

〉
.

The first line of the previous equation is non positive. We will prove that the sum of the
4 remaining expressions is also non positive. We will express the different expressions.
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�1 = 〈B Ī | S̄〉 =
n∑

i=1

m∑

j=1

βi j S̄i Ī j .

�2 = −〈 diag(S)−1 S̄ | diag(B Ī ) S̄〉 = −
n∑

i=1

m∑

j=1

βi j S̄i Ī j
S̄i

Si
.

�3 = − Ī1

I1
〈B I | S〉 = −

n∑

i=1

βi1 S̄i Ī1
Si

S̄i
−

n∑

i=1

m∑

j=2

βi j S̄i Ī j
Si

S̄i

Ī1

I1

I j

Ī j

We will rewrite the last expression

�4 = −
〈
B(−A−1) diag( Ī )diag(I )−1 A I | S̄

〉
.

We have, for k = 1, . . . m − 1, the relations A ek = −αk ek + γk ek+1 and for the last
index A em = −αm em . Then

�4 = −
m∑

k=1

Ik

〈
B(−A−1) diag( Ī )diag(I )−1 A ek | S̄

〉

=
m∑

k=1

αk Īk

〈
B(−A−1) ek | S̄

〉
−

m−1∑

k=1

Ik γk
Īk+1

Ik+1

〈
B(−A−1) ek+1 | S̄

〉

Let uk be defined by uk = 〈B(−A−1) ek | S̄〉. We claim that the following relation
holds for k = 2, . . . , m

γk−1 uk Īk−1 =
m∑

j=k

Ī j 〈B e j | S̄〉. (17)

We will prove this expression later. For the moment we assume this relation. If we take
into account αk Īk = γk−1 Īk−1 for k = 2, . . . , m and α1 Ī1 = 〈B Ī | S̄〉, we obtain

�4 =
m∑

k=1

⎛

⎝
m∑

j=k

Ī j 〈B e j | S̄〉
⎞

⎠ −
m−1∑

k=1

Ik

Īk

Īk+1

Ik+1

⎛

⎝
m∑

j=k+1

Ī j 〈B e j | S̄〉
⎞

⎠,

=
n∑

i=1

m∑

j=1

j βi j S̄i Ī j −
n∑

i=1

m∑

j=2

βi j S̄i Ī j

⎛

⎝
j−1∑

k=1

Ik

Īk

Īk+1

Ik+1

⎞

⎠.

Then we get for the sum of these four expressions
4∑

i=1

�i =
n∑

i=1

βi1 S̄i Ī1

[

2 − S̄i

Si
− Si

S̄i

]

+
n∑

i=1

m∑

j=2

βi j S̄i Ī j

⎡

⎣ j + 1 − S̄i

Si
− Si

S̄i

Ī1

I1

I j

Ī j
−

j−1∑

k=1

Ik

Īk

Īk+1

Ik+1

⎤

⎦ .
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Using the comparison between the arithmetical and the geometrical means we see that
V̇E E ≤ 0. It must be noticed however that V̇E E is not negative definite since some βi j

can be zero.
The endemic equilibrium satisfies

〈� |1〉 − 〈µS S̄ |1〉 + 〈 AĪ |1〉 = 0

Since 〈 AĪ |1〉 = −γm Īm −〈µI Ī |1〉, and using the definition of µ0 (Lemma 2.2),
we get 〈 S̄ |1〉 + 〈 Ī |1〉 ≤ 〈� |1〉

µ0
which proves that the endemic equilibrium (S̄, Ī )

belongs to Kε for all ε ≥ 0.
Let L be the largest invariant subset of Kε, contained in V̇E E = 0. Each element

(S, I ) of L must satisfy

〈
diag(µS) | 2 − diag(S)−1 S̄ − diag(S̄)−1 S

〉
= 0

Since µS � 0 this implies S = S̄, and so in L, we must have diag(B I ) S̄ = � −
diag(µS) S̄. On the other hand we have diag(B Ī ) S̄ = �− diag(µS) S̄. Thus in L, the
dynamics of I are governed by

İ = 〈B Ī | S̄〉 − A I

Since A is stable the largest invariant set L is then reduced to {(S̄, Ī )}. This proves
the global asymptotic stability of the endemic equilibrium (S̄, Ī ) in the interior of Kε

by Lasalle’s invariance principle (LaSalle 1976; Bhatia and Szegö 1967). The global
asymptotic stability of the endemic equilibrium on R

n+ × R
m+\{(S, 0)} follows from

the fact that the set Kε is an absorbing set and that the boundary of the positive orthant
minus the stable manifold of the DFE is not invariant by (16).

To end the proof we have to prove our Claim 17. The proof of the validity of our
claim is made by induction on k.

We prove the claim for k = 2. We have, using
〈
B (−A−1) ei | S̄

〉 = 1, the following
equalities

A e1 = −α1 e1 + γ1 e2

−e1 = −α1 (−A−1) e1 + γ1 (−A−1) e2

γ1 Ī1

〈
B (−A−1) e2 | S̄

〉
= α1 Ī1

〈
B (−A−1) e1 | S̄

〉
− Ī1

〈
B (−A−1) e1 | S̄

〉

γ1 u2 Ī1 = α1 Ī1 − Ī1

γ1 u2 Ī1 =
〈
B (−A−1) e1 | S̄

〉
Ī1 − Ī1 +

m∑

i=2

〈
B (−A−1) ei | S̄

〉

γ1 u2 Ī1 =
m∑

i=2

〈
B (−A−1) ei | S̄

〉
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We now suppose that

γk−2 uk−1 Īk−2 =
m∑

j=k−1

〈
B (−A−1) ei | S̄

〉

Then

A ek−1 = −αk−1 ek−1 + γk−1 ek

−ek−1 = −αk−1 (−A−1) ek−1 + γk−1 (−A−1) ek

γk−1 Īk−1

〈
B (−A−1) ek | S̄

〉
= αk−1 Īk−1

〈
B (−A−1) ek−1 | S̄

〉

− Īk−1

〈
B (−A−1) ek−1 | S̄

〉

γk−1 uk Īk−1 = αk−1 Īk−1 uk−1 − Īk−1

〈
B (−A−1) ek−1 | S̄

〉

γk−1 uk Īk−1 = γk−2 Īk−2 uk−1 − Īk−1

〈
B (−A−1) ek−1 | S̄

〉

γk−1 uk Īk−1 =
m∑

j=k−1

〈
B (−A−1) ei | S̄

〉
− Īk−1

〈
B (−A−1) ek−1 | S̄

〉

γk−1 uk Īk−1 =
m∑

j=k

〈
B (−A−1) ei | S̄

〉

This ends the proof of the theorem. ��

4 Summary and discussion

We have formulated a general differential susceptibility and infectivity model. Genetic
variation of susceptible individuals may lead to differentiation of susceptibility on
infection. For example it has been observed a resistance to Dengue hemorrhagic fever
(DHF) in Cubans of African descent. Different behaviors, susceptibility varying with
age …are also sources of heterogeneousness, and give rationale for introducing dif-
ferent classes of susceptible individuals.

There have been studies on variable infectivity (Hyman and Li 2005b; Hyman and
Li 1994; Hyman et al. 2001; Iggidr et al. 2007; Hyman et al. 1999; Jacquez et al. 1988;
Ma et al. 2003), but few models are incorporating variable susceptibility (Hyman and
Li 2006; Fall et al. 2007; Hyman and Li 2005a).

In reference Hyman and Li (2005a) differential susceptibility is introduced with
one class of infective. The authors derived an explicit formula for the basic reproduc-
tion ratio R0. They prove, in the bilinear case, that the DFE is globally asymptotically
stable when R0 < 1. They prove the existence and uniqueness of an endemic equi-
librium when R0 > 1, and prove the global asymptotic stability when there is no
disease-induced mortality.
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The studies in Hyman et al. (1999) and Hyman and Li (2005a,b) give insight into
the transmission dynamics of diseases with differential susceptibility or differential
infectivity but not both. For many disease transmissions, the susceptibility and infec-
tivity factors are coupled and cannot be completely separated. In Hyman and Li (2006)
the authors propose a combined differential susceptibility and infectivity model. The
susceptible individuals are divided into n susceptible groups. The infective individ-
uals are divided into m groups, a susceptible Si , upon infection, enters groups I j

with probability qi j until becoming recovered or immune. There is no flows between
the different susceptible compartments nor between the different infective compart-
ments. The authors give an explicit formula for R0 and show that the DFE is globally
asymptotically stable if R0 < 1, for the bilinear incidence or for constant total popu-
lation.

In Hyman and Li (2005a, 2006) there are no flows between the different compart-
ments of susceptibles, and no flows between the different compartments of infected
individuals. But in many diseases the infectivity or the susceptibility can evolve. This
is, for example, the case of diseases where stage progression are considered (Hyman
and Li 2005b; Hyman et al. 1999). The case of hepatitis B virus (HBV) infection is
an illuminating example. Infection with HBV can lead to long-term carriage of the
virus, often resulting in chronic liver damage or hepatocellular carcinoma. The risk for
chronic infection varies according to the age at infection and is greatest among young
children. According to CDC approximately 90% of infants will remain chronically
infected with HBV. By contrast, approximately 95% of adults recover completely from
HBV infection and do not become chronically infected. Then there is a need for other
models. For example, a model for HBV transmission can be derived from the flow
graph of Fig. 3. When a susceptible is infected, he moves either in a latent compart-
ment evolving to chronicity or to a latent compartment evolving to acute infection,
according to the probability indicated in the flow graph. The given figures are taken
from CDC data.

This model has five classes of susceptible individuals and four classes of infected/
infectious individuals. There are flows between different classes of susceptible individ-
uals and between different classes of infected individuals. This model can be written
under the form of the general model (1) and satisfies hypotheses H1 and H2. If we
assume, as it is generally considered (Edmunds et al. 1996; Wilson et al. 1998, 2000)
that chronic are relatively less infectious, independently of the susceptible class, the
rank one hypothesis is satisfied. It must be noticed that this HBV model does not fit
the form of the models introduced in Hyman and Li (2005b) and Hyman et al. (1999)
whereas models introduced in Hyman and Li (2005b) and Hyman et al. (1999) can be
put under the form of model (1), with hypotheses H1 and H2 and rank one assumption
satisfied for the WAIFW matrix.

We give an explicit formula for R0, we prove that if R0 ≤ 1 then the DFE is glob-
ally asymptotically stable, and if R0 > 1 there exists a unique endemic equilibrium.
This contains the analogous results of Hyman and Li (2005b) and Hyman et al. (1999),
for the bilinear case or for the constant population models. We prove the global sta-
bility of the endemic equilibrium when the infective compartments evolve according
to a staged progression model, hence generalizing analogous result of Hyman and Li
(2005a).
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Fig. 3 A model for transmission of HBV

It would be interesting, but a difficult challenge, to prove the global asymptotic
stability of the endemic equilibrium of the model considered in Hyman and Li (2006),
where the infective compartments are represented in a differential infectivity setting.

Finally we would like to notice that our model does not take into account diseases
with no immunity or non permanent immunity, then cannot deal, for example, with
the models considered in Arino et al. (2003).
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