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Résumé

Cette thèse est consacrée à l’étude de problèmes de stabilisation exponentielle par retour
d’état ou "feedback" des équations de Navier-Stokes dans un domaine borné Ω ⊂ Rd, d = 2 ou
3. Le cas d’un contrôle localisé sur la frontière du domaine est considéré. Le contrôle s’exprime
en fonction du champ de vitesse à l’aide d’une loi de feedback non-linéaire. Celle-ci est fournie
grâce aux techniques d’estimation a priori via la procédure de Faedo-Galerkin laquelle consiste à
construire une suite de solutions approchées en utilisant une base de Galerkin adéquate. Cette loi
de feedback assure la décroissance exponentielle de l’énergie du problème discret correspondant
et grâce au résultat de compacité, nous passons à la limite dans le système satisfait par les
solutions approchées. Le chapitre 1 étudie le problème de stabilisation des équations de Navier-
Stokes autour d’un état stationnaire donné, tandis que le chapitre 2 examine le problème de
stabilisation autour d’un état non-stationnaire prescrit. Le chapitre 3 est consacré à l’étude de
la stabilisation du problème de Navier-Stokes avec des conditions aux bords mixtes (Dirichlet-
Neumann) autour d’un état d’équilibre donné. Enfin, nous présentons dans le chapitre 4, des
résultats numériques dans le cas d’un écoulement autour d’un obstacle circulaire.

Mots-clefs : Système de Navier-Stokes, contrôle feedback, stabilisation frontière, approche de
Galerkin.

Abstract

In this thesis we study the exponential stabilization of the two and three-dimensional Navier-
Stokes equations in a bounded domain Ω, by means of a boundary control. The Control is ex-
pressed in terms of the velocity field by using a non-linear feedback law. In order to determine
a feedback law, we consider an extended system coupling the Navier-Stokes equations with an
equation satisfied by the control on the domain boundary. While most traditional approaches
apply a feedback controller via an algebraic Riccati equation, the Stokes-Oseen operator or ex-
tension operators, a Galerkin method is proposed instead in this study. The Galerkin method
permits to construct a stabilizing boundary control and by using energy a priori estimation tech-
nics, the exponential decay is obtained. A compactness result then allows us to pass to the
limit in the nonlinear system satisfied by the approximated solutions. Chapter 1 deals with the
stabilization problem of the Navier-Stokes equations around a given steady state, while Chap-
ter 2 examines the stabilization problem around a prescribed non-stationary state. Chapter
3 is devoted to the stabilization of the Navier-Stokes problem with mixed-boundary conditions
(Dirichlet-Neumann), around to a given steady-state. Finally, we present in Chapter 4, numeri-
cal results in the case of a flow around a circular obstacle.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.
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CONTEXTE DE LA THÈSE

Introduction Générale

1 Contexte de la thèse
En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dé-

rivées partielles non linéaires qui décrivent le mouvement des fluides « newtoniens »
(liquide et gaz visqueux ordinaires) dans l’approximation des milieux continus. Par une
résolution approchée, elles permettent de proposer une modélisation des courants océa-
niques et des mouvements des masses d’air de l’atmosphère pour les océanographes et les
météorologistes, la simulation numérique du comportement des gratte-ciel ou des ponts
sous l’action du vent pour les architectes et ingénieurs, des avions, trains ou voitures
à grande vitesse pour leurs bureaux d’études concepteurs, mais aussi le trivial écoule-
ment de l’eau dans un tuyau et de nombreux autres phénomènes d’écoulement de divers
fluides. Le cas particulier de l’écoulement d’un fluide incompressible est traité dans cette
thèse. L’écoulement d’un fluide est dit incompressible lorsque l’on peut négliger ses va-
riations de masse volumique au cours du temps. Cette hypothèse est vérifiée pour l’eau
liquide et les métaux en fusion.

Plusieurs travaux dédiés à l’étude du système de Navier-Stokes incompressibles ont
été effectués dans la littérature (voir par exemple [14, 20, 32]). Ces travaux ont per-
mis d’établir des résultats d’existence, d’unicité et de régularité de la solution dans des
domaines bornés ou non bornés, des résultats relatifs au comportement en temps long
des solutions, ainsi que des résultats concernant les problèmes fondamentaux de stabi-
lité. Nous mentionnons cependant qu’à l’heure actuelle la question de l’existence globale
(c’est-à-dire pour tout temps t > 0) de solutions régulières en dimension 3, de même
que celle de l’unicité des solutions faibles toujours en dimension 3 sont des questions
ouvertes.

Dans cette thèse, nous nous intéressons à l’étude de problèmes de stabilisation par
retour d’état ou « feedback » des équations de Navier-Stokes incompressibles, dans un
domaine borné, autour d’un état désiré, à l’aide d’un contrôle frontière dynamique. La
stabilisation par retour d’état permet de gérer, commander, diriger ou réguler le compor-
tement d’un système physique comme le phénomène d’écoulement autour d’un barrage
hydraulique. La construction d’un barrage peut provoquer à la fois des bouleversements
humains en forçant des populations entières à se déplacer, et avoir un impact écologique
non négligeable en changeant l’écosystème local. Cependant, il permet par exemple la
régulation du débit d’une rivière ou d’un fleuve (favorisant ainsi le trafic fluvial), l’irri-
gation des cultures, une prévention relative des catastrophes naturelles (crues, inonda-
tions), par la création de lacs artificiels ou de réservoirs. Un barrage autorise aussi, sous
certaines conditions, la production de force motrice (moulin à eau) et d’électricité : on
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parle alors de barrage hydroélectrique (voir Figure 1). L’énergie électrique est produite
par la transformation de l’énergie cinétique de l’eau en énergie électrique par l’intermé-
diaire d’une turbine hydraulique couplée à un générateur électrique (voir Figure 2 et
Figure 3). Pour les barrages au fil de l’eau la quantité d’énergie produite est directement
liée au débit (m3/s, m3/h, m3/j, m3/an). Pour les barrages par accumulation, la quantité
d’énergie disponible, sur une période donnée, dépend du volume de son réservoir, des
apports et pertes naturels sur la période et de la hauteur de chute. Afin d’augmenter ou
de diminuer la quantité d’énergie produite, nous pouvons agir sur les vannes (voir partie
E de la Figure 1). Cette action permet de contrôler le débit entrant ou sortant au niveau
de la conduite forcée (voir partie F de la Figure 1). On s’intéresse alors au problème de
stabilisation par retour d’état des équations de Navier-Stokes incompressibles.

FIGURE 1 – Schéma en coupe d’un barrage hydroélectrique ( source [34]). A : réservoir,
B : centrale électrique, C : turbine, D : générateur, E : vanne, F : conduite forcée, G :
lignes haute tension, H : rivière.

La stabilisation par retour d’état des équations de Navier-Stokes est aussi utilisée
pour passer d’un régime turbulent vers un régime laminaire. En effet, dans un circuit
(ou système) hydraulique ou oléohydraulique l’écoulement doit toujours être, si possible,
laminaire. Au-delà il est en phase dite critique, puis en régime turbulent qui utilise une
partie de l’énergie mécanique pour créer des mouvements de plus en plus désordonnés.
Les figures 4 et 5 représentent un certain nombre de lignes de courant de l’écoulement
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PROBLÈME DE STABILISATION

FIGURE 2 – Turbine hydraulique et générateur électrique, vue en coupe (source [35]). A :
générateur, 1 : stator , 2 : rotor, B : turbine, 3 : vannes réglables, 4 : pales de la turbine,
5 : flux d’eau, 6 : axe de rotation de la turbine et du générateur.

bidimensionnel dans un domaine borné Ω ⊂ R2, avec un écoulement du type "Poiseuille"
en entrée du canal. Sur la Figure 5, en régime turbulent, on observe des tourbillons à l’ar-
rière de l’obstacle cylindrique, connus sous le nom « d’allées de Von Karman ». Lorsqu’un
tourbillon se détache, un écoulement dissymétrique se forme autour du corps, ce qui
modifie la distribution des pressions. Dans divers problèmes techniques, ce phénomène
peut avoir des conséquences dommageables (rupture de ponts suspendus, écroulement
de cheminées, accidents d’avion, etc). On s’intéresse alors au problème de stabilisation
suivant : comment déterminer une condition limite non homogène, localisée sur la fron-
tière (du cylindre par exemple), permettant de revenir à l’état laminaire ? L’utilisation de
parois perforées : méthode d’aspiration-soufflage, permet de mettre en œuvre un contrôle
en boucle fermée (aussi appelé contrôle feedback). C’est un contrôle qui dépend à chaque
instant de la variable d’état du système et dont la formulation mathématique (9) est
donnée après la formulation différentielle du problème de stabilisation (3).

2 Problème de stabilisation

Soit Ω un ouvert connexe borné de classe C2 dans Rd, d = 2, 3, de frontière de Γ = ∂Ω.
Celle-ci est constituée de deux composantes connexes Γl and Γb tel que Γ = Γl ∪ Γb. En
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FIGURE 3 – Schéma turbine et générateur électrique (source [36]).

FIGURE 4 – (a) : Écoulement laminaire ; (b) : Écoulement turbulent.

FIGURE 5 – En haut : écoulement laminaire ; En bas : écoulement turbulent.
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PROBLÈME DE STABILISATION

particulier, le bord Γb est la partie de Γ où le contrôle frontière sous forme de feedback
est déterminé.

On considère un écoulement incompressible stationnaire dans Ω décrit par les équa-
tions de Navier-Stokes adimensionnées 1 suivantes :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) − 1

Re

Δψ + (ψ · ∇)ψ +∇r = f in Ω,

(b) ∇ ·ψ = 0 in Ω,

(c) ψ = 0 on Γl,

(c) ψ = ψb on Γb,

(1)

où les variables ψ, r et les paramètres f ,ψb et Re sont définis comme suit :
– ψ : champs de vitesse d’une particule fluide
– r : pression
– f : forces massiques s’exerçant dans le fluide (ex : la gravité)
– ψb : champs de vitesse au bord
– Re : nombre de Reynolds (sans dimension)

Re =
U0D0

ν

avec
• U0 - vitesse caractéristique du fluide [m/s]

• D0 - dimension caractéristique [m]

• ν - viscosité cinématique du fluide [m2/s].

Lorsque la force f et le champ de vitesse au bord ψb vérifient certaines conditions, l’exis-
tence d’une solution (ψ, r) satisfaisant (1) est connue dans [14, 20, 32]. En plus, lorsque
le nombre de Reynolds Re dépasse une certaine valeur critique, le système décrit dans
(1) est soumis à une perturbation et le champ de vitesse stationnaire ψ est dit instable.

Supposons maintenant qu’à un instant initial t = 0 le champ de vitesse quitte son état
d’équilibre ψ et soit égal à u(0,x) �= ψ(x), l’évolution du couple vitesse pression (u, q) au
cours du temps est alors décrite par les équations de Navier-Stokes incompressibles non-

1. Pour faciliter une analyse quantitative des équations de Navier-Stokes, il est d’usage de mettre ces
équations sous forme adimensionnée.
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stationnaires suivantes :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a)
∂u

∂t
− 1

Re

Δu+ (u · ∇)u+∇q = f(x), ∇ · u = 0 dans [0,+∞[×Ω,

(b) u = 0 sur [0,+∞[×Γl,

(c) u = vb +ψb sur [0,+∞[×Γb,

(d) u(0,x) = v0(x) +ψ(x) dans Ω,

(2)

où vb est le contrôle et v0 la perturbation de l’état d’équilibre.

Problème de stabilisation. En remplaçant (u, q) par (v + ψ, p + r) dans (2), puis en
utilisant (1), on voit que le coupe (v, p) satisfait le problème de stabilisation suivant :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− 1

Re

Δv + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v +∇p = 0 dans [0,+∞[×Ω,

(b) ∇ · v = 0 dans [0,+∞[×Ω,

(c) v = 0 sur [0,+∞[×Γl,

(d) v = vb sur [0,+∞[×Γb,

(e) v(t = 0,x) = v0(x) sur Ω.

(3)

Forme trilinéaire. Afin de donner l’estimation a priori du problème de stabilisation
des équations de Navier-Stokes (3), nous introduisons la forme trilinéaire

b(v1,v2,v3) =

∫
Ω

(v1∇)v2 · v3 dx, ∀(v1,v2,v3) ∈ H1(Ω)×H1(Ω)×H1(Ω).

En intégrant par parties la forme trilinéaire b(·, ·, ·), on obtient les égalités suivantes :

b(u,v,v) =
1

2

∫
Γb

|v|2(u · n), ∀u,v ∈ V(Ω), (4)

b(v,v,v) =
1

2

∫
Γb

|v|2(v · n), ∀v ∈ V(Ω), (5)

où V(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0, u = 0 sur Γl

}
. D’après l’inégalité de Hölder, on a :

|b(v1,v2,v3)| ≤ ‖v1‖‖∇v2‖∞‖v3‖, ∀v1, v2, v3 ∈ H1(Ω), (6)

où ‖ · ‖ = ‖ · ‖L2(Ω) et ‖ · ‖∞ = ‖ · ‖L∞(Ω).
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PROBLÈME DE STABILISATION

Estimation a priori. Multiplions la première équation de (3) par v et intégrons par
partie sur Ω, nous obtenons

1

2

d

dt
‖v‖2 + ν‖∇v‖2 + b(v,v,v) + b(ψ,v,v) + b(v,ψ,v) =

∫
Γb

[ν
∂v

∂n
− pn] · vb. (7)

L’utilisation de l’inégalité de Poincaré et des estimations (4)-(6) dans (8) donne

1

2

d

dt
‖v‖2 + βν‖v‖2 ≤

∫
Γb

[ν
∂v

∂n
− pn] · vb −

1

2

∫
Γb

|vb|2(ψ · n)− 1

2

∫
Γb

|vb|2(vb · n), (8)

où βν = νC2
p − ‖∇ψ‖∞ avec Cp la constante de Poincaré.

Notion contrôle feedback. La formulation mathématique de la stabilisation frontière,
par contrôle feedback, consiste à trouver vb sous la forme

vb(t) = K(v(t)), t ∈ (0,∞), (9)

où K est une loi de contrôle à déterminer, de sorte que la vitesse v vérifie par exemple

‖v(t)‖X(Ω) ≤ C‖v0‖X(Ω)e
−σt, (10)

avec σ > 0 une constante fixée et X(Ω) l’espace d’état adéquat. Notons que dans le cadre
de cette thèse ‖ · ‖X(Ω) = ‖ · ‖ avec

X(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0 dans Ω, u · n = 0 sur Γl

}
.

Quelques questions.
Selon la réalité que l’on décrit, le problème de stabilisation (3) peut se présenter

de plusieurs façons. Par exemple, la fonction ψ dans (3-a) dépend seulement de l’es-
pace mais, en plus de l’espace, elle peut aussi dépendre du temps. En admettant que le
bord Γ soit composé de deux parties connexes Γ0 et Γ1, des conditions aux limites mixtes
(Dirichlet-Neumann) peuvent être considérées aussi. Mais, une fois le problème de sta-
bilisation du type (3) fixé, on pourra se poser quelques questions. Ces questions sont
relatives à l’état cible ψ, lequel représente un paramètre important dans un problème
de stabilisation.

• Nous dirons que l’état cible (ou état d’équilibre) ψ est stable, dans le sens où
vb ≡ 0 stabilise le problème de stabilisation (3), pour tout v0 ∈ X(Ω). Par exemple,
βν = νC2

p − ‖∇ψ‖∞ > 0 dans (8). Cependant, dans le cas où la perturbation ini-
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tiale v0 est non nulle sur le bord Γb, devons-nous prendre vb ≡ 0 comme contrôle ?
Ou devons construire un contrôle vb, sous la forme (9), qui stabilise le système (3),
progressivement ? De plus, lorsque v0 �= 0 sur Γb, prendre vb ≡ 0 entraîne une dis-
continuité brutale. Avons nous le dispositif (la puissance des vannes, par exemple)
permettant d’appliquer ce type de contrôle ? Cette rupture brutale n’entraînera-t-
elle pas des conséquences dommageable pour ce dispositif ? Enfin, dans le cas où
nous choisissons de contrôler le système de façon progressive, pouvons-nous accé-
lérer la décroissance de l’énergie ?

• Nous dirons que l’état cible (ou état d’équilibre) ψ est instable, dans le sens où,
quelque soit v0 ∈ X(Ω), vb ≡ 0 ne stabilise pas le problème (3). Dans ce cas, est-il
possible de déterminer une loi de contrôle K permettant de stabiliser exponentiel-
lement le problème de type (3) ? Notons que lorsqu’un état d’équilibre est instable,
une petite perturbation peut entraîner une croissance exponentielle de l’énergie.
Étant donné une perturbation initiale v0 arbitraire dans l’espace fonctionnel X(Ω),
est-il possible de guider l’état v, initialement en v0 jusqu’à l’état final vf = 0 ? En-
fin, puisque le taux de décroissance joue un rôle important dans le processus de
stabilisation. On pourra se demander s’il est possible de stabiliser le problème de
type (3) pour tout taux de décroissance σ > 0 fixé i.e.

‖v(t)‖V(Ω) ≤ C‖v0‖V(Ω)e
−σt, t > 0.

Nous nous limitons à ces questions même si d’autres interrogations sont possibles.
À travers quelques méthodes existantes, nous allons apporter des éléments de réponse
à ces questions. Nous commençons cependant par donner les définitions et notations de
quelques espaces fonctionnels usuels.

Dans toute la suite, Ω est un ouvert connexe borné de classe C2 dans Rd, d = 2, 3.
La frontière de Ω est notée Γ = ∂Ω et elle est constituée de N composantes connexes
Γ1, Γ2, Γ3, · · · ,ΓN . On introduit les espaces de fonctions habituels L2(Ω), Hs(Ω), Hs

0(Ω)

et l’espace dual H−s(Ω) = {Hs
0(Ω)}′. Nous notons en gras les champs de vecteurs

L2(Ω) = (L2(Ω))d, Hs(Ω) = (Hs(Ω))d, Hs
0(Ω) = (Hs

0(Ω))
d et H−s(Ω) = (H−s(Ω))d. On utilise

la notation ‖ · ‖Y(Ω) pour les normes, avec en indice l’espace Y(Ω) considéré et on note
simplement 〈· | ·〉 et ‖ · ‖ = ‖ · ‖L2(Ω), le produit scalaire et la norme de L2(Ω), respecti-
vement. Les mêmes conventions sont utilisées pour les espaces de traces L2(Γ) et Hs(Γ).
En plus, si u ∈ L2(Ω) est tel que ∇·u ∈ L2(Ω), alors nous notons par u ·n la trace normale
de u dans H− 1

2 (Γ), où n est le vecteur unitaire normal de Γ extérieur à Ω. Enfin, dans
toute l’introduction, nous notons par X(Ω) l’espace de la condition initiale v0 et par U(Γ)

l’espace du contrôle vb.
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MÉTHODES CLASSIQUES

3 Méthodes classiques
La question de stabiliser les équations de Navier-Stokes incompressibles avec un

contrôle frontière a été étudiée par plusieurs auteurs, e.g. A.V. Fursikov [18, 19], V. Barbu
et al. [6, 10, 11, 12, 13], J.-P. Raymond et al. [28, 29, 30] et M. Badra et al. [2, 3, 4]. Dans
ces articles, Les auteurs considèrent le problème de stabilisation (3) avec ψ ≡ ψ(x). En-
suite, avec une condition adéquate de Dirichlet au bord, ils transforment le système de
stabilisation sous la forme

y′ = Ay +Bu+ κF (y,u), y(0) = y0, (11)

où y est la nouvelle variable d’état, u la nouvelle variable de contrôle, A est un opérateur
linéaire et est générateur infinitésimal d’un semi-groupe, B est un opérateur linéaire, F
une application non-linéaire et κ = 0 ou 1.

Dans [18, 19], l’auteur construit un opérateur K à l’aide d’une procédure d’extension
de la condition initiale y0 laquelle nécessite le calcul des vecteurs propres de l’opérateur
de Oseen. Il obtient un contrôle de la forme u = Ky0 avec

X(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0 dans Ω, u = 0 sur Γ0,

∫
Γ1

u · n = 0
}
,

U(Γ) =
{
u ∈ H3/2(Γ), u = 0 sur Γ0,

∫
Γ1

u · n = 0
}
,

où Γ = Γ0 ∪ Γ1 avec Γ1 ∩ Γ0 = ∅. Même si la loi de contrôle K a été bien caractérisée, elle
dépend cependant du temps et de la condition initiale. Notons que les lois de contrôle du
type (9) c’est à dire indépendantes du temps et de la condition initiale, sont généralement
préférables dans les applications en ingénierie car elles sont plus robustes par rapport
aux perturbations dans les modèles. En dimension deux, J. P. Raymond a obtenu dans
[30] une loi de contrôle frontière du type (9), où l’opérateur de contrôle K est déterminé
en résolvant une équation algébrique de Riccati obtenue via la solution d’un problème
de contrôle optimal. Afin d’obtenir ce résultat cité précédemment, la condition initiale y0

et le contrôle u doivent respectivement appartenir aux espaces

X(Ω) =
{
u ∈ H1/2−ε(Ω) : ∇ · u = 0 in Ω, u · n = 0 on Γ

}
,

U(Γ) =
{
mu ∈ L2(Γ) :

∫
Γ

mu · n dζ = 0
}
,

où 0 < ε < 1/4 et la fonction m ∈ C2(Γ) à valeurs dans [0, 1] permet de localiser le contrôle
u qui n’est appliqué que sur une partie de la frontière. Malheureusement, comme expli-
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qué dans [29], le cas de la dimension trois (3D) est plus exigeant en termes de régularité
de la vitesse y et il ne peut pas être traité de la même manière que le cas bidimensionnel.
En effet, en 3D le contrôle u = K(y) appartient à H1/4+ε/2(0,∞;L2(Γ)) avec 1/2 ≤ ε, et
dans le cas particulier où 1/2 < ε, l’espace H1/4+ε/2([0,∞[;L2(Γ)) est un sous espace de
C([0,∞[;L2(Γ)), impliquant ainsi la vitesse initiale à satisfaire la condition de compati-
bilité au bord y0|Γ = K(y0). Plus précisément, pour une donnée initiale y0 qui ne satisfait
pas y0|Γ = K(y0), il n’est pas possible d’obtenir une solution avec la méthode de point
fixe. Afin de faire coïncider la trace de la condition initiale et le retour d’état frontière
initial, l’auteur introduit dans [29] une loi de feedback dépendant du temps sur un in-
tervalle transitoire initial [0, t0]. Cette loi se calcule à l’aide d’une équation de Riccati
différentielle sur [0, t0[ et d’une équation de Riccati algébrique sur [t0,+∞[. En plus, pour
obtenir le résultat de stabilisation par l’approche de Riccati, des espaces particuliers de
conditions initiales donnés dans [4] sont utilisés.

L’étude réalisée dans [29], améliore d’une certaine façon les résultats obtenus dans
[10, 11], où un contrôle frontière tangentiel basé à la fois sur l’approche de Riccati et
l’approche spectrale est utilisé. Le cas 3D est très exigeant en termes de régularité de
la vitesse. Cependant dans [11], l’auteur établit une loi de feedback du type (9) par la
résolution d’un problème de contrôle optimal avec une fonction coût qui met en jeu la
norme L2(0,∞;H3/2+ε(Ω)) de l’état, pour ε > 0 assez petit. Par contre, comme expliqué
dans [11], l’équation de Riccati dont dépend la loi de feedback est mal posée. Celle-ci est
définie faiblement pour un espace de fonctions tests qui dépend de la solution de l’équa-
tion. Cette difficulté est intrinsèquement liée à la condition de compatibilité de la trace
de la condition initiale. Celle-ci est nécessaire pour obtenir la décroissance exponentielle
de la solution des équations de Navier-Stokes en 3D. En effet, pour obtenir cette condi-
tion, les auteurs ont choisi un opérateur d’observation trop fortement non borné qui ne
permet pas d’obtenir une équation de Riccati en un sens classique. Afin d’obtenir une
équation de Riccati bien posée pour d = 3, l’auteur choisit dans [29] une fonction coût qui
met en jeu une norme très faible de la variable d’état.

Rappelons que dans [29], une loi de feedback dépendant du temps dans un intervalle
transitoire initial a été introduite. Comme expliqué dans [3], trouver une loi de contrôle
indépendante du temps, laquelle satisfait y0|Γ = K(y0) pour une classe donnée de condi-
tions initiales y0, n’est pas évident. Ce problème est ainsi étudié dans [3] aussi bien en
dimension deux qu’en dimension trois, et il a conduit à la recherche du contrôle vb dans
un système étendu composé du problème d’évolution

∂vb

∂t
−ΔBvb − σ n = K(v,vb), vb(0) = v0|Γ,

couplé avec le système de Navier-Stokes original, où ΔB représente l’opérateur de
Laplace-Beltrami et la loi de contrôle K agit maintenant sur le couple (v,vb). Dans cette
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étude, l’espace fonctionnel X(Ω) de la condition initiale est défini comme suit

X(Ω) =
{
u ∈ Hs(Ω) : ∇ · u = 0 in Ω,

∫
Γ

u · n = 0
}
,

avec s ∈ [d−2
2
, 1]\{1/2}, l’opérateur K est obtenu à partir d’une équation de Riccati bien

posé et le contrôle vb est défini sur une partie Γ arbitrairement choisie.

Afin de stabiliser les équations de Navier-Stokes autour d’un état stationnaire, sauf
dans les papiers de A.V. Fursikov [18, 19], des lois de feedback sont déterminées en ré-
solvant une équation de Riccati algébrique de dimension infinie [3, 4, 9, 10, 11, 29, 30].
Bien que notre étude ne porte que sur la construction d’un contrôle frontière, l’approche
de Riccati de dimension infinie évoquée ci-dessus, s’applique aussi aux cas de contrôles
internes [7, 13]. Dans le cas où le contrôle est obtenue en résolvant une équation algé-
brique de Riccati sur un espace de dimension infinie, un problème de contrôle optimal est
résolu. Dans la pratique, ce problème est très difficile à mettre en œuvre. En effet, les ma-
trices apparaissant dans la version discrète de l’équation de Riccati sont de très grande
dimension, et la solution Π de cette équation tel que K = −B∗Π par exemple, est éga-
lement une matrice de grande taille et pleine. Cela entraîne des problèmes de mémoire
rendant la résolution numérique difficile. En conséquence, l’utilisation de contrôleurs de
dimension finie peut être plus appropriée pour stabiliser les équations de Navier-Stokes.
Notons qu’une telle approche est étudiée dans [8, 12], dans le cas d’un contrôle interne,
et dans [2, 6, 28], dans le cas d’un contrôle frontière. Dans ces études citées ci-dessus, les
auteurs cherchent un contrôle frontière u de dimension finie de la forme

u =
N∑
j=1

uj(t)ϕj(x), t ≥ 0, x ∈ Γ, (12)

où
• N : est la taille de l’espace instable d’un certain opérateur A, c’est à dire si (λk)k∈N∗

représente l’ensemble des valeurs propres complexes de A, N est tel que, pour tout
taux de décroissance σ > 0 fixé

· · · ≤ RλN+1 < −σ < RλN ≤ · · · ≤ Rλ2 ≤ Rλ1. (13)

• ϕj, j = 1, 2, 3, . . . , N : est la fonction propre de A associée à la valeur propre λj.

• uj, j = 1, 2, 3, . . . , N : est exprimé sous forme de feedback.
Dans [28] où le cas 2D est traité, un contrôle vb de la forme (12) est obtenu à partir de
la solution d’une équation de Riccati de dimension finie dans Rnc×nc, où nc est la taille
de l’espace instable de l’opérateur d’Oseen. La même approche est ensuite élargie dans
[2] pour le cas de la dimension trois. En contrôle interne dans [8], au lieu d’utiliser l’ap-
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proche de Riccati, une technique de stabilisation stochastique est utilisée. Celle-ci per-
met d’éviter les difficultés liées à la dimension infinie des équations de Riccati. Ensuite,
une procédure semblable est utilisée dans [6] dans le cadre d’un contrôle frontière.

Dans toutes les études mentionnées ci-dessus, une loi de feedback linéaire est d’abord
déterminée en résolvant un problème de contrôle linéaire (κ = 0 dans (11)). Ensuite cette
loi de contrôle linéaire est utilisée pour stabiliser le système non linéaire. Un tel procédé
impose de choisir une vitesse initiale assez petite. En plus, les méthodes employées (par
exemple, l’approche de Riccati) exigent de chercher la condition initiale y0 dans des es-
paces suffisamment réguliers, selon que d = 2 ou d = 3. Par exemple, dans [6, Theorem
2.3] pour d = 2 on a y0 ∈ X(Ω) = H1/2−ε(Ω) ∩ H̃(Ω) où

H̃(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 sur Γ

}
, (14)

tandis que dans [2, Theorem 2], pour d = 3, on a y0 ∈ Hs
0(Ω), s ∈ (1/2, 1] avec ∇ · y0 = 0.

Nous avons aussi vu que le taux de décroissance σ est arbitrairement choisi dans la plus
part de ces études citées, par exemple [2, 6, 18, 19]. Une fois fixé, ce taux détermine la
valeur de C ≥ 1 dans (10) et la taille de N dans (13). Cependant, dans ces publications
les auteurs ne précisent pas les valeurs exactes de ces deux constantes. Notons que les
valeurs propres (λk)k∈N∗ de A dépendent du nombre de Reynolds Re (ou de la viscosité ν),
de l’état stationnaire ψ et du domaine Ω. Par conséquent, même pour un taux σ petit, la
taille de N peut être très grande car dépendant de la répartition des (Rλk)k∈N∗ dans R.
En ce qui concerne le C dans (10), notons que travailler avec une constante très grande
n’est pas souhaitable car ce phénomène pourrait entraîner une croissance exponentielle
de l’énergie au début du processus.

Il existe cependant des méthodes qui ne cherchent pas une loi de feedback par la
résolution d’un problème de contrôle linéaire. Dans [5] avec une approche différente,
les auteurs étudient le problème de la stabilisation par contrôle frontière des équations
de Navier-Stokes 2D dans un canal borné. Leur approche consiste à trouver une loi de
feedback en utilisant un actionnement de la vitesse tangentielle. Cette loi a permis aux
auteurs d’obtenir un résultat de stabilité du type (10), avec C=1, pour une vitesse initiale
arbitrairement choisie dans l’espace fonctionnel H̃(Ω) défini dans (14).

Nous allons maintenant introduire la méthode utilisée dans cette thèse et présenter
ses avantages.

4 Nouvelle méthode
Dans cette thèse au lieu de chercher une loi de feedback par la résolution d’un pro-

blème de contrôle linéaire, éventuellement par la résolution d’une équation de Riccati,
une nouvelle approche est proposée. Celle-ci diffère aussi de l’approche proposée dans
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[5]. Elle consiste à établir une équation impliquant la dérivée de l’énergie par rapport au
temps et les conditions aux limites. La décroissance exponentielle de l’énergie est obte-
nue en choisissant des conditions aux limites adéquates. Cette méthode a été développée
pour la première fois dans [31] pour la stabilisation du système de Saint-Venant 1D,
ensuite elle a été appliquée dans [22, 23, 17]. Dans [22, 23], avec les équations de Saint-
Venant, les auteurs stabilisent les réseaux de canaux d’irrigation, tandis que dans [17]
les auteurs traitent un système couplant les équations de Saint-Venant aux équations
érosion-sédimentation. Cette thèse est cependant consacrée à l’étude du problème de sta-
bilisation par retour d’état ou "feedback" des équations de Navier-Stokes incompressibles
autour d’un état stationnaire ou d’un état non-stationnaire donné. Bien que certains au-
teurs utilisent le contrôle interne (contrôle effectué sur une partie interne du domaine)
pour stabiliser le problème de Navier-Stokes incompressible, le cas d’un contrôle loca-
lisé sur la frontière du domaine est considéré dans cette thèse. Le contrôle s’exprime en
fonction du champ de vitesse à l’aide d’une loi de feedback non-linéaire. Celle-ci est four-
nie grâce aux techniques d’estimation a priori via la méthode Faedo-Galerkin laquelle
consiste à construire une suite de solutions approchées en utilisant une base de Galer-
kin adéquate. Cette loi de feedback assure la décroissance exponentielle de l’énergie du
problème discret correspondant. Le système satisfait par les solutions approchées étant
non-linéaire, le passage à la limite se fait grâce au résultat de compacité [26].

L’approche proposée dans cette thèse présente plusieurs avantages. Elle permet
d’étudier la stabilisation exponentielle (par contrôle frontière) des équations Navier-
Stokes non seulement autour d’un état stationnaire, mais aussi autour d’un état non-
stationnaire. La méthode permet aussi de stabiliser le problème de Navier-Stokes avec
des conditions aux bords mixtes (Dirichlet-Neumann) autour d’un état d’équilibre donné.
À notre connaissance, l’étude théorique de la stabilisation exponentielle par contrôle
frontière des équations de Navier-Stokes autour d’un état non-stationnaire et la sta-
bilisation exponentielle par contrôle frontière des équations de Navier-Stokes avec des
conditions aux bords mixtes autour d’un état d’équilibre donné n’a pas été abordée dans
la littérature. En plus, le résultat de stabilisation ‖v(t,x)‖ ≤ ‖v0(x)‖e−σt, t ∈ (0,∞), est
obtenu pour un certain σ > 0 et pour une vitesse initiale v0 arbitrairement choisie dans
H(Ω) =

{
u ∈ L2(Ω) : ∇·u = 0, u ·n = 0 sur Γl

}
. Cet espace impose moins de régularité à

v0 comparé aux résultats cités ci-dessus, par exemple voir [6, Theorem 2.3] et ce résultat
de régularité est indépendant de la dimension d = 2 ou d = 3.

Dans la suite de cette introduction, nous présentons de manière plus détaillée le
contenu de chacun des chapitres de cette thèse.
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5.1 - Stabilisation frontière des équations de Navier-Stokes par un contrôle feedback via une méthode de
Galerkin

5 Description des résultats obtenus

5.1 Stabilisation frontière des équations de Navier-Stokes par
un contrôle feedback via une méthode de Galerkin

On considère un domaine ouvert Ω de Rd (d = 2 ou d = 3), borné connexe de classe C2

et de frontière ∂Ω = Γ. Celle-ci est constituée de deux composantes connexes Γl and Γb tel
que Γ = Γl ∪ Γb. En particulier, le bord Γb est la partie de Γ où le contrôle frontière sous
forme de feedback est déterminé. On considère dans Ω, un écoulement incompressible
stationnaire décrit par le couple (vs, qs), solution système de Navier-Stokes suivant⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−νΔvs + (vs.∇)vs +∇qs = fs dans Ω,

∇ · vs = 0 dans Ω,

vs = vb sur Γb,

vs = 0 sur Γl,

(15)

où la viscosité ν est strictement positive, le champ de force fs est dans H−1(Ω) et la
condition au bord vb appartient à

V 1/2(Γb) =
{
u ∈ H1/2(Γb) :

∫
Γb

u · n dζ = 0
}
.

Rappelons qu’une solution (vs, qs) de (15), appartenant à H1(Ω)×L2
0(Ω), est connue dans

[20], où L2
0(Ω) est l’espace des pressions à valeur moyenne nulle :

L2
0(Ω) =

{
p ∈ L2(Ω),

∫
Ω

p(x) dx = 0

}
.

Soit T > 0 un réel fixé, on pose

Q = [0, T [×Ω, Σl = [0, T [×Γl et Σb = [0, T [×Γb

et on considère le problème de Navier-Stokes non-stationnaire suivant⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇q = fs dans Q,

∇ · u = 0 dans Q,

u = vb + ub sur Σb,

u = 0 sur Σl,

u0(x) = vs(x) + v0(x) dans Ω.

(16)
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DESCRIPTION DES RÉSULTATS OBTENUS

Le couple (v = u− vs, p = q − qs) satisfait alors le problème suivant⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 dans Q,

(b) ∇ · v = 0 dans Q,

(c) v = ub sur Σb,

(d) v = 0 sur Σl,

(e) v(t = 0,x) = v0(x) dans Ω.

(17)

Le but du chapitre 1 est de trouver, via le système (17), un contrôle ub sur Σb qui permet
de stabiliser le problème de Navier-Stokes (16) autour de l’état stationnaire vs.

Nous résumons les parties essentielles de ce chapitre, ensuite énonçons le résultat de
stabilisation obtenu.

Espaces fonctionnels. On considère les espaces des fonctions à divergence nulle

V(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0 dans Ω, u = 0 sur Γl,

∫
Γb

u · n dζ = 0
}
, (18)

V0(Ω) = {u ∈ H1
0(Ω) : ∇ · u = 0 dans Ω}, (19)

H(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 sur Γl,

∫
Γb

u · n dζ = 0
}
. (20)

Nous avons, par définition ‖ · ‖V(Ω) = ‖ · ‖H1(Ω), car V(Ω) est un sous espace fermé de
H1(Ω).

Définition 5.1. On désigne par V1/2(Γb) le sous-espace de H1/2(Γ) formé des fonctions
définies dans Γb et dont l’extension par zéro sur Γ \ Γb appartient à H1/2(Γ). Soit g ∈
V1/2(Γb) tel que g · n �= 0 sur Γb et

∫
Γb
g · n dζ = 0, on définit par

W (Q) = {(v, α) ∈ V(Ω)× R, tel que v = αg sur Γb}, (21)

l’espace fonctionnel dans lequel la solution v de (17) sera cherchée.

Formes Linéaires. Afin de définir la formulation faible du problème de stabilisation
des équations de Navier-Stokes, nous introduisons la forme bilinéaire

a(v1,v2) =

∫
Ω

∇v1 : ∇v2 dx, ∀(v1,v2) ∈ H1(Ω)×H1(Ω),

et la forme trilinéaire

b(v1,v2,v3) =

∫
Ω

(v1∇)v2 · v3 dx, ∀(v1,v2,v3) ∈ H1(Ω)×H1(Ω)×H1(Ω).
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5.1 - Stabilisation frontière des équations de Navier-Stokes par un contrôle feedback via une méthode de
Galerkin

En intégrant par parties la forme trilinéaire b(·, ·, ·), on obtient les propriétés suivantes :

b(u,v,v) =
α2

2

∫
Γb

|g|2(u · n) dζ, ∀u ∈ V(Ω), ∀(v, α) ∈ W (Q), (22)

b(v,v,v) =
α3

2

∫
Γb

|g|2(g · n) dζ, ∀(v, α) ∈ W (Q). (23)

En plus, d’après l’inégalité de Hölder, on a :

|b(v1,v2,v3)| ≤ ‖v1‖‖∇v2‖∞‖v3‖, ∀v1, v2, v3 ∈ H1(Ω), (24)

où ‖ · ‖∞ = ‖ · ‖L∞(Ω).

Nous allons maintenant construire une base de Galerkin pour l’espace W (Q).

Base de Galerkin pour W (Q). Soient {zj, λj, j = 1, 2, 3, · · · } les fonctions propres et les
valeurs propres du problème spectral de l’opérateur de Stokes suivant :

−Δzj +∇pj = λjzj, ∇ · zj = 0 in Ω; zj|Γ = 0. (25)

Comme montré dans [32], 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞ lorsque j → ∞. En plus, les {zj}
forment une base orthonormale dans V0(Ω) vérifiant :{

〈zj, zk〉 = δjk,

〈∇zj,∇zk〉 = λjδjk, ∀j, k = 1, 2, 3, ...
(26)

L’espace W (Q), défini dans (21), est alors réécrit comme suit :

W (Q) = span(zn){n∈N∗} ⊕ span(w), (27)

où w satisfait le système suivant :

−Δw +∇q = 0, ∇ ·w = 0 in Ω, w = 0 on Γl, w = g on Γb. (28)

Puisque g satisfait
∫
Γb
g ·n dζ = 0, le système (28) admet alors une unique solution (w, q)

dans V(Ω)× L2
0(Ω) (voir [32]).

Problème de stabilisation. Pour stabiliser le système (17), nous choisissons de cher-
cher la solution v sous la forme v = z + αw, où z ∈ V0(Ω), w vérifie (28) et α, grâce aux
techniques d’estimation a priori, satisfait :∫

Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α), (29)
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DESCRIPTION DES RÉSULTATS OBTENUS

avec

f(v, α) = aα2 + bα− σ0‖v‖2α− νλ1

(
‖w‖2α + 2〈w, z〉

)
. (30)

Notons que dans (30)

a =
1

2

∫
Γb

|g|2(g · n) dζ et b =
1

2

∫
Γb

|g|2(vs · n) dζ,

λ1 est la plus petite valeur propre de (25), σ0 est une constante positive arbitrairement
choisie et a été introduite pour limiter la taille du contrôle.
Puisque v = z+ αw, on a v = αg sur Γb car z = 0 sur Γ. En couplant le système (17) avec
l’équation (29), le couple (v, p) satisfait maintenant le problème de stabilisation suivant :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 dans Q,

(b) ∇ · v = 0 dans Q,

(c) v = α(t)g(x) sur Σb,

(d) v = 0 sur Σl,

(e) v(0,x) = v0(x) dans Ω,

(f)

∫
Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α).

(31)

Le contrôle α est a priori inconnu et grâce à l’équation (31-f), il satisfait une loi de feed-
back non linéaire conduisant à chercher des α(v). Puisque (31-f) est indépendant de x,
la fonction α(v) dépend uniquement du temps. Pour simplifier, α(v) est noté α dans la
suite.

Formulation variationnelle. Nous considérons la formulation variationnelle du pro-
blème de stabilisation (31).

Définition 5.2. Soit T > 0 un nombre réel arbitraire, nous dirons que (v, α) est solution
faible de (31) sur [0, T ) si

– v ∈ [L∞(0, T ;H(Ω)) ∩ L2(0, T ;V(Ω))],

– ∃α ∈ L∞(0, T ) tel que v = αg sur Γb,⎧⎨⎩(a) 〈dtv, ṽ〉+ νa(v, ṽ) + b(v,vs, ṽ) + b(vs,v, ṽ) + b(v,v, ṽ) = α̃f(v, α),

(b) v(0) = v0,
(32)

pour tout (ṽ, α̃) ∈ W (Q).
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5.2 - Stabilisation frontière du modèle de Navier-Stokes par contrôle feedback autour d’un état
non-stationnaire

Résultat de stabilité. Dans le chapitre 1 nous prouvons le théorème suivant :

Théorème 5.3. Soit λ1 la plus petite valeur propre de (25). Supposons que l’état station-
naire vs, la vitesse initiale v0 et le profil g satisfont respectivement

σ̄ = νλ1 − ‖∇vs‖∞ > 0, (33)

v0 ∈ H(Ω), (v0 · n)n ∈ H1/2(Γb), (34)

g ∈ V1/2(Γb) and α0 g · n = v0 · n on Γb with g · n �= 0, α0 ∈ R. (35)

Pour toute condition initiale v0, arbitraire et satisfaisant (34), il existe une solution (v, α)

dans le sens de la définition 5.2, et une distribution p sur Ω tel que (31) soit vérifié. En
plus, v satisfait les estimations suivantes :

‖v(t)‖ ≤ ‖v0‖ e−σ(t), ∀t > 0, (36)∫ T

0

‖∇v(t)‖2dt ≤ C‖v0‖2, (37)

où la constante C > 0, σ(t) = σ1t+ σ0

∫ t
0
α2(s)ds ≥ 0 avec σ0 > 0 et 0 < σ1 ≤ σ̄.

Remarque 5.4. Le taux de décroissance σ(t) est fonction du contrôle α.

Remarque 5.5. Avec la condition (33), la cible vs est naturellement stable dans le sens
où, si α est identiquement nul (α ≡ 0), le système (31) se stabilise seul. Cependant, si la
condition initiale v0 et le profil g sont tels que α0g · n = v0 · n �= 0 sur Γb, par exemple, le
contrôle α n’est pas identiquement nul (voir Proposition 3.1).

5.2 Stabilisation frontière du modèle de Navier-Stokes par
contrôle feedback autour d’un état non-stationnaire

On considère ici un domaine ouvert Ω de Rd (d = 2 ou d = 3), borné connexe de classe
C2 et de frontière Γ. Celle-ci est constituée de deux composantes connexes Γl et Γb tel
que Γ = Γl ∪ Γb. En particulier, le bord Γb est la partie de Γ, où le contrôle frontière sous
forme de feedback est déterminé. Soit T > 0 un nombre réel fixé, on pose Q = [0, T [×Ω,
Σl = [0, T [×Γl, Σb = [0, T [×Γb et on considère le couple (ψ, q) solution du système de
Navier-Stokes non-stationnaire suivant⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ

∂t
− νΔψ + (ψ · ∇)ψ +∇q = f dans Q,

∇ ·ψ = 0 dans Q,

ψ = 0 sur Σl,

ψ = ψb sur Σb,

(38)

29



DESCRIPTION DES RÉSULTATS OBTENUS

où ν > 0 est la viscosité du fluide, f représente la force interne agissant sur le fluide
et ψb la condition au bord sur Γb. On dira qu’une solution ψ(t,x) de (38) appartient à
l’ensemble des vitesses admissibles Uad si elle vérifie

sup
t≤T

‖∇ψ(t,x)‖ <
ν

C
Ω

, (39)

où ‖ · ‖ = ‖ · ‖(L2(Ω))d et C
Ω

est une constante positive définie plus tard dans (46).

On considère une trajectoire (u, p), solution des équations de Navier-Stokes non-
stationnaires ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇r = f dans Q,

∇ · u = 0 dans Q,

u = 0 sur Σl,

u = vb +ψb sur Σb,

u(0,x) = v0(x) +ψ(0,x) dans Ω.

(40)

où vb représente le contrôle et v0 peut être considéré comme une perturbation de l’état
initial (38). En remplaçant (u, r) = (v+ψ, p+ q) dans (40), on obtient le système suivant⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− νΔv + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v +∇p = 0 dans Q,

∇ · v = 0 dans Q,

v = vb sur Σb,

v = 0 sur Σl,

v(t = 0,x) = v0(x) dans Ω.

(41)

L’objectif du chapitre 2 est de stabiliser, via le système (41), le problème de Navier-
Stokes (40) autour d’un état non-stationnaire ψ ∈ Uad.

Nous allons maintenant résumer les différentes parties de ce chapitre et énoncer le
résultat principal.

Définition 5.6. On désigne par V1/2(Γb) le sous-espace de H1/2(Γ) formé des fonctions
définies dans Γb et dont l’extension par zéros sur Γ \ Γb appartient à H1/2(Γ). Soit g ∈
V1/2(Γb) tel que g · n �= 0 sur Γb et

∫
Γb
g · n dζ = 0, on définit l’espace fonctionnel W (Q) par

W (Q) = {(v, α) ∈ V(Ω)× R tel que v = αg sur Γb}. (42)

Notons que la solution de (41) est cherchée dans l’espace fonctionnel W (Q).
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5.2 - Stabilisation frontière du modèle de Navier-Stokes par contrôle feedback autour d’un état
non-stationnaire

Formes Linéaires. Dans le but de définir la formulation faible du problème de stabili-
sation des équations de Navier-Stokes, nous introduisons la forme bilinéaire

a(v1,v2) =

∫
Ω

∇v1 : ∇v2 dx, ∀(v1,v2) ∈ H1(Ω)×H1(Ω),

et la forme trilinéaire

b(v1,v2,v3) =

∫
Ω

(v1 · ∇)v2 · v3 dx, ∀(v1,v2,v3) ∈ H1(Ω)×H1(Ω)×H1(Ω).

En intégrant par parties la forme trilinéaire b(·, ·, ·), on obtient les propriétés suivantes :

b(u,v,v) =
α2

2

∫
Γb

|g|2(u · n) dζ, ∀u ∈ V(Ω), ∀(v, α) ∈ W (Q), (43)

b(v,v,v) =
α3

2

∫
Γb

|g|2(g · n) dζ, ∀(v, α) ∈ W (Q). (44)

En plus, grâce à [20, Lemma 1.1, page 6] on a

|b(u,v,u)| ≤ C
Ω
‖∇v‖‖∇u‖2, ∀v ∈ H1(Ω), u ∈ H1

0(Ω), (45)

où

C
Ω
=

⎧⎨⎩
2
√
2|Ω|1/6
3

si d = 3

|Ω|1/2
2

si d = 2.
(46)

Problème de stabilisation. Afin de stabiliser le système (41), nous choisissons de cher-
cher la solution v sous la forme v = z + αw, où z ∈ V0(Ω), w vérifie (28) et grâce aux
techniques d’estimation a priori α satisfait :∫

Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α), (47)

où

f(v, α) = Az +Bsα + abα
2 + b

b
α− λν

(
2〈w, z〉+ α‖w‖2

)
−Kα‖v‖2, (48)

avec

a
b
=

1

2

∫
Γb

|g|2(g · n), bb =
1

2

∫
Γb

|g|2(ψ · n),

Az = b(w,ψ, z) + b(z,ψ,w), Bs = b(w,ψ,w).
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DESCRIPTION DES RÉSULTATS OBTENUS

Notons que dans (48), les constantes λν et K sont strictement positives, tandis que les
fonctions bb, Az et Bs dépendent du temps. Le choix de v sous la forme v = z+αw entraîne
v = αg sur Γb car z = 0 sur Γ. En couplant le système (41) avec l’équation (47), le couple
(v, p) satisfait maintenant le problème de stabilisation suivant :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v +∇p = 0 dans Q,

(b) ∇ · v = 0 dans Q,

(c) v = α(t)g(x), sur Σb,

(d) v = 0 sur Σl,

(e) v(0,x) = v0(x) dans Ω,

(f)

∫
Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α).

(49)

Notons que le contrôle α est a priori inconnu et satisfait une loi de feedback non linéaire
grâce à l’équation (49-f). Dans le but de déterminer α, conduisant à la détermination du
contrôle frontière vb = αg, le système (49) est résolu via une procédure de Galerkin qui
consiste à construire une suite de solutions approchées en utilisant une base de Galerkin
adéquate. Un résultat de compacité nous permet ensuite de passer à la limite dans le
système nonlinéaire satisfait par les solutions approchées.

Formulation variationnelle. Nous considérons la formulation variationnelle du pro-
blème de stabilisation (49).

Définition 5.7. Soit T > 0 un nombre réel arbitraire, nous dirons que (v, α) est solution
faible de (49) sur [0, T ) si

– v ∈ [L∞(0, T ;H(Ω)) ∩ L2(0, T ;V(Ω))],

– ∃α ∈ L∞(0, T ) tel que v = αg sur Γb,⎧⎪⎨⎪⎩
(a) 〈dtv, ṽ〉+ νa(v, ṽ) + b(v,ψ, ṽ) + b(vs,v, ṽ) + b(v,v, ṽ) = α̃f(v, α),

(b)

(∫
Ω

v · ṽ dx

)
(0) =

∫
Ω

v0 · ṽ dx,
(50)

∀(ṽ, α̃) ∈ W (Q).

La condition initiale (50-b) a sens car pour toute solution de (50-a), on voit que la
fonction t −→

∫
Ω
v(t) · ṽ dx est continue (voir [14] Corollaire II.4.2).

Résultat de stabilité.
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5.3 - Stabilisation de type « feedback » du système de Navier-Stokes avec des conditions aux limites mixtes

Théorème 5.8. Supposons que la vitesse initiale v0 et le profil g satisfont respectivement

v0 ∈ H(Ω), (v0 · n)n ∈ H1/2(Γb), (51)

g ∈ V1/2(Γb) and α0 g · n = v0 · n on Γb with g · n �= 0, α0 ∈ R. (52)

Pour toute condition initiale v0, arbitraire et satisfaisant (51), il existe une solution (v, α)

dans le sens de la définition 5.7, et une distribution p sur Ω tel que (49) soit vérifié. En
plus, v satisfait les estimations suivantes :

‖v(t)‖ ≤ ‖v0‖ e−σ(t), ∀t > 0, (53)∫ T

0

‖∇v(t)‖2dt ≤ C‖v0‖2, (54)

où C > 0 est constant et pour tout K > 0 fixé, la fonction σ(t) est définie comme suit :

σ(t) = λ
1
βν t+K

∫ t

0

α2(s)ds. (55)

Remarque 5.9. Dans (55) la constante positive λ
1

est la plus petite valeur propre de (25)
et grâce à (39), βν = ν − C

Ω
supt≤T ‖∇ψ(t,x)‖ est un nombre réel strictement positif. En

plus, le taux de décroissance σ(t) > 0 dépend du contrôle α.

Remarque 5.10. Puisque βν > 0, la cible ψ est naturellement stable dans le sens où,
si α est identiquement nul (α ≡ 0), le système (49) se stabilise seul. Cependant, en plus
de (51)-(52), si la condition initiale v0 et le profil g sont tels que α0g ·n = v0 ·n �= 0 sur Γb,

par exemple, le contrôle α n’est pas identiquement nul.

5.3 Stabilisation de type « feedback » du système de Navier-
Stokes avec des conditions aux limites mixtes

On considère un domaine ouvert Ω de Rd (d = 2 ou d = 3), borné connexe de classe C2

et de frontière Γ. Celle-ci est constituée de trois composantes connexes Γl, Γe et Γs tel que
Γ = Γl ∪ Γe ∪ Γs. En particulier, le bord Γe est la partie de Γ, où le contrôle frontière sous
forme de feedback est déterminé. On considère le couple vitesse-pression (vs, qs) solution
du système de Navier-Stokes stationnaire⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−νΔvs + (vs · ∇)vs +∇qs = fs, ∇ · vs = 0 dans Ω,

vs = 0 sur Γl,

vs = ψe sur Γe,

ν∇vs · n− qsn = ψs sur Γs,

(56)
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DESCRIPTION DES RÉSULTATS OBTENUS

où ν > 0 est le coefficient de viscosité, fs représente les forces massiques s’exerçant dans
le fluide, ψe est la condition de Dirichlet sur Γe et ψs est la condition de Neumann sur
Γs. En plus, nous supposons que (vs, qs) appartient à H1(Ω)× L2

0(Ω).

Soient Q = [0, T [×Ω, Σl = [0, T [×Γl, Σe = [0, T [×Γe et Σs = [0, T [×Γs, on considère le
couple (u, q), solution du problème de Navier-Stokes non-stationnaire suivant⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇q = fs, ∇ · u = 0 dans Q,

u(x) = 0 sur Σl,

u(t,x) = ue(t,x) +ψe(x) sur Σe,

ν∇u · n− qn = us(t,x) +ψs(x) sur Σs,

u(t = 0,x) = vs(x) + v0(x) dans Ω,

(57)

où v0(x) est considéré comme une perturbation de l’état stationnaire vs. En substituant
u = v + vs et q = p+ qs dans (57), le système du couple (v, p) qui en résulte s’écrit :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 dans Q,

∇ · v = 0 dans Q,

v = 0 sur Σl,

v(t,x) = ue(t,x) sur Σe,

ν∇v · n− pn = us(t,x) sur Σs,

v(t = 0,x) = v0(x) dans Ω.

(58)

L’objectif du chapitre 3 est de trouver un us adéquat sur Σs et un contrôle ue sur Σe qui
stabilisent le système (58).

Nous allons maintenant résumer les différentes parties du chapitre 3 et énoncer le
résultat principal. Commençons par définir quelques espaces fonctionnels.

Espaces fonctionnels. On considère les espaces des fonctions à divergence nulle sui-
vants :

V(Ω) = {u ∈ D(Ω), ∇ · u = 0}, (59)

V0(Ω) = la fermeture V(Ω) dans H1
0(Ω), (60)

V(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0, u = 0 sur Γl

}
, (61)

Z(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0, u = 0 sur Γl ∪ Γe

}
, (62)

H(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 sur Γl

}
. (63)
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Remarque 5.11. Puisque V(Ω) et Z(Ω) sont chacun un sous espace fermé de H1(Ω), nous
avons, par définition

‖ · ‖V(Ω) = ‖ · ‖Z(Ω) = ‖ · ‖H1(Ω).

Remarque 5.12. Puisque Z(Ω) est un sous espace fermé de H1(Ω), Z(Ω) est donc un es-
pace de Hilbert séparable. A ce titre, il admet une base orthonormale dénombrable (zn)n∈N
qui sera utilisée dans la suite.

Définition 5.13. Soit Γi ⊂ Γ, on désigne par V1/2(Γi) le sous-espace de H1/2(Γ) formé des
fonctions définies dans Γi et dont l’extension par zéro sur Γ \ Γi appartient à H1/2(Γ). En
plus, on définit

W (Q) = {(v, α) ∈ V(Ω)× R, tel que v = αg sur Γe} (64)

où g satisfait

g ∈ V1/2(Γe), g · n �= 0 sur Γe,

∫
Γe

g · n dζ = 0. (65)

Remarque 5.14. La solution de (58) est cherchée dans l’espace fonctionnel W (Q), lequel
est défini dans (64).

Base de Galerkin pour W (Q). Dans le cas où la fonction g satisfait les conditions (80),
on considère ce problème de Stokes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) −Δw +∇q = 0 dans Ω,

(b) ∇ ·w = 0 dans Ω,

(c) w = 0 sur Γl ∪ Γs,

(d) w = g sur Γe.

(66)

Dans le cas contraire, la fonction g est construite en adoptant la démarche suivante :
nous supposons que le bord Γe est constitué de deux composantes connexes Γ0 et Γ1 tel
que Γe = Γ0 ∪ Γ1. Ensuite, pour tout g0, g1 tels que

g0 ∈ V 1/2(Γ0) et
∫
Γ1

g0 · n dζ �= 0,

g1 ∈ V 1/2(Γ1) et g1 · n �= 0 sur Γ1,

on construit g tel que.

g =

⎧⎨⎩βg0 sur Γ0,

g1 sur Γ1,
(67)
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où β = −
∫
Γ1
g1 · n dζ∫

Γ0
g0 · n dζ

. La fonction g définie dans (67) satisfait alors (80), et on considére

le problème de Stokes suivant⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(a) −Δw +∇q = 0 dans Ω,

(b) ∇ ·w = 0 dans Ω,

(c) w = 0 sur Γl ∪ Γs,

(d) w = βg0 sur Γ0,

(e) w = g1 sur Γ1.

(68)

Puisque w = g sur Γe = Γ0 ∪ Γ1, le système (66) ou (68) admet une solution unique (w, q)

dans H1(Ω) × L2
0(Ω) (voir [14, Proposition III.4.1]). Par ailleurs, pour toute fonction z ∈

Z(Ω) définie dans (62) et pour tout α ∈ R, nous avons v = z+ αw ∈ W (Ω). En effet, nous
avons z,w ∈ V(Ω) et puisque z = 0 on Γe alors v = αg sur Γe. D’après la remarque 5.12,
l’espace Z(Ω) admet une base orthonormale (zn)n∈N. La suite w, z1, z2, z3, · · · , est alors
linéairement indépendante. Par conséquent, l’espace de la solution v du système (58) est
réécrit comme suit :

W (Q) = span(w)⊕ span(zn){n∈N∗}. (69)

Formes linéaires. Afin de définir la formulation faible du problème de stabilisation des
équations de Navier-Stokes, on introduit la forme bilinéaire

a(v1,v2) =

∫
Ω

∇v1 : ∇v2 dx, ∀vj ∈ H1(Ω), j = 1, 2,

et la forme trilinéaire

b(v1,v2,v3) =

∫
Ω

(v1 · ∇)v2 · v3 dx, ∀vj ∈ H1(Ω), j = 1, 2.

En intégrant par parties la forme trilinéaire b(·, ·, ·), on obtient les identités suivantes
suivantes :

b(vs,v,v) =
1

2

∫
Γs

|z|2(vs · n) dζ +
α2

2

∫
Γe

|g|2(vs · n) dζ, ∀(v, α) ∈ W (Q), (70)

b(v,v,v) =
1

2

∫
Γs

|z|2(z · n) dζ + α3

2

∫
Γe

|g|2(g · n) dζ, ∀(v, α) ∈ W (Q). (71)
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Grâce à l’inégalité de Hölder, la fonction b satisfait

|b(v1,v2,v3)| ≤ ‖v1‖L3(Ω) ‖∇v2‖ ‖v3‖L6(Ω), ∀vj ∈ H1(Ω), j = 1, 2, 3.

En plus, d’après les inégalités de Sobolev généralisées, on a

‖v1‖L3(Ω) ≤ C‖v1‖
1
2‖∇v1‖

1
2 and ‖v3‖L6(Ω) ≤ C‖∇v3‖, for d = 2, 3,

où C est une constante positive. On obtient, alors

|b(v1,v2,v3)| ≤ C‖v1‖
1
2‖∇v1‖

1
2‖∇v2‖‖∇v3‖. (72)

Problème de stabilisation. Avant de donner le problème de stabilisation, nous allons
définir la loi de contrôle et la condition de Neumann us sur Σs. Rappelons que la solution
v est cherchée sous la forme v = z + αw, où z ∈ Z(Ω), α ∈ R et w vérifie (66) ou (68).
Grâce aux techniques d’estimation a priori, le contrôle α satisfait :∫

Γb

[ν
∂v

∂n
− pn] · g dζ = F(v, α), (73)

où

F(v, α) = aeα
2 + beα− λν

(
α‖w‖2 + 2〈w, z〉

)
+ 2 βν 〈∇w,∇z〉 −Kα‖v‖2, (74)

avec λν , βν > 0,

ae =
1

2

∫
Γe

|g|2(g · n) dζ et be =
1

2

∫
Γe

|g|2(vs · n) dζ.

Concernant la condition de Neumann us sur Σs, rappelons que si l’écoulement est sortant
sur Γs, v · n > 0 et s’il est entrant, v · n < 0. Par ailleurs, puisque par construction, w = 0

sur Γs, on a v = z sur Γs. En plus, la fonction z est inconnue sur Γs. Pour tenir compte
des deux cas : écoulement rentrant \ écoulement sortant, nous prenons la condition aux
limites absorbante (voir [14, Page 247]) sous la forme

us = −1

2
z
[
(vs · n)− + (z · n)−

]
sur Γs. (75)

En rappelant que les parties positives et négatives de tout réel x, sont définies par x+ =

max(x, 0), x− = min(x, 0), de sorte que l’on a x = x+ − x−, la condition (75) est déduite
de (70)-(71), en utilisant seulement les termes en z. En couplant le système (58) avec
l’équation (73) et la condition (75), le couple (v, p) satisfait maintenant le problème de
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stabilisation suivant :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 dans Q,

(b) ∇ · v = 0 dans Q,

(c) v = 0 sur Σl,

(d) v = α(t)g(x) sur Σe,

(e) ν∇v · n− pn = −1

2
z
[
(vs · n)− + (z · n)−

]
sur Σs,

(f)

∫
Γe

[ν∇v · n− pn] · g dζ = F(v, α),

(g) v(t = 0,x) = v0(x) dans Ω.

(76)

Notons qu’ici encore, le contrôle α est a priori inconnu et satisfait une loi de feedback
non linéaire grâce à l’équation (76-f). Dans le but de déterminer α, conduisant à la dé-
termination du contrôle frontière vb = αg, le système (76) est résolu via une procédure
de Galerkin qui consiste à construire une suite de solutions approchées en utilisant une
base de Galerkin adéquate. Un résultat de compacité nous permet ensuite de passer à la
limite dans le système non-linéaire satisfait par les solutions approchées.

Formulation variationnelle. En intégrant par parties sur Ω le problème de stabilisa-
tion (76), nous obtenons une formulation faible qui conduit à la définition suivante

Définition 5.15. Soit T > 0 un nombre réel arbitraire et v0 ∈ H(Ω), nous dirons que
(v, α) est solution faible de (76) sur [0, T ) si

(i) v ∈ [L∞(0, T ;H(Ω)) ∩ L2(0, T ;V(Ω))],

(ii) α ∈ L∞(0, T ) tel que v(t,x) = α(t)g(x) sur Γe,

(iii) ∀ ṽ = z̃+ α̃w ∈ W (Q), la formulation variationnelle suivante est satisfaite⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) 〈dtv, ṽ〉+ νa(v, ṽ) + b(v,vs, ṽ) + b(vs,v, ṽ) + b(v,v, ṽ)

= α̃F(v, α)− 1

2

∫
Γs

(z · z̃)
(
(vs · n)− + (z · n)−

)
,

(b)

(∫
Ω

v · ṽ dx

)
(0) =

∫
Ω

v0 · ṽ dx.

(77)

Ici aussi, la condition initiale (77-b) a du sens car pour toute solution de (50-a), on voit
que la fonction t −→

∫
Ω
v(t) · ṽ dx est continue.

La principale réalisation du chapitre 3, est le résultat de stabilisation suivant.

Résultat de stabilité.
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Théorème 5.16. Supposons que l’état stationnaire vs solution de (56) satisfait

βν = ν − C2‖∇vs‖ > 0, (78)

où la constante C2 > 0 est définie dans (3.36). Supposons que la vitesse initiale v0 et le
profil g satisfont respectivement

v0 ∈ H(Ω), (v0 · n)n ∈ H1/2(Γe), (79)

g ∈ V1/2(Γe) and α0 g · n = v0 · n on Γe with g · n �= 0, α0 ∈ R. (80)

Pour toute condition initiale v0 arbitraire et satisfaisant (79), il existe une solution faible
(v, α) dans le sens de la définition 5.15, et une distribution p sur Ω tel que (76) soit vérifié.
En plus, il existe une constante positive σ tel que v satisfait

‖v‖ ≤ ‖v0‖ exp
(
−σt−K

∫ t

0

α2(s)ds

)
, (81)

où la constante K > 0 est fixée. En outre,∫ T

0

‖∇v‖2 ≤ Cν‖v0‖2, (82)

où la constant Cν dépend de ν.

Remarque 5.17. Avec la condition (78), la cible vs est naturellement stable dans le sens
où, si α ≡ 0 et z ≡ 0 sur Γs, le système (76) se stabilise seul. Dans le cas où z ≡ 0 sur Γs,
en plus de (79)-(80), si la condition initiale v0 et le profil g sont tels que α0g · n = v0 · n �=
0 sur Γb, par exemple, le contrôle α n’est pas identiquement nul.

5.4 Méthode des caractéristiques-Galerkin pour le contrôle fron-
tière des équations de Navier-Stokes

On considère un domaine ouvert Ω de Rd (d = 2 ou d = 3), borné connexe de classe
C2 et de frontière ∂Ω = Γ. Celle-ci est constituée de trois composantes connexes Γl, Γb

et Γs tel que Γ = Γl ∪ Γb ∪ Γs. En particulier, le bord Γb est la partie de Γ où le contrôle
frontière sous forme de feedback est déterminé. On considère dans Ω, un écoulement in-
compressible stationnaire décrit par le couple (vs, qs), solution système de Navier-Stokes
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suivant ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−νΔvs + (vs.∇)vs +∇qs = fs dans Ω,

∇ · vs = 0 dans Ω,

vs = vb sur Γb,

vs = 0 sur Γl,

ν∇vs · n− qsn = 0 sur Γs,

(83)

où ν > 0 est la viscosité, fs le champ de force et vb la condition au bord sur Γb.

Pour tout T > 0 fixé, on pose Q = [0, T [×Ω, Σl = [0, T [×Γl, Σb = [0, T [×Γb et
Σs = [0, T [×Γs et on considère le problème de Navier-Stokes non-stationnaire⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇q = fs dans Q,

∇ · u = 0 dans Q,

u = vb + ub sur Σb,

u = 0 sur Σl,

ν∇u · n− qn = 0 sur Σs,

u0(x) = vs(x) + v0(x) dans Ω,

(84)

où ub représente le contrôle et v0 la perturbation de l’état initiale.

En remplaçant (u, q) = (v + vs, p+ qs) dans (84), on obtient le système⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 dans Q,

(b) ∇ · v = 0 dans Q,

(c) v = ub sur Σb,

(d) v = 0 sur Σl,

(e) ν∇v · n− pn = 0 sur Σs,

(f) v(t = 0,x) = v0(x) dans Ω.

(85)

Nous allons utiliser la méthode des caractéristiques pour définir le problème de sta-
bilisation discret en temps, correspondant au système (85).
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Discrétisation en temps du problème de stabilisation. Soient X(τ ; t,x) et Y (τ ; t,x),
les solutions en τ des équations différentielles ordinaires⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a)
dX

dτ
= v(τ,X(τ ; t,x)) si X(τ ; t,x) ∈ Ω,

= 0 sinon,

(b) X(t; t,x) = x,

(86)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a)

dY

dτ
= v(τ, Y (τ ; t,x)) + 2vs(Y (τ ; t,x)) si Y (τ ; t,x) ∈ Ω,

= 0 sinon,

(b) Y (t; t,x) = x.

(87)

Dans ces équations, X(· ; t,x) ou Y (· ; t,x) représente la position de la particule à l’instant
τ qui se trouve au point x = (x1, x2, x3) au temps t. Lorsque t0 = 0 < t1 < t2 < · · · < tN = T ,
les pieds des caractéristiques X(tn−1; tn,x) et Y (tn−1; tn,x) sont calculés à partir de (86)
et de (87), respectivement :

X(tn−1; tn,x) ≈ x− v(tn,x)Δt,

Y (tn−1; tn,x) ≈ x− u(tn,x)Δt,

où u = v + 2vs et le pas de temps Δt = tn − tn−1 = T/N . En plus, grâce à (86-b) et (87-b),
nous avons X(tn; tn,x) = Y (tn; tn,x) = x.

En posant

vn = v(tn,x), pn = p(tn,x), Xn = x− v(tn,x)Δt et Y n = x− u(tn,x)Δt,

la discrétisation en temps de (85) par la méthode des caractéristiques, conduit à⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
vn

Δt
− νΔvn +∇pn =

F n−1

Δt
dans Ω,

(b) ∇ · vn = 0 dans Ω,

(c) vn = 0 sur Γl,

(d) vn = αng(x) sur Γb,

(e) ν∇vn · n− pnn = 0 sur Σs,

(f) v(0,x) = v0(x) dans Ω,

(88)
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où

F n−1 =
1

2

(
vn−1 ◦Xn−1 + vn−1 ◦ Y n−1

)
+ vs ◦Xn−1 − vs, (89)

avec v ◦ Z représentant la fonction x → v[Z(x)].

Le but du chapitre 4 est de trouver un contrôle αn tel que ub = αng(x) sur Σb stabilise
le problème (88). Avant d’énoncer les résultats de stabilisation obtenus, nous commen-
çons par résumer les parties essentielles de ce chapitre.

Processus de construction de la loi de contrôle. Puisque le système (88) est li-
néaire, la solution (vn, pn) est décomposée comme suit⎧⎨⎩vn = w̃ n + αnw,

pn = q̃ n + αnq,
(90)

où (w, q) ne dépend pas du temps, alors que (w̃ n, q̃ n) représente le terme de correction
calculé à chaque instant. Les détails du processus de construction du contrôle sont dé-
crits de la manière suivante :

(i) Premièrement, nous cherchons (w, q) tel que⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
w

Δt
− νΔw +∇q = 0 in Ω,

(b) ∇ ·w = 0 in Ω,

(c) w = 0 on Γl,

(d) w = g on Γb

(e) ν∇w · n− qn = 0 on Γs.

(91)

(ii) Deuxièmement, à chaque instant, nous cherchons (w̃ n, q̃ n) solution de⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a)
w̃ n

Δt
− νΔw̃ n +∇q̃ n = F n−1 in Ω,

(b) ∇ · w̃ n = 0 in Ω,

(c) w̃ n = 0 on Γl ∪ Γb

(d) ν∇w̃ n · n− q̃ nn = 0 on Γs.

(92)

(iii) Enfin, dans le but de stabiliser (88) avec vn = αng(x) sur Γb, en utilisant les tech-
niques d’estimation a priori de l’énergie, la quantité αn doit satisfaire, par exemple,
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la relation suivante ∫
Γb

[ν∇vn · n− pnn] · g = −λαn, λ > 0. (93)

Pour tout n ∈ N, nous supposons

Xn(x) = x− vn(x)Δt ∈ Ω, (94)

Y n(x) = x− un(x)Δt ∈ Ω. (95)

La formule de Taylor nous permet d’obtenir

vs

(
Xn(x)

)
= vs(x)−Δt∇vs(x) · vn(x) +O(Δt2).

Ainsi, nous supposons

vs

(
Xn(x)

)
= vs(x)−Δt∇vs(x) · vn(x), (96)

et énonçons les deux propositions suivantes

Proposition 5.1. Soient v0 ∈ H(Ω), g ∈ V
1
2 (Γb) avec g �= 0 sur Γb et vs tel que

‖∇vs‖ ≤ 1

Δ t

(√
1 +

2 νΔ t

C2
p

− 1

)
, (97)

où Cp est la constante de Poincaré. Sous les hypothèses (94)-(95) et (96), il existe un contrôle
frontière αn sur Γb solution de∫

Γb

[ν∇vn · n− pnn] · g = −λαn, λ > 0 (98)

tel que le système (88) avec (vn, pn) soit exponentiellement stable. i.e. il existe μ > 0 tel que
vn satisfait

‖vn‖ ≤ ‖v0‖ exp (−μtn). (99)

Remarque 5.18. Dans la Proposition 5.1, la loi de contrôle (98) permet de trouver un
contrôle αn, solution d’un polynôme de degré un. Cependant, obtenir un contrôle optimal,
en utilisant cette loi de contrôle, n’est pas évident. La proposition suivante permet ainsi
de définir l’intervalle maximale dans lequel le contrôle appartient.
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Proposition 5.2. Sous les hypothèses (94)-(96) et (97), il existe un θ dans ]0, 1[ tel que la
solution w̃n de (92) satisfait

‖w̃n‖ ≤ θ‖vn−1‖. (100)

Par conséquence, il existe un contrôle frontière αn, solution d’un polynôme de degré deux,
rendant exponentiellement stable le système (88). i.e. il existe μ > 0 tel que

‖vn‖ ≤ ‖v0‖ exp (−μtn). (101)

Pour terminer ce chapitre, nous présenterons des résultats numériques dans le cas
d’un écoulement autour d’un obstacle circulaire.

Nous allons donner la liste des travaux rassemblés dans cette thèse et présenter
quelques perspectives ouvertes dans le contexte de la stabilisation frontière de certains
systèmes hydrauliques.

6 Travaux en cours et perspectives
Liste des travaux rassemblés dans la thèse. Les différents travaux rassemblés dans
cette thèse, en collaboration avec Abdou Sène et Daniel le Roux, ont fait l’objet des pu-
blications suivantes

� Chapitre 1 : Boundary stabilization of the Navier-Stokes equations with feedback
controller via a Galerkin method, paru dans Evolution Equations and Control
Theory, Volume 3, Pages 147-166, 2014.

� Chapitre 2 : Boundary stabilization of the Navier-Stokes Model with feedback
controller around a non-stationary state, soumis.

� Chapitre 3 : Feedback stabilization of the Navier-Stokes system with mixed boun-
dary conditions, soumis.

� Chapitre 4 : Numerical feedback stabilization of the Navier-Stokes equations
using characteristic-Galerkin method. Le travail en cours sera soumis en juillet
2014.

Nous allons maintenant présenter quelques perspectives ouvertes par les travaux effec-
tués dans cette thèse.

Contrôle en dimension fini N . Dans le théorème 5.3, un résultat de stabilité est ob-
tenu pour une condition initiale arbitrairement choisie dans H(Ω). Cependant, le taux de
décroissance σ est fixé par la condition (33). Lorsque λN désigne la N-ième valeur propre
de l’opérateur de Stokes défini dans (25), notre prochain objectif est d’essayer d’obtenir
un taux de décroissance limité par λN i.e. 0 < σ ≤ νλN − ‖∇vs‖∞. Ce résultat permet-
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tra non seulement d’augmenter le taux de décroissance, mais aussi de stabiliser une
classe plus large d’états stationnaires vs. L’utilisation de l’opérateur de Oseen pourrait
être envisagée car, dans la plupart des travaux cités, cet opérateur a permis d’obtenir un
résultat semblable pour des conditions initiales assez petites.

Problème de Saint-Venant ou “Shallow water”. Sans les forces de frottement et
la force de Coriolis, le problème de Saint-Venant 2D, dans sa forme conservative, est
caractérisé par le système suivant :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a)
∂u

∂t
− νΔu+ (u · ∇)u+ g∇h = 0 dans Q,

(b)
∂h

∂t
+∇ · (hu) = 0 dans Q,

+ condition initiale et conditions aux bords

(102)

où u représente la vitesse, h la hauteur du fluide, ν le coefficient de diffusion et g le coeffi-
cient de gravité. Ce problème décrit un écoulement à surface libre en eaux peu profondes.
La stabilisation frontière du problème (102) n’a pas été abordée dans la littérature. Ce-
pendant, le cas linéaire à été traité dans [16] où les auteurs obtiennent un résultat de
stabilité du système de Saint-Venant grâce à une méthode basée sur la symétrisation
des matrices de flux du modèle linéarisé et l’analyse des invariants de Riemann. Pour
stabiliser le modèle non-linéaire, nous aimerions utiliser la méthode proposée dans cette
thèse.

Méthodes Numériques. Le problème de stabilisation tel que défini dans les trois pre-
miers chapitres nécessite que l’on utilise à la fois deux conditions sur le même bord. Par
exemple dans le système (76) nous avons :⎧⎪⎨⎪⎩

(a) v = α(t)g(x) sur Σe = [0, T [×Γe,

(b)

∫
Γe

[ν∇v · n− pn] · g dζ = F(v, α).
(103)

C’est la raison pour laquelle nous avons proposé dans cette thèse une approche numé-
rique basée sur une méthode de Lagrange-Galerkin (ou méthode des caractéristiques).
Celle-ci stabilise le problème de Navier-Stokes et peut être plus facilement implémen-
tée. Cependant, la loi de contrôle numérique utilisée est différente de celle définie dans
la théorie. Pour mieux consolider les résultats théoriques, nous envisageons d’utiliser
d’autres approches numériques comme la méthode de Galerkin discontinue en espace et
les méthodes explicites de Runge-Kutta en temps, appliquées aux équations de Navier-
Stokes incompressibles.

45



Bibliographie

[1] M. Badra, Stabilisation par feedback et approximation des équations de Navier-
Stokes, PhD Thesis, Université Paul Sabatier, Toulouse, 2006.

[2] M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite-
dimensional feedback or dynamical controllers : Application to the Navier-Stokes
system, SIAM J. Control and Optimization, 49 (2011), 420–463.

[3] M. Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based
on an extended system, ESAIM COCV, 15 (2009), 934–968.

[4] M. Badra, Lyapunov function and local feedback boundary stabilization of the
Navier-Stokes equations, SIAM J. Control and Optimization, 48 (2009), 1797–1830.

[5] A. Balogh, W.L. Liu and M. Krstic, Stability enhancement by boundary control in
2-D channel flow, IEEE Trans. Automat. Control, 11 (2001), 1696–1711.

[6] V. Barbu, Stabilization of Navier-Stokes equations by oblique boundary feedback
controllers, SIAM J. Control Optimization, 50 (2012), 2288–2307.

[7] V. Barbu, "Stabilization of Navier-Stokes Flows, Communications and Control En-
gineering," Springer-Verlag, London, 2011.

[8] V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier-Stokes
equations, SIAM J. Control Optim., 49 (2011), 1–20.

[9] V. Barbu, I. Lasiecka and R. Triggiani, " Local exponential stabilization strategies of
the Navier-Stokes equations, d = 2, 3, via feedback stabilization of its linearization,
In Control of coupled partial differential equations", volume 155 of Internat. Ser.
Numer. Math., pages 13-46, Birkhaüser, Basel, 2007.

[10] V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary
stabilization of Navier-Stokes equations by high- and low-gain feedback controllers,
Nonlinear Anal, 64 (2006), 2704–2746.

[11] V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-
Stokes equations, Mem. Amer. Math. Soc., 852 (2006), 1–145.

[12] V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with
finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.

46



BIBLIOGRAPHIE

[13] V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM : Control,
Optimisation and Calculus of Variations, 9 (2003), 197–205.

[14] F. Boyer and P. Fabrie, "Éléments d’analyse pour l’étude de quelques modèles d’écou-
lements de fluides visqueux incompressibles, Mathématiques et Applications", vol.
52, Springer, 2006.

[15] P. Constantin and C. Foias, " Navier-Stokes Equations", Chicago Lectures in Ma-
thematics, The Univ. of Chicago Press, Chicago, IL, 1988.

[16] B. M. Dia and J. Oppelstrup, Boundary feedback control of 2-D shallow water
equations, Int. J. Dynam. Control, 1 (2013), 41–53.

[17] A. Diagne and A. Sene, Control of shallow water and sediment continuity coupled
system, Math. Control Signals Syst. 25 (2013), 387–406.

[18] A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary
control. Partial Differential Equations and Applications, Discrete and Cont. Dyn.
Syst., 10 (2004), 289–314.

[19] A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with
help of boundary feedback control, J. of Math. Fluid Mechanics, 3 (2001), 259–301.

[20] G. P. Galdi, " An introduction to the mathematical theory of the Navier-Stokes
equations", Vol. II, Nonlinear steady problems, volume 39 of Springer Tracts in
Natural Philosophy. Springer-Verlag, New York, 1994.

[21] G.P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equa-
tions", Vol. I, Linearised steady problems, volume 38 of Springer Tracts in Natural
Philosophy. Springer-Verlag, New York, 1994.

[22] M. S. Goudiaby, A. Sene and G. Kreiss, A delayed feedback control for network of
open canals, Int. J. Dynam. Control, 1(4) (2013), 316–329.

[23] M. S. Goudiaby, A. Sene and G. Kreiss, An Algebraic Approach for Controlling
Cascade of Reaches in Irrigation Canals, , Types, Sources and Problems, InTech,
pages 369-390

[24] M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier–
Stokes flows with boundary control, SIAM : J. Control Optim., 39(2) (2000), 594–
634.

[25] C. Grandmont, B. Maury and A. Soualah, Multiscale modelling of the respiratory
tract : A theoretical framework, ESAIM : Proc., 23 (2008), 10–29.

[26] J. L. Lions, "Quelques méthodes de résolution des problèmes aux limites non li-
néaires", Dunod, 2002.

[27] S.S. Ravindran, Stabilization of Navier-Stokes equations by boundary feedback,
Int. J. Numer. Anal. Model, 4 (2007), 608–624.

47



BIBLIOGRAPHIE

[28] J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two-
dimensional Navier-Stokes equations with finite-dimensional controllers, Discrete
Contin. Dynam. Systems, 27 (2010), 1159–1187.

[29] J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incom-
pressible Navier-Stokes equations, J. Math. Pures Appl., 87 (2007), 627–669.

[30] J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-
Stokes equations, SIAM J. Control Optim., 45 (2006), 790–828.

[31] A. Sene, B. A. Wane and D. Y. Le Roux, Control of irrigation channels with variable
bathymetry and time dependent stabilization rate, C. R. Acad. Sci. Paris Ser. I, 346
(2008), 1119–1122.

[32] R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis", Amer.
Math. Soc., Providence, RI, 2001.

[33] L. Thevenet, Lois de feedback pour le contrôle d’écoulements, PhD Thesis, Univer-
sité Paul Sabatier, Toulouse, 2009.

[34] http://www.tva.gov/power/hydroart.htm

[35] http://commons.wikimedia.org/wiki/File:Water_turbine.svg

[36] http://www.mecaflux.com/turbines.htm

48



Chapitre 1

Boundary stabilization of the
Navier-Stokes equations with
feedback controller via a Galerkin
method

Abstract

In this work we study the exponential stabilization of the two and three-dimensional Navier-
Stokes equations in a bounded domain Ω, around a given steady-state flow, by means of a bound-
ary control. In order to determine a feedback law, we consider an extended system coupling
the Navier-Stokes equations with an equation satisfied by the control on the domain boundary.
While most traditional approaches apply a feedback controller via an algebraic Riccati equation,
the Stokes-Oseen operator or extension operators, a Galerkin method is proposed instead in this
study. The Galerkin method permits to construct a stabilizing boundary control and by using en-
ergy a priori estimation technics, the exponential decay is obtained. A compactness result then
allows us to pass to the limit in the system satisfied by the approximated solutions. The resulting
feedback control is proven to be globally exponentially stabilizing the steady states of the two and
three-dimensional Navier-Stokes equations.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

1 Introduction

Let Ω be a bounded and connected domain in Rd (d = 2, 3), with a boundary Γ of class
C2, and composed of two connected components Γl and Γb such that Γ = Γl∪Γb, in order to
impose two different boundary conditions specified in (1.1). In particular, the boundary
Γb is the part of Γ, where a boundary control in feedback form has to be determined.
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The usual function spaces L2(Ω), Hs(Ω), Hs
0(Ω) are used and we let L2(Ω) = (L2(Ω))d,

Hs(Ω) = (Hs(Ω))d, Hs
0(Ω) = (Hs

0(Ω))
d. Negative ordered Sobolev spaces H−s(Ω)(s > 0) are

defined as the dual space, i.e., H−s(Ω) = {Hs
0(Ω)}′. We denote by 〈· | ·〉 and ‖ · ‖ = ‖ · ‖L2(Ω),

the scalar product and norm in L2(Ω), respectively. Moreover, if u ∈ L2(Ω) is such that
∇ · u ∈ L2(Ω), then we denote the normal trace of u in H− 1

2 (Γ) by u · n, where n denotes
the unit outer normal vector to Γ.

We consider a stationary motion of an incompressible fluid described by the velocity
and pressure (vs, qs), which is the solution to the stationary Navier-Stokes equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−νΔvs + (vs.∇)vs +∇qs = fs in Ω,

∇ · vs = 0 in Ω,

vs = vb on Γb,

vs = 0 on Γl.

(1.1)

In this setting, ν > 0 is the viscosity, fs is a function in L2(Ω), vb belongs to V
1
2 (Γ) defined

as V
1
2 (Γ) =

{
u ∈ H1/2(Γ) :

∫
Γ
u · n dζ = 0

}
. Recall [17] that a solution (vs, qs) to (1.1) is

known to exist in H1(Ω) × L2
0(Ω). For T > 0 fixed, let Q = [0, T [×Ω, Σl = [0, T [×Γl and

Σb = [0, T [×Γb and consider (u, q) solution of the non stationary Navier-Stokes equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇q = fs in Q,

∇ · u = 0 in Q,

u = vb + ub on Σb,

u = 0 on Σl,

u0(x) = vs(x) + v0(x) in Ω.

(1.2)

Consequently, the couple (v = u− vs, p = q − qs) satisfies the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 in Q,

(b) ∇ · v = 0 in Q,

(c) v = ub on Σb,

(d) v = 0 on Σl,

(e) v(t = 0,x) = v0(x) in Ω.

(1.3)

In order to stabilize the unsteady solution u of (1.2), for a prescribed rate of decrease
σ > 0, we need to find a control ub such that the components v of the solution (v,∇p) to
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the boundary value problem (1.3) satisfies the exponential decay :

‖v(t,x)‖ ≤ C e−σt ‖v0(x)‖, t ∈ (0,∞), (1.4)

for a constant C > 0 independent of v0(x). It’s worth noticing that, in the present paper,
we let C = 1.

The control ub(t) is called a feedback if there exists a mapping F : X(Ω) → U(Γb)

such that

ub(t) = F (v(t)), t ∈ (0,∞), (1.5)

and the corresponding feedback law in (1.5) is pointwise in time. However, the feedback
law may be chosen in a different manner, for example as

ub = F0v0, (1.6)

where F0 is a mapping belonging to L(X(Ω),U(Γb)), but in that case, the feedback law
problème de stabilisation pointwise in time. The spaces X(Ω) and U(Γb) will be defined
accordingly. Pointwise feedback laws are usually needed in engineering applications as
they are more robust with respect to perturbations in the models.

Different approaches have been pursued in the past, which first determine a linear
feedback law by solving a linear control problem for the linearized system of equations
(for example the Oseen system) and then use this linear feedback law in order to stabilize
the original non linear system (for example the Navier-Stokes system). In such a frame-
work, several significant questions have to be addressed. First, do we obtain a pointwise
feedback law able to stabilize the linearized system ? Secondly, by assuming that F is a
pointwise (in time) feedback law able to stabilize the linear system in X(Ω), does F also
stabilize the nonlinear system for v0(x) in a subspace of {u ∈ L2(Ω) : ∇ · u = 0}, with
‖v0(x)‖ small enough ? Finally, assuming that the existence of a feedback law stabilizing
the linear system is proved, is it possible to obtain a well posed equation characterizing
F , for example a Riccati equation, which can be numerically solved by classical methods ?

These questions of stabilizing the Navier-Stokes equations with a boundary control
have been first addressed by A.V. Fursikov in [14, 15], where stability results for the two
and three-dimensional Navier-Stokes equations are proved by employing an extension
operator. With an adequate extension procedure for the initial velocity condition v0(x)

in (1.3), which requires the knowledge of the eigenfunctions and the eigenvalues of the
Oseen operator, the author obtains a boundary control of the form ub = F0v0, where
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F0 ∈ L(X(Ω), L2([0,∞[;U(Γb))) and

X(Ω) =
{
u ∈ Hk−1(Ω) : ∇ · u = 0 in Ω, u = 0 on Γl,

∫
Γb

u · n dζ = 0
}
,

U(Γb) =
{
u ∈ Hk−1/2(Γ) : u = 0 on Γl,

∫
Γb

u · n dζ = 0
}
,

with k ≥ 1. However, if the feedback controls are well characterized, the corresponding
laws are not pointwise in time.

In [24], as far as the two-dimensional case is concerned, J.-P. Raymond has obtained
boundary feedback control laws, pointwise in time, where the feedback controller is de-
termined by solving an algebraic Riccati equation obtained via the solution of an optimal
control problem with

X(Ω) =
{
u ∈ H1/2−ε(Ω) : ∇ · u = 0 in Ω, u · n = 0 on Γ

}
,

U(Γ) =
{
mu ∈ L2(Γ) :

∫
Γ

mu · n dζ = 0
}
,

where 0 < ε < 1/4 and m ∈ C2(Γ). Unfortunately, the three-dimensional case is more
demanding in terms of velocity regularity, as explained in [23], and it cannot be trea-
ted in the same manner as the two-dimensional case. Indeed, in the three-dimensional
case the feedback controller needs to satisfy F (v) belonging to H1/4+ε/2(0,∞;L2(Γ)) with
1/2 ≤ ε, and in the particular case 1/2 < ε, the space H1/4+ε/2([0,∞[;L2(Γ)) is a subspace
of C([0,∞[;L2(Γ)), implying that the velocity v has to satisfy the initial compatibility
condition v0|Γ = F (v0). This is the reason why the feedback law used in [24] cannot be
employed in the three-dimensional case, and why this difficulty has been overcome in
[23] by introducing a time dependent feedback law in an initial transitory time interval.
In order to obtain a stabilization result via the Riccati approach, particular spaces of
initial conditions have to be employed that are given in [3].

The study, performed in [23], also improves in some way the results obtained in [8, 9],
where a tangential boundary stabilization of two and three-dimensional Navier-Stokes
equations is employed with both Riccati-based and spectral-based (tangential) feedback
controllers. In [9], for the three-dimensional case which is highly demanding in terms
of velocity regularity, the existence of boundary feedback laws, pointwise in time, is es-
tablished by solving an optimal control problem with a cost functional involving the
L2(0,∞;H3/2+ε(Ω)) norm of the velocity field, for some 0 < ε small enough. However,
such a feedback law cannot be characterized by a well posed Riccati equation, as shown
in [9], and the numerical calculation of the feedback control thus becomes problema-
tic. In [23], for the three-dimensional Navier-Stokes system, J.-P. Raymond chooses a
functional involving a very weak norm of the state variable which leads to a well posed
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Riccati equation.

Recall in [23], a time dependent feedback law in an initial transitory time interval
was introduced. As mentioned in [2], the problem of finding a time independent feedback
controller satisfying v0|Γ = F (v0), for a sufficiently large class of initial conditions v0, is
not obvious. This problem has been examined in [2] for the two and three-dimensional
case, and it has led to search for solutions ub satisfying an extended system composed of
the evolution system

∂ub

∂t
−ΔBub − σ n = F (v,ub), ub(0) = v0|Γ,

coupled with the original Navier-Stokes equations, where the feedback controller F now
acts on the pair (v,ub) and ΔB is the vector-valued Laplace Beltrami operator. The space
X(Ω) is now defined as

X(Ω) =
{
u ∈ Hs(Ω) : ∇ · u = 0 in Ω, u · n = 0 on Γ

}
,

with s ∈ [d−2
2
, 1]\{1/2}, the oprerator F is found from a well-posed Riccati equation and

the controller ub, localized on an arbitrary small part of Γ, can be obtained.

In the purpose of stabilizing the Navier-Stokes equations around a stationary state,
the feedback control laws are determined by solving a Riccati equation in most of the
studies cited above [2, 3, 7, 8, 9, 23, 24], except in the Fursikov’s papers [14, 15]. The
Riccati equation is obtained via the solution of an optimal control problem and it is
stated in a space of infinite dimension. Although our study is only concerned with the
construction of boundary controllers, the Riccati approach described above, stated in a
space of infinite dimension, applies as well to the case of internal control [5, 11].

In the case the feedback controller lies in an infinite-dimensional space, an optimal
control problem has to be solved, involving the minimization of an objective functional.
In practice, the control is calculated through approximation via the solution of an al-
gebraic Riccati equation, which is computationally expensive. Consequently, the use of
finite-dimensional controllers may be more appropriate to stabilize the Navier-Stokes
equations. Such an approach is performed in [10], in the case of an internal control, and
in [1, 7, 8, 9, 22], in the case of a boundary control. Recall the Riccati equation is stated in
a space of infinite dimension in [7, 8, 9]. In [1, 10, 22], the authors search for a boundary
control ub of finite dimension of the form

ub =
N∑
j=1

uj(t)ϕj(x), t ≥ 0, x ∈ Γ, (1.7)

where (ϕj)j=1,2,3,...,N is a finite-dimensional basis obtained from the eigenfunctions of
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some operator and ū = (u1, u2, u3, . . . , uN) is a control function expressed with a feed-
back formulation. In [22], where d = 2, the feedback control is obtained from the solution
of a finite-dimensional Riccati equation stated in Rnc×nc , where nc is the dimension of
the unstable space of the Oseen operator. The same approach is then extended in [1]
for the three-dimensional case. However, in [10, 22] the minimal value of N is a priori
unknown while in [1], N is greater or equal to the maximum of the geometric multipli-
cities of the unstable modes of the Oseen operator. Finally, finite-dimensional stabilizing
feedback laws of the form of (1.7) are obtained in [6] and [4], in the case of internal and
boundary control, respectively. Instead of employing the Riccati approach, a stochastic-
based stabilization technique is employed in [6] which avoids the difficult computation
problems related to infinite-dimensional Riccati equations. The procedure employed in
[4] ressembles the form of stabilizing noise controllers designed in [6].

In all the above-mentioned studies, a linear feedback law is first determined by sol-
ving a linear control problem for the linearized system of equations and then this linear
feedback is used in order to stabilize the original non linear system. However, such a
procedure imposes to choose the initial velocity small enough. Further, the employed me-
thods (e.g. the Riccati approach) require to search for the control ub and the initial condi-
tion in sufficiently regular spaces, depending on whether d = 2 or d = 3. For example, in
[4, Theorem 2.3], we have

H̃(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 sur Γ

}
, (1.8)

X(Ω) = H1/2−ε(Ω) ∩ H̃(Ω), (1.9)

in the case d = 2 and, for v0 ∈ X(Ω), with ‖v0‖X(Ω) < ρ and ρ sufficiently small, the
function v satisfies the following stability estimate ‖v‖X(Ω) ≤ Ce−σt‖v0‖X(Ω), for all t ≥ 0

and for some σ > 0, but the value of C is not precisely given. Note that, in the case d = 3,
no control is proposed in [4] to stabilize the non linear Navier-Stokes equations. Further,
in [1, Theorem 2], we have v0 ∈ Hs(Ω) with ∇ · v0 = 0, s ∈ [0, 1/2) and ‖Pv0‖Hs(Ω) ≤ c in
the case d = 2, where P is the Leray projector, and v0 ∈ Hs

0(Ω) with ∇ · v0 = 0, ū = 0,
s ∈ (1/2, 1] and ‖v0‖Hs

0(Ω) ≤ c in the case d = 3, and stability estimates are also obtained.

In this paper, a new approach is proposed. Instead of obtaining the feedback law by
first solving a linear control problem for the linearized system of equations, eventually
via the resolution of a Riccati equation, an extended system is considered. Indeed, in (1.3)
the boundary control ub is rewritten on the form ub = α(t)g(x) on Σb, where g ∈ H1/2(Γ)

is assumed to verify g = 0 on Γl, g · n �= 0 on Γb and
∫
Γb
g · n dζ = 0. The quantity α(t) is a

priori unknown. In order to stabilize (1.3), with ub = α(t)g(x) on Σb, by employing energy
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a priori estimation technics, the quantity α(t) is found to satisfy the relation

f(v, α) =

∫
Γb

[ν
∂v

∂n
− pn] · g dζ, (1.10)

where f is a polynomial in α(t) of degree 2. Note that α(t) depends nonlinearly on v

and hence α(t), which reads α(v(t)), satisfies a nonlinear feedback law. Such a feedback,
pointwise in time, ressembles to (1.5) but the mapping F is nonlinear here.

The system (1.3) is then extended by adding (1.10), and the extended system, na-
mely (1.3) and (1.10) with ub = α(t)g(x) on Σb, is then solved in order to determined α(t),
leading to the determination of the boundary control ub. Such a boundary representation
of ub is also employed in [21] in the two-dimensional case, where a linear feedback control
dα(t)/dt is obtained via the solution of a Riccati equation stated in a space of infinite di-
mension. In the present paper, however, the quantities α(t), and hence ub, are computed
at the discrete level. Further, contrary to (1.7) and [21], where uj(t), j = 1, 2, 3, . . . , N , and
dα(t)/dt, respectively, are linear feedbacks, α(t) is nonlinear here and it is thus calcula-
ted through a Galerkin procedure instead of being the solution of a finite-dimensional
Riccati equation, for example.

Note that the Galerkin procedure first consists of building a sequence of approxi-
mated solutions via an adequate Galerkin basis. Because the energy bounds are not
sufficient to pass to the limit in the weak formulation, additional bounds are obtained.
A compactness result then permits to pass to the limit in the system satisfied by the
approximated solution, leading to the existence of at least one weak solution. Such a
procedure relies on technics previously introduced in [19], but it is worth to note that the
work performed in [19] is not related to a stabilization problem.

The approach proposed in this paper has several advantages. First, the stabilization
result in (1.4), i.e. ‖v(t,x)‖ ≤ C e−σt ‖v0(x)‖, for t ∈ (0,∞), is obtained with C = 1 and for
an arbitrary initial data v0 belonging to H(Ω) =

{
u ∈ L2(Ω) : ∇·u = 0, u ·n = 0 sur Γl

}
,

implying less regularity on v0 than in the case of the previous studies cited above, for
example see (1.9). Further, the regularity results are independent of d and they are thus
obtained in the two and three-dimensional case as well.

The paper is organized as follows. In section 2, the notations and mathematical pre-
liminaries are introduced. The stabilization problem is formulated in Section 3, and the
existence of the solution of the nonlinear Navier-Stokes system is established and the
existence analysis is carried out by applying the Galerkin method. Finally, some conclu-
ding remarks complete the study in Section 4.
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2 Notation and Preliminaries

2.1 Function Spaces

Several spaces of free divergence functions are now introduced :

V(Ω) = {u ∈ D(Ω) : ∇ · u = 0}, (1.11)

V(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0 in Ω, u = 0 on Γl,

∫
Γb

u · n dζ = 0
}
, (1.12)

V0(Ω) = {u ∈ H1
0(Ω) : ∇ · u = 0 in Ω}, (1.13)

H(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on Γl,

∫
Γb

u · n dζ = 0
}
. (1.14)

Because V(Ω) is a closed subspace of H1(Ω), we have, by definition ‖ · ‖V(Ω) = ‖ · ‖H1(Ω).

Definition 2.1. Let V1/2(Γb) be the space of trace functions that, if extended by zero over Γ,
belongs to H1/2(Γ).

Let g such that g ∈ V1/2(Γb) with g ·n �= 0 on Γb and
∫
Γb
g ·n dζ = 0, the solution of (1.3)

coupled with (1.10) is searched in

W (Q) = {(v, α) ∈ V(Ω)× R, s.t. v = αg on Γb}. (1.15)

The following lemma [19], will be used in the sequel.

Lemma 2.2. There exists a constant Cb > 0 such that, for all (v, α) ∈ W (Q), we have

|α| ≤ Cb‖v‖. (1.16)

We now define an Galerkin basis for the space W (Q).

2.2 A Galerkin basis for the space W (Q)

Let {zj, λj, j = 1, 2, 3, · · · } be the eigenfunctions and eigenvalues of the following spec-
tral problem for the Stokes operator :

−Δzj +∇pj = λjzj, ∇ · zj = 0 in Ω; zj|Γ = 0. (1.17)
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As shown in [25], 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞ as j → ∞, and {zj} forms an orthonormal
basis in V0(Ω) verifying :{

〈zj, zk〉 = δjk,

〈∇zj,∇zk〉 = λjδjk, ∀j, k = 1, 2, 3, ...
(1.18)

The space W (Q), defined in (1.15), is then rewritten as

W (Q) = span(zn){n∈N∗} ⊕ span(w), (1.19)

where w satisfies the following system

− νΔw +∇q = 0, ∇ ·w = 0 in Ω, w = 0 on Γl, w = g on Γb. (1.20)

Since g satisfy
∫
Γb
g · n dζ = 0, system (1.20) hence admits a unique solution (w, q) ∈

V(Ω)× L2
0(Ω), where L2

0(Ω) is the pressure space with zero mean value :

L2
0(Ω) =

{
p ∈ L2(Ω),

∫
Ω

p(x) dx = 0

}
.

Note that the existence and uniqueness of (w, q) in (1.20) can be deduced from [25].

2.3 Linear Forms

In order to define a weak form of the Navier-Stokes equations, we introduce the conti-
nuous bilinear forms

a(v1,v2) =

∫
Ω

∇v1 : ∇v2 dx, ∀(v1,v2) ∈ H1(Ω)×H1(Ω),

and the trilinear form :

b(v1,v2,v3) =

∫
Ω

(v1∇)v2 · v3 dx, ∀(v1,v2,v3) ∈ H1(Ω)×H1(Ω)×H1(Ω).

By integration by parts, the following properties hold true

b(u,v,v) =
α2

2

∫
Γb

|g|2(u · n) dζ, ∀u ∈ V(Ω), ∀(v, α) ∈ W (Q), (1.21)

b(v,v,v) =
α3

2

∫
Γb

|g|2(g · n) dζ, ∀(v, α) ∈ W (Q). (1.22)
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Thanks to Hölder inequality, we obtain

|b(v1,v2,v3)| ≤ ‖v1‖L2(Ω)‖∇v2‖∞‖v3‖L2(Ω), ∀v1, v2, v3 ∈ H1(Ω), (1.23)

where ‖ · ‖∞ = ‖ · ‖L∞(Ω).

3 Stability Result

3.1 The stabilization Problem

In order to stabilize the non stationary Navier-Stokes System (1.3), we choose to
search the solution v in the form v = z+αw, where z ∈ V0(Ω), and α and w satisfy (1.10)
and (1.20), respectively. We then have v = αg on Γb as z = 0 on Γ. Consequently, the state
(v, p) satisfies the following extended coupled system :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 in Q,

(b) ∇ · v = 0 in Q,

(c) v = α(t)g(x) on Σb,

(d) v = 0 on Σl,

(e) v(0,x) = v0(x) in Ω,

(f)

∫
Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α),

(1.24)

where

f(v, α)(t) = aα2(t) + bα(t)− σ0‖v(t)‖2α(t)− νλ1

(
‖w‖2α(t) + 2〈w, z(t)〉

)
. (1.25)

with σ0 > 0 is a constant, λ1 is the smallest positive eigenvalue of (1.17) and

a =
1

2

∫
Γb

|g|2(g · n) dζ and b =
1

2

∫
Γb

|g|2(vs · n) dζ.

Recall that α is a priori unknown and thanks to (1.24-f), it satisfies a nonlinear feedback
law leading to search for α(v(t)). Because (1.24-f) is independent of x, α(v(t)) is a function
of t only. For the sake of simplicity, α(v(t)) is written α in the sequel.

3.2 The variational formulation

We first state to consider the variational formulation of the extended Navier-Stokes
system.
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3.2 - The variational formulation

Definition 3.1. Let T > 0 be an arbitrary number, we shall say that (v, α) is a weak
solution of (1.24) on [0, T ) if

– v ∈ [L∞(0, T ;H(Ω)) ∩ L2(0, T ;V(Ω))],

– ∃α ∈ L∞(0, T ) such that v = αg on Γb,⎧⎨⎩(a) 〈dtv, ṽ〉+ νa(v, ṽ) + b(v,vs, ṽ) + b(vs,v, ṽ) + b(v,v, ṽ) = α̃f(v, α),

(b) v(0) = v0,
(1.26)

for all (ṽ, α̃) ∈ W (Q).

Theorem 3.2. Let λ1 the smallest positive eigenvalue of (1.17), and assume that the
steady state vs, the initial condition v0 and the profile g satisfy

σ̄ = νλ1 − ‖∇vs‖∞ > 0, (1.27)

v0 ∈ H(Ω), (v0 · n)n ∈ H1/2(Γb), (1.28)

g ∈ V1/2(Γb) and α0 g · n = v0 · n on Γb with g · n �= 0, α0 ∈ R. (1.29)

For arbitrary initial data v0 satisfying (1.28), there exists a solution (v, α) in the sense of
definition 3.1, and a distribution p on Q such that (1.24) holds. Moreover, v satisfies the
following estimates :

‖v(t)‖ ≤ ‖v0‖ e−σ(t), ∀t > 0, (1.30)∫ T

0

‖∇v(t)‖2dt ≤ C‖v0‖2, (1.31)

where C > 0 is a constant, σ(t) = σ1t + σ0

∫ t

0
α2(s)ds ≥ 0, and the constants σ0 and σ1

satisfy σ0 > 0 and 0 < σ1 ≤ σ̄.

Note that the rate of decrease σ(t) depends on the control α and the constant σ0 may
be regarded as an accelerator in terms of stabilization.

Remark 3.3. With the condition (1.27), the equilibrium state vs in (1.1) is naturally
stable in the sense that the system (1.26) stabilizes by itself when α is identically zero.
This explains why the choice of the initial perturbation v0, in Theorem 3.2, is arbitrary.
However, as shown in Proposition 3.1, the control α is not identically zero as soon as the
initial perturbation v0 and the profile g satisfy (1.28)-(1.29) with v0 ·n �= 0. The theoretical
case v0 · n = 0 remains an open question.

Proof. Let us begin with the proof of the stability estimates followed by the existence
result.
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3.3 A priori estimates

Taking (ṽ, α̃) = (v, α) ∈ W (Q) in (1.26-a) leads to

1

2

d

dt
‖v‖2 + ν‖∇v‖2 + b(v,v,v) + b(vs,v,v) + b(v,vs,v) = αf(v, α). (1.32)

Let us estimate the terms in the left-hand side of (1.32). According to (1.21)-(1.23), we
obtain

b(v,v,v) =
α3

2

∫
Γb

|g|2(g · n)dζ, (1.33)

b(vs,v,v) =
α2

2

∫
Γb

|g|2(vs · n)dζ (1.34)

|b(v,vs,v)| ≤ ‖∇vs‖∞‖v‖2. (1.35)

Using (1.25) and (1.33)-(1.35) in (1.32), leads to

1

2

d

dt
‖v‖2 + ν‖∇v‖2 ≤ ‖∇vs‖∞‖v‖2 − σ0‖v‖2α2 − νλ1

(
‖w‖2α2 + 2α〈w, z〉

)
. (1.36)

Due to (1.20), we have 〈∇w,∇z〉 = 0 and from (1.36) we deduce

1

2

d

dt
‖v‖2 + να2‖∇w‖2 + ν‖∇z‖2 ≤ ‖∇vs‖∞‖v‖2 − σ0‖v‖2α2

− νλ1

(
‖w‖2α2 + 2α〈w, z〉

)
. (1.37)

Since

λ1‖z‖2 = λ1

∞∑
i=1

θi ≤
∞∑
i=1

λiθi = ‖∇z‖2,

and using v = z+ αw, we obtain from (1.37)

1

2

d

dt
‖v‖2 + να2‖∇w‖2 + νλ1‖v‖2 ≤ ‖∇vs‖∞‖v‖2 − σ0‖v‖2α2. (1.38)

For all σ1 such that 0 < σ1 ≤ σ̄ = νλ1 − ‖∇vs‖∞, we have

1

2

d

dt
‖v‖2 + να2‖∇w‖2 + (σ1 + σ0α

2)‖v‖2 ≤ 0 (1.39)

and omitting the second term in the left hand side of (1.39) leads to

d

dt
‖v‖2 + 2(σ1 + σ0α

2)‖v‖2 ≤ 0. (1.40)
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Multiplying (1.40) by e2σ(t), where σ(t) = σ1t+ σ0

∫ t
0
α2(s)ds ≥ 0, we obtain

d

dt

(
e2σ(t)‖v‖2

)
≤ 0

and consequently,

‖v‖ ≤ ‖v0‖e−σ(t). (1.41)

By omitting the third term in the left hand side of (1.39) we deduce

1

2

d

dt
‖v‖2 + να2‖∇w‖2 ≤ 0

and integrating from 0 to t yields

‖v‖2 + 2ν

∫ t

0

α2‖∇w‖2ds ≤ ‖v0‖2,

leading to ∫ t

0

α2ds ≤ ‖v0‖2
2ν‖∇w‖2 . (1.42)

Since v = z+ αw, we substitute ‖w‖2α2 + 2α〈w, z〉 = ‖v‖2 − ‖z‖2 in the two last terms in
the right hand side of (1.36), and this leads to

1

2

d

dt
‖v‖2 + ν‖∇v‖2 ≤ ‖∇vs‖∞‖v‖2 − νλ1(‖v‖2 − ‖z‖2) = νλ1‖z‖2 − σ̄‖v‖2

≤ νλ1‖z‖2 = νλ1‖v − αw‖2

≤ 2νλ1‖v‖2 + 2νλ1α
2‖w‖2. (1.43)

Integrating (1.43) from 0 to t yields

‖v‖2 + 2ν

∫ t

0

‖∇v‖2ds ≤ ‖v0‖2 + 4νλ1

∫ t

0

‖v‖2ds+ 4νλ1‖w‖2
∫ t

0

α2ds, (1.44)

and employing (1.41) and (1.42) we obtain

‖v‖2 + 2ν

∫ t

0

‖∇v‖2ds ≤
(
1 + 2λ1

‖w‖2
‖∇w‖2 + 4νλ1

∫ t

0

e−2σ(t)ds

)
‖v0‖2.
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Because σ(t) = σ1t+ σ0

∫ t

0
α2(s)ds, we have σ(t) ≥ σ1t, and hence

‖v‖2 + 2ν

∫ t

0

‖∇v‖2ds ≤
(
1 + 2λ1

‖w‖2
‖∇w‖2 +

2νλ1

σ1

(
1− e−2σ1t

))
‖v0‖2.

Therefore, we obtain the a priori estimate∫ t

0

‖∇v‖2ds ≤ 1

ν

(
1

2
+ λ1

‖w‖2
‖∇w‖2 +

νλ1

σ1

)
‖v0‖2. (1.45)

3.4 Existence

The proof of the existence follows a standard procedure. In a first step a sequence of
approximate solutions using a Galerkin method is built. A compactness result from [20]
allows us to pass to the limit in the system satisfied by the approximated solutions.

3.4.1 The Galerkin Method

For all m ∈ N, we define the space Wm as :

Wm = span({w0,w1,w2, · · · ,wm}),

where w0 = w and wi = zi, i = 1, 2, 3, · · · ,m. Then for (vm, φ0m) ∈ Wm, vm =
∑m

i=0 φim
wi

and we define the following finite-dimensional problem

⎧⎪⎪⎨⎪⎪⎩
(a) 〈dtvm,wj〉+ νa(vm,wj) + b(vm,vs,wj) + b(vs,vm,wj)

+ b(vm,vm,wj) = δ
0j
f(vm, φ0m), for j = 0, 1, 2, · · · ,m,

(b) 〈vm(0)− v0,wj〉 = 0, for j = 0, 1, 2, · · · ,m.

(1.46)

where δ
ij

defined the Kronecker symbol and

f(vm, φ0m) = aφ2
0m

+ bφ0m − σ0‖vm‖2φ0m − νλ1

(
‖w‖2φ0m + 2〈w, zm〉

)
, (1.47)

with

zm =
m∑
i=1

φ
im
wi.

Lemma 3.4. The discrete problem (1.46) has a unique solution vm ∈ W 1,∞(0, T ;Wm).
Moreover this solution satisfies :

‖vm‖L∞(0,T ;L2(Ω)) + ‖vm‖L2(0,T ;H1(Ω)) ≤ C, (1.48)
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where C is a positive constant independent of m.

Proof. We rewrite (1.46) in terms of the unknown φ
im
, i = 0 · · ·m, and we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=0

dφ
im

dt
〈wi,wj〉+

m∑
i=0

φ
im
(ν a(wi,wj) + b(vs,wi,wj) + b(wi,vs,wj))

+
m∑

i,k=0

φ
km
φ

im
b(wi,wk,wj) = δ

0j
f(vm, φ0m),

m∑
i=0

φ
im
(0)〈wi,wj〉 = 〈v0,wj〉.

(1.49)

Because the matrix with elements 〈wi,wj〉 (0 ≤ i, j ≤ m) is nonsingular, (1.49) reduces
to a nonlinear system with constant coefficients⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dφ
im

dt
+

m∑
j=0

φ
jm
Xij +

m∑
j,k=0

φ
km
φ

jm
Yijk = f(vm, φ0m)

m∑
j=0

δ
0j
Zij,

φ
im
(0) =

m∑
j=0

〈v0,wj〉Zij,

(1.50)

where Xij, Yijk, Zij,∈ R. Then, there exists Tm (0 < Tm ≤ T ) such that the nonlinear
differential system (1.50) has a maximal solution defined on some interval [0, Tm]. In
order to show that Tm is independent of m, it is sufficient to verify the boundedness of
φim, and hence the boundedness of the L2-norm of vm independently of m. Following the
same procedure as for the derivation of the a priori estimates (1.41) and (1.45), yields⎧⎪⎨⎪⎩

(a) ‖vm‖2 ≤ ‖v0‖2 e−2σ(t),

(b)

∫ T

0

‖∇vm‖2dt ≤ C‖v0‖2.
(1.51)

Consequently, according to (1.51-a), we obtain Tm = T .

Moreover, a consequence of the a priori estimates (1.51) is that (vm)m is bounded in
L2(0, T ;V(Ω)) and L∞(0, T ;H(Ω)). Therefore, for a subsequence of vm (still denoted by
vm), the estimates in (1.51) yield the following weak convergences as m tends to ∞ :⎧⎨⎩vm ⇀ v weakly in L2(0, T ;V(Ω)),

vm ⇀ v weakly* in L∞(0, T ;H(Ω)).
(1.52)

Nevertheless, the convergences in (1.52) are not sufficient to pass to the limit in the
weak formulation (1.46), because of the presence of the convection term. Consequently,
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we need to obtain additional bounds in order to utilize the compactness theory on the
sequence of approximated solution (vm)m.

3.4.2 Additional bounds

As in [20], let us assume that B0, B and B1 are three Hilbert spaces such that B0 ⊂
B ⊂ B1. If v : R → B1 is a function, we denote by v̂ its Fourier transform

v̂(τ) =

∫ +∞

−∞
e−2iπtτv(t)dt.

Let us recall the following identity about the Fourier transform of differential operators :

D̂γ
t v(τ) = (2iπτ)γv̂(τ),

for a given γ > 0, and let us define the space

Hγ(R;B0, B1) = {u ∈ L2(R, B0), D
γ
t u ∈ L2(R, B1)}.

The space Hγ(R;B0, B1) is endowed with the norm

‖v‖Hγ(R;B0,B1)
= (‖v‖2L2(R;B0)

+ ‖|τ |γv̂‖2L2(R;B1)
)
1
2 .

We also define Hγ(0, T ;B0, B1), as the space of functions obtained by restriction to [0, T ]

of functions of Hγ(R;B0, B1). Further, we recall the following result [20] :

Lemma 3.5. Let B0, B and B1 be three Hilbert spaces such that B0 ⊂ B ⊂ B1 and B0 is
compactly embedded in B. Then for all γ > 0, the injection Hγ(0, T ;B0, B1) → L2(0, T ;B)

is compact.

For small enough ε, this lemma is used later with

B0 = V(Ω), B = H(Ω), B1 = H(Ω), γ =
1

4
− ε.

The main result of the present section, based on utilizing Lemma 3.5, is furnished by the
following lemma :

Lemma 3.6. The sequence vm is bounded in Hγ(0, T ;V(Ω),H(Ω)) for 0 ≤ γ ≤ 1
4
− ε.

Proof. We denote by v̄m the extension of vm by zero 0 for t < 0 and t > T , and v̂m

the Fourier transform with respect to time of v̄m. It is classical that since v̄m has two
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discontinuities at 0 and T , in the distributional sense, the derivative of v̄m is given by

d

dt
v̄m = ūm + vm(0)δ0 − vm(T )δT , (1.53)

where δ0, δT are Dirac distributions at 0 and T , and

ūm = v
′
m = the derivative of vm on [0, T ].

After a Fourier transformation, (1.53) gives

2iπτ v̂m(τ) = ûm(τ) + vm(0)− vm(T )e
−2iπτT ,

where v̂m and ûm denote the Fourier transforms of v̄m and ūm respectively. Since we
already know that vm is uniformly bounded in L2(0, T,V(Ω)), it remains to prove that∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖dτ ≤ C. (1.54)

We have that v̄m satisfies∫
Ω

∂v̄m

∂t
· ṽ dx+ ν

∫
Ω

∇v̄m : ∇ṽ dx+

∫
Ω

Gm · ṽ dx+

∫
Ω

G0
m · ṽ dx+

∫
Ω

G1
m · ṽ dx

= −
∫
Ω

v̄m(T ) · ṽδT dx+

∫
Ω

v̄m(0) · ṽδ0 dx+ α̃Hm, ∀(ṽ, α̃) ∈ Wm, (1.55)

where Gm = (v̄m∇)v̄m, G0
m = (v̄m∇)vs, G1

m = (vs∇)v̄m and Hm = f(v̄m, φ̄0m). We now
apply the Fourier transform to the equation (1.55) and take (v̂m, φ̂0m) as a test function,
it yields

2iπτ

∫
Ω

|v̂m(τ)|2 dx+ ν

∫
Ω

∇v̂m(τ) : ∇v̂m(τ) dx+

∫
Ω

Ĝm(τ) · v̂m(τ) dx

+

∫
Ω

Ĝ0
m(τ) · v̂m(τ) dx+

∫
Ω

Ĝ1
m(τ) · v̂m(τ) dx

=

∫
Ω

v̄m(0) · v̂m(τ) dx−
∫
Ω

v̄m(T ) · v̂m(τ)e
−2iπτT dx+ φ̂0mĤm. (1.56)

where Ĝm, Ĝ
0
m, Ĝ

1
m and Ĥm are respectively the Fourier transform with respect to time

of Gm, G
0
m, G

1
m and Hm. Note that

φ̂0mĤm = aφ̂0m (̂φ
2
0m
) + b(φ̂0m)

2 − σ0F̂m − νλ1

(
(φ̂0m)

2‖w‖2 + 2φ̂0m〈w, ẑm〉
)

= aφ̂0m (̂φ
2
0m
) + b(φ̂0m)

2 − σ0F̂m − νλ1

(
‖v̂m‖2 − ‖ẑm‖2

)
, (1.57)
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where F̂m is the Fourier transform with respect to time of φ0m‖vm‖2.
Thanks to lemma 2.2, we have

|φ̂0m(τ)| ≤ Cb‖v̂m(τ)‖.

By using (1.57) in (1.56) and taking the imaginary part of (1.56) leads to

|τ |‖v̂m(τ)‖2 ≤ C ‖v̂m(τ)‖
(
sup
τ∈R

(̂φ2
0m
) + sup

τ∈R
F̂m + ‖v̄m(T )‖+ ‖v̄m(0)‖

)
+ C‖v̂m(τ)‖V(Ω)

(
‖Ĝm(τ)‖V′(Ω) + ‖Ĝ0

m(τ)‖V′(Ω) + ‖Ĝ1
m(τ)‖V′(Ω)

)
. (1.58)

Note that in the sequel, C stands for different positive constants.

We now prove that the right hand side of (1.58) is bounded.

First, we have

‖Gm‖V′(Ω) ≤ c1‖vm‖2H1(Ω), ‖Gs
m‖V′(Ω) ≤ c2‖vm‖H1(Ω), s = 0, 1,

and thanks to the energy estimate (1.51) satisfied by vm, Gm and Gs
m remain bounded in

L1(R;V′(Ω)) and the functions Ĝm, Ĝs
m are bounded in L∞(R;V′(Ω)). Consequently, we

have

sup
τ∈R

(‖Ĝm(τ)‖V′(Ω) + ‖Ĝ0
m(τ)‖V′(Ω) + ‖Ĝ1

m(τ)‖V′(Ω)) ≤ C,

and the second line of (1.58) is hence bounded.

We now show that the first four terms in the right hand side of (1.58) are bounded.
Thanks to lemma 2.2 and estimate (1.51), φ2

0m
and Fm = φ0m‖vm‖2 are bounded in L1(R),

and hence φ̂2
0m

and F̂m are bounded in L∞(R) with :

sup
τ∈R

(̂φ2
0m
) ≤ C and sup

τ∈R
F̂m ≤ C.

Thanks to the energy estimate (1.51-a) satisfied by vm, we have ‖vm(T )‖ ≤ C and
‖vm(0)‖ ≤ C. Inequation (1.58) thus finally reduces to

|τ |‖v̂m(τ)‖2 ≤ C(‖v̂m(τ)‖H1(Ω) + ‖v̂m(τ)‖)
≤ C‖v̂m(τ)‖H1(Ω),

where C stands for different positive constants.
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For 0 < γ < 1
4
, we now estimate the norm∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖2dτ. (1.59)

Note that, (see [20])

|τ |2γ ≤ c(γ)
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R.

Consequently, we deduce∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖2dτ

≤ c(γ)

∫ +∞

−∞

‖v̂m(τ)‖2
1 + |τ |1−2γ

dτ + c(γ)

∫ +∞

−∞

|τ |‖v̂m(τ)‖2
1 + |τ |1−2γ

dτ

≤ c3(γ)

∫ +∞

−∞

‖v̂m(τ)‖2H1(Ω)

1 + |τ |1−2γ
dτ + c4(γ)

∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ

≤ c3(γ)

∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ + c4(γ)

∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ. (1.60)

The last integral in the right hand side of (1.60) satisfies∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ ≤

(∫ +∞

−∞

1

(1 + |τ |1−2γ)2
dτ

) 1
2
(∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ

) 1
2

, (1.61)

and the first integral in the right hand side of (1.61) is convergent for any 0 < γ < 1
4
. On

the other hand, using the Parseval equality leads to∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ =

∫ T

0

‖vm(t)‖2H1(Ω)dt ≤ C.

Then, the sequence vm is bounded in Hγ(0, T ;V(Ω),H(Ω)), for 0 ≤ γ ≤ 1
4
− ε.

Now, applying Lemmas 3.5 and 3.6, there is a subsequence of (vm)m∈N which
converges strongly in L2(0, T,H(Ω)).

3.4.3 Passage to the limit

The compactness result obtained in the previous section implies the following strong
convergence (at least for a subsequence of vm still denoted vm)

vm → v strongly in L2(0, T ;L2(Ω)).
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This convergence result together with (1.52) enable us to pass to the limit in the following
weak formulation, obtained from (1.46) by multiplication by ϕ ∈ D(]0, T [) and integration
by parts with respect to time

−
∫ T

0

∫
Ω

vm · ṽjϕ
′(t) dxdt+ ν

∫ T

0

∫
Ω

∇vm : ∇ṽjϕ(t) dxdt

+

∫ T

0

∫
Ω

(vm · ∇vm) · ṽjϕ(t) dxdt+

∫ T

0

∫
Ω

(vm · ∇vs) · ṽjϕ(t) dxdt

+

∫ T

0

∫
Ω

(vs · ∇vm) · ṽjϕ(t) dxdt−
∫
Ω

vm(0)ṽjϕ(0) dx

=

∫ T

0

α̃j f(vm, φ0m)ϕ(t) dt ∀(ṽj, α̃j) ∈ Wm. (1.62)

Using the weak estimates (1.52) leads to∫ T

0

∫
Ω

vm · ṽjϕ
′(t) dxdt −−−−−→

m→+∞

∫ T

0

∫
Ω

v · ṽjϕ
′(t) dxdt,

∫ T

0

∫
Ω

∇vm : ∇ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

∇v : ∇ṽjϕ(t) dxdt,

∫ T

0

∫
Ω

(vm · ∇vs) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(v · ∇vs) · ṽjϕ(t) dxdt,

∫ T

0

∫
Ω

(vs · ∇vm) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(vs · ∇v) · ṽjϕ(t) dxdt,

for the linear terms. Further, since vm converges to v in L2(0, T ;V(Ω)) weakly, and in
L2(0, T ;L2(Ω)) strongly, we can pass to the limit in the nonlinear term to obtain∫ T

0

∫
Ω

(vm · ∇vm) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(v · ∇v) · ṽjϕ(t) dxdt. (1.63)

Using Lemma 2.2 and according to (1.51-a), φ0m ∈ L∞(0, T ). Then for a subsequence of
φ0m (still denoted by φ0m) :

φ0m ⇀ α weakly∗ in L∞(0, T ). (1.64)

As far as the right hand side of (1.62) is concerned. Let us notice that the convergence of
vm in L2([0, T ]× Ω) implies its convergence in L1(0, T ;L2(Ω)). Hence

‖vm‖ −→ ‖v‖ in L1(0, T ). (1.65)
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Due to lemma 2.2, we have

|φ0p − φ0q | ≤ Cb‖vp − vq‖, ∀(vp, φ0p), (vq, φ0q) ∈ Wm,

and φ0m is then a Cauchy sequence in L1(0, T ) and

φ0m −→ φ0 in L1(0, T ). (1.66)

Further, according to (1.64) we have φ0 = α ∈ L∞(0, T ) from [12, Proposition II.1.26].
Since ‖vm‖ and φ0m are bounded in L∞(0, T ), using (1.65) and (1.66) we obtain

‖vm‖ −→ ‖v‖ in Lp(0, T ),

φ0m −→ α in Lp(0, T ),

from [12, Corollaire II.1.24], for all p ∈]1,+∞[.

Now we can pass to the limit in the following terms :∫ T

0

α̃jφ
2
0m
ϕ(t) −−−−−→

m→+∞

∫ T

0

α̃jα
2ϕ(t), (1.67)∫ T

0

α̃jφ0m‖vm‖2ϕ(t) −−−−−→
m→+∞

∫ T

0

α̃jα‖v‖2ϕ(t), (1.68)∫ T

0

α̃j〈w, zm〉ϕ(t) −−−−−→
m→+∞

∫ T

0

α̃j〈w, z〉ϕ(t), (1.69)

because zm = vm − φ0mw. Consequently∫ T

0

α̃jf(vm, φ0m)ϕ(t)dt −−−−−→
m→+∞

∫ T

0

α̃jf(v, α)ϕ(t)dt,

where
f(v, α) = aα2 + bα− σ0‖v‖2α− νλ1‖w‖2α− 2νλ1〈w, z〉.

Passing to the limit in (1.62) then gives

−
∫ T

0

∫
Ω

v · ṽϕ′(t) dxdt+ ν

∫ T

0

∫
Ω

∇v : ∇ṽϕ(t) dxdt+

∫ T

0

∫
Ω

(v · ∇v) · ṽϕ(t) dxdt

+

∫ T

0

∫
Ω

(v · ∇vs) · ṽϕ(t) dxdt+
∫ T

0

∫
Ω

(vs · ∇v) · ṽϕ(t) dxdt−
∫
Ω

v0ṽϕ(0) dx

=

∫ T

0

α̃f(v, α)ϕ(t) dt. (1.70)

for all ṽ = ṽj, ∀j = 0, 1, 2, · · · ,m. By linearity, equation (1.70) holds true for all ṽ combi-
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nation of finite ṽj and by density, for any element of W (Q).

Finally, it remains to retrieve the stabilized problem (1.24), which requires to prove
the existence of pressure.

3.5 Existence of the Pressure

First, we recall a result obtained in [25]

Lemma 3.7. Let f ∈ D′(]0, T [;H−1(Ω)) such that 〈f , ṽ〉H−1(Ω),H1
0(Ω) = 0 ∀ṽ ∈ V0(Ω). Then

there exists q ∈ D′(]0, T [;L2(Ω)) such that f = ∇q.

This lemma is utilized to prove the following.

Lemma 3.8. There exists p ∈ D′(]0, T [;L2(Ω)) such that (v, p) satisfies (1.24-a) in the
distribution sense.

Proof. By choosing ϕ ∈ D(0, T ) in (1.70), we obtain∫ T

0

∫
Ω

∂v

∂t
· ṽϕ(t) dxdt+ ν

∫ T

0

∫
Ω

∇v : ∇ṽϕ(t) dxdt+

∫ T

0

∫
Ω

(v · ∇v) · ṽϕ(t) dxdt

+

∫ T

0

∫
Ω

(v · ∇vs) · ṽϕ(t) dxdt+
∫ T

0

∫
Ω

(vs · ∇v) · ṽϕ(t) dxdt

=

∫ T

0

α̃f(v, α)ϕ(t)dt, ∀(ṽ, α̃) ∈ W (Q). (1.71)

Further, taking α̃ = 0 leads to∫
Ω

∂v

∂t
· ṽ dx+ ν

∫
Ω

∇v : ∇ṽ dx+

∫
Ω

(v · ∇v) · ṽ dx

+

∫
Ω

(v · ∇vs) · ṽ dx+

∫
Ω

(vs · ∇v) · ṽ dx = 0, in D′(0, T ). (1.72)

Then, letting

f =
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v,

and using (1.72), we obtain f ∈ D′(]0, T [ ; H−1(Ω)) and 〈f , ṽ〉H−1(Ω),H1
0(Ω) = 0, ∀ṽ ∈ V0(Ω).

Finally, using Lemma 3.7, there exists p ∈ D′(]0, T [ ; L2(Ω)) such that f = −∇p.

Now, we prove that (v, p) satisfies (1.24-f). Let us first define the space

E(Ω) = {u ∈ L2(Ω) : div u ∈ L2(Ω)},
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and recall the following Lemma obtained in [25, Chap I, Theorem 1.2] :

Lemma 3.9. Let Ω be an open bounded set of class C2. Then there exists a linear conti-
nuous operator γn ∈ L(E(Ω), H−1/2(Γ)) such that

γnu = the restriction of u · n to Γ, for every u ∈ D(Ω̄).

The following generalized Stokes formula is true for all u ∈ E(Ω) and w ∈ H1(Ω),

(u,∇w) + (div u,w) = 〈γnu, γ0w〉, (1.73)

where γ0 ∈ L(H1(Ω),L2(Γ)) is the trace operator.

By writing (1.24-a) in the form

∂v

∂t
+ div(−ν∇v + Ip) + (v · ∇)vs + (vs · ∇)v + (v · ∇)v = 0 in Q,

and using Lemma 3.9, we obtain∫
Ω

∂v

∂t
· ṽ dx+

∫
Ω

(ν∇v − Ip) : ∇ṽ dx+ 〈(−ν∇v + Ip) · n, ṽ〉
H− 1

2 (Γ),H
1
2 (Γ)

+

∫
Ω

(v · ∇v) · ṽ dx+

∫
Ω

(v · ∇vs) · ṽ dx+

∫
Ω

(vs · ∇v) · ṽ dx = 0,

∀(ṽ, α̃) ∈ W (Q). Since (ṽ, α̃) ∈ W (Q), we have

pI : ∇ṽ = p∇ · ṽ = 0,

〈(−ν∇v + Ip) · n, ṽ〉
H− 1

2 (Γ),H
1
2 (Γ)

= −α̃

∫
Γb

[ν
∂v

∂n
− pn] · g dζ.

Consequently,∫
Ω

∂v

∂t
· ṽ dx+ ν

∫
Ω

∇v : ∇ṽ dx+

∫
Ω

(v · ∇v) · ṽ dx+

∫
Ω

(v · ∇vs) · ṽ dx

+

∫
Ω

(vs · ∇v) · ṽ dx = α̃

∫
Γb

[ν
∂v

∂n
− pn] · g dζ. (1.74)

By comparing (1.71) and (1.74), we deduce∫
Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α).
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Finally, it remains to verify the initial condition. In this purpose, firstly, we let

E(Q) =
{
(v, α) ∈ H(Ω)× R, such that v · n = αg · n on Γb

}
, (1.75)

and we obtain the following Lemma

Lemma 3.1. The space W (Q) is dense in E(Q).

Proof. We define

G(Q) =
{
(u, α) ∈ H1(Ω)× R : u = 0 on Γl, u = αg on Γb

}
. (1.76)

By construction, we have

H1
0(Ω)× R ⊂ G(Q) ⊂ L2(Ω)× R, (1.77)

W (Q) = G(Q) ∩ E(Q), (1.78)

E(Q) = E(Q) ∩ L2(Ω)× R. (1.79)

Since H1
0(Ω) is dense in L2(Ω), according to (1.77) we have G(Q) dense in L2(Ω) × R and

hence, thanks to (1.78)-(1.79), the space W (Q) is dense in E(Q).

Secondly, we multiply (1.24-a) by ṽϕ with ϕ(T ) = 0 and integrate with respect to time
and space

−
∫ T

0

∫
Ω

v · ṽϕ′(t) dxdt+ ν

∫ T

0

∫
Ω

∇v : ∇ṽϕ(t) dxdt

+

∫ T

0

∫
Ω

(v · ∇v) · ṽϕ(t) dxdt+
∫ T

0

∫
Ω

(v · ∇vs) · ṽϕ(t) dxdt

+

∫ T

0

∫
Ω

(vs · ∇v) · ṽϕ(t) dxdt−
∫
Ω

v(0)ṽϕ(0) dx

=

∫ T

0

α̃f(v, α)ϕ(t) dt. (1.80)

By comparing (1.70 ) and (1.80 ), we obtain
∫
Ω
(v(0) − v0) · ṽϕ(0) dx = 0, and choosing ϕ

such that ϕ(0) = 1, leads to∫
Ω

(v(0)− v0) · ṽ dx = 0, ∀(ṽ, α̃) ∈ W (Q). (1.81)

From (1.81) and Lemma 3.1 we obtain v(0) = v0 in E(Q).
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Proposition 3.1. When v is solution of the stabilization problem (1.24), for a given initial
perturbation v0 ∈ H(Ω) and profile g ∈ V1/2(Γb) such that α0g · n = v0 · n �= 0 on Γb, the
control is not identically zero. i.e. α �≡ 0.

The proof of Proposition 3.1 is given after Lemmas 3.2 is established. We start by
giving the following functionals spaces

H(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on Γ

}
, (1.82)

Vs(Ω) = the closure V(Ω) in H1
0(Ω) ∩Hs(Ω), s ≥ d

2
. (1.83)

Lemma 3.2. Let v satisfies the stabilization problem (1.24) with α ≡ 0,

1. In 2-dimensional space,

v ∈ C0([0, T ],H(Ω)). (1.84)

2. In 3-dimensional space,

v ∈ C0([0, T ],Hweak(Ω)), (1.85)

namely, v is weakly continuous from [0, T ] into H(Ω).

Proof. According to the variation formulation (1.26), the solution v satisfies

− 〈dtv, z〉 = νa(v, z) + b(v,vs, z) + b(vs,v, z) + b(v,v, z), ∀z ∈ V0(Ω) (1.86)

and

〈dtv,w〉+ νa(v,w) + b(v,vs,w) + b(vs,v,w) + b(v,v,w) = f(v, α). (1.87)

If α ≡ 0, according to estimates (1.30)-(1.31), we firstly obtain

v ∈ L∞(]0, T [,H(Ω)) ∩ L2(]0, T [,V0(Ω)). (1.88)

Secondly, by taking the supremum of (1.86) with respect to z ∈ V0(Ω) with ‖z‖V0(Ω) = 1,
and applying inequality (4.4) in [25, Lemma 4.1 Page 217], leads to⎧⎪⎪⎨⎪⎪⎩

dv

dt
∈ L2(]0, T [,V−1(Ω)) if d = 2,

dv

dt
∈ L2(]0, T [,V− 3

2 (Ω)) if d = 3

(1.89)

where V− 3
2 (Ω) = (V

3
2 (Ω))′. Finally, as in [12, Proposition IV.1.7 Page 217], due to (1.88)-
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(1.89) we obtain (1.84)-(1.85).

Proof of the Proposition 3.1. Assume, by absurd, that α ≡ 0. Recall that from (1.81) and
Lemma 3.1 we have

v(0) = v0 in E(Q). (1.90)

1. In 2-dimensional space, from (1.84), v ∈ C0([0, T ],H(Ω)). i.e.

v(t) −→ v(0) = v0 in H(Ω), when t → 0+,

which is impossible since v0 · n �= 0 on Γb.

2. In 3-dimensional space, according to (1.85), v ∈ C0([0, T ],Hweak(Ω)). Firstly, by the
weak continuity, we have

‖v0‖2 ≤ lim inft→0+‖v(t)‖2.

Secondly, by the energy inequality (1.30),

lim supt→0+‖v(t)‖2 ≤ ‖v0‖2.

Hence limt→0+‖v(t)‖ = ‖v0‖, sufficient condition (thanks to the weak continuity) to
prove the strong continuity of v on 0 i.e.

v(t) −→ v(0) = v0 in H(Ω), when t → 0+,

which is impossible since v0 · n �= 0 on Γb.

4 Concluding remarks
In this work the exponential stabilization of the two and three-dimensional Navier-

Stokes equations in a bounded domain is studied around a given steady-state flow, using
a boundary feedback control. In order to determine a feedback law, an extended sys-
tem coupling the Navier-Stokes equations with an equation satisfied by the control on
the domain boundary is considered. We first assume that on Σb (a part of the domain
boundary), the trace of the fluid velocity is proportional to a given velocity profile g. The
proportionality coefficient α measures the velocity flux at the interface, it is an unknown
of the problem and is written in feedback form. By using the Galerkin method, α is de-
termined such that the Dirichlet boundary control ub = αg is satisfied on Σb, and the sta-
bilizing boundary control is built. The resulting nonlinear feedback control is proven to
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be globally exponentially stabilizing the steady states of the two and three-dimensional
Navier-Stokes equations. This feedback control was shown to guarantee global stability
in the L2-norm.

Finally, in order to take into account (1.24-f) in the variational formulation, the test
functions, for example ṽ, need to be written on the form ṽ = α̃g. This requires to
construct a finite-element basis which allows such a requirement and hence at least
one element of the basis, for example w, such that w = g on Γb. A number of choices, in-
cluding both continuous and discontinuous approximations, may be investigated. Once
the finite-element basis is obtained, equation (1.24-f), satisfied by the control, will be
present in the discrete ODE. A priori, the control α should be robust, since it is bounded
by the perturbation (see inequality (15) in Lemma 2.2), and numerically efficient. In a
forthcoming paper, several test cases are performed and discussed.
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Chapitre 2

Boundary stabilization of the
Navier-Stokes Model with feedback
controller around a non-stationary
state

Abstract

This paper presents a boundary feedback control for the two and three-dimensional Navier-
Stokes equations in a bounded domain Ω around a given non-stationary velocity. In order to
determine a feedback control law, we consider an extended system coupling the equations gov-
erning the perturbation with an equation satisfied by the control on the domain boundary. By
using the Faedo-Galerkin method and a priori estimation techniques, a stabilizing boundary con-
trol is built. This control law ensures a decrease of the energy of the controlled discrete system.
A compactness result then allows us to pass to the limit in the system satisfied by the approxi-
mated solutions.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

1 Introduction
This paper presents a boundary feedback control for the two and three-dimensional

Navier-Stokes equations in a bounded domain Ω around a given non-stationary velocity.
Let Ω be a bounded and connected domain in Rd (d = 2, 3), with a boundary Γ of class C2,
and composed of two connected components Γl and Γb such that Γ = Γl∪Γb. In particular,
the boundary Γb is the part of Γ, where a Dirichlet boundary control in feedback form has
to be determined. Let T > 0 a fixed real number, we take Q = [0, T [×Ω, Σl = [0, T [×Γl,
Σb = [0, T [×Γb and we consider the trajectory (ψ, q) solution of the non-stationary Navier-
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Stokes equations ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ψ

∂t
− νΔψ + (ψ · ∇)ψ +∇q = f in Q,

∇ ·ψ = 0 in Q,

ψ = 0 on Σl,

ψ = ψb on Σb,

(2.1)

where ν > 0 is the viscosity, f represents body forces acting on the fluid and ψb the
boundary condition in Γb. Let us first define the set of admissible target velocities U

ad
.

The solution ψ(t,x) of (2.1) is said to be in the set admissible target velocities U
ad

if

sup
t≤T

‖∇ψ(t,x)‖ <
ν

C
Ω

, (2.2)

where ‖ · ‖ = ‖ · ‖(L2(Ω))d , x = (x, y, z) if d = 3 and C
Ω

is a positive constant defined later
in (2.18).

We now consider the perturbed trajectory (u, r) solution of the non-stationary Navier-
Stokes equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇r = f in Q,

∇ · u = 0 in Q,

u = vb +ψb on Σb,

u = 0 on Σl,

u(t = 0,x) = v0(x) +ψ(t = 0,x) in Ω,

(2.3)

where vb is the control input and function v0 can be viewed as a perturbation of the
initial state (2.1). By substituting (u, r) = (v + ψ, p + q) in (2.3), we obtain the following
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− νΔv + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v +∇p = 0 in Q,

∇ · v = 0 in Q,

v = vb on Σb,

v = 0 on Σl,

v(t = 0,x) = v0(x) in Ω.

(2.4)

The usual function spaces L2(Ω), H1(Ω), H1
0 (Ω) are used and we let L2(Ω) = (L2(Ω))d,

H1(Ω) = (H1(Ω))d, H1
0(Ω) = (H1

0 (Ω))
d. Negative ordered Sobolev spaces H−1(Ω) is defined

as the dual space, i.e. H−1(Ω) = {H1
0(Ω)}′. We denote by 〈· | ·〉 and ‖·‖ = ‖·‖L2(Ω), the scalar
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product and norm in L2(Ω),respectively. Further, if u ∈ L2(Ω) is such that ∇ · u ∈ L2(Ω),
we denote the normal trace of u in H− 1

2 (Γ) by u ·n, where n denotes the unit outer normal
vector to Γ.

Our goal is the following : for a prescribed rate of decrease σ > 0, we need to find a
feedback control vb on Σb such that the velocity v in (2.4) satisfies the exponential decay

‖v(t)‖ ≤ ‖v0‖e−σ(t) ∈ (0,∞). (2.5)

Note that σ(t) is usually written as σ0t in previous studies [1, 5, 17, 29], where σ0 is
positive constant.

The control vb(t) is called a feedback if there exists a mapping M : X(Ω) → U(Γb)

such that

vb(t) = M(v(t)), t ∈ (0,∞), (2.6)

where the spaces X(Ω) and U(Γb) are defined in the sequel.

The theoretical setting of the boundary feedback stabilization procedure, for the non-
stationary incompressible Navier-Stokes equations around a given stationary velocity,
has been studied in a number of papers, e.g. A.V. Fursikov [17, 18], V. Barbu et al.
[5, 10, 11, 12, 13], J.-P. Raymond et al. [29, 30, 31] and M. Badra et al. [1, 2, 3]. In
these publications, a linear feedback law is first determined by solving a linear control
problem, and this linear feedback is then used in order to stabilize the original non li-
near system. Such a procedure leads to use the Oseen-operator and the target velocity
ψ in (2.4) is chosen to be independent of time, i.e. ψ(t,x) ≡ ψ(x). However, Another ap-
proach for stabilizing fluid dynamics equations is proposed in [16, 22, 23, 27, 32]. The
method was first published with application on a 1D shallow water equation in [32].
It consists on establishing an equation involving the derivative of energy with respect
to time, and the boundary conditions. Then, by utilizing adequate feedback boundary
conditions, the authors manage to get the energy’s exponential decrease. So far, the me-
thod has been applied to stabilize irrigation channel networks [22, 23], coupled shallow-
water and erosion-sedimentation equations [16], and the Navier-Stokes system around a
steady-state [27]. Note that in [27], an extended system is considered with an additional
equation satisfied by the control on the domain boundary, and the boundary feedback
control is constructed via a Galerkin method. Thereby, the authors stabilize the Navier-
Stokes equations in a bounded domain Ω around a given steady-state which satisfies the
stationary Navier-Stokes equations.

In this paper, the approach of [27], using an extended system is followed in order
to stabilize the two and three-dimensional Navier-Stokes problem around a given non-
stationary state ψ(t,x) instead of a stationary state ψ(x) employed in [27]. The boundary
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control vb in (2.4) is rewritten on the form vb = α(t)g(x) on Σb, where g ∈ H1/2(Γ) is
assumed to verify g = 0 on Γl, g · n �= 0 on Γb and

∫
Γb
g · n = 0. The proportionality

coefficient α is a priori unknown. In order to stabilize (2.4), with vb = α(t)g(x) on Σb, by
employing energy a priori estimations, the quantity α is found to satisfy the relation∫

Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α), (2.7)

where f is a polynomial in α of degree 2, defined later in (2.34). The quantity α depends
nonlinearly on v in (2.7), and hence α satisfies a nonlinear feedback law. Such an ex-
ponential boundary feedback stabilization for tracking the non-stationary velocity (with
ψ(t,x)) in the Navier-Stokes equations flows is new, to our knowledge, although the pro-
blem has been considered previously in [8] for the internal exponential stabilization case
and in [24] with a two-dimensional boundary control only, and for an optimal control
problem, i.e. not for an exponential stabilization control.

System (2.4) is then extended by adding (2.7), and the extended system, namely (2.4)
and (2.7), with vb = α(t)g(x) on Σb, is the stabilization problem considered in this paper,
i.e. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v +∇p = 0 in Q,

(b) ∇ · v = 0 in Q,

(c) v = α(t)g(x), on Σb,

(d) v = 0 on Σl,

(e) v(0,x) = v0(x) in Ω,

(f)

∫
Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α).

(2.8)

In order to determined α, leading to the determination of the boundary control vb, sys-
tem (2.8) is solved via a Galerkin procedure, as in [27], which consists of building a
sequence of approximated solutions using an adequate Galerkin basis.

The paper is organized as follows. In section 2, the notations and mathematical pre-
liminaries are given. In section 3, we build the control law and in section 4, thanks to
technics developed in [25] (which are not related specifically to a stabilization problem),
the existence of at least one weak solution of the non-linear Navier-Stokes system is
established by applying the Galerkin method.
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2 Notation and Preliminaries

2.1 Function Spaces

Several spaces of free divergence functions are now introduced :

V(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0 in Ω, u = 0 on Γl,

∫
Γb

u · n dζ = 0
}
, (2.9)

V0(Ω) = {u ∈ H1
0(Ω) : ∇ · u = 0 in Ω}, (2.10)

H(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on Γl,

∫
Γb

u · n dζ = 0
}
. (2.11)

Since V(Ω) is a closed subspace of H1(Ω), we have, by definition ‖ · ‖V(Ω) = ‖ · ‖H1(Ω).

Next, we define the pressure space with zero mean value :

L2
0(Ω) =

{
p ∈ L2(Ω),

∫
Ω

p(x) dx = 0

}
.

Definition 2.1. Let V 1/2(Γb) be the space of trace functions that, if extended by zero over Γ,
belongs to H1/2(Γ). Further, for g ∈ V 1/2(Γb) such that g · n �= 0 on Γb, we define

W (Q) = {(v, α) ∈ V(Ω)× R, such that v = αg on Γb}. (2.12)

The following Lemma [25], will be used in the sequel.

Lemma 2.2. There exists a constant Cb > 0 such that, for all (v, α) ∈ W (Q), we have

|α| ≤ Cb‖v‖. (2.13)

2.2 Linear Forms

In order to define a weak form of the Navier-Stokes equations, we introduce the conti-
nuous bilinear form

a(v1,v2) =

∫
Ω

∇v1 : ∇v2 dx, ∀(v1,v2) ∈ H1(Ω)×H1(Ω),

and the trilinear form

b(v1,v2,v3) =

∫
Ω

(v1∇)v2 · v3 dx, ∀(v1,v2,v3) ∈ H1(Ω)×H1(Ω)×H1(Ω).
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Thanks to Hölder inequality, we obtain

|b(v1,v2,v3)| ≤ ‖v1‖L3(Ω) ‖∇v2‖ ‖v3‖L6(Ω), ∀v1, v2, v3 ∈ H1(Ω).

Using the generalized Sobolev’s inequality, leads to

‖v1‖L3(Ω) ≤ C‖v1‖
1
2‖∇v1‖

1
2 and ‖v3‖L6(Ω) ≤ C‖∇v3‖, for d = 2, 3,

where C is a positive constant, and hence

|b(v1,v2,v3)| ≤ C‖v1‖
1
2‖∇v1‖

1
2‖∇v2‖‖∇v3‖. (2.14)

By employing integration by parts, the following properties hold true

b(u,v,v) =
1

2

∫
Γb

|v|2(u · n) dζ, ∀u,v ∈ V(Ω), (2.15)

b(v,v,v) =
1

2

∫
Γb

|v|2(v · n) dζ, ∀v ∈ V(Ω). (2.16)

Thanks to [21, Lemma 1.1] we obtain

|b(u,v,u)| ≤ C
Ω
‖∇v‖‖∇u‖2, ∀v ∈ H1(Ω), u ∈ H1

0(Ω), (2.17)

where

C
Ω
=

⎧⎨⎩
2
√
2|Ω|1/6
3

if d = 3

|Ω|1/2
2

if d = 2.
(2.18)

Remark 2.3. In the stationary case, if ψ(t,x) ≡ ψ(x) is the solution of the Navier-Stokes
problem ⎧⎪⎪⎨⎪⎪⎩

−νΔψ + (ψ · ∇)ψ +∇q = f , ∇ ·ψ = 0 in Ω,

ψ = 0 on Γl,

ψ = ψb on Γb,

(2.19)

with f ∈ H−1(Ω), ψb ∈ V 1/2(Γb) and if the smallness condition

‖∇ψ‖ <
ν

C
Ω

(2.20)

is satisfied (in view of [21, Theorem 2.1]), then ψ(x) is unique. Moreover ψ(x) belongs to
U

ad
, defined in (2.2).
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In the next Section, the control low is built by employing energy a priori estimations.

3 Control building
In the first step a Galerkin basis is built for the space W (Q) defined in (2.12).

3.1 A Galerkin basis for space W (Q)

Let {zj, λj, j = 1, 2, 3, · · · } be the eigenfunctions and eigenvalues of the following spec-
tral problem for the Stokes operator :

−Δzj +∇pj = λjzj, ∇ · zj = 0 in Ω; zj|Γ = 0. (2.21)

As shown in [33], 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞ as j → ∞, and {zj} forms an orthonormal
basis in V0(Ω) : {

〈zj, zk〉 = δjk,

a(zj, zk) = λjδjk, ∀j, k. (2.22)

We assume that the boundary Γb is composed of two connected components such that
Γb = Γ0 ∪ Γ1. Let g0 such that g0 ∈ V 1/2(Γ0) and

∫
Γ0
g0 · n �= 0, we consider the following

problem ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(a) −Δw +∇q = 0, ∇ ·w = 0 in Ω,

(b) w = 0 on Γl,

(c) w = βg
0

on Γ0,

(d) w = g1 on Γ1,

(2.23)

where g1 is such that g1 ∈ V 1/2(Γ1) with g1 · n �= 0 on Γ1 and β = −
∫
Γ1
g1 · n dζ∫

Γ
0

g
0
· n dζ

.

Further, let

g =

⎧⎨⎩βg
0

on Γ0

g1 on Γ1,
(2.24)

we see by construction that g belongs to V 1/2(Γb) and satisfies
∫
Γb
g · n dζ = 0. Since

w = g on Γb = Γ0∪Γ1, system (2.23) admits a unique solution (w, q) belonging to H1(Ω)×
L2
0(Ω) (see [14, Proposition III.4.1]). Moreover, we notice that 〈∇w,∇zj〉 = 0, for all j =

1, 2, 3, · · · , and the sequence w, z1, z2, z3, · · · , is linearly independent. Consequently, we
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search for the solution v of (2.4), coupled with (2.7), in

W (Q) = span(w)⊕ span(zn){n∈N∗}, (2.25)

and v can be expressed as :

v = αw + z, with z =
∞∑
i=1

θizi. (2.26)

3.2 The control Building

Multiplying (2.8-a) by v and integrating by parts over Ω leads to

1

2

d

dt
‖v‖2 + ν‖∇v‖2 + b(v,v,v) + b(ψ,v,v) + b(v,ψ,v) = αf(v, α). (2.27)

Since v = αw + z, the control law f(v, α) is built by employing the terms ‖v‖2, ‖∇v‖2,
b(v,ψ,v), b(v,v,v) and b(ψ,v,v) in (2.27), which are developed as follows :

‖v‖2 = α2‖w‖2 + 2α〈w, z〉+ ‖z‖2, (2.28)

‖∇v‖2 = α2‖∇w‖2 + ‖∇z‖2, (2.29)

b(v,ψ,v) = b(z,ψ, z) + αAz + α2Bs, (2.30)

where
Az = b(w,ψ, z) + b(z,ψ,w) and Bs = b(w,ψ,w).

Note that the term ‖∇v‖2 in (2.27) reduced to (2.29) because 〈∇w,∇z〉 = 0.

Further, due to (2.15)-(2.16), the terms b(v,v,v) and b(ψ,v,v) are rewritten, respec-
tively, as

b(v,v,v) =
1

2

∫
Γb

|v|2(v · n) = abα
3, (2.31)

b(ψ,v,v) =
1

2

∫
Γb

|v|2(ψ · n) = bbα
2, (2.32)

where

ab =
1

2

∫
Γb

|g|2(g · n) and bb =
1

2

∫
Γb

|g|2(ψ · n),

and the functions bb, A and B are time dependent.
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Substituting (2.29)-(2.30) in (2.27), yields

1

2

d

dt
‖v‖2 + να2‖∇w‖2 + ν‖∇z‖2 + b(z,ψ, z) + αS(z, α) = αf(v, α), (2.33)

where
S(z, α) = Az +Bsα + abα

2 + bbα.

The control law is now defined as

f(v, α) = S(z, α)− λν

(
2〈w, z〉+ α‖w‖2

)
−Kα‖v‖2, (2.34)

where the positive constants K and λν will be defined later. Note that in (2.34), the term
2〈w, z〉+ α‖w‖2 is a part of ‖v‖2 in (2.28) while the term −Kα‖v‖2 is introduced in order
to limit the size of the control, for an appropriate choice of K.

4 Stability Result
We first establish the a priori estimates for the extended Navier-Stokes system.

4.1 A priori estimates

Multiplying (2.34) by α, substituting in (2.33) and using (2.28) leads to

1

2

d

dt
‖v‖2 + να2‖∇w‖2 + ν‖∇z‖2 + b(z,ψ, z) = −λν

(
‖v‖2 − ‖z‖2

)
−K‖v‖2α2. (2.35)

We obtain from (2.17)

|b(z,ψ, z)| ≤ C
Ω
‖∇ψ‖‖∇z‖2 ≤ C

Ω
sup
t≤T

‖∇ψ(t,x)‖‖∇z‖2,

and due to (2.35) we have

1

2

d

dt
‖v‖2 + να2‖∇w‖2 + βν‖∇z‖2 ≤ −λν

(
‖v‖2 − ‖z‖2

)
−K‖v‖2α2, (2.36)

where βν = ν − C
Ω
supt≤T ‖∇ψ(t,x)‖. Moreover, since

λ1‖z‖2 = λ1

∞∑
i=1

θ2i ≤
∞∑
i=1

λiθ
2
i = ‖∇z‖2,

and taking λν = λ1βν in (2.36) yields

1

2

d

dt
‖v‖2 + να2‖∇w‖2 +

(
λν +Kα2

)
‖v‖2 ≤ 0,
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namely

d

dt
‖v‖2 + 2

(
λν +Kα2

)
‖v‖2 ≤ 0. (2.37)

Multiplying (2.37) by e2σ(t) where

σ(t) = λνt+K

∫ t

0

α2(s)ds (2.38)

leads to

d

dt
(‖v‖2e2σ(t)) ≤ 0. (2.39)

By integrating (2.39) from 0 to t we obtain the first a priori estimate

‖v‖ ≤ ‖v(0)‖e−σ(t). (2.40)

Note that due to (2.2-a), we have βν = ν − C
Ω
supt≤T ‖∇ψ(t,x)‖ > 0, hence λν = λ1βν > 0.

We then obtain from (2.36)

1

2

d

dt
‖v‖2 + βνα

2‖∇w‖2 + βν‖∇z‖2 ≤ λν‖z‖2, (2.41)

and using (2.29), we deduce

1

2

d

dt
‖v‖2 + βν‖∇v‖2 ≤ λν‖z‖2. (2.42)

Let us estimate the term in the right hand side of (2.42). Since

‖z‖2 = ‖v − αw‖2 ≤ 2‖v‖2 + 2α2‖w‖2,

using Lemma 2.2, we obtain

λν‖z‖2 ≤ M1‖v‖2, (2.43)

where M1 = 2λν

(
1 + C2

b ‖w‖2
)
. Further, employing (2.43) in (2.42) leads to

1

2

d

dt
‖v‖2 + βν‖∇v‖2 ≤ M1‖v‖2. (2.44)

Integrating (2.44) from 0 to t, yields

‖v‖2 + 2βν

∫ t

0

‖∇v‖2ds ≤ ‖v(0)‖2 + 2M1

∫ t

0

‖v‖2ds, (2.45)
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using the inequality e−σ(t) ≤ e−λνt obtained from (2.38), and integrating (2.40) from 0 to
t, we obtain

‖v‖2 + 2βν

∫ t

0

‖∇v‖2ds ≤
(
1 +

M1

λν

− M1

λν

e−2λνt

)
‖v(0)‖2

≤
(
1 +

M1

λν

)
‖v(0)‖2 =

(
3 + 2C2

b ‖w‖2
)
‖v(0)‖2.

Therefore, we obtain the a priori estimate∫ t

0

‖∇v‖2ds ≤
(
3 + 2C2

b ‖w‖2
2βν

)
‖v(0)‖2. (2.46)

4.2 The variational formulation

We now consider the variational formulation for the extended Navier-Stokes system.

Definition 4.1. Let T > 0 be an arbitrary real number and v0 ∈ H(Ω), we shall say that
(v, α) is a weak solution of (2.8) on [0, T ) if

– v ∈ L∞(0, T ;H(Ω)) ∩ L2(0, T ;V(Ω)),

– ∃α ∈ L∞(0, T ) such that v = αg on Γb,

⎧⎪⎨⎪⎩
(a) 〈dtv, ṽ〉+ νa(v, ṽ) + b(v,ψ, ṽ) + b(ψ,v, ṽ) + b(v,v, ṽ) = α̃f(v, α),

(b)

(∫
Ω

v · ṽ dx

)
(0) =

∫
Ω

v0 · ṽ dx,
(2.47)

∀(ṽ, α̃) ∈ W (Q).

Note that the initial condition (2.47-b) makes sense because for any solution v

of (2.47-a), function t →
∫
Ω
v(t) · ṽ dx is continuous (see [14] Corollaire II.4.2).

Theorem 4.2. Assume that the initial condition v0 and the profile g satisfy

v0 ∈ H(Ω), (v0 · n)n ∈ H1/2(Γb), (2.48)

g ∈ V1/2(Γb) and α0 g · n = v0 · n on Γb with g · n �= 0, α0 ∈ R. (2.49)

For arbitrary initial data v0 satisfying (2.48), there exists a solution (v, α) in the sense
of definition 4.1, and a distribution p on Q such that (2.8) holds. Moreover, function v
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satisfies the following estimates :

‖v(t)‖ ≤ ‖v0‖ e−σ(t), ∀t > 0, (2.50)∫ T

0

‖∇v(t)‖2dt ≤ C‖v0‖2, (2.51)

where C > 0 is a constant and for a fixed K > 0, function σ(t) is defined as :

σ(t) = λ1βνt+K

∫ t

0

α2(s)ds. (2.52)

Remark 4.3. In (2.52), the positive constant λ1 is the smallest eigenvalue of (2.21) and
thanks to (2.2-a), the constant βν = ν − C

Ω
supt≤T ‖∇ψ(t,x)‖ is a positive real number.

Further, the rate of decrease σ(t) > 0 depends on the control α.

Remark 4.4. With the condition βν > 0, the equilibrium state ψ in (2.1) is naturally
stable in the sense that the system (2.47) stabilizes by itself when α is identically zero.
This explains why the choice of the initial perturbation v0, in Theorem 4.2, is arbitrary.
However, as shown in Proposition 3.1, the control α is not identically zero as soon as the
initial perturbation v0 and the profile g satisfy (2.48)-(2.49) with v0 ·n �= 0. The theoretical
case v0 · n = 0 remains an open question.

Proof. We first proof the existence of a weak solution (v, α) and secondly, the existence
of the pressure.

4.3 Existence of weak solution

The proof of the existence follows a standard procedure. In a first step a sequence of
approximate solutions using a Galerkin method is built. A compactness result from [26]
allows us to pass to the limit in the system satisfied by the approximated solutions.

4.3.1 The Galerkin Method

Let m ∈ N∗, we define the space

Wm = span(w)⊕ span(zi){1≤i≤m}

and we express vm ∈ Wm as :

vm =
m∑
i=0

αimwi,

where w0 = w and wi = zi for i = 1, 2, 3 · · · ,m.
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Consider the following finite-dimensional problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a) 〈dtvm,wj〉+ νa(vm,wj) + b(vm,ψ,wj) + b(ψ,vm,wj) + b(vm,vm,wj)

= δ
0j
f(vm, α0m),

(b) 〈vm(0)− v0,wj〉 = 0, for j = 0, 1, 2, · · · ,m,

(2.53)

where δ
0j

is the Kronecker symbol and

f(vm, α0m) = Azm +Bsα0m + abα
2
0m

+ bbα0m − 2λν〈w, zm〉 −
(
λν‖w‖2 +K‖vm‖2

)
α0m , (2.54)

is the control law, with zm =
∑m

i=1 αimwi and Azm = b(w,ψ, zm) + b(zm,ψ,w).

Recall that α0m is a priori unknown and thanks to (2.54) it satisfies a nonlinear feed-
back law leading to search for α0m(vm). Because (2.54) is independent of x, α0m(vm) is a
function of t only. For the sake of simplicity, α0m(vm) is written α0m in the sequel.

Lemma 4.5. The discrete problem (2.53) has a unique solution vm ∈ W 1,∞(0, T ;Wm).
Moreover the solution satisfies :

‖vm‖L∞(0,T ;L2(Ω)) + ‖vm‖L2(0,T ;H1(Ω)) ≤ C, (2.55)

where C is a positive constant independent of m.

Proof. We rewrite (2.53) in terms of the unknown αim, i = 0, 1, 2 · · ·m, and we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=0

dα
im

dt
〈wi,wj〉+

m∑
i=0

α
im

(
ν a(wi,wj) + b(ψ,wi,wj) + b(wi,ψ,wj)

)
+

m∑
i,k=0

α
km
α

im
b(wi,wk,wj) = δ

0j
f(vm, α0m),

m∑
i=0

α
im
(0)〈wi,wj〉 = 〈v0,wj〉, for j = 0, 1, 2 · · · ,m.

(2.56)

Since the mass matrix with entries 〈wi,wj〉 (0 ≤ i, j ≤ m) is nonsingular, (2.56) reduces
to a nonlinear system with constant coefficients⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dα
im

dt
+

m∑
j=0

α
jm
Xij +

m∑
j,k=0

αkmαjmYijk =
m∑
j=0

δ
0j
f(vm, α0m)Zij,

αim(0) =
m∑
j=0

〈v0,wj〉Zij,

(2.57)

where Xij, Yijk, Zij,∈ R. Then, there exists Tm (0 < Tm ≤ T ) such that the nonlinear
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differential system (2.57) has a maximal solution defined on some interval [0, Tm]. In
order to show that Tm is independent of m, it is sufficient to verify the boundedness of
the L2-norm of vm independently of m.

Multiplying (2.53-b) by α
jm
(0), and summing for j = 0, 1, 2, · · · ,m, lead to∫

Ω

|vm(0)|2 =
∫
Ω

v0 · vm(0) ≤
1

2

∫
Ω

|v0|2 +
1

2

∫
Ω

|vm(0)|2,

and then

‖vm(0)‖2 ≤ ‖v0‖2. (2.58)

Following the same procedure as for the derivation of the a priori estimates (2.40)
and (2.46), and using (2.58) yields⎧⎪⎨⎪⎩

(a) ‖vm‖ ≤ ‖v0‖ e−σ(t),

(b)

∫ T

0

‖∇vm‖2dt ≤ C‖v0‖2.
(2.59)

If Tm < T , then ‖vm‖ should tend to +∞ as t → Tm because of the explosion criteria.
However, this does not happen since ‖vm‖ is bounded independently of m in (2.59-a), and
therefore Tm = T .

A consequence of the a priori estimates (2.59) is that (vm)m is bounded in
L2(0, T ;V(Ω)) and L∞(0, T ;H(Ω)). Therefore, for a subsequence of vm (still denoted by
vm), the estimates in (2.59) yield the following weak convergences as m tends to ∞ :⎧⎨⎩vm ⇀ v weakly in L2(0, T ;V(Ω)),

vm ⇀ v weakly* in L∞(0, T ;H(Ω)).
(2.60)

Nevertheless, the convergences in (2.60) are not sufficient to pass to the limit in the
weak formulation (2.53), because of the presence of the convection term. Consequently,
we need to obtain additional bounds in order to utilize the compactness theory on the
sequence of approximated solution vm.

4.3.2 Additional bounds

As in [26], let us assume that B0, B and B1 are three Hilbert spaces such that B0 ⊂
B ⊂ B1. If a function v is such that v : R → B1, we denote by v̂ its Fourier transform

v̂(τ) =

∫ +∞

−∞
e−2iπtτv(t)dt.
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Let us recall the following identity about the Fourier transform of differential operators :

D̂γ
t v(τ) = (2iπτ)γv̂(τ),

for a given γ > 0, and let us define the space

Hγ(R;B0, B1) = {u ∈ L2(R, B0), D
γ
t u ∈ L2(R, B1)}.

The space Hγ(R;B0, B1) is endowed with the norm

‖v‖Hγ(R;B0,B1)
= (‖v‖2L2(R;B0)

+ ‖|τ |γv̂‖2L2(R;B1)
)
1
2 .

We also define Hγ(0, T ;B0, B1), as the space of functions obtained by restriction to [0, T ]

of functions of Hγ(R;B0, B1). Further, we recall the following result [26] :

Lemma 4.6. Let B0, B and B1 be three Hilbert spaces such that B0 ⊂ B ⊂ B1 and B0 is
compactly embedded in B. Then for all γ > 0, the injection Hγ(0, T ;B0, B1) → L2(0, T ;B)

is compact.

For small enough ε, Lemma 4.6 is used later with

B0 = V(Ω), B = H(Ω), B1 = H(Ω), γ =
1

4
− ε.

The main result of the present section is obtained by using the following Lemma :

Lemma 4.7. The sequence vm is bounded in Hγ(0, T ;V(Ω),H(Ω)) for 0 ≤ γ ≤ 1
4
− ε.

Proof. We denote by v̄m the extension of vm by zero for t < 0 and t > T , and v̂m the
Fourier transform of v̄m with respect to time. Since v̄m has two discontinuities at 0 and
T , in the distributional sense, the derivative of v̄m is expressed as

d

dt
v̄m = ūm + vm(0)δ0 − vm(T )δT , (2.61)

where δ0, δT are Dirac distributions at 0 and T , respectively, and

ūm = v′
m which denotes the derivative of vm on [0, T ].

The Fourier transformation of (2.61) gives

2iπτ v̂m(τ) = ûm(τ) + vm(0)− vm(T )e
−2iπτT ,

where v̂m and ûm denote the Fourier transforms of v̄m and ūm respectively. Since vm is
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uniformly bounded in L2(0, T,V(Ω)), it remains to prove that∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖dτ ≤ C. (2.62)

For all (ṽ, α̃) ∈ Wm, we have that v̄m satisfies∫
Ω

∂v̄m

∂t
· ṽ dx+ ν

∫
Ω

∇v̄m : ∇ṽ dx+

∫
Ω

Gm · ṽ dx+

∫
Ω

G0
m · ṽ dx+

∫
Ω

G1
m · ṽ dx

= −
∫
Ω

v̄m(T ) · ṽδT dx+

∫
Ω

v̄m(0) · ṽδ0 dx+ α̃Hm, (2.63)

where Gm = (v̄m · ∇)v̄m, G0
m = (v̄m · ∇)ψ, G1

m = (ψ · ∇)v̄m and Hm = f(v̄m, ᾱ0m). We apply
the Fourier transform to (2.63) and take (v̂m, α̂0m) as a test function, which leads to

2iπτ

∫
Ω

|v̂m(τ)|2 dx+ ν

∫
Ω

∇v̂m(τ) : ∇v̂m(τ) dx+

∫
Ω

Ĝm(τ) · v̂m(τ) dx

+

∫
Ω

Ĝ0
m(τ) · v̂m(τ) dx+

∫
Ω

Ĝ1
m(τ) · v̂m(τ) dx =

∫
Ω

v̄m(0) · v̂m(τ) dx

−
∫
Ω

v̄m(T ) · v̂m(τ)e
−2iπτT dx+ α̂0mĤm. (2.64)

where Ĝm, Ĝ
0
m, Ĝ

1
m and Ĥm are respectively the Fourier transform with respect to time

of Gm, G
0
m, G

1
m and Hm. Taking the Fourier transform of (2.54) and multiplying it by α̂0m ,

yields

α̂0mĤm = α̂0mF̂m + bb(α̂0m)
2 − 2α̂0mλν〈w, ẑm〉 − λν‖w‖2(α̂0m)

2, (2.65)

where F̂m is the Fourier transform of Fm with respect to time, with

Fm = Az̄m +Bsᾱ0m + abᾱ
2
0m

−Kᾱ0m‖v̄m‖2. (2.66)

By rewriting the two last terms of (2.65), we obtain

α̂0mĤm = α̂0mF̂m + bb(α̂0m)
2 − λν

(
‖v̂m‖2 − ‖ẑm‖2

)
. (2.67)

Thanks to Lemma 2.2, we have |α̂0m(τ)| ≤ Cb‖v̂m(τ)‖, and substituting (2.67) in (2.64),
and taking the imaginary part of (2.64) leads to

|τ |‖v̂m(τ)‖2 ≤ C‖v̂m(τ)‖V(Ω)

(
‖Ĝm(τ)‖V′(Ω) + ‖Ĝ0

m(τ)‖V′(Ω) + ‖Ĝ1
m(τ)‖V′(Ω)

)
+ C ‖v̂m(τ)‖

(
|F̂m|+ ‖v̄m(T )‖+ ‖v̄m(0)‖

)
. (2.68)
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Note that in the sequel, C stands for different positive constants.

We now prove that each term lying in the right hand side of (2.68) is bounded.

Firstly, by using (2.14) and the definition of Gm, we have

|〈Gm,u〉| = |b(v̄m, v̄m,u)| ≤ C‖vm‖
1
2‖∇vm‖

1
2‖∇vm‖‖∇u‖, ∀u ∈ V(Ω),

and since vm = 0 on Γl which is a part of the domain boundary, due to the Poincaré
inequality, there exists a constant C such that ‖vm‖ ≤ C‖∇vm‖, hence

‖Gm‖V′(Ω) ≤ C‖vm‖2H1(Ω).

Secondly, by employing (2.14) and the definition of Gs
m, s = 0, 1, lead to

|〈G0
m,u〉| = |b(v̄m,ψ,u)| ≤ C‖vm‖

1
2‖∇vm‖

1
2‖∇ψ‖‖∇u‖, ∀u ∈ V(Ω), (2.69)

|〈G1
m,u〉| = |b(ψ, v̄m,u)| ≤ C‖ψ‖ 1

2‖∇ψ‖ 1
2‖∇vm‖‖∇u‖, ∀u ∈ V(Ω). (2.70)

Further, since ψ = 0 on Γl, we deduce from (2.69)-(2.70)

|〈Gs
m,u〉| ≤ C‖∇vm‖‖∇u‖, ∀u ∈ V(Ω), s = 0, 1,

and hence
‖Gs

m‖V′(Ω) ≤ C‖vm‖H1(Ω), s = 0, 1.

Consequently, thanks to the energy estimate (2.59) satisfied by vm, Gm and Gs
m remain

bounded in L1(R;V′(Ω)) and the functions Ĝm, Ĝ
s
m are bounded in L∞(R;V′(Ω)) i.e.

sup
τ∈R

(‖Ĝm(τ)‖V′(Ω) + ‖Ĝ0
m(τ)‖V′(Ω) + ‖Ĝ1

m(τ)‖V′(Ω)) ≤ C.

We now show that the last three terms in the right hand side of (2.68) are boun-
ded. Thanks to the energy estimate (2.59-a) satisfied by vm, we have ‖vm(T )‖ ≤ C and
‖vm(0)‖ ≤ C. Moreover, since ψ ∈ U

ad
, thanks to Lemma 2.2 and (2.59-a), we show that

each term of Fm defined in (2.66) is bounded in L1(R), hence Fm is bounded in L1(R).
Therefore, F̂m is bounded in L∞(R) i.e.

sup
τ∈R

|F̂m| ≤ C.

Inequality (2.68) finally reduces to

|τ |‖v̂m(τ)‖2 ≤ C(‖v̂m(τ)‖+ v̂m(τ)‖H1(Ω)) ≤ C‖v̂m(τ)‖H1(Ω),
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where C stands for different positive constants.

For 0 < γ < 1
4
, we now estimate the norm∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖2dτ. (2.71)

Note that, (see [26])

|τ |2γ ≤ c(γ)
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R.

Consequently, we deduce∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖2dτ ≤ c(γ)

∫ +∞

−∞

‖v̂m(τ)‖2
1 + |τ |1−2γ

dτ + c(γ)

∫ +∞

−∞

|τ |‖v̂m(τ)‖2
1 + |τ |1−2γ

dτ

≤ c3(γ)

∫ +∞

−∞

‖v̂m(τ)‖2H1(Ω)

1 + |τ |1−2γ
dτ + c4(γ)

∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ

≤ c3(γ)

∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ + c4(γ)

∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ. (2.72)

The last integral in the right hand side of (2.72) satisfies∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ ≤

(∫ +∞

−∞

1

(1 + |τ |1−2γ)2
dτ

) 1
2
(∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ

) 1
2

, (2.73)

and the first integral in the right hand side of (2.73) is convergent for any 0 < γ < 1
4
. On

the other hand, using the Parseval equality leads to∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ =

∫ T

0

‖vm(t)‖2H1(Ω)dt ≤ C.

Then, the sequence vm is bounded in Hγ(0, T ;V(Ω),H(Ω)), for 0 ≤ γ ≤ 1
4
− ε.

Finally, by applying Lemmas 4.6 and 4.7, there exists a subsequence of vm which
converges strongly in L2(0, T,H(Ω)).

4.3.3 Passage to the limit

The compactness result obtained in the previous section implies the following strong
convergence (at least for a subsequence of vm still denoted vm)

vm → v strongly in L2(0, T ;L2(Ω)).
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Using the above strong convergence result and (2.60) enable us to pass to the limit in
the weak formulation. Note that the weak formulation is obtained by multiplying (2.53)
by ϕ ∈ D(]0, T [), and using integration by parts with respect to time leads to

−
∫ T

0

∫
Ω

vm · ṽjϕ
′(t) dxdt+ ν

∫ T

0

∫
Ω

∇vm : ∇ṽjϕ(t) dxdt+

∫ T

0

∫
Ω

(vm · ∇vm) · ṽjϕ(t) dxdt

+

∫ T

0

∫
Ω

(vm · ∇ψ) · ṽjϕ(t) dxdt+

∫ T

0

∫
Ω

(ψ · ∇vm) · ṽjϕ(t) dxdt

−
∫
Ω

vm(0)ṽjϕ(0) dx =

∫ T

0

φ̃jf(vm, α0m)ϕ(t) dt, ∀ (ṽj, φ̃j) ∈ W (Q). (2.74)

Firstly, the integrals in the left hand side of (2.74) are examined. Using the weak esti-
mates (2.60) leads to∫ T

0

∫
Ω

vm · ṽjϕ
′(t) dxdt −−−−−→

m→+∞

∫ T

0

∫
Ω

v · ṽjϕ
′(t) dxdt,

∫ T

0

∫
Ω

∇vm : ∇ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

∇v : ∇ṽjϕ(t) dxdt,

∫ T

0

∫
Ω

(vm · ∇ψ) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(v · ∇ψ) · ṽjϕ(t) dxdt,

∫ T

0

∫
Ω

(ψ · ∇vm) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(ψ · ∇v) · ṽjϕ(t) dxdt,

for the linear terms. Further, since vm converges to v in L2(0, T ;V(Ω)) weakly, and in
L2(0, T ;L2(Ω)) strongly, we can pass to the limit in the nonlinear term to obtain∫ T

0

∫
Ω

(vm · ∇vm) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(v · ∇v) · ṽjϕ(t) dxdt. (2.75)

The first and last terms in the left hand side of (2.74) are treated in the same manner.

Secondly, the integral in the right hand side of (2.74) is examined. Using Lemma 2.2,
according to (2.59-a), we have α0m ∈ L∞(0, T ). Hence, for a subsequence of α0m (still
denoted by α0m) :

α0m ⇀ α weakly∗ in L∞(0, T ). (2.76)

Note that the convergence of vm in L2([0, T ]×Ω) implies its convergence in L1(0, T ;L2(Ω)),
i.e.

‖vm‖ −→ ‖v‖ in L1(0, T ). (2.77)
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Due to Lemma 2.2, we have

|α0p − α0q | ≤ Cb‖vp − vq‖, ∀(vp, α0p), (vq, α0q) ∈ Wm,

hence, α0m is then a Cauchy sequence in L1(0, T ) and

α0m −→ φ in L1(0, T ). (2.78)

Moreover, according to (2.76) and using [14, Proposition II.1.26], we have φ = α ∈
L∞(0, T ). Furthermore, since α0m is bounded in L∞(0, T ), by (2.78) and [14, Corollaire
II.1.24], we obtain α0m −→ α in Lp(0, T ) for all p ∈]1,+∞[.

Now we can pass to the limit in the following terms :∫ T

0

φ̃jα
2
0m
ϕ(t)dt −−−−−→

m→+∞

∫ T

0

φ̃jα
2ϕ(t)dt, (2.79)∫ T

0

φ̃jα0m‖vm‖2ϕ(t)dt −−−−−→
m→+∞

∫ T

0

φ̃jα‖v‖2ϕ(t)dt, (2.80)

and since Azm = b(w,ψ, zm) + b(zm,ψ,w) with zm = vm − α0mw, we have∫ T

0

φ̃j〈wl, zm〉ϕ(t)dt −−−−−→
m→+∞

∫ T

0

φ̃j〈w, z〉ϕ(t)dt, (2.81)∫ T

0

φ̃lAzmϕ(t)dt −−−−−→
m→+∞

∫ T

0

φ̃lAzϕ(t)dt, (2.82)

where Az = b(w,ψ, z) + b(z,ψ,w). Finally,∫ T

0

φ̃jf(vm, α0m)ϕ(t)dt −−−−−→
m→+∞

∫ T

0

φ̃jf(v, α)ϕ(t)dt,

where f(v, α) = Az +Bsα + abα
2 + bbα− 2λν〈w, z〉 −

(
λν‖w‖2 +K‖v‖2

)
α.

Consequently, passing to the limit in (2.74) leads to

−
∫ T

0

∫
Ω

v · ṽjϕ
′(t) dxdt+ ν

∫ T

0

∫
Ω

∇v : ∇ṽjϕ(t) dxdt+

∫ T

0

∫
Ω

(v · ∇v) · ṽjϕ(t) dxdt

+

∫ T

0

∫
Ω

(v · ∇ψ) · ṽjϕ(t) dxdt+

∫ T

0

∫
Ω

(ψ · ∇v) · ṽjϕ(t) dxdt−
∫
Ω

v0ṽjϕ(0) dx

=

∫ T

0

φ̃jδ0jf(v, α)(t)ϕ(t) dt, (2.83)

for all ṽj = φ̃jwj, j ∈ N. By linearity, equation (2.83) holds true for all ṽ combination of
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finite ṽj and by density, for any element of W (Q).

We now intend to prove the existence of the pressure.

4.4 Existence of the Pressure

First, we recall a result obtained in [33]

Lemma 4.8. Let f ∈ D′(]0, T [;H−1(Ω)) such that 〈f , ṽ〉H−1(Ω),H1
0(Ω) = 0 ∀ṽ ∈ V0(Ω). Then,

there exists q ∈ D′(]0, T [;L2(Ω)) such that f = ∇q.

Lemma 4.8 is employed to prove the following result

Lemma 4.9. There exists p ∈ D′(]0, T [;L2(Ω)) such that (v, p) satisfies (2.8-a) in the dis-
tribution sense.

Proof. By choosing ϕ ∈ D(0, T ) in (2.83), ∀(ṽ, α̃) ∈ W (Q), we obtain∫ T

0

∫
Ω

∂v

∂t
· ṽϕ(t) dxdt+ ν

∫ T

0

∫
Ω

∇v : ∇ṽϕ(t) dxdt+

∫ T

0

∫
Ω

(v · ∇v) · ṽϕ(t) dxdt

+

∫ T

0

∫
Ω

(v · ∇ψ) · ṽϕ(t) dxdt+

∫ T

0

∫
Ω

(ψ · ∇v) · ṽϕ(t) dxdt

=

∫ T

0

α̃f(v, α)ϕ(t)dt. (2.84)

Further, taking α̃ = 0 we have ṽ ∈ V0(Ω), and from (2.84) we deduce∫
Ω

∂v

∂t
· ṽ dx+ ν

∫
Ω

∇v : ∇ṽ dx+

∫
Ω

(v · ∇v) · ṽ dx+

∫
Ω

(v · ∇ψ) · ṽ dx

+

∫
Ω

(ψ · ∇v) · ṽ dx = 0, in D′(0, T ). (2.85)

Then, letting

f =
∂v

∂t
− νΔv + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v,

and using (2.85), we obtain f ∈ D′(]0, T [ ; H−1(Ω)) and 〈f , ṽ〉H−1(Ω),H1
0(Ω) = 0, ∀ṽ ∈ V0(Ω).

Finally, using Lemma 4.8, there exists p ∈ D′(]0, T [ ; L2(Ω)) such that f = −∇p.

We now intend to retrieve the stabilized problem (2.8).

First, we prove that (v, p) satisfies (2.8-f). Let us define the space

E(Ω) = {u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)},

and recall the following Lemma obtained in [33, Chap I, Theorem 1.2] :
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Lemma 4.10. Let Ω be an open bounded set of class C2. Then there exists a linear conti-
nuous operator γn ∈ L(E(Ω),H−1/2(Γ)) such that

γnu = the restriction of u · n to Γ, for every u ∈ D(Ω̄).

The following generalized Stokes formula is true for all u ∈ E(Ω) and w ∈ H1(Ω),

(u,∇w) + (∇ · u,w) = 〈γnu, γ0w〉, (2.86)

where γ0 ∈ L(H1(Ω),L2(Γ)) is the trace operator.

By writing (2.8-a) in the form

∂v

∂t
+∇ · (−ν∇v + Ip) + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v = 0 in Q,

and using Lemma 4.10, we obtain∫
Ω

∂v

∂t
· ṽ dx+

∫
Ω

(ν∇v − Ip) : ∇ṽ dx+ 〈(−ν∇v + Ip) · n, ṽ〉
H− 1

2 (Γ),H
1
2 (Γ)

+

∫
Ω

(v · ∇v) · ṽ dx+

∫
Ω

(v · ∇ψ) · ṽ dx+

∫
Ω

(ψ · ∇v) · ṽ dx = 0,

∀(ṽ, α̃) ∈ W (Q). Letting ṽ = α̃w ∈ W (Q) yields

pI : ∇ṽ = p∇ · ṽ = 0,

〈(−ν∇v + Ip) · n, ṽ〉
H− 1

2 (Γ),H
1
2 (Γ)

= −α̃

∫
Γb

[ν
∂v

∂n
− pn] · g dζ.

Consequently,∫
Ω

∂v

∂t
· ṽ dx+ ν

∫
Ω

∇v : ∇ṽ dx+

∫
Ω

(v · ∇v) · ṽ dx+

∫
Ω

(v · ∇ψ) · ṽ dx

+

∫
Ω

(ψ · ∇v) · ṽ dx = α̃

∫
Γb

[ν
∂v

∂n
− pn] · g dζ. (2.87)

By comparing (2.84) and (2.87), we retreive (2.8-f), namely∫
Γb

[ν
∂v

∂n
− pn] · g dζ = f(v, α).

Finally, it remains to verify that the initial condition (2.8-e) belongs to H(Ω). In this
purpose, we multiply (2.8-a) by ṽϕ, with ϕ(T ) = 0, and integrate with respect to time
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and space

−
∫ T

0

∫
Ω

v · ṽϕ′(t) dxdt+ ν

∫ T

0

∫
Ω

∇v : ∇ṽϕ(t) dxdt+

∫ T

0

∫
Ω

(v · ∇v) · ṽϕ(t) dxdt

+

∫ T

0

∫
Ω

(v · ∇ψ) · ṽϕ(t) dxdt+

∫ T

0

∫
Ω

(ψ · ∇v) · ṽϕ(t) dxdt−
∫
Ω

v(0)ṽϕ(0) dx

=

∫ T

0

α̃f(v, α)(t)ϕ(t)dt. (2.88)

By comparing (2.83) and (2.88), we obtain
∫
Ω
(v(0) − v0) · ṽϕ(0) dx = 0, and choosing ϕ

such that ϕ(0) = 1, yields∫
Ω

(v(0)− v0) · ṽ dx = 0 ∀(ṽ, α̃) ∈ W (Q).

Hence, as in chapter 1, v(0) = v0 in E(Q) which is defined in (1.75).

5 Concluding remarks
In this paper, the exponential stabilization of the two and three-dimensional Navier-

Stokes equations in a bounded domain is studied around a given non-stationary state
flow, using a boundary feedback control. In order to determine a feedback law, an ex-
tended system coupling the Navier-Stokes equations with an equation satisfied by the
control on the domain boundary is considered. We first assume that on Σb (a part of
the domain boundary), the trace of the fluid velocity is proportional to a given velocity
profile g. The proportionality coefficient α measures the velocity flux at the interface. It
is an unknown of the problem and is written in feedback form. By using the Galerkin
method, α is determined such that the Dirichlet boundary control vb = αg is satisfied on
Σb, and the stabilizing boundary control is built. We show that the nonlinear feedback
control provides global exponential stabilization of the non-stationary state belonging in
the set admissible target velocities. This feedback control was shown to guarantee global
stability in the L2-norm.
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Chapitre 3

Feedback stabilization of the
Navier-Stokes system with mixed
boundary conditions

Abstract

This paper presents a boundary feedback control for the two and three-dimensional Navier-
Stokes equations in a bounded domain Ω with mixed boundary conditions around a given steady-
state flow. In order to determine a feedback control law, we consider an extended system coupling
the equations governing the perturbation with an equation satisfied by the control on the domain
boundary. By using the Faedo-Galerkin method and a priori estimation techniques, a stabilizing
boundary control is built. This control law ensures a decrease of the energy of the controlled
nonlinear discrete system. A compactness result then allows us to pass to the limit in the system
satisfied by the approximated solutions.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

1 Introduction

Let Ω be a bounded and connected domain in Rd, d = 2, 3, with a boundary Γ of class
C2, and made up of three connected components Γl, Γe and Γs with Γ = Γl ∪ Γe ∪ Γs. Such
a boundary decomposition is schematized in Figure 3.1. In particular, the boundary Γe is
the part of Γ, where a Dirichlet boundary control in feedback form has to be determined.
The usual function spaces L2(Ω), H1(Ω), H1

0 (Ω) are used and we let L2(Ω) = (L2(Ω))d,
H1(Ω) = (H1(Ω))d, H1

0(Ω) = (H1
0 (Ω))

d. Negative ordered Sobolev spaces H−1(Ω) are defi-
ned as the dual space, i.e., H−1(Ω) = {H1

0(Ω)}′. We denote by 〈· | ·〉 and ‖ · ‖ = ‖ · ‖L2(Ω),
the scalar product and norm in L2(Ω), respectively. Further, if u ∈ L2(Ω) is such that
∇ · u ∈ L2(Ω), we denote the normal trace of u in H− 1

2 (Γ) by u · n, where n denotes the
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unit outer normal vector to Γ.

Γs

Ω

Γl

Γe

FIGURE 3.1 – Description of the domain Ω and of the three connected components Γe, Γl

and Γs.

In order to define the stabilization problem, we consider a velocity-pressure pair
(vs, qs) solution to the stationary Navier-Stokes equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−νΔvs + (vs · ∇)vs +∇qs = fs in Ω,

∇ · vs = 0 in Ω,

vs = 0 on Γl,

vs = ψe on Γe,

ν∇vs · n− qsn = ψs on Γs,

(3.1)

where ν > 0 is the viscosity coefficient, fs represents the body forces acting on the fluid,
ψe is the Dirichlet boundary condition on Γe and ψs is the Neumann boundary condition
on Γs. Further, we assume that couple (vs, qs) belongs to H1(Ω) × L2

0(Ω), where L2
0(Ω)

define the pressure space with zero mean value :

L2
0(Ω) =

{
p ∈ L2(Ω),

∫
Ω

p(x) dx = 0

}
.

Let us first define the set admissible target velocities Uad. The solution vs of (3.1) is said
to be in the set admissible target velocities Uad if

‖∇vs‖ <
ν

Mp

, (3.2)

where Mp is a positive constant defined later in (3.37).

For T > 0 fixed, we take Q = [0, T ) × Ω, Σl = [0, T ) × Γl, Σe = [0, T ) × Γe and Σs =

[0, T )×Γs, and we consider the velocity-pressure pair (u, q) solution to the non stationary
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Navier-Stokes equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇q = fs in Q,

∇ · u = 0 in Q,

u(t,x) = 0 on Σl,

u(t,x) = ue(t,x) +ψe(x) on Σe,

ν∇u(t,x) · n− q(t,x)n = us(t,x) +ψs(x) on Σs,

u(t = 0,x) = vs(x) + v0(x) in Ω,

(3.3)

where us is a given Neumann boundary condition on Σs which is defined later, ue is the
control input which is built later and v0(x) is the initial perturbation and the initial
condition of v in (3.4), it belongs to an appropriate functional space which will be defined
later.

Problems of type (3.3) have already been investigated in the literature. For example,
in [14, 15, 24], energy estimates in velocity-pressure are established and a proof of exis-
tence of solutions is obtained, where the Neumann boundary condition on Σs is cho-
sen appropriately. In [14, 15] the Neumann condition is derived from a weak formula-
tion, while in [24], it is treated by pseudo-differential methods. However, the studies
in [14, 15, 24] are only concerned with the existence of velocity-pressure solutions and
not with a stabilization problem by means of a boundary feedback control, which is the
subject of the present paper.

By substituting u = v+ vs and q = p+ qs in (3.3), the resulting system is obtained for
the velocity-pressure pair (v, p)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 in Q,

∇ · v = 0 in Q,

v = 0 on Σl,

v(t,x) = ue(t,x) on Σe,

ν∇v · n− pn = us(t,x) on Σs,

v(t = 0,x) = v0(x) in Ω,

(3.4)

where us is a given Neumann boundary condition on Σs defined later.

Our goal is the following : for a prescribed rate of decrease σ > 0, we need to find a
feedback control ue on Σe such that the velocity v in (3.4) satisfies the exponential decay

‖v(t)‖ ≤ ‖v0‖e−σ(t), t ∈ (0,∞). (3.5)
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Note that σ(t) is usually written as σ0t in previous studies, where σ0 is positive constant.
The control ue(t) is called a feedback if there exists a mapping M : X(Ω) → U(Γe) such
that

ue(t) = M(v(t)), t ∈ (0,∞), (3.6)

where the spaces X(Ω) and U(Γe) are defined in the sequel.

The theoretical setting of the stabilization procedure, for the non stationary incom-
pressible Navier-Stokes equations using a feedback control, has been studied by a num-
ber of authors, e.g. A.V. Fursikov [17, 18], V. Barbu et al. [6, 10, 11, 12, 13], J.-P. Raymond
et al. [28, 29, 30] and M. Badra et al. [2, 4, 5]. In these papers, the authors consider the
Dirichlet condition only and system (3.4) is written in the form

y′(t) = Ay(t) + Bu(t) + κF (y(t),u(t)), y(t = 0) = y0. (3.7)

where y(t) is the new state variable, u(t) the new control variable, A is a linear operator
which is the infinitesimal generator of an analytic semigroup, B is a linear operator,
F is a nonlinear mapping and κ = 0 or 1. Further, the linear feedback law M is first
determined by solving a linear control problem for the linearized system of equations,
i.e. κ = 0 in (3.7), and then this linear feedback is used in order to stabilize the original
non linear system i.e. κ = 1 in (3.7).

By employing the extension operator, A.V. Fursikov [17, 18] addressed the stabiliza-
tion of the 2D and 3D Navier-Stokes equations. In [4, 5, 9, 10, 11, 29, 30], the feedback
control laws are determined by solving a Riccati equation in a space of infinite dimension.
In such a case, an optimal control problem has to be solved, involving the minimization
of an objective functional. In practice, the control is calculated through approximation
via the solution of an algebraic Riccati equation, which may be computationally expen-
sive. The use of finite-dimensional controllers may be more appropriate to stabilize the
Navier-Stokes equations. Such an approach is performed in [12], in the case of an inter-
nal control, and in [2, 9, 10, 11, 28], in the case of a boundary control. In [2, 12, 28], the
authors search for a boundary control ue of finite dimension of the form

ue =
N∑
j=1

uj(t)ψj(x), t ≥ 0, x ∈ Γ,

where (ψj)j=1,2,3,...,N is a finite-dimensional basis obtained from the eigenfunctions of
some operator and u = (u1, u2, u3, . . . , uN) is a control function expressed with a feed-
back formulation. In [28] and [2], where d = 2, and d = 3, respectively, the feedback
control is obtained from the solution of a finite-dimensional Riccati equation while a
stochastic-based stabilization technique is employed in [8], in the case of an internal
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control, which avoids the difficult computation problems related to infinite-dimensional
Riccati equations. The procedure employed in [6] for a boundary control ressembles the
form of stabilizing noise controllers designed in [8].

A linear feedback law is first determined by solving a linear control problem in all
the papers cited above, and this linear feedback is then used in order to stabilize the
original non linear system. Such a procedure leads to choose the initial velocity small
enough and it usually requires to search for the control ue and the initial condition in
sufficiently regular spaces. This is why another approach is proposed in [26], where an
extended system is considered with an additional equation satisfied by the control on
the domain boundary, and the boundary feedback control is constructed via a Galerkin
method. In [26], the system is not written in the form (3.7) and the control law is not
determined by solving a linear problem. Accordingly, the authors obtain a stability result
for an arbitrary initial data in an appropriate space and for prescribed rate of decrease
σ > 0, which depends on the viscosity ν.

In this paper, the approach of [26], using an extended system is followed, but ins-
tead of considering Dirichlet boundary conditions on the whole domain boundary, mixed
Dirichlet-Neumann boundary conditions are employed instead. The Dirichlet and Neu-
mann conditions are imposed on Γl ∪ Γe and Γs, respectively. However, as in [26], the
control is imposed only on a part of the Dirichlet boundary, namely Γe. Such a mixed
Dirichlet-Neumann feedback stabilization problem is new, to our knowledge, and the
problem seems to have been considered only numerically in [1, 3].

The boundary control ue in (3.4) is rewritten on the form ue = α(t)g(x) on Σe, where α

is a priori unknown, g ∈ H1/2(Γ) is assumed to verify g = 0 on Γl ∪ Γs, g · n �= 0 on Γe and∫
Γe
g · n = 0. In order to stabilize (3.4), with ue = α(t)g(x) on Σe, by employing energy a

priori estimation technics, the quantity α(t) is found to satisfy the relation∫
Γe

[ν
∂v

∂n
− pn] · g dζ = F(v, α). (3.8)

where F is a polynomial in α of degree 2 to be defined later. The quantity α(t) de-
pends nonlinearly on v in (3.8), and hence α(t) satisfies a nonlinear feedback law of
the form (3.6), and the mapping M is nonlinear. System (3.4) is then extended by ad-
ding (3.8), and the extended system, namely (3.4) and (3.8), with ue = α(t)g(x) on Σe, is
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the stabilization problem considered in this paper, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 in Q,

(b) ∇ · v = 0 in Q,

(c) v = 0 on Σl,

(d) v = α(t)g(x) on Σe,

(e) ν∇v · n− pn = us(t,x) on Σs,

(f)

∫
Γe

[ν∇v · n− pn] · g dζ = F(v, α),

(g) v(t = 0,x) = v0(x) in Ω,

(3.9)

In order to determined α(t), leading to the determination of the boundary control ue,
system (3.9) is solved via a Galerkin procedure which consists on building a sequence of
approximated solutions using an adequate Galerkin basis.

The paper is organized as follows. In section 2, the notations and mathematical pre-
liminaries are given. In section 3, thanks to technics developed in [23] (which are not
related specifically to a stabilization problem), the existence of at least one weak solu-
tion of the stabilization problem (3.9) is established by applying the Galerkin method.

2 Notation and Preliminaries

2.1 Function Spaces

Several spaces of free divergence functions are now introduced :

V(Ω) = {u ∈ D(Ω), ∇ · u = 0}, (3.10)

V0(Ω) = the closure of V(Ω) in H1
0(Ω), (3.11)

V(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0, u = 0 on Γl

}
, (3.12)

Z(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0, u = 0 on Γl ∪ Γe

}
, (3.13)

H(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u = 0 on Γl

}
. (3.14)

Remark 2.1. Since V(Ω) and Z(Ω) are closed subspaces of H1(Ω), we have by definition,

‖ · ‖V(Ω) = ‖ · ‖Z(Ω) = ‖ · ‖H1(Ω).

Remark 2.2. Since Z(Ω) is a closed subspace of H1(Ω), it follows that Z(Ω) is a separable
Hilbert space and thus Z(Ω) admits a countable orthonormal basis (zn)n∈N which will be
used in the sequel.
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Definition 2.3. Let V 1
2 (Γe) be the space of functions whose extension by zero over Γ belong

to H
1
2 (Γ). Further, we define

W (Q) = {(v, α) ∈ V(Ω)× R, s.t. v = αg on Γe}, (3.15)

where g satisfies

g ∈ V
1
2 (Γe), (3.16)

g · n �= 0 on Γe, (3.17)∫
Γe

g · n dζ = 0. (3.18)

Remark 2.4. The solution of (3.9) is searched in W (Q), defined in (3.15).

The following lemma [23], is used in the sequel.

Lemma 2.5. There exists a constant Ce > 0 such that, for all (v, α) ∈ W (Q), with g

satisfying (3.52) and (3.17), we have

|α| ≤ Ce‖v‖. (3.19)

Remark 2.6. For all (v, α) ∈ W (Q), inequality (3.19) of Lemma 2.5 holds with (v̂, α̂),
where v̂ and α̂ denote the Fourier transforms of v and α, respectively.

2.2 Linear Forms

In order to define a weak form of the stabilization problem, we introduce the conti-
nuous bilinear form

a(v1,v2) =

∫
Ω

∇v1 : ∇v2 dx, ∀vj ∈ H1(Ω), j = 1, 2,

and trilinear form

b(v1,v2,v3) =

∫
Ω

(v1 · ∇)v2 · v3 dx, ∀vj ∈ H1(Ω), j = 1, 2.

Thanks to Hölder inequality, the functional b satisfies

|b(v1,v2,v3)| ≤ ‖v1‖L3(Ω) ‖∇v2‖ ‖v3‖L6(Ω), ∀vj ∈ H1(Ω), j = 1, 2, 3.

Further, using the generalized Sobolev’s inequality, leads to

‖v1‖L3(Ω) ≤ C1‖v1‖
1
2‖∇v1‖

1
2 and ‖v3‖L6(Ω) ≤ C2‖∇v3‖, for d = 2, 3,
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where Ci, i = 1, 2 is a positive constant, and for Cs = C1C2, we have

|b(v1,v2,v3)| ≤ Cs‖v1‖
1
2‖∇v1‖

1
2‖∇v2‖‖∇v3‖. (3.20)

3 Control building
In the first step a hilbertian basis for space W (Q) defined in (3.15) is built.

3.1 A Galerkin basis for space W (Q)

We assume that the boundary Γe is composed of two connected components such that
Γe = Γ0 ∪ Γ1. Let g0 such that g0 ∈ V

1
2 (Γ0) and

∫
Γ0
g0 · n �= 0, we consider this problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) −Δw +∇q = 0, ∇ ·w = 0 in Ω,

(b) w = 0 on Γl ∪ Γs,

(c) w = βg0 on Γ0,

(d) w = g1 on Γ1,

(3.21)

where g1 is such that g1 ∈ V
1
2 (Γ1) with g1 ·n �= 0 on Γ1 and β = −

∫
Γ1
g1 · n dζ∫

Γ0
g0 · n dζ

. Further, let

g =

⎧⎨⎩βg0 on Γ0,

g1 on Γ1,
(3.22)

and hence, by construction, g satisfies (3.52)-(3.18). Since w = g on Γe = Γ0 ∪ Γ1, sys-
tem (3.21) admits a unique solution (w, q) belonging to H1(Ω) × L2

0(Ω) (see [14, Propo-
sition III.4.1]). Moreover, for all z ∈ Z(Ω) defined in (3.13) and for all α ∈ R, we have
v = z+αw ∈ W (Ω), where w satisfies (3.21). Indeed, we have z,w ∈ V(Ω) and since z = 0

on Γe, we obtain v = αg on Γe. Due to Remark 2.2, Z(Ω) admits a countable orthonormal
basis (zn)n∈N, the sequence w, z1, z2, z3, · · · , is then linearly independent. Consequently,
we search for the solution v of (3.9) in

W (Q) = span(w)⊕ span(zn){n∈N∗}, (3.23)

and v can be expressed as : v = αw + z, with z =
∑∞

i=1 θizi.
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3.2 The control building

Multiplying (3.9-a) by v = αw+z ∈ W (Q) and integrating by parts over Ω, using (3.9-
e) and (3.9-f) leads to

1

2

d

dt
‖v‖2 + ν‖∇v‖2 + b(v,v,v) + b(vs,v,v) + b(v,vs,v)

=

∫
Γs

us · z dζ + αF(v, α). (3.24)

We now define the function us and build the control law F(v, α) by rewriting the terms
in the left hand side of (3.24) :

‖v‖2 = α2‖w‖2 + 2α〈w, z〉+ ‖z‖2, (3.25)

‖∇v‖2 = α2‖∇w‖2 + 2α〈∇w,∇z〉+ ‖∇z‖2. (3.26)

Integrating by parts the following trilinear forms, yields

b(vs,v,v) =
1

2

∫
Γs

|z2|vs · n dζ +
α2

2

∫
Γe

|g|2 vs · n dζ, (3.27)

b(v,v,v) =
1

2

∫
Γs

|z2| z · n dζ +
α3

2

∫
Γe

|g|2 g · n dζ. (3.28)

In order to define the Neumann boundary condition us, we recall that for all x ∈ R, we
have

x = x+ − x−, (3.29)

where x+ = max(x, 0) and x− = −min(x, 0). From (3.29), we have

vs · n = (vs · n)+ − (vs · n)− , (3.30)

z · n = (z · n)+ − (z · n)− , (3.31)

and we define the function us on Γs by taking (see [14, Page 247])

us = −1

2
z (vs · n)− − 1

2
z (z · n)−. (3.32)

By substituting (3.27)-(3.28) and (3.32) in (3.24) and by using (3.30)-(3.31), we obtain

1

2

d

dt
‖v‖2 + ν‖∇v‖2 + 1

2

∫
Γs

|z2|(vs · n)+dζ +
1

2

∫
Γs

|z2|(z · n)+dζ

+ b(v,vs,v) + aeα
3 + beα

2 = αF(v, α), (3.33)
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where

ae =
1

2

∫
Γe

|g|2(g · n) dζ, be =
1

2

∫
Γe

|g|2(vs · n) dζ.

We now define the control law F as

F(v, α) = aeα
2 + beα− λν

(
α‖w‖2 + 2〈w, z〉

)
+ 2 βν〈∇w,∇z〉 −Kα‖v‖2, (3.34)

where the positive constants λν and βν will be defined later. Note that in (3.34), the terms
α‖w‖2 + 2〈w, z〉 and 〈∇w,∇z〉 are derived from (3.25) and (3.26), respectively ; while the
term −Kα‖v‖2 is introduced in order to limit the size of the control, for an appropriate
choice of K > 0.

4 Stability Result
We first establish the a priori estimates for the extended stabilization system (3.9).

4.1 A priori estimates

Multiplying (3.34) by α, substituting in (3.33) and using (3.25) leads to

1

2

d

dt
‖v‖2 + ν‖∇v‖2 + 1

2

∫
Γs

|z2|(vs · n)+ +
1

2

∫
Γs

|z2|(z · n)+

+ b(v,vs,v) = −λν

(
‖v‖2 − ‖z‖2

)
+ 2αβν〈∇w,∇z〉 −K‖v‖2α2. (3.35)

We obtain from (3.20) |b(v,vs,v)| ≤ Cs‖v‖
1
2‖∇v‖ 1

2‖∇vs‖‖∇v‖, and since v = 0 on Γl which
is a part of the domain boundary, from the Poincaré inequality, there exists a constant
Cp such that ‖v‖ ≤ Cp‖∇v‖, and hence

|b(v,vs,v)| ≤ Mp‖∇vs‖‖∇v‖2, (3.36)

where

Mp = C
1
2
p Cs. (3.37)

By taking βν = ν − Mp‖∇vs‖ which is assumed positive, using (3.36) in (3.35) and due
to (3.26), we have

1

2

d

dt
‖v‖2 + βνα

2‖∇w‖2 + βν‖∇z‖2 + 1

2

∫
Γs

|z2|(vs · n)+ +
1

2

∫
Γs

|z2|(z · n)+

≤ −λν

(
‖v‖2 − ‖z‖2

)
−K‖v‖2α2. (3.38)
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Moreover, since z = 0 on Γl ∪ Γe, we obtain ‖z‖ ≤ Cp‖∇z‖ and taking λν = βν

C2
p

in (3.38)
yields

1

2

d

dt
‖v‖2 + βνα

2‖∇w‖2 + 1

2

∫
Γs

|z2|(vs · n)+ +
1

2

∫
Γs

|z2|(z · n)+

≤ −
(
λν +Kα2

)
‖v‖2,

and hence

d

dt
‖v‖2 + 2

(
λν +Kα2

)
‖v‖2 ≤ 0. (3.39)

Multiplying (3.39) by e2σ(t), where

σ(t) = λνt+K

∫ t

0

α2(s)ds, (3.40)

leads to

d

dt

(
‖v‖2e2σ(t)

)
≤ 0. (3.41)

By integrating (3.41) from 0 to t we obtain the first a priori estimate

‖v‖ ≤ ‖v(0)‖e−σ(t). (3.42)

Further, from (3.38) we deduce

1

2

d

dt
‖v‖2 + βνα

2‖∇w‖2 + βν‖∇z‖2 ≤ λν‖z‖2. (3.43)

Let us estimate the term in the right hand side of (3.43). Since

‖z‖2 = ‖v − αw‖2 ≤ 2‖v‖2 + 2α2‖w‖2,

using Lemma 2.5, we obtain

λν‖z‖2 ≤ M1‖v‖2, (3.44)

where M1 = 2λν

(
1 + C2

e‖w‖2
)
. Further, employing (3.44) in (3.43) leads to

1

2

d

dt
‖v‖2 + βν

(
α2‖∇w‖2 + ‖∇z‖2

)
≤ M1‖v‖2. (3.45)
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Integrating (3.45) from 0 to t, yields

‖v‖2 + 2βν

∫ t

0

(
α2‖∇w‖2 + ‖∇z‖2

)
ds ≤ ‖v(0)‖2 + 2M1

∫ t

0

‖v‖2ds, (3.46)

obtaining e−σ(t) ≤ e−λνt from (3.40), and integrating (3.42) from 0 to t, leads to

2βν

∫ t

0

(
α2‖∇w‖2 + ‖∇z‖2

)
ds ≤

(
1 +

M1

λν

− M1

λν

e−2λνt

)
‖v(0)‖2,

≤
(
1 +

M1

λν

)
‖v(0)‖2 =

(
3 + 2C2

e‖w‖2
)
‖v(0)‖2

and hence, we obtain the second a priori estimate∫ t

0

(
α2‖∇w‖2 + ‖∇z‖2

)
ds ≤

(
3 + 2C2

e‖w‖2
2βν

)
‖v(0)‖2. (3.47)

Consequently, ∫ t

0

‖∇v‖2ds =

∫ t

0

(
α2‖∇w‖2 + ‖∇z‖2 + 2α〈∇w,∇z〉

)
ds

≤ 2

∫ t

0

(
α2‖∇w‖2 + ‖∇z‖2

)
ds.

Therefore, we obtain the last a priori estimate∫ t

0

‖∇v‖2ds ≤
(
3 + 2C2

e‖w‖2
βν

)
‖v(0)‖2. (3.48)

4.2 The variational formulation

In this section the variational formulation of the coupled system is obtained. By inte-
grating by parts in space the stabilization problem (3.9), a weak formulation is obtained
which leads to the following definition :

Definition 4.1. Let T > 0 an arbitrary number and v0 ∈ H(Ω), under assumptions (3.32)
and (3.34), we shall say that (v, α) is a weak solution of (3.9) on [0, T ) if

(i) v ∈ [L∞(0, T ;H(Ω)) ∩ L2(0, T ;V(Ω))],

(ii) α ∈ L∞(0, T ) such that v(t,x) = α(t)g(x) on Γe,
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(iii) ∀ṽ = z̃+ α̃w ∈ W (Q), the following variational formulation is satisfied⎧⎪⎪⎨⎪⎪⎩
(a) 〈dtv, ṽ〉+ νa(v, ṽ) + b(v,vs, ṽ) + b(vs,v, ṽ) + b(v,v, ṽ) =

∫
Γs

us · z̃+ α̃F(v, α),

(b)

(∫
Ω

v · ṽ dx

)
(t = 0) =

∫
Ω

v0 · ṽ dx.
(3.49)

Note that the initial condition (3.49-b) makes sense because for any solution v of (3.49-a),
function t −→

∫
Ω
v(t) · ṽ dx is continuous (see [14] Corollaire II.4.2).

The main achievement of this paper, is the following boundary stabilization result.

Theorem 4.2. Assume that the steady-state vs solution of (3.1) satisfies

βν = ν −Mp‖∇vs‖ > 0, (3.50)

where Mp is defined in (3.37). Assume that the initial condition v0 and the profile g satisfy

v0 ∈ H(Ω), (v0 · n)n ∈ H1/2(Γe), (3.51)

g ∈ V1/2(Γe) and α0 g · n = v0 · n on Γe with g · n �= 0, α0 ∈ R. (3.52)

For arbitrary initial data v0 satisfying (3.51), there exists a solution (v, α) in the sense
of definition 4.1, and a distribution p on Q such that (3.9) holds. Moreover, there exists a
positive constant σ such that v satisfies

‖v‖ ≤ ‖v0‖ exp
(
−σt−K

∫ t

0

α2(s)ds

)
, (3.53)

where K > 0 is a prescribed constant. Furthermore∫ T

0

‖∇v‖2 ≤ Cν‖v0‖2, (3.54)

where the constant Cν depends on ν.

Remark 4.3. With the condition (3.50), the equilibrium state vs in (3.1) is naturally
stable in the sense that the system (3.49) stabilizes by itself when α ≡ 0 and z ≡ 0 on Γs.
This explains why the choice of the initial perturbation v0, in Theorem 4.2, is arbitrary.
However, when z ≡ 0 on Γs, as shown in Proposition 3.1, the control α is not identically
zero as soon as the initial perturbation v0 and the profile g satisfy (2.48)-(2.49) with
v0 · n �= 0. The theoretical case v0 · n = 0 remains an open question.

The proof of Theorem 4.2 is given at the end of this section, after Lemmas 4.4, 4.6 and
4.8 are established. In a first step a sequence of approximate solutions using a Galerkin
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method is built. A compactness result obtained in [25] then allows us to pass to the limit
in the system satisfied by the approximated solutions.

4.3 The Galerkin Method

For all m ∈ N, the space Wm is defined as :

Wm = span({w0,w1, · · · ,wm}),

where w0 = w and wi = zi, i = 1, 2, 3, · · · ,m. Then for (vm, φ0m) ∈ Wm, we write vm in the

form vm =
m∑
i=0

φ
im
wi and we define the following finite-dimensional problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(a) 〈dtvm,wj〉+ νa(vm,wj) + b(vm,vs,wj) + b(vs,vm,wj) + b(vm,vm,wj)

= δ0jF(vm, φ0m)−
1

2

∫
Γs

(zm ·wj)(vs · n)− − 1

2

∫
Γs

(zm ·wj)(zm · n)−,

(b) 〈vm(0)− v0,wj〉 = 0, for j = 0, 1, 2, · · · ,m.

(3.55)

where zm =
∑m

i=1 φim
wi, δ0j is the Kronecker symbol and

F(vm, φ0m) = aeφ
2
0m + beφ0m − λν

(
φ0m‖w‖2 + 2〈w, zm〉

)
+ 2 βν〈∇w,∇zm〉 −Kφ0m‖vm‖2. (3.56)

Lemma 4.4. The discrete problem (3.55) has a unique solution vm ∈ C1(0, Tm;Wm).
Moreover the solution satisfies :

‖vm‖L∞(0,T ;L2(Ω)) + ‖vm‖L2(0,T ;H1(Ω)) ≤ C, (3.57)

where C is a positive constant independent of m.

Proof. Classical results of nonlinear ODEs lead to the existence of the greatest Tm in
(0, T ) such that the discrete problem (3.55) has a unique solution vm ∈ C1(0, Tm;Wm).
Indeed, the resulting mass matrix defined as Mij = 〈wi,wj〉 (0 ≤ i, j ≤ m) is nonsingular.
In order to show that Tm is independent of m, it is sufficient to verify the boundedness of
the L2-norm of vm independently of m.

Multiplying (3.55-b) by φjm(0), and summing for j = 0, 1, 2, · · · ,m, leads to∫
Ω

|vm(0)|2 =
∫
Ω

v0 · vm(0) ≤
1

2

∫
Ω

|v0|2 +
1

2

∫
Ω

|vm(0)|2,
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and then

‖vm(0)‖2 ≤ ‖v0‖2. (3.58)

Following the same procedure as for the derivation of the a priori estimates (3.42)
and (3.48), and using (3.58) yields⎧⎪⎨⎪⎩

(a) ‖vm‖ ≤ ‖v0‖ e−σ(t),

(b)

∫ T

0

‖∇vm‖2dt ≤ C‖v0‖2.
(3.59)

If Tm < T , then ‖vm‖ should tend to +∞ as t → Tm because of the explosion criteria.
However, this does not happen since ‖vm‖ is bounded independently of m in (3.59-a), and
therefore Tm = T .

A consequence of the inequality (3.57) is that (vm)m,m = 0, 1, 2, · · · , is bounded in
L2(0, T ;V(Ω)) and L∞(0, T ;H(Ω)). Therefore, for a subsequence of vm (still denoted by
vm), inequality (3.57) yields the following weak convergences as m tends to ∞ :{

vm ⇀ v weakly in L2(0, T ;V(Ω)),

vm ⇀ v weakly* in L∞(0, T ;H(Ω)).
(3.60)

Nervertheless, the convergences in (3.60) are not sufficient to pass to the limit in the
weak formulation (3.55), because of the presence of the convection term. Consequently,
we need to obtain additional bounds in order to utilize the compactness theory on the
sequence of approximated solution (vm)m,m = 0, 1, 2, · · · .

4.4 Additional bounds

Let us assume that B0, B and B1 are three Hilbert spaces such that B0 ⊂ B ⊂ B1. If
v : R → B1 is a function, we denote by v̂ its Fourier transform

v̂(τ) =

∫ +∞

−∞
e−2iπtτv(t)dt.

Recall the following identity about the Fourier transform of differential operators

D̂γ
t v(τ) = (2iπτ)γv̂(τ),

for a given γ > 0, and let us define the space

Hγ(R;B0, B1) = {u ∈ L2(R, B0), D
γ
t u ∈ L2(R, B1)}.
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The space Hγ(R;B0, B1) is endowed with the norm

‖v‖Hγ(R;B0,B1) = (‖v‖2L2(R;B0)
+ ‖|τ |γv̂‖2L2(R;B1)

)
1
2 .

We also define Hγ(0, T ;B0, B1), as the space of functions obtained by restriction to [0, T ]

of functions of Hγ(R;B0, B1). Further, we recall the following result [25] :

Lemma 4.5. Let B0, B and B1 be three Hilbert spaces such that B0 ⊂ B ⊂ B1 and B0 is
compactly embedded in B. Then for all γ > 0, the injection Hγ(0, T ;B0, B1) → L2(0, T ;B)

is compact.

Lemma 4.5 is used later with : B0 = V(Ω), B = H(Ω), B1 = H(Ω) and 0 < γ < 1
4
.

The main result of Section 4.4 is furnished by the following lemma :

Lemma 4.6. For 0 < γ < 1
4
, the sequence vm is bounded in Hγ(0, T ;V(Ω),H(Ω)).

Proof. Since we already know that vm is uniformly bounded in L2(0, T,V(Ω)) from (3.57),
it remains to prove that ∫ +∞

−∞
|τ |2γ‖v̂m‖2 ≤ C. (3.61)

We denote by vm the extension of vm by zero for t < 0 and t > T , and v̂m the Fourier
transform of vm with respect to time. Classical results show that since vm has two dis-
continuities at 0 and T , in the distributional sense, the derivative of vm is given by

d

dt
vm = um + vm(0)δ0 − vm(T )δT , (3.62)

where δ0, δT are Dirac distributions at 0 and T , and

um = v′
m = the derivative of vm on [0, T ].

By taking the Fourier transform of (3.62) we obtain

2iπτ v̂m(τ) = ûm(τ) + vm(0)− vm(T )e
−2iπτT ,

where v̂m and ûm denote the Fourier transforms of vm and um respectively.

The finite-dimensional problem (3.55) is now considered for all time independent test
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function ṽ = z̃+ α̃w0 ∈ Wm, and vm is replaced by vm. This leads to∫
Ω

∂vm

∂t
· ṽ + ν

∫
Ω

∇vm : ∇ṽ +

∫
Ω

Gm · ṽ +

∫
Ω

Gs
m · ṽ +

∫
Γs

Zm · ṽ +

∫
Ω

(vs · ∇)vm · ṽ

= −1

2

∫
Γs

(zm · z̃)(vs · n)− + α̃Hm +

∫
Ω

vm(0) · ṽδ0 −
∫
Ω

vm(T ) · ṽδT , (3.63)

where Hm = F(vm, φ0m) is defined to be the extension of F(vm, φ0m) by zero for t < 0 and

t > T , and Gm = (vm · ∇)vm, Gs
m = (vm · ∇)vs and Zm =

1

2
zm(zm · n)−. Taking the Fourier

transform of (3.63) yields

2iπτ

∫
Ω

v̂m(τ) · ṽ + ν

∫
Ω

∇v̂m(τ) : ∇ṽ +

∫
Ω

Ĝm(τ) · ṽ +

∫
Ω

Ĝs
m(τ) · ṽ

+

∫
Γs

Ẑm(τ) · ṽ +

∫
Ω

(vs · ∇)v̂m · ṽ = −1

2

∫
Γs

(ẑm · z̃)(vs · n)− + α̃Ĥm

+

∫
Ω

vm(0) · ṽ −
∫
Ω

vm(T ) · ṽe−2iπτT , (3.64)

where Ĝm, Ĝs
m, Ẑm and Ĥm are the Fourier transforms (with respect to time) of

Gm, G
s
m, Zm and Hm, respectively.

We now take (ṽ, α̃) = (v̂m, φ̂0m) ∈ Wm in (3.64), and we obtain

2iπτ

∫
Ω

|v̂m(τ)|2 + ν

∫
Ω

∇v̂m(τ) : ∇v̂m(τ) +

∫
Ω

Ĝm(τ) · v̂m(τ) +

∫
Ω

Ĝs
m(τ) · v̂m(τ)

+

∫
Γs

Ẑm(τ) · v̂m +

∫
Ω

(vs · ∇)v̂m · v̂m(τ) = −1

2

∫
Γs

|ẑm|2(vs · n)−

+ φ̂0mĤm +

∫
Ω

vm(0) · v̂m(τ)−
∫
Ω

vm(T ) · v̂m(τ)e
−2iπτT . (3.65)

According to (3.56), we have

φ̂0mĤm = φ̂0mŶm + be(φ̂0m)
2 − λνφ̂0m

(
φ̂0m‖w‖2 + 2〈w, ẑm〉

)
(3.66)

where Ŷm is the Fourier transform of

Ym = aeφ
2

0m + 2 βν〈∇w,∇zm〉 −Kφ0m‖vm‖2, (3.67)

and rewritting the last term of (3.66) leads to

φ̂0mĤm = φ̂0mŶm + be(φ̂0m)
2 − λν

(
‖v̂m(τ)‖2 − ‖ẑm(τ)‖2

)
. (3.68)
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Due to (3.27), we obtain∫
Ω

(vs∇)v̂m · v̂m(τ) = be(φ̂0m)
2 +

1

2

∫
Γs

|ẑm|2(vs · n) dζ. (3.69)

and using (3.68)-(3.69) in (3.65) yields

2iπτ

∫
Ω

|v̂m(τ)|2 + ν

∫
Ω

∇v̂m(τ) : ∇v̂m(τ) +

∫
Ω

Ĝm(τ) · v̂m(τ) +

∫
Ω

Ĝs
m(τ) · v̂m(τ)

+

∫
Γs

Ẑm(τ) · v̂m +
1

2

∫
Γs

|ẑm|2(vs · n)+ = φ̂0mŶm − λν

(
‖v̂m(τ)‖2 − ‖ẑm(τ)‖2

)
+

∫
Ω

vm(0) · v̂m(τ)−
∫
Ω

vm(T ) · v̂m(τ)e
−2iπτT . (3.70)

Thanks to Remark 2.6 of Lemma 2.5, we have

|φ̂0m(τ)| ≤ Ce‖v̂m(τ)‖ (3.71)

and due to the trace theorem, there exists a positive constant C such that
‖u‖L2(Γ) ≤ C‖u‖H1(Ω), ∀u ∈ H1(Ω) and hence

‖v̂m(τ)‖L2(Γs) ≤ C‖v̂m(τ)‖H1(Ω). (3.72)

Thus, taking the imaginary part of (3.70) and using (3.71)-(3.72) and Remark 2.1, leads to

|τ |‖v̂m(τ)‖2 ≤ C‖v̂m(τ)‖V(Ω)

(
‖Ĝm(τ)‖V′(Ω) + ‖Ĝs

m(τ)‖V′(Ω) + ‖Ẑm(τ)‖L2(Γs)

)
+ C ‖v̂m(τ)‖

(
|Ŷm(τ)|+ ‖vm(0)‖+ ‖vm(T )‖

)
. (3.73)

Note that in the sequel, C stands for different positive constants. We now prove that
each term lying in the right hand side of (3.73) is bounded.

First, we have

‖Gm‖V′(Ω) ≤ c1‖vm‖2H1(Ω) and ‖Gs
m‖V′(Ω) ≤ C‖vm‖H1(Ω),

and thanks to the energy estimates (3.59) satisfied by vm, the quantities Gm and Gs
m

remain bounded in L1(R;V′(Ω)), and sequences Ĝm, Ĝ
s
m are bounded in L∞(R;V′(Ω)) i.e.

sup
τ∈R

(‖Ĝm(τ)‖V′(Ω) + ‖Ĝs
m(τ)‖V′(Ω)) ≤ C.

Thanks to Hölder inequality and the trace theorem in [14, P 249, Théorème V.2.2], we
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have

2‖Zm‖L2(Γs) = ‖zm(zm · n)−‖L2(Γs) ≤ ‖zm‖L4(Γs)‖zm‖L4(Γs) ≤ C‖zm‖2H1(Ω). (3.74)

Following the same procedure as for the derivation of the a priori estimates (3.47), and
using (3.58) we have zm ∈ L2(0, T ;H1(Ω)). Further, by using (3.74) we show that Zm is
bounded in L1(R;L2(Γs)) and hence Ẑm is bounded in L∞(R;L2(Γs)).

We now show that Ym is bounded in L1(R). From (3.67), thanks to Hölder inequality
and Lemma 2.5, we have

|Ym| ≤ aeφ
2
0m + 2 βν‖∇w‖H1(Ω)‖∇zm‖H1(Ω) +KCe‖vm‖3

and since zm ∈ L2(0, T ;H1(Ω)), according to (3.59) we show that Ym ∈ L1(R) and hence
Ŷm is bounded in L∞(R) with

sup
τ∈R

|Ŷm(τ)| ≤ C.

Finally, it remains to show that the two last terms in the right hand side of (3.73) are
bounded. Thanks to the energy estimates (3.59), we have ‖vm(T )‖ ≤ C and ‖vm(0)‖ ≤ C.
Inequation (3.73) then reduces to

|τ |‖v̂m(τ)‖2 ≤ C(‖v̂m(τ)‖H1(Ω) + ‖v̂m(τ)‖). (3.75)

Therefore, we obtain the following inequality

|τ |‖v̂m(τ)‖2 ≤ C‖v̂m(τ)‖H1(Ω), (3.76)

where C stands for different positive constants.

From [31, Chapter 3, Section 3.2, page 194] we have

|τ |2γ ≤ c(γ)
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R, with 0 < γ < 1/4,

and consequently, we deduce∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖2 ≤ c(γ)

∫ +∞

−∞

‖v̂m(τ)‖2
1 + |τ |1−2γ

+ c(γ)

∫ +∞

−∞

|τ |‖v̂m(τ)‖2
1 + |τ |1−2γ

. (3.77)

For the first integral in the right hand side of (3.77) the Poincaré inequality is used, and
thanks to (3.76) the second integral in the right hand side of (3.77) is rewritten. This
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leads to∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖2 ≤ c3(γ)

∫ +∞

−∞

‖v̂m(τ)‖2H1(Ω)

1 + |τ |1−2γ
+ c4(γ)

∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ

≤ c3(γ)

∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω) + c4(γ)

∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
. (3.78)

The second integral in the right hand side of (3.78) satisfies∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
≤
(∫ +∞

−∞

1

(1 + |τ |1−2γ)2

) 1
2
(∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)

) 1
2

, (3.79)

and the first integral in the right hand side of (3.79) is convergent for any 0 < γ < 1
4
. On

the other hand, using the Parseval equality leads to∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ =

∫ T

0

‖vm(t)‖2H1(Ω)dt ≤ C,

which implies that the sequence vm is bounded in Hγ(0, T ;V(Ω),H(Ω)).

Finally, by applying Lemmas 4.5 and 4.6, we conclude that there exists a subsequence
of (vm)m∈N which converges strongly in L2(0, T,H(Ω)).

4.5 Passage to the limit

The compactness result obtained in the previous section implies the following strong
convergence (at least for a subsequence of vm still denoted by vm)

vm −→ v strongly in L2(0, T ;L2(Ω)).

Such a convergence result together with (3.60) enables us to pass to the limit in the
following weak formulation, obtained from (3.55) after multiplication by ϕ ∈ D([0, T ))

and integration by parts with respect to time, i.e.

−
∫ T

0

∫
Ω

vm · ṽjϕ
′(t) + ν

∫ T

0

∫
Ω

∇vm : ∇ṽjϕ(t) +

∫ T

0

∫
Ω

(vm · ∇vm) · ṽjϕ(t)

+

∫ T

0

∫
Ω

(vm · ∇vs) · ṽjϕ(t) +

∫ T

0

∫
Ω

(vs · ∇vm) · ṽjϕ(t)− ϕ(0)

∫
Ω

vm(0) · ṽj

= − 1

2

∫ T

0

∫
Γs

(zm · ṽj)(vs · n)−ϕ(t)−
1

2

∫ T

0

∫
Γs

(zm · ṽj)(zm · n)−ϕ(t)

+

∫ T

0

α̃jδ0jF(vm, φ0m)ϕ(t), ∀ ṽj = α̃jwj. (3.80)
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As a first step the integrals in the left hand side of (3.80) are examined.

The weak convergences (3.60) yield∫ T

0

∫
Ω

vm · ṽjϕ
′(t) −−−−−→

m→+∞

∫ T

0

∫
Ω

v · ṽjϕ
′(t),∫ T

0

∫
Ω

∇vm : ∇ṽjϕ(t) −−−−−→
m→+∞

∫ T

0

∫
Ω

∇v : ∇ṽjϕ(t),∫ T

0

∫
Ω

(vm · ∇vs) · ṽjϕ(t) −−−−−→
m→+∞

∫ T

0

∫
Ω

(v · ∇vs) · ṽjϕ(t),∫ T

0

∫
Ω

(vs · ∇vm) · ṽjϕ(t) −−−−−→
m→+∞

∫ T

0

∫
Ω

(vs · ∇v) · ṽjϕ(t)

for the linear terms in the left hand side of (3.80). Further, by using (3.55-b), we have∫
Ω

vm(0)ṽj =

∫
Ω

v0ṽj.

Since vm converges to v weakly in L2(0, T ;V(Ω)), and strongly in L2(0, T ;L2(Ω)), we can
pass to the limit in the nonlinear term to obtain∫ T

0

∫
Ω

(vm · ∇vm) · ṽjϕ(t) −−−−−→
m→+∞

∫ T

0

∫
Ω

(v · ∇v) · ṽjϕ(t).

As a second step the boundary terms in the right hand side of (3.80) are examined. Since
zm ∈ L2(0, T ;H1(Ω)), thanks to [14, Proposition V.2.5], we obtain

zm → z strongly in L2(0, T ;L2(Γ))

zm (zm · n)− + zm (vs · n)− ⇀ z (z · n)− + z (vs · n)− weakly in L
4
3 (0, T ;L

4
3 (Γ)).

Consequently,∫ T

0

∫
Γs

(zm · ṽj)(vs · n)−ϕ(t) −−−−−→
m→+∞

∫ T

0

∫
Γs

(z · ṽj)(vs · n)−ϕ(t),∫ T

0

∫
Γs

(zm · ṽj)(zm · n)−ϕ(t) −−−−−→
m→+∞

∫ T

0

∫
Γs

(z · ṽj)(z · n)−ϕ(t).

As a last step, thanks to (3.56), we prove the convergence of the last integral lying in the
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right hand side of (3.80), which reads∫ T

0

α̃jF(vm, φ0m
)ϕ(t) = ae

∫ T

0

φ2
0mα̃jϕ(t) + be

∫ T

0

φ0mα̃jϕ(t)

− λν

∫ T

0

(
φ0m‖w‖2 + 2〈w, zm〉

)
α̃jϕ(t) + 2 βν

∫ T

0

〈∇w,∇zm〉α̃jϕ(t)

− K

∫ T

0

φ0m‖vm‖2α̃jϕ(t). (3.81)

By using Lemma 2.5 and according to (3.59-a), φ0m ∈ L∞(0, T ), and hence, for a subse-
quence of φ

0m
(still denoted by φ

0m
)

φ0m ⇀ α weakly∗ in L∞(0, T ).

Let us notice that the convergence of vm in L2([0, T ] × Ω) implies the convergence of vm

in L1(0, T ;L2(Ω)), and hence

‖vm‖ −→ ‖v‖ strongly in L1(0, T ). (3.82)

Further, due to Lemma 2.5, we obtain

|φ0p − φ0q| ≤ Ce‖vp − vq‖, ∀(vp, φ0p), (vq, φ0q) ∈ Wm.

Consequently, φ0m is a Cauchy sequence in L1(0, T ) and it converges to a limit φ0 in
L1(0, T ) i.e.

φ0m −→ φ0 strongly in L1(0, T ). (3.83)

Therefore, we conclude that φ0 = α ∈ L∞(0, T ) due to [14, Proposition II.1.26]. By
using (3.57), the quantities ‖vm‖ and φ0m are bounded in L∞(0, T ) and in addition,
from (3.82) and (3.83) we obtain for all p ∈]1,+∞[

‖vm‖ −→ ‖v‖ strongly in Lp(0, T ),

φ0m −→ α strongly in Lp(0, T ).

This is due to a result obtained in [14, Corollaire II.1.24] which states that if a se-
quence of functions converges strongly in L1(0, T ) and weakly star in L∞(0, T ), then
∀p ∈]1,∞[ the sequence converges strongly in Lp(0, T ).

Finally, it now remains to pass to the limit in each term in the right hand side
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of (3.81). This leads to∫ T

0

α̃jF(vm, φ0m)ϕ(t) −−−−−→
m→+∞

∫ T

0

α̃jF(v, α)ϕ(t),

where

F(v, α) = aeα
2 + beα− λν

(
α‖w‖2 + 2〈w, z〉

)
+ 2 βν 〈∇w,∇z〉 −Kα‖v‖2.

As a final step, passing to the limit in (3.80) yields

−
∫ T

0

∫
Ω

v · ṽjϕ
′(t) + ν

∫ T

0

∫
Ω

∇v : ∇ṽjϕ(t) +

∫ T

0

∫
Ω

(v · ∇v) · ṽjϕ(t)

+

∫ T

0

∫
Ω

(v · ∇vs) · ṽjϕ(t) +

∫ T

0

∫
Ω

(vs · ∇v) · ṽjϕ(t)−
∫
Ω

v0ṽjϕ(0)

= − 1

2

∫ T

0

∫
Γs

(z · ṽj)(vs · n)−ϕ(t)−
1

2

∫ T

0

∫
Γs

(z · ṽj)(z · n)−ϕ(t)

+

∫ T

0

α̃jδ0jF(v, α)ϕ(t), (3.84)

for all ṽj = α̃jwj, j = 0, 1, 2, · · · ,m. By linearity, equation (3.84) holds true for all ṽ

combination of finite ṽj and by density, for any element of W (Q).

In the remaining part of this paper, our purpose is first to retrieve the weak formula-
tion (3.49) and secondly (in Section 4.6) to obtain the original system (3.9) including the
initial condition.

By choosing ϕ ∈ D(]0, T [) in (3.84) and by integrating by parts (in time) the first term
in the left hand side of (3.84), we obtain∫ T

0

∫
Ω

∂v

∂t
· ṽϕ(t) + ν

∫ T

0

∫
Ω

∇v : ∇ṽϕ(t) +

∫ T

0

∫
Ω

(v · ∇v) · ṽϕ(t) +
∫ T

0

∫
Ω

(v · ∇vs) · ṽϕ(t)

+

∫ T

0

∫
Ω

(vs · ∇v) · ṽϕ(t) = − 1

2

∫ T

0

∫
Γs

(z · z̃)(vs · n)−ϕ(t)−
1

2

∫ T

0

∫
Γs

(z · z̃)(z · n)−ϕ(t)

+

∫ T

0

α̃F(v, α)ϕ(t), (3.85)

for all ṽ = z̃ + α̃w ∈ W (Q) with z̃ ∈ Z(Ω) and α̃ ∈ R. Consequently, we obtain in the
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distribution sense on ]0, T [∫
Ω

∂v

∂t
· ṽ + ν

∫
Ω

∇v : ∇ṽ +

∫
Ω

(v · ∇v) · ṽ +

∫
Ω

(v · ∇vs) · ṽ +

∫
Ω

(vs · ∇v) · ṽ

= −1

2

∫
Γs

(z · z̃)(vs · n)− − 1

2

∫
Γs

(z · z̃)(z · n)− + α̃F(v, α) in D′(0, T ) (3.86)

for all ṽ = z̃+ α̃w and (3.49) is satisfied.

It now remains to retrieve the stabilized problem (3.9). Note that (3.9-b)-(3.9-d) are
in W (Q), and hence the three conditions are not examined in the following.

4.6 Retrieving the stabilized problem

First, we recall a result obtained in [31].

Lemma 4.7. Let f ∈ D′(]0, T [; Ω) such that 〈f , ṽ〉D′(Ω),D(Ω) = 0 for all ṽ ∈ V(Ω). Then there
exists q ∈ D′(]0, T [;L2(Ω)) such that f = ∇q.

Lemma (4.7) is employed to prove the following result.

Lemma 4.8. There exists p ∈ D′(]0, T [;L2(Ω)) such that (v, p) satisfies (3.9-a) in the dis-
tribution sense.

Proof. For α̃ = 0 and z̃ ∈ V(Ω), we have ṽ ∈ V(Ω). The particular choice ṽ ∈ V(Ω) in (3.85)
leads to ∫

Ω

∂v

∂t
· ṽ + ν

∫
Ω

∇v : ∇ṽ +

∫
Ω

(v · ∇v) · ṽ +

∫
Ω

(v · ∇vs) · ṽ

+

∫
Ω

(vs · ∇v) · ṽ = 0, in D′(0, T ). (3.87)

By letting

f =
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v,

and using (3.87), we obtain f ∈ D′(]0, T [; Ω) and 〈f , ṽ〉D′(Ω),D(Ω) = 0 for all ṽ ∈ V(Ω). Finally,
using Lemma 4.7, there exists p ∈ D′(]0, T [ ; L2(Ω)) such that f = −∇p.

We now prove that (v, p) satisfies (3.9-e) and (3.9-g). Let us first define the space

E(Ω) = {u ∈ L2(Ω) : div u ∈ L2(Ω)},

and recall the following Lemma obtained in [31, Chap I, Theorem 1.2].
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Lemma 4.9. Let Ω be an open bounded set of class C2. Then there exists a linear
continuous operator γn ∈ L(E(Ω), H−1/2(Γ)) such that γnu is the restriction of u ·
n to Γ, for every u ∈ D(Ω). The following generalized Stokes formula is true for all
u ∈ E(Ω) and w ∈ H1(Ω),

(u,∇w) + (div u,w) = 〈γnu, γ0w〉, (3.88)

where γ0 ∈ L(H1(Ω),L2(Γ)) is the trace operator.

By writing (3.9-a) in the form

∂v

∂t
+ div(−ν∇v + Ip) + (v · ∇)vs + (vs · ∇)v + (v · ∇)v = 0 in QT ,

and using Lemma 4.9, for all (ṽ, α̃) ∈ W (Q), we obtain∫
Ω

∂v

∂t
· ṽ +

∫
Ω

(ν∇v − Ip) : ∇ṽ + 〈(−ν∇v + Ip) · n, ṽ〉
H− 1

2 (Γ),H
1
2 (Γ)

+

∫
Ω

(v · ∇v) · ṽ +

∫
Ω

(v · ∇vs) · ṽ +

∫
Ω

(vs · ∇v) · ṽ = 0.

Since (ṽ, α̃) ∈ W (Q), we have pI : ∇ṽ = p∇ · ṽ = 0 and

〈(−ν∇v + Ip) · n, ṽ〉
H− 1

2 (Γ),H
1
2 (Γ)

= −α̃

∫
Γe

[ν
∂v

∂n
− pn] · g −

∫
Γs

[ν
∂v

∂n
− pn] · ṽ.

Consequently,∫
Ω

∂v

∂t
· ṽ + ν

∫
Ω

∇v : ∇ṽ +

∫
Ω

(v · ∇v) · ṽ +

∫
Ω

(v · ∇vs) · ṽ +

∫
Ω

(vs · ∇v) · ṽ

= α̃

∫
Γe

[ν
∂v

∂n
− pn] · g +

∫
Γs

[ν
∂v

∂n
− pn] · ṽ. (3.89)

Particularly, for α̃ = 0, namely for any test function ṽ satisfying ṽ = 0 on Γl ∪Γe, we have∫
Ω

∂v

∂t
· ṽ + ν

∫
Ω

∇v : ∇ṽ +

∫
Ω

(v · ∇v) · ṽ +

∫
Ω

(v · ∇vs) · ṽ +

∫
Ω

(vs · ∇v) · ṽ

=

∫
Γs

[ν
∂v

∂n
− pn] · ṽ. (3.90)

By comparing (3.86) with α̃ = 0 and (3.90), we deduce∫
Γs

[ν
∂v

∂n
− pn] · ṽ = −1

2

∫
Γs

(z · ṽ)(vs · n)− − 1

2

∫
Γs

(z · ṽ)(z · n)−, ∀ṽ ∈ Z(Ω), (3.91)
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and hence

ν
∂v

∂n
− pn = −1

2
z
(
(vs · n)− + (z · n)−

)
on Σs. (3.92)

Finally, by inserting (3.92) into (3.89) and comparing with (3.86), we obtain∫
Γe

[ν
∂v

∂n
− pn] · g = F(v, α). (3.93)

According to (3.92) and (3.93), we retrieve (3.9-e) and (3.9-g), respectively.

In order to verify that the initial condition belongs to H(Ω), we multiply (3.9-a) by ṽϕ

with ϕ(T ) = 0 and integrate with respect to time and space

−
∫ T

0

∫
Ω

v · ṽϕ′(t) + ν

∫ T

0

∫
Ω

∇v : ∇ṽϕ(t) +

∫ T

0

∫
Ω

(v · ∇v) · ṽϕ(t)

+

∫ T

0

∫
Ω

(v · ∇vs) · ṽϕ(t) +
∫ T

0

∫
Ω

(vs · ∇v) · ṽϕ(t)−
∫
Ω

v(0)ṽϕ(0)

= − 1

2

∫ T

0

∫
Γs

(z · ṽ)(vs · n)−ϕ(t)−
1

2

∫ T

0

∫
Γs

(z · ṽ)(z · n)−ϕ(t)

+

∫ T

0

α̃F(v, α)ϕ(t). (3.94)

By comparing (3.84) and (3.94), we obtain
∫
Ω

(v(0)− v0) · ṽϕ(0) = 0, and choosing ϕ such

that ϕ(0) = 1, leads to ∫
Ω

(v(0)− v0) · ṽ = 0, ∀(ṽ, α̃) ∈ W (Q).

Hence, as in chapter 1, v(0) = v0 in E(Q) which is defined in (1.75).

5 Concluding remarks
In this work the exponential stabilization of the two dimensional Navier-Stokes equa-

tions in a bounded domain with mixed boundary conditions is studied around a given
steady-state flow, using a boundary feedback control. In order to determine a feedback
law, an extended system coupling the non stationary system (3.4), with equation (3.8)
satisfied by the control on the domain boundary is considered.

Neumann and Dirichlet boundary conditions are imposed and the velocity boundary
control ub = αg is satisfied on the Dirichlet part. The velocity profile g satisfies (3.52)
and (3.17) and the proportionality coefficient α, an unknown of the problem, measures
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the velocity flux magnitude at the interface. Note that the size of the initial velocity
v0(x) is arbitrary and does not need to be bounded. A Galerkin method is employed, and
α is determined such that the boundary control ub is satisfied on a part of the Dirichlet
boundary, and the stabilizing boundary control is built. The resulting feedback control
is proven to be globally exponentially stabilizing the steady states of the Navier-Stokes
equations. This feedback control is shown to guarantee global stability in the L2-norm.
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Chapitre 4

Numerical feedback stabilization of
the Navier-Stokes equations using
the characteristic-Galerkin method

Abstract

In this work we study the numerical feedback stabilization of the two and three-dimensional
Navier-Stokes equations in a bounded domain Ω, around a given steady-state flow, by means of a
boundary control. In order to determine a feedback law, we consider an extended system coupling
the Navier-Stokes equations with an equation satisfied by the control on the domain boundary.
While most traditional approaches apply a feedback controller via an algebraic Bernouilli equa-
tion (ABE) or a model reduction, a characteristic-Galerkin method is proposed instead in this
study. The characteristic-Galerkin method permits to construct a stabilizing boundary control by
solving a polynomial equation of degree one or two. Further, by using energy a priori estimation
techniques, the exponential decay is obtained. The numerical relevance of this approach is illus-
trated by stabilizing the two-dimensional flow problem, around a circular obstacle.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

1 Introduction

Let Ω be a bounded and connected domain in Rd, d = 2, 3, with a boundary Γ of class
C2, and composed of three connected components Γb, Γl and Γs such that Γ = Γb ∪ Γl ∪ Γs.
In particular, the boundary Γb is the part of Γ, where a Dirichlet boundary control in
feedback form has to be determined. The usual function spaces L2(Ω), Hs(Ω), Hs

0(Ω)(s >

0) are used and we let L2(Ω) = (L2(Ω))d, Hs(Ω) = (Hs(Ω))d and Hs
0(Ω) = (Hs

0(Ω))
d. The

same conventions are used for spaces of traces L2(Γ) and Hs(Γ). Finally, we denote by
〈· | ·〉 and ‖ · ‖ = ‖ · ‖L2(Ω), the scalar product and norm in L2(Ω), respectively.
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Consider a stationary motion of an incompressible fluid described by the velocity and
pressure couple (vs, qs) solution to the stationary Navier-Stokes equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−νΔvs + (vs.∇)vs +∇qs = fs in Ω,

∇ · vs = 0 in Ω,

vs = 0 on Γl,

vs = vb on Γb,

ν∇vs · n− qsn = 0 on Γs,

(4.1)

where n is the unit outer normal vector to Γ, fs represents body forces acting on the fluid
and vb denotes a specified boundary velocity. Further, Re =

U0L0

ν
is the Reynolds number,

with ν, L0 and U0 being the kinematic viscosity, characteristic length and characteristic
velocity, respectively.

For T > 0 a fixed real number, we let Q = [0, T ) × Ω, Σb = [0, T ) × Γb, Σl = [0, T ) × Γl

and Σs = [0, T ) × Γs. Further, ψ(t,x) and q(t,x) denote the velocity and pressure fields,
respectively. The initial boundary value problem associated with the non-stationary in-
compressible Navier-Stokes system is then given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ

∂t
− νΔψ + (ψ · ∇)ψ +∇q = fs in Q,

∇ ·ψ = 0 in Q,

ψ = 0 on Σl,

ψ = ub + vb on Σb,

ν∇ψ · n− qn = 0 on Σs,

ψ(0,x) = vs + v0 in Ω.

(4.2)

The function ub is the control input and the function v0 can be viewed as a perturbation
of the initial state. By substituting (ψ, q) = (vs + v, qs + p) in (4.2), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v

∂t
− νΔv + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 in Q,

(b) ∇ · v = 0 in Q,

(c) v = 0 on Σl,

(d) v = ub, on Σb,

(e) ν∇v · n− pn = 0 on Σs,

(f) v(0,x) = v0(x) in Ω.

(4.3)

The goal of this study is to determine a control law M on R × Γb in the form of a state
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feedback law ub = M(v) such that

‖v(t)‖ ≤ C‖v0‖e−μt, ∀t > 0, (4.4)

with a prescribed rate of decrease μ > 0.

The theoretical setting of the stabilization procedure, for the non-stationary incom-
pressible Navier-Stokes equations using a feedback control, has been studied by a num-
ber of authors, e.g. A.V. Fursikov [19, 20], V. Barbu et al. [5, 9, 10, 11, 12], J.-P. Raymond
et al. [33, 34, 35] and M. Badra et al. [2, 3, 4]. In these papers, the linear feedback law M
on R×Γb is first determined by solving a linear control problem for the linearized system
of equations (for example the Oseen system) and then this linear feedback is used in
order to stabilize the original non linear system. However, the development of fast com-
putational algorithms for feedback control design of fluid dynamic systems is hindered
by a few intrinsic difficulties. Indeed, in [3, 4, 8, 9, 10, 31, 34, 35], the feedback control
laws are determined by solving a Riccati equation in a space of infinite dimension. In
such a case, an optimal control problem has to be solved, involving the minimization of
an objective functional. In practice, the control is calculated through an approximation
via the solution of an algebraic Riccati equation (ARE), which may be computationally
expensive. The use of finite-dimensional controllers may be more appropriate to stabilize
the Navier-Stokes equations. Such an approach is performed in [2, 5, 8, 9, 33] without
numerical experiments, and in [1, 32] with a few numerical illustrations.

In [32], the author consider the optimal boundary feedback stabilization of fluid flows
governed by the Navier-Stokes equations using model reduction. The model reduction is
carried out using a combination of proper orthogonal decomposition (POD) and Galerkin
projection. The resulting reduced-order model is employed in the optimal linear quadra-
tic regulator (LQR) design to derive a feedback control. The feedback control is then used
in the nonlinear Navier-Stokes equations to stabilize the system. However, the problem
of rigorously proving that the finite-dimensional reduced-order controllers proposed in
[32] is able to stabilize the infinite dimensional model is not addressed in [32] and this
is still an outstanding problem.

In [1], the authors obtain the feedback operator M from the solution of the algebraic
Bernoulli equation (ABE) associated with the penalized linearized Navier-Stokes equa-
tions around an unstable stationary solution. The operator M is then used to locally
stabilize the original nonlinear equations. As mentioned in [1], if k is the rank of M, the
ABE is particularly relevant when k is small, compared with the size of the problem.
This is the case for the Navier-Stokes equations at low Reynolds regimes Re ≤ 200, that
are considered in [1].

A linear feedback law is first determined by solving a linear control problem in all
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the papers cited above, and this linear feedback is then used in order to stabilize the
original non linear system. Such a procedure leads to choose the initial velocity small
enough and it usually requires to search for the control ub and the initial condition in
sufficiently regular spaces. This is why another approach is proposed in [29], where an
extended system is considered with an additional equation satisfied by the control on
the domain boundary, and the boundary feedback control is constructed via a Galerkin
method. The boundary control ub in (4.3) is rewritten on the form

ub = α(t)g(x) on Σb, (4.5)

where g ∈ H
1
2 (Γ) is assumed to verify g · n �= 0 on Γb and

∫
Γb
g · n = 0. The quantity α(t)

is a priori unknown. In order to stabilize the Navier-Stokes system, with ub = α(t)g(x)

on Σb, by employing energy a priori estimation techniques, the quantity α(t) is found to
satisfy the relation ∫

Γb

[ν
∂v

∂n
− pn] · g = F(v, α), (4.6)

where F is a second order polynomial with to respect to α. The quantity α(t) depends
nonlinearly on v in (4.6), and hence α(t) satisfies a nonlinear feedback law. However in
practice, because (4.5) and (4.6) are defined at the same boundary Γb, the numerical me-
thods for discretizing (4.5) and (4.6) cannot be easily implemented. The goal of this study
is to develop a practical computational algorithm easy to implement. In this respect, the
characteristic-Galerkin method is employed to search for (v, p), solution of (4.3). Let us
denote by (vn, pn) the approximations of the velocity and pressure (v, p) at time tn, and αn

the approximation of the control α at time tn. After the time discretization is performed,
a linear system is obtained and (vn, pn) is decomposed as{

vn = w̃n + αnw

pn = q̃n + αnq,
(4.7)

where
(i) (w, q) does not depend on time and w satisfies w = 0 on Γl and w = g on Γb.

(ii) (w̃n, q̃n) depends on time but does not depend on αn and w̃n satisfies w̃n = 0 on
Γb ∪ Γl.

(iii) The control αn is searched such that αn = M(vn), where M is specified later
in (4.37) or (4.48).

The paper is organized as follows. In section 2, the notations and mathematical pre-
liminaries are given. The feedback law is defined in Section 3 thanks to technics de-
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veloped in [17], which are not related specifically to a stabilization problem, and the
characteristic-Galerkin method. Finally, we illustrate numerically the effectiveness of
the method by stabilizing the Navier-Stokes equations around a circular obstacle.

2 Notations and Preliminaries

2.1 Notations

Spaces of free divergence functions are introduced :

V(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0 in Ω, u = 0 on Γl

}
, (4.8)

V0(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0 in Ω, u = 0 on Γb ∪ Γl

}
, (4.9)

H(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on Γl

}
. (4.10)

Let us denote by V
1
2 (Γb) the space of functions whose extension by zero over Γ belong to

H
1
2 (Γ). For g ∈ V

1
2 (Γb) with g �= 0, we define the space of solution

W (Q) = {(v, α) ∈ V(Ω)× R, s.t. v = αg on Γb}.

In order to define a weak form of the Navier-Stokes equations, we introduce the conti-
nuous bilinear forms

a(u,v) =

∫
Ω

∇u : ∇v, ∀u, v ∈ H1(Ω),

b(v, q) =

∫
Ω

q∇v, ∀v ∈ H1(Ω), ∀q ∈ L2(Ω).

2.2 Preliminaries

For an initial data v0 belonging to an appropriate functional space, we search for the
numerical solution of the stabilization problem (4.3) by using the characteristic-Galerkin
method. Let v be the velocity field of the fluid, and denote by X(τ ; t,x) and Y (τ ; t,x) the
solutions of the following ordinary differential equation in τ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(a)
dX

dτ
= v(τ,X(τ ; t,x)) if X(τ ; t,x) ∈ Ω,

= 0 otherwise,

(b) X(t; t,x) = x,

(4.11)
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(a)

dY

dτ
= v(τ, Y (τ ; t,x)) + 2vs(Y (τ ; t,x)) if Y (τ ; t,x) ∈ Ω,

= 0 otherwise,

(b) Y (t; t,x) = x,

(4.12)

where X(· ; t,x) and Y (· ; t,x) are the particle path that passes at x = (x1, x2) at time t.
Let D

Dt
denotes the material derivative (also called Lagrangian derivative) of the velocity

field. We have

1

2

Dv

Dt
(t,x) =

1

2

[
Dv

Dτ
(τ, Y (τ ; t,x))

]
τ=t

=
1

2

[
dY

dτ
∇v(τ, Y (τ ; t,x)) +

∂v

∂τ
(τ, Y (τ ; t,x))

]
τ=t

. (4.13)

Using (4.12) and (4.13), we deduce

1

2

Dv

Dt
(t,x) =

1

2

∂v

∂t
+

1

2
(v · ∇)v + (vs · ∇)v. (4.14)

Similarly, we obtain

1

2

D(v + 2vs)

Dt
(t,x) =

1

2

[
D(v + 2vs)

Dτ
(τ,X(τ ; t,x))

]
τ=t

=
1

2

[
dX

dτ
∇(v + 2vs)(τ,X(τ ; t,x)) +

∂v

∂τ
(τ,X(τ ; t,x))

]
τ=t

. (4.15)

Using (4.11) and (4.15), we deduce

1

2

D(v + 2vs)

Dt
=

1

2

∂v

∂t
+

1

2
(v · ∇)v + (v · ∇)vs. (4.16)

Thus, summing (4.14) and (4.16), problem (4.3) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
1

2

Dv

Dt
+

1

2

D(v + 2vs)

Dt
− νΔv +∇p = 0 in Q,

(b) ∇ · v = 0 in Q,

(c) v = 0 on Σl,

(d) v = α(t)g(x) on Σb,

(e) ν∇v · n− pn = 0 on Σs,

(f) v(0,x) = v0(x) in Ω.

(4.17)
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3 Time discretization and Assumptions

3.1 Time discretization of stabilization problem

Let t0 = 0 < t1 < t2 < · · · < tN = T with tn − tn−1 = Δt = T/N denotes the time
step. We propose a time discretization of the material derivative, e.g. by means of the
backward Euler method. Using (4.13) and (4.15) respectively, we obtain

Dv

Dt
(tn,x) ≈

v(tn, Y (tn; tn,x))− v(tn−1, Y (tn−1; tn,x))

Δt
, (4.18)

Du

Dt
(tn,x) ≈

u(tn, X(tn; tn,x))− u(tn−1, X(tn−1; tn,x))

Δt
, (4.19)

where u = v + 2vs. The characteristics foot X(tn−1; tn,x) and Y (tn−1; tn,x) are computed
from (4.11) and (4.12), respectively using the following linear discrete interpolation :

X(tn−1; tn,x) ≈ x− v(tn,x)Δt,

Y (tn−1; tn,x) ≈ x− u(tn,x)Δt.

Due to (4.11-b) and (4.12-b) , we have X(tn; tn,x) = Y (tn; tn,x) = x and hence (4.18)
and (4.19) become respectively

Dv

Dt
(tn,x) ≈

v(tn,x)− v(tn−1, Y (tn−1,x))

Δt
, (4.20)

Du

Dt
(tn,x) ≈

u(tn,x)− u(tn−1, X(tn−1,x))

Δt
, (4.21)

where X(tn−1,x) = X(tn−1; tn,x) and Y (tn−1,x) = Y (tn−1; tn,x). Setting (vn, pn) =

(v, p)(tn,x), the approximations of the velocity and pressure at time tn, the time dis-
cretization of the stabilization system (4.17) leads to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
vn

Δt
− νΔvn +∇pn =

F n−1

Δt
in Ω,

(b) ∇ · vn = 0 in Ω,

(c) vn = 0 on Γl,

(d) vn = αng(x) on Γb,

(e) ν∇vn · n− pnn = 0 on Σs,

(f) v(0,x) = v0(x) in Ω,

(4.22)
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with

F n−1 =
1

2

(
vn−1 ◦Xn−1 + vn−1 ◦ Y n−1

)
+ vs ◦Xn−1 − vs, (4.23)

where v ◦ Z denotes the function x → v[Z(x)].

For an initial data v0 in an appropriate functional space, our goal is to find a feedback
control αn such that vn, solution of the system (4.22), satisfies (4.4).

3.2 Controller building process

Since system (4.22) is linear, the solution (vn, pn) is decomposed as{
vn = w̃ n + αnw,

pn = q̃ n + αnq,
(4.24)

where (w, q) does not depend on time, while the couple (w̃ n, q̃ n) represents correction
terms which are calculated at each time step. The details of the controller building pro-
cess is specified as follows :

(i) Firstly, we search for (w, q) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
w

Δt
− νΔw +∇q = 0 in Ω,

(b) ∇ ·w = 0 in Ω,

(c) w = 0 on Γl,

(d) w = g on Γb

(e) ν∇w · n− qn = 0 on Γs.

(4.25)

(ii) Secondly, at each time step, we search for (w̃ n, q̃ n) such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a)
w̃ n

Δt
− νΔw̃ n +∇q̃ n =

F n−1

Δt
in Ω,

(b) ∇ · w̃ n = 0 in Ω,

(c) w̃ n = 0 on Γl ∪ Γb

(d) ν∇w̃ n · n− q̃ nn = 0 on Γs.

(4.26)

(iii) Finally, in order to stabilize (4.22) with vn = αng(x) on Γb, by employing energy a
priori estimation techniques, the quantity αn needs to satisfy the relation∫

Γb

[ν∇vn · n− pnn] · g = −λαn, λ > 0. (4.27)
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Such a procedure relies on technics previously introduced in [17], but it is worth to note
that the work performed in [17] is not related to a stabilization problem. To show the
stability result, we need the following assumptions.

3.3 Assumptions and main result

Firstly, for all n ∈ N, we assume that

Xn(x) = x− vn(x)Δt ∈ Ω, (4.28)

Y n(x) = x− un(x)Δt ∈ Ω. (4.29)

Note that the classical spatial approximation of the characteristic curves (4.28)-(4.29)
has been used in a number of papers, e.g. in [18, 25, 30]. Such assumptions mean that
the foots of the characteristic curves are not allowed to lie outside the domain boundary.
In practice, the foots of the characteristic curves may lie outside the domain boundary
due to (small) space and time truncation errors of the numerical method, and in such a
case they are projected orthogonally on the domain boundary.

Secondly, by using the Taylor’s theorem for multivariate functions, we obtain

vs

(
x− vn(x)Δt

)
= vs(x)−Δt∇vs(x) · vn(x) +O(Δt2).

Hence, by neglecting the second order term, we obtain the following assumption

vs

(
x− vn(x)Δt

)
= vs(x)−Δt∇vs(x) · vn(x). (4.30)

Lemma 3.1. Under the assumptions (4.28)-(4.29) and (4.30), the following assumption
holds

‖F n‖ ≤
(
1 + Δt‖∇vs‖

)
‖vn‖. (4.31)

Proof. According to (4.23) and using (4.30), we obtain

‖F n‖ ≤ 1

2
‖vn ◦Xn‖+ 1

2
‖vn ◦ Y n‖+Δt‖∇vs‖‖vn‖. (4.32)

Let Zn = Xn or Y n and let Jn be the Jacobian matrix of the transformation y = Zn(x),
we obtain

‖vn ◦ Zn‖2 =
∫
Ω

(vn[Zn(x)])2dx =

∫
Zn(Ω)

(vn(y))2( det Jn)−1dy.

By definition, we have from [13]

J(τ ; t,x) = −
∫ t

τ

∇ · v(τ, Z(τ ; t,x))dτ + 1, (4.33)
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and since ∇ · vn = 0, using (4.33) yields det Jn = 1. Further, Zn(Ω) ⊂ Ω, and hence

‖vn ◦ Zn‖2 =
∫
Zn(Ω)

(vn(y))2( det J)−1dy ≤
∫
Ω

(vn(x))2dx = ‖vn‖2. (4.34)

Inserting (4.34) in (4.32), we deduce (4.31).

In the following we attempt to find a boundary feedback control αn, with a control law
similar to that employed in the first three chapters of this thesis i.e⎧⎪⎪⎨⎪⎪⎩

vn = αng in Γb,∫
Γb

[ν∇vn · n− pnn] · g = f(αn),
(4.35)

and this leads to the following proposition.

Proposition 3.1. Let v0 ∈ H(Ω), g ∈ V
1
2 (Γb) with g �= 0 on Γb and vs such that

‖∇vs‖ ≤ 1

Δ t

(√
1 +

2 νΔ t

C2
p

− 1

)
, (4.36)

where Cp is the Poincaré constant. Under the assumptions (4.28)-(4.29) and (4.30), there
exists a boundary feedback control αn on Γb solution of∫

Γb

[ν∇vn · n− pnn] · g = −λαn, λ > 0 (4.37)

such that system (4.22) with (vn, pn) writen as in (4.24) is exponentially stable. i.e. there
exists μ > 0 such that vn satisfies

‖vn‖ ≤ ‖v0‖ exp (−μtn). (4.38)

Proof. We define

B(z, π) =

∫
Γb

[ν∇z · n− πn] · g,

and using (4.24) we obtain

B(vn, pn) = αnB(w, q) + B(w̃n, q̃ n).

Consequently, αn = − B(w̃ n, q̃ n)

λ+B(w, q)
satisfies (4.37).

143



TIME DISCRETIZATION AND ASSUMPTIONS

The variational formulation of (4.22) is defined as

1

Δ t
〈vn, ṽ〉+ νa(vn, ṽ) =

1

Δ t
〈F n−1, ṽ〉+ α̃

∫
Γb

[ν∇vn · n− pnn] · g, (4.39)

for all (ṽ, α̃) ∈ W (Q). Taking ṽ = vn in (4.39) and employing (4.23) yields

1

2Δt
‖vn‖2 + ν‖∇vn‖2 ≤ 1

2Δt
‖F n−1‖2 + αn

∫
Γb

[ν∇vn · n− pnn] · g. (4.40)

Using (4.37) in (4.40), we obtain

‖vn‖2 + 2νΔt‖∇vn‖2 + 2λΔtα2
n ≤ ‖F n−1‖2. (4.41)

By using Lemma 3.1 and Poincaré inequality in (4.41), we obtain√
C2

p + 2νΔ t‖vn‖ ≤ Cp

(
1 + Δt‖∇vs‖

)
‖vn−1‖.

and hence, we deduce that

‖vn‖ ≤ θ‖vn−1‖ with θ =
1 +Δt ‖∇vs‖√

1 +
2νΔ t

C2
p

. (4.42)

According to (4.36), θ < 1 and recursively we obtain

‖vn‖ = ‖v(tn)‖ ≤ θn‖v0‖. (4.43)

To achieve the proof, we show that (4.43) implies (4.45). Taking μ = − ln(θ)

Δ t
> 0, and

using (4.43) leads to

‖vn‖ ≤ θn‖v0‖ = exp (n ln(θ)) ‖v0‖ = exp (−μnΔ t) ‖v0‖,
= exp (−μ tn) ‖v0‖,

and hence, estimate (4.45) is obtained.

For equilibrium states vs corresponding to small Reynolds numbers, whatever the
initial velocity, Proposition 3.1 may be employed, and an exponential decrease of the
energy is obtained. However, it is difficult to find the appropriate interval for αn in order
to obtain an optimal decrease. This suggests to employ a more appropriate control law
in order to find such an inteval for αn, and it is the subject of the following proposition.

Proposition 3.2. Under assumptions (4.28)-(4.30) and (4.36), the solution w̃n of (4.26)
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satisfies

‖w̃n‖ ≤ θ‖vn−1‖, (4.44)

where θ is defined in (4.42). Consequently, there exists a boundary feedback control αn,
solution of a polynomial of degree two such that system (4.22) with (vn, pn) writen as
in (4.24) is exponentially stable. i.e. there exists μ > 0 such that vn satisfies

‖vn‖ ≤ ‖v0‖ exp (−μtn). (4.45)

Proof. The varitional formulation of (4.26) is defined as

1

Δ t
〈w̃n, ṽ〉+ νa(w̃n, ṽ) =

1

Δ t
〈F n−1, ṽ〉, ∀ṽ ∈ V0(Ω). (4.46)

Taking ṽ = w̃n in (4.46) yields

‖w̃n‖2 + 2Δtν‖∇w̃n‖2 ≤ ‖F n−1‖2 (4.47)

and by using Lemma 3.1 and Poincaré inequality in (4.47), estimate (4.44) is obtained.

From (4.24) we deduce

‖vn‖2 = ‖w‖2α2
n + 2〈w̃n,w〉αn + ‖w̃n‖2,

and the polynomial P (αn) of degree two with real coefficients is considered

P (αn) = ‖vn‖2 − ‖vn−1‖2 = ‖w‖2α2
n + 2〈w̃n,w〉αn + ‖w̃n‖2 − θ2‖vn−1‖2. (4.48)

Consequently, we have ‖w̃n‖2 − θ2‖vn−1‖2 ≤ 0 from (4.44) and since ‖w‖2 > 0, P has
two solutions αn1

≤ 0 and αn2
≥ 0. For all αn ∈ [αn1

, αn2
] we have P (αn) ≤ 0 and hence,

‖vn‖ ≤ ‖v0‖ exp (−μtn).

4 Numerical simulations
In this section, numerical simulations are performed in order to validate the theore-

tical results obtained in the previous sections. As in [36], two-dimensional test cases are
considered by simulating the flow around a cylinder with circular cross-section.

4.1 Finite-element variational formulations

A weak formulation and a mixed Galerkin finite-element method are used to ap-
proximate the stationary problem (4.1) and the stabilization systems govern by (4.25)
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and (4.26). The spaces Vφ and W0 are introduced

Vφ(Ω) = {u ∈ H1(Ω) : u = 0 on Γl,u = φ on Γb},
W0(Ω) = {u ∈ H1(Ω) : u = 0 on Γb ∪ Γl}.

and L2
0 is the pressure space with zero mean value

L2
0(Ω) =

{
p ∈ L2(Ω),

∫
Ω

p(x) dx = 0

}
.

Let Th a standard finite-element triangulation of Ω with h being the maximal length of
the edges of Th and φ ∈ H

1
2 (Γ). The spaces Vh

φ, Wh
0 , Uh

0 and Sh
0 are the discrete coun-

terpart of Vφ, W0, U0 and L2
0, respectively, and we have Vh

φ ⊂ Vφ(Ω), Wh
0 ⊂ W0(Ω),

Uh
0 ⊂ H1

0(Ω) and Sh
0 ⊂ L2

0(Ω).

The Galerkin formulation of the problem is defined as follows

(i) For (4.1), and k = 1, 2, 3, · · · , find vk
h ∈ Vh

vb
and pkh ∈ Sh

0 such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a) νa(v

(k)
h , ṽh) + σc(v

(k)
h ;v

(k−1)
h , ṽh) + c(v

(k−1)
h ;v

(k)
h , ṽh) + b(ṽh, p

(k)
h )

= σc(v
(k−1)
h ;v

(k−1)
h , ṽh)

(b) b(vk
h, πh) = 0,

(4.49)

∀(ṽh, πh) ∈ Uh
0 × Sh

0 .

Given the velocity v0
h and an integer m, one can generate the sequence (vk

h, p
k
h) (k =

1, 2, · · · ) by solving the linear problem (4.49) with σ = 0 for k ≤ m and σ = 1 for
k > m. The algorithm terminates when the maximum value of ‖v(k)

h −v
(k−1)
h ‖/‖v(k)

h ‖
is less or equal to ε, where ε is the prescribed tolerance.

(ii) For (4.25), find wh ∈ Vh
g and qh ∈ Sh

0 such that⎧⎨⎩(a)
1

Δ t
〈wh, ṽh〉+ νa(wh, ṽh) + b(ṽh, qh) = 0,

(b) b(wh, πh) = 0,
(4.50)

∀(ṽh, πh) ∈ Uh
0 × Sh

0 .
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(iii) For (4.26), find w̃n
h ∈ Wh

0 and q̃nh ∈ Sh
0 such that⎧⎨⎩(a)

1

Δ t
〈w̃n

h, ṽh〉+ νa(w̃n
h, ṽh) + b(ṽh, q̃

n
h) =

1

Δ t
〈F n−1, ṽh〉,

(b) b(w̃n
h, πh) = 0,

(4.51)

∀(ṽh, πh) ∈ Uh
0 × Sh

0 .

4.2 Geometry and parameters of the model

The geometry of the channel with an obstacle is described in Figure 4.1. As in [36],
we consider a rectangular domain Ω = [0, 2.2 m] × [0, H] with a disk of diameter D = 0.1

m and centered at point (0.2, 0.2). For a channel height H = 0.4 m, the inflow condition
imposed at the bottom Γe = {0} × [0, H], is a parabolic flow defined by

v1(0, x2) = 4v∞
x2

H

(
1− x2

H

)
, v2 = 0. (4.52)

The Reynolds number is then defined by Re =
DU0

ν
with the mean velocity

U0(t) = 2v1(t; 0, H/2)/3.

On Γl, defined by the top and bottom parts of the channel, the no-slip conditions v1 =

v2 = 0 are imposed. At the outflow boundary of the channel, located at Γs = {2.2}× [0, H],
we take the natural boundary condition ν∇vn · n − pnn = 0, that arises from the weak
formulation. In the sequel, the kinematic viscosity is fixed as ν = 10−4m2/s and the time
step Δt = 10−3s.

Γe
Γs

Γl

Γl

Ω

Γd

FIGURE 4.1 – Description of the domain Ω and of the four connected components Γe, Γl,
Γd and Γs.
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4.3 Numerical tests

Accurate mixed Galerkin finite-element computations are obtained using the P2 − P1

Taylor-Hood finite element pair [15, 27], with

Vh
φ = {vh | vh ∈ C0(Ω̄), vh|T ∈ (P2)

2, ∀T ∈ Th; vh = 0 on Γl; vh = φh on Γb = Γe ∪ Γd},
Wh

0 = {vh | vh ∈ C0(Ω̄), vh|T ∈ (P2)
2, ∀T ∈ Th; vh = 0 on Γl ∪ Γe ∪ Γd},

Uh
0 = {vh | vh ∈ C0(Ω̄), vh|T ∈ (P2)

2, ∀T ∈ Th; vh = 0 on Γ},

Sh
0 = {qh | qh ∈ C0(Ω̄), qh|T ∈ P1, ∀T ∈ Th;

∫
Ω

qh = 0},

where Pk is the space of the polynomials of degree ≤ k, expressed in terms of x = (x1, x2).

4.3.1 Test 1 : Control on Γe with Re = 500

In the first test, the control is built on Γe, namely at the entrance boundary. The
steady-state (vs, qs), shown in Figure 4.2, is obtained by solving (4.49) with vs = 0 on
Γd∪Γl, vs = (v1, v2) on Γe with v∞ = 0.75 m/s in (4.52), yielding the Reynolds number Re =

500. Such a steady-state (vs, qs) is employed as an initial condition to solve for the Navier-
Stokes system with Re = 1000, i.e. using v∞ = 1.5 m/s in (4.52). The solution obtained
at t = 5 s, and shown in Figure 4.3, is not symmetrical along the axis y = H/2, and this
behavior is due to the use of a large Reynolds number (Re = 1000 in the experiment). The
break in the symmetry can be explained by the influence of the various truncation and
rounding errors that are present in the calculations. The perturbed solution in Figure 4.3
is then employed as an initial solution to solve for the control problem (4.22) with Re =

500.

FIGURE 4.2 – Test 1 : Streamlines of the steady-state for Re = 500.

FIGURE 4.3 – Tests 1 and 2 : Streamlines of the initial velocity for Re = 1000.

The control problem (4.22) is solved in three steps :
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(i) Firstly, we search for (wh, qh) satisfying (4.25) with

wh = 0 on Γl ∪ Γd, ν∇wh · n− qhn = 0 on Γs and wh = (v1, v2) on Γe,

where (v1, v2) satisfies (4.52) with v∞ = 0.3 m/s as the starting velocity, namely g

in (4.22-d).
(ii) Secondly, at each time step we search for (w̃n

h, q̃
n
h ) satisfying (4.26) with

w̃n
h = 0 on Γl ∪ Γd ∪ Γe and ν∇w̃ n

h · n− q̃ n
h n = 0 on Γs.

(iii) Finally, we search for the solution (vn
h, p

n
h ) of (4.22) such that{

vn
h = w̃ n

h + αnwh

pnh = q̃ n
h + αnqh,

(4.53)

where the control αn, n = 1, 2, 3, · · · , is chosen such that

α2
n‖wh‖2 + 2αn〈wh, w̃

n
h〉+ ‖w̃n

h‖2 ≤ ‖vn−1
h ‖2. (4.54)

To obtain αn, we take

A = ‖wh‖2, Bn = 2〈wh, w̃
n
h〉, Cn = ‖w̃n

h‖2 − ‖vn−1
h ‖2, Δn = B2

n − 4× An × Cn.

According to (4.44) we have Δn > 0, and consequently, for all constant K > 2, we obtain

α±
n =

−Bn ±
√
Δn

K × A
. (4.55)

Figure 4.4 shows the energy and the control evolution (α+
n ) in time for K = 2.01 (the red

curve) and K = 4.01 (the blue curve). As the values of K increase, the energy decreases
and α+

n tends to zero, as expected. The quantities α+
n and α−

n correspond to inflow and
outflow conditions, respectively, for the control problem (and not for the Navier-Stokes
system). The choice α+

n is consistent with αn ∈ [αn1
, αn2

], with αn1
≤ 0 and αn2

≥ 0,
in (4.48). The first component (along the x1-axis) of ψ = vs + v, with K = 2.01 is also
displayed in Figure 4.8 at different times of the simulation. We observe that the system
is progressively stabilizing towards an equilibrium steady state.
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0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6
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Energy [L2]
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K =  2.01
K =  4.01

-2 .5

-2 .0

-1 .5

-1 .0

-0 .5

-0 .0

0 1 2 3 4 5

Control
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K =  2.01
K =  4.01

FIGURE 4.4 – Test 1 : Energy and control evolution (α+
n ) in time for K = 2.01 (the red

curve) and K = 4.01 (the blue curve).

(a) Time = 0.1 s (b) Time = 0.2 s

(c) Time = 0.3 s (d) Time = 0.4 s

(e) Time = 1 s (f) Time = 2 s

(g) Time = 4 s (h) Time = 5 s

FIGURE 4.5 – Test 1 : The first component (along the x1-axis) of ψ = vs+v, with K = 2.01
at different times of the simulation.
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4.3.2 Test 2 : Control around a part of Γd with Re = 1000

This section is devoted to the suppression of vortex shedding past a cylinder. Our goal
is to control the Navier-Stokes system, but instead of building the control at the entrance
boundary Γe, the control is built on a part of Γd (the right section). Compared to Test 1,
the difference is to try to stabilize the solution around the steady state vs at Re = 1000, by
starting from an initial perturbation, also obtained at Re = 1000. The initial perturbation
is the same as for Test 1, and it is shown in Figure 4.3. As for Test 1, the steady state
vs is obtained by solving (4.49), with vs = 0 on Γd and v∞ = 1.5 m/s in (4.52), yielding
Re = 1000. The first component (along the x1-axis) of vs is displayed in Figure 4.6 for
Re = 1000.

FIGURE 4.6 – Test 2 : The first component (along the x1-axis) of the steady-state velocity
vs for Re = 1000.

The control build on the right part of Γd is a suction-blowing action normal to
the boundary of the disk on the two slots C1

d = [0.21, 0.25] × [0.0, 0.2[ and C2
d =

[0.21, 0.25]×]0.2, 0.4], symmetrical with respect to the axis x2 = 0.2. To solve for the stabi-
lization problem (4.22), we let D(v, p) = ν∇v ·n− pn and we denote by Ni(x), i = 1, 2, the
outward normal unit vector to Ci

d.

The problem is again solved in three steps :

(i) Firstly, we search for (w1
h, q

1
h) satisfying (4.25) with :

w1
h = 0 on Γl ∪ Γe ∪ (Γd\C1

d), D(w1
h, q

1
h) = 0 on Γs, w

1
h = 0.01×N1(x) on C1

d ,

and (w2
h, q

2
h) satisfies (4.25) with :

w2
h = 0 on Γl ∪ Γe ∪ (Γd\C2

d), D(w2
h, q

2
h) = 0 on Γs, w

2
h = 0.01×N2(x) on C2

d .

(ii) Secondly, at each time step we search for (w̃n
h, q̃

n
h ) satisfying (4.26) with :

w̃n
h = 0 on Γl ∪ Γd ∪ Γe, D(w̃ n

h , q̃ n
h ) = 0 on Γs.

Due to the symmetry breaking, the pressure force exerted on the boundary C1
d and

C2
d is disproportionate. To restore this imbalance, we search for βn such that

βnB1(w̃
n
h , q̃ n

h ;w1
h) = B2(w̃

n
h , q̃ n

h ;w2
h), (4.56)
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where Bi(w̃
n
h , q̃ n

h ;wi
h) =

∫
Ci
d

[ν∇w̃ n
h · n− q̃ n

h n] ·wi
h.

By taking (wn
h, q

n
h) = (βnw

1
h + w2

h, βnq
1
h + q2h) which satisfies (4.25) and according to

(4.56), we have B1(w̃
n
h , q̃ n

h ;wn
h) = B2(w̃

n
h , q̃ n

h ;wn
h).

(iii) Finally, we search for (vn
h, p

n
h ) of (4.22) such that{
vn
h = w̃ n

h + αnw
n
h

pnh = q̃ n
h + αnq

n
h ,

(4.57)

where the control αn, n = 1, 2, 3, · · · , is chosen such that

α2
n‖wn

h‖2 + 2αn〈wn
h, w̃

n
h〉+ ‖w̃n

h‖2 = ‖vn
h‖2 ≤ C‖vn−1

h ‖2, (4.58)

where the constant C ≥ 1.

Note that for the uncontrolled case, αn = 0 for all n > 0, whereas for the controlled case,
we take

An = ‖wn
h‖2, Bn = 2〈wn

h, w̃
n
h〉, Cn = ‖w̃n

h‖2 − ‖vn−1
h ‖2, Δn = B2

n − 4× An × Cn.

According to (4.44) we have Δn > 0, and consequently, we search the control αn as fol-
lows :

α±
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Bn ±

√
Δn

1.99× An

if n < Iter = 100, 200 or 300,

−Bn ±
√

Δn

2.01× An

otherwise .

(4.59)

Note that ‖vn
h‖ > ‖vn−1

h ‖ if n < Iter and ‖vn
h‖ ≤ ‖vn−1

h ‖ if n ≥ Iter.

Figure 4.7 shows the energy and the control evolution (α+
n ) in time for different values

of Iter. As the number of iterations increases, the energy stabilizes over time, and during
the stabilization process, the lower values of energy are obtained for the higher values
of Iter. However, shortly after the beginning of the simulation, pics of energy are obser-
ved before the stabilization process and the higher values of energy are reached for the
higher values of Iter. The origin of the pics is due to the choice of α+

n at the early times of
the simulation. Indeed, we purposely choose α+

n < αn1
or α+

n > αn2
, in order to avoid the

presence of propagating eddies close to the right part of Γd. As soon as the control area
is free of such eddies the choice αn ∈ [αn1

, αn2
], is imposed and the stabilizing energy pro-

cess can take place. The switch in α+
n is done at time 0.3 s for Iter = 300 when the energy

reaches its maximum value. As the control α+
n weakens and is close to zero, the energy

progressively stabilizes around an unstable state. Note that the pics in energy, observed
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at the beginning of the simulations are not present for low Reynolds numbers, namely
Re = 500, and in that case the stabilization process converges around a steady-state.
This suggests that Test 2 is a very challenging test case. The remark made about α−

n for
Test 1 in Section 4.3.1 is still valid. The first component (along the x1-axis) of ψ = vs+v,
with Iter = 300 is also displayed in Figure 4.8 at different times of the simulation. We
observe that the system is progressively stabilizing towards an equilibrium steady state
up to 2 s. After the steady state is reached, the eddy process starts to propagate again,
as observed in Figure 4.8, since the control vanishes.
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FIGURE 4.7 – Test 2 : Energy and control evolution (α+
n ) in time for different values of

Iter.

(a) Time = 0.1 s (b) Time = 0.2 s

(c) Time = 0.3 s (d) Time = 0.4 s

(e) Time = 1 s (f) Time = 2 s

(g) Time = 4 s (h) Time = 5 s

FIGURE 4.8 – Test 2 : The first component (along the x1-axis) of ψ = vs+v, with Iter = 300
at different times of the simulation.
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5 Concluding remarks
In this paper, the numerical feedback stabilization of the two and three-dimensional

Navier-Stokes equations in a bounded domain is studied around a given steady-state
flow, using a boundary feedback control. In order to determine a feedback law, an ex-
tended system coupling the Navier-Stokes equations with an equation satisfied by the
control on the domain boundary is considered. We first assume that on Σb (a part of the
domain boundary), the trace of the fluid velocity is proportional to a given velocity profile
g. The proportionality coefficient α measures the velocity flux at the interface. It is an
unknown of the problem and is written in feedback form. By using the characteristic-
Galerkin method, α is determined by solving a polynomial equation of degree one or two
and the stabilizing boundary control is built such that the Dirichlet boundary control
vb = αg is satisfied on Σb. Numerical solutions of two test problems to simulate the boun-
dary feedback control, by stabilizing the two-dimensional Navier-Stokes system around
a circular obstacle, illustrate the theoretical results of the present paper. Such an ap-
proach appears to be promising.
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