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Résumé

Cette these est consacrée a ’étude de problemes de stabilisation exponentielle par retour
d’état ou "feedback" des équations de Navier-Stokes dans un domaine borné Q@ c R? d = 2 ou
3. Le cas d’un contrdle localisé sur la frontiere du domaine est considéré. Le controle s’exprime
en fonction du champ de vitesse a I'aide d’'une loi de feedback non-linéaire. Celle-ci est fournie
grace aux techniques d’estimation a priori via la procédure de Faedo-Galerkin laquelle consiste a
construire une suite de solutions approchées en utilisant une base de Galerkin adéquate. Cette loi
de feedback assure la décroissance exponentielle de I'énergie du probleme discret correspondant
et grace au résultat de compacité, nous passons a la limite dans le systéeme satisfait par les
solutions approchées. Le chapitre 1 étudie le probleme de stabilisation des équations de Navier-
Stokes autour d'un état stationnaire donné, tandis que le chapitre 2 examine le probleme de
stabilisation autour d’'un état non-stationnaire prescrit. Le chapitre 3 est consacré a I'étude de
la stabilisation du probleme de Navier-Stokes avec des conditions aux bords mixtes (Dirichlet-
Neumann) autour d’'un état d’équilibre donné. Enfin, nous présentons dans le chapitre 4, des
résultats numériques dans le cas d’'un écoulement autour d’un obstacle circulaire.

Mots-clefs : Systéme de Navier-Stokes, controle feedback, stabilisation frontiere, approche de
Galerkin.

Abstract

In this thesis we study the exponential stabilization of the two and three-dimensional Navier-
Stokes equations in a bounded domain 2, by means of a boundary control. The Control is ex-
pressed in terms of the velocity field by using a non-linear feedback law. In order to determine
a feedback law, we consider an extended system coupling the Navier-Stokes equations with an
equation satisfied by the control on the domain boundary. While most traditional approaches
apply a feedback controller via an algebraic Riccati equation, the Stokes-Oseen operator or ex-
tension operators, a Galerkin method is proposed instead in this study. The Galerkin method
permits to construct a stabilizing boundary control and by using energy a priori estimation tech-
nics, the exponential decay is obtained. A compactness result then allows us to pass to the
limit in the nonlinear system satisfied by the approximated solutions. Chapter 1 deals with the
stabilization problem of the Navier-Stokes equations around a given steady state, while Chap-
ter 2 examines the stabilization problem around a prescribed non-stationary state. Chapter
3 is devoted to the stabilization of the Navier-Stokes problem with mixed-boundary conditions
(Dirichlet-Neumann), around to a given steady-state. Finally, we present in Chapter 4, numeri-
cal results in the case of a flow around a circular obstacle.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.
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CONTEXTE DE LA THESE

Introduction Générale

1 Contexte de la these

En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dé-
rivées partielles non linéaires qui décrivent le mouvement des fluides « newtoniens »
(liquide et gaz visqueux ordinaires) dans I'approximation des milieux continus. Par une
résolution approchée, elles permettent de proposer une modélisation des courants océa-
niques et des mouvements des masses d’air de 'atmospheére pour les océanographes et les
météorologistes, la simulation numérique du comportement des gratte-ciel ou des ponts
sous l'action du vent pour les architectes et ingénieurs, des avions, trains ou voitures
a grande vitesse pour leurs bureaux d’études concepteurs, mais aussi le trivial écoule-
ment de I'eau dans un tuyau et de nombreux autres phénoménes d’écoulement de divers
fluides. Le cas particulier de I’écoulement d’un fluide incompressible est traité dans cette
these. L'écoulement d’'un fluide est dit incompressible lorsque 'on peut négliger ses va-
riations de masse volumique au cours du temps. Cette hypothese est vérifiée pour 'eau
liquide et les métaux en fusion.

Plusieurs travaux dédiés a I’étude du systéeme de Navier-Stokes incompressibles ont
été effectués dans la littérature (voir par exemple [14, 20, 32]). Ces travaux ont per-
mis d’établir des résultats d’existence, d'unicité et de régularité de la solution dans des
domaines bornés ou non bornés, des résultats relatifs au comportement en temps long
des solutions, ainsi que des résultats concernant les problemes fondamentaux de stabi-
lité. Nous mentionnons cependant qu’a I’heure actuelle la question de I'existence globale
(c’est-a-dire pour tout temps ¢t > 0) de solutions réguliéeres en dimension 3, de méme
que celle de I'unicité des solutions faibles toujours en dimension 3 sont des questions
ouvertes.

Dans cette theése, nous nous intéressons a I’étude de problemes de stabilisation par
retour d’état ou « feedback » des équations de Navier-Stokes incompressibles, dans un
domaine borné, autour d’'un état désiré, a 'aide d’'un contréle frontiere dynamique. La
stabilisation par retour d’état permet de gérer, commander, diriger ou réguler le compor-
tement d’'un systéme physique comme le phénomeéne d’écoulement autour d'un barrage
hydraulique. La construction d'un barrage peut provoquer a la fois des bouleversements
humains en forcant des populations entieres a se déplacer, et avoir un impact écologique
non négligeable en changeant I’écosystéme local. Cependant, il permet par exemple la
régulation du débit d’'une riviere ou d’un fleuve (favorisant ainsi le trafic fluvial), I'irri-
gation des cultures, une prévention relative des catastrophes naturelles (crues, inonda-
tions), par la création de lacs artificiels ou de réservoirs. Un barrage autorise aussi, sous
certaines conditions, la production de force motrice (moulin a eau) et d’électricité : on
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parle alors de barrage hydroélectrique (voir Figure 1). L'énergie électrique est produite
par la transformation de 1’énergie cinétique de I'eau en énergie électrique par l'intermé-
diaire d'une turbine hydraulique couplée a un générateur électrique (voir Figure 2 et
Figure 3). Pour les barrages au fil de I'eau la quantité d’énergie produite est directement
liée au débit (m?/s, m3/h, m®/j, m3/an). Pour les barrages par accumulation, la quantité
d’énergie disponible, sur une période donnée, dépend du volume de son réservoir, des
apports et pertes naturels sur la période et de la hauteur de chute. Afin d’augmenter ou
de diminuer la quantité d’énergie produite, nous pouvons agir sur les vannes (voir partie
E de la Figure 1). Cette action permet de contréler le débit entrant ou sortant au niveau
de la conduite forcée (voir partie F de la Figure 1). On s’intéresse alors au probleme de
stabilisation par retour d’état des équations de Navier-Stokes incompressibles.

FIGURE 1 — Schéma en coupe d’'un barrage hydroélectrique ( source [34]). A : réservoir,
B : centrale électrique, C : turbine, D : générateur, E : vanne, F : conduite forcée, G :
lignes haute tension, H : riviere.

La stabilisation par retour d’état des équations de Navier-Stokes est aussi utilisée
pour passer d'un régime turbulent vers un régime laminaire. En effet, dans un circuit
(ou systeme) hydraulique ou oléohydraulique I'écoulement doit toujours étre, si possible,
laminaire. Au-dela il est en phase dite critique, puis en régime turbulent qui utilise une
partie de I’énergie mécanique pour créer des mouvements de plus en plus désordonnés.
Les figures 4 et 5 représentent un certain nombre de lignes de courant de I’écoulement
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PROBLEME DE STABILISATION

FIGURE 2 — Turbine hydraulique et générateur électrique, vue en coupe (source [35]). A :
générateur, 1 : stator , 2 : rotor, B : turbine, 3 : vannes réglables, 4 : pales de la turbine,
5 : flux d’eau, 6 : axe de rotation de la turbine et du générateur.

bidimensionnel dans un domaine borné Q) C R?, avec un écoulement du type "Poiseuille”
en entrée du canal. Sur la Figure 5, en régime turbulent, on observe des tourbillons a I’ar-
riére de l'obstacle cylindrique, connus sous le nom « d’allées de Von Karman ». Lorsqu'un
tourbillon se détache, un écoulement dissymétrique se forme autour du corps, ce qui
modifie la distribution des pressions. Dans divers problemes techniques, ce phénomeéene
peut avoir des conséquences dommageables (rupture de ponts suspendus, écroulement
de cheminées, accidents d’avion, etc). On s’intéresse alors au probleme de stabilisation
suivant : comment déterminer une condition limite non homogene, localisée sur la fron-
tiere (du cylindre par exemple), permettant de revenir a I'état laminaire ? L'utilisation de
parois perforées : méthode d’aspiration-soufflage, permet de mettre en ceuvre un controle
en boucle fermée (aussi appelé controle feedback). C’est un contrdle qui dépend a chaque
instant de la variable d’état du systeme et dont la formulation mathématique (9) est
donnée apres la formulation différentielle du probleme de stabilisation (3).

2 Probleme de stabilisation

Soit 2 un ouvert connexe borné de classe C2 dans R?, d = 2, 3, de frontiére de I' = 9.
Celle-ci est constituée de deux composantes connexes I', and I'y tel que I' = I', UT',. En
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FIGURE 4 — (a) : Ecoulement laminaire ; (b) : Ecoulement turbulent.

FIGURE 5 — En haut : écoulement laminaire ; En bas : écoulement turbulent.
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PROBLEME DE STABILISATION

particulier, le bord I', est la partie de I" ou le contréle frontiere sous forme de feedback
est déterminé.

On considéere un écoulement incompressible stationnaire dans (2 décrit par les équa-
tions de Navier-Stokes adimensionnées ! suivantes :

(@) A%+ Vi Vr=f in 0.
(b) V-1 = in €, (1)
(C) ¢ - on 1—‘l7

() ¥=w, on T,

ou les variables v, r et les parameétres f, ¢, et R, sont définis comme suit :
— 1) : champs de vitesse d’une particule fluide
— 7 : pression
— f: forces massiques s’exercant dans le fluide (ex : la gravité)
— 1, : champs de vitesse au bord
— R, : nombre de Reynolds (sans dimension)

Uy Dy

14

R =

e

avec
e U, - vitesse caractéristique du fluide [m/s]
e D, - dimension caractéristique [m]
e v - viscosité cinématique du fluide [m?/s].

Lorsque la force f et le champ de vitesse au bord 1, vérifient certaines conditions, 'exis-
tence d’'une solution (1, ) satisfaisant (1) est connue dans [14, 20, 32]. En plus, lorsque
le nombre de Reynolds R, dépasse une certaine valeur critique, le systeme décrit dans
(1) est soumis a une perturbation et le champ de vitesse stationnaire 1) est dit instable.

Supposons maintenant qu’a un instant initial ¢ = 0 le champ de vitesse quitte son état
d’équilibre v et soit égal a u(0, x) # 1 (x), ’évolution du couple vitesse pression (u, ¢) au
cours du temps est alors décrite par les équations de Navier-Stokes incompressibles non-

1. Pour faciliter une analyse quantitative des équations de Navier-Stokes, il est d'usage de mettre ces
équations sous forme adimensionnée.
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stationnaires suivantes :

Ju 1

(a) E—EAunL(u-V)u%—Vq:f(x), V-u=0 dans [0,+o00[xQ,

(b) u=290 sur [0, —|—OO[><FZ, (2)
() u=v,+1, sur [0, +oo[xI,

(d) u(0,x) = vy(x) + P (x) dans €,

ou v, est le contréle et v, la perturbation de ’état d’équilibre.

Probleme de stabilisation. En remplacant (u, ¢) par (v + ¢, p + r) dans (2), puis en
utilisant (1), on voit que le coupe (v, p) satisfait le probleme de stabilisation suivant :

(a) g—;’—RLEAV%—(V-V)¢+(¢-V)V+(V-V)V+Vp:0 dans [0, +00[x €,
() V-v=0 dans [0, +o00[x (2,
(¢) v=0 sur [0, +oo[xI, 3)
(d) v=v, sur [0, +oo[xT,
[(e) v(t=0,%x)=vy(x) sur (.

Forme trilinéaire. Afin de donner 'estimation a priori du probleme de stabilisation
des équations de Navier-Stokes (3), nous introduisons la forme trilinéaire

v ve) = [Ty V(vvav) € HYQ) < HU(@) % ()

En intégrant par parties la forme trilinéaire b(-, -, -), on obtient les égalités suivantes :

b(u,v,v) = %/ lv[*(u-n), Yu,v € V(Q), 4)
Fb

b(v,v,v) = %/ [v[*(v-n), Vv € V(Q), (5)
I‘b

ouV(Q) ={ueH(Q) : V-u=0, u=_0surl}. D’apres I'inégalité de Holder, on a :
b(vi, va, V)| < Vil Vvallool[vsll,  Vvi, vy, vy € H'(Q), (6)

o [[ - =l et |- lloo =1 - [lLoe(@)-

17



PROBLEME DE STABILISATION

Estimation a priori. Multiplions la premieére équation de (3) par v et intégrons par
partie sur €2, nous obtenons

__”VH2 + VvaHz + b(V7V7V) + b(¢7V7V> + b(V,¢,V) - / [Vg_:l —pl’l] *Vp- (7)
L

Lutilisation de I'inégalité de Poincaré et des estimations (4)-(6) dans (8) donne

1d ov 1 1
saME AV < [ W=l v =5 [ WP@on =5 [ P ®)

1_‘b Fb
ou 3, = vC} — || V4| avec C, la constante de Poincaré.

Notion controéle feedback. La formulation mathématique de la stabilisation frontiere,
par controle feedback, consiste a trouver v, sous la forme

vy(t) = K(v(t), te(0,00), 9)
ou K est une loi de contrdle a déterminer, de sorte que la vitesse v vérifie par exemple
V() x@) < Clivollx@e™ (10)

avec 0 > 0 une constante fixée et X((2) 'espace d’état adéquat. Notons que dans le cadre
de cette these || - [|x ) = [ - | avec

X(Q)={uel?*Q) : V-u=0dans Q, u-n=0 surI}.

Quelques questions.

Selon la réalité que l'on décrit, le probleme de stabilisation (3) peut se présenter
de plusieurs facons. Par exemple, la fonction ¢ dans (3-a) dépend seulement de l'es-
pace mais, en plus de I’espace, elle peut aussi dépendre du temps. En admettant que le
bord I' soit composé de deux parties connexes I', et [';, des conditions aux limites mixtes
(Dirichlet-Neumann) peuvent étre considérées aussi. Mais, une fois le probleme de sta-
bilisation du type (3) fixé, on pourra se poser quelques questions. Ces questions sont
relatives a ’état cible 1), lequel représente un parametre important dans un probleme
de stabilisation.

e Nous dirons que I’état cible (ou état d’équilibre) v est stable, dans le sens ou
v, = 0 stabilise le probléme de stabilisation (3), pour tout v, € X(2). Par exemple,
B, = vC2 — | V4| > 0 dans (8). Cependant, dans le cas oii la perturbation ini-
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tiale v, est non nulle sur le bord I';, devons-nous prendre v, = 0 comme contrdle ?
Ou devons construire un contrdle v,, sous la forme (9), qui stabilise le systéme (3),
progressivement ? De plus, lorsque v, # 0 sur [',, prendre v, = 0 entraine une dis-
continuité brutale. Avons nous le dispositif (la puissance des vannes, par exemple)
permettant d’appliquer ce type de contréle ? Cette rupture brutale n’entrainera-t-
elle pas des conséquences dommageable pour ce dispositif? Enfin, dans le cas ou
nous choisissons de controler le systeme de facon progressive, pouvons-nous accé-
lérer la décroissance de I'énergie ?

e Nous dirons que I'état cible (ou état d’équilibre) 1 est instable, dans le sens ou,
quelque soit v, € X(Q2), v, = 0 ne stabilise pas le probleme (3). Dans ce cas, est-il
possible de déterminer une loi de contréle K permettant de stabiliser exponentiel-
lement le probleme de type (3)? Notons que lorsqu’un état d’équilibre est instable,
une petite perturbation peut entrainer une croissance exponentielle de ’énergie.
Etant donné une perturbation initiale v, arbitraire dans 'espace fonctionnel X(12),
est-il possible de guider I'état v, initialement en v, jusqu’a I'état final v, = 0? En-
fin, puisque le taux de décroissance joue un role important dans le processus de
stabilisation. On pourra se demander s’il est possible de stabiliser le probleme de
type (3) pour tout taux de décroissance o > 0 fixé i.e.

IV®)llvie) < Clivollv@e™" ¢ > 0.

Nous nous limitons a ces questions méme si d’autres interrogations sont possibles.
A travers quelques méthodes existantes, nous allons apporter des éléments de réponse
a ces questions. Nous commencons cependant par donner les définitions et notations de
quelques espaces fonctionnels usuels.

Dans toute la suite, (2 est un ouvert connexe borné de classe C?> dans R?, d = 2, 3.
La frontiere de ) est notée I' = 0N et elle est constituée de N composantes connexes
Iy, Iy, [s,---,'y. On introduit les espaces de fonctions habituels L?(2), H*(2), H3(9)
et lespace dual H5(Q) = {H;(Q2)}. Nous notons en gras les champs de vecteurs
L2(Q) = (L*(Q))%, H*(Q) = (H*(Q))4, Hy(Q) = (H3(Q))4 et H5(Q) = (H—*(2))%. On utilise
la notation | - |y ) pour les normes, avec en indice I'espace Y ({2) considéré et on note
simplement (- | -) et || - || = || - |2, le produit scalaire et la norme de L?*((2), respecti-
vement. Les mémes conventions sont utilisées pour les espaces de traces L*(T") et H*(T").
En plus, si u € L?(1) est tel que V-u € L?*(12), alors nous notons par u-n la trace normale
de u dans H 2(T'), o1 n est le vecteur unitaire normal de I extérieur a . Enfin, dans
toute l'introduction, nous notons par X(f2) espace de la condition initiale v, et par U(I)
I'espace du controéle v,.
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3 Méthodes classiques

La question de stabiliser les équations de Navier-Stokes incompressibles avec un
controle frontiére a été étudiée par plusieurs auteurs, e.g. A.V. Fursikov [18, 19], V. Barbu
et al. [6, 10, 11, 12, 13], J.-P. Raymond et al. [28, 29, 30] et M. Badra et al. [2, 3, 4]. Dans
ces articles, Les auteurs considérent le probleme de stabilisation (3) avec ¥ = ¥ (x). En-
suite, avec une condition adéquate de Dirichlet au bord, ils transforment le systeme de
stabilisation sous la forme

y' = Ay + Bu+ kF(y,u), y(0)=1y,, (11)

ou y est la nouvelle variable d’état, u la nouvelle variable de controle, A est un opérateur
linéaire et est générateur infinitésimal d’'un semi-groupe, B est un opérateur linéaire, F’
une application non-linéaire et x = 0 ou 1.

Dans [18, 19], ’auteur construit un opérateur K a I'aide d'une procédure d’extension
de la condition initiale y, laquelle nécessite le calcul des vecteurs propres de 'opérateur
de Oseen. Il obtient un controle de la forme u = Ky, avec

X(Q) = {uEHl(Q) : V-u=0dans 2, u=0 surFO,/u.n()}

Iy

Ul = {ueH”*(I), u=0 surl, / u-n=0},
1

oul'=T,UTl, avecI', NI’y = @. Méme si la loi de controle K a été bien caractérisée, elle
dépend cependant du temps et de la condition initiale. Notons que les lois de controle du
type (9) c’est a dire indépendantes du temps et de la condition initiale, sont généralement
préférables dans les applications en ingénierie car elles sont plus robustes par rapport
aux perturbations dans les modéles. En dimension deux, J. P. Raymond a obtenu dans
[30] une loi de controdle frontiere du type (9), ou 'opérateur de contrdle K est déterminé
en résolvant une équation algébrique de Riccati obtenue via la solution d’'un probléeme
de controle optimal. Afin d’obtenir ce résultat cité précédemment, la condition initiale y,
et le controle u doivent respectivement appartenir aux espaces

X(©) = {ueH”” Q) : V.-u=0inQ, u-n=0o0nT},
ur) = {mu6L2(F):/mu-nd§:O},
r

ou 0 < ¢ < 1/4 et la fonction m € C*(T") a valeurs dans [0, 1] permet de localiser le contréle
u qui n’est appliqué que sur une partie de la frontiere. Malheureusement, comme expli-
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qué dans [29], le cas de la dimension trois (3D) est plus exigeant en termes de régularité
de la vitesse y et il ne peut pas étre traité de la méme maniere que le cas bidimensionnel.
En effet, en 3D le contrdle u = K(y) appartient & HY4*/2(0, 0o; L%(T')) avec 1/2 < ¢, et
dans le cas particulier ol 1/2 < ¢, I'espace H'/**/2([0, co[; L?(I')) est un sous espace de
C([0, 00[; L?(T")), impliquant ainsi la vitesse initiale a satisfaire la condition de compati-
bilité au bord y,| = K(y,). Plus précisément, pour une donnée initiale y, qui ne satisfait
pas yolr = K(y,), il n’est pas possible d’obtenir une solution avec la méthode de point
fixe. Afin de faire coincider la trace de la condition initiale et le retour d’état frontiere
initial, Pauteur introduit dans [29] une loi de feedback dépendant du temps sur un in-
tervalle transitoire initial [0,¢)]. Cette loi se calcule a l'aide d’'une équation de Riccati
différentielle sur [0, ¢,[ et d'une équation de Riccati algébrique sur [t,, +oo[. En plus, pour
obtenir le résultat de stabilisation par 'approche de Riccati, des espaces particuliers de
conditions initiales donnés dans [4] sont utilisés.

L'étude réalisée dans [29], améliore d'une certaine fagon les résultats obtenus dans
[10, 11], ot un controle frontiere tangentiel basé a la fois sur 'approche de Riccati et
Papproche spectrale est utilisé. Le cas 3D est tres exigeant en termes de régularité de
la vitesse. Cependant dans [11], Pauteur établit une loi de feedback du type (9) par la
résolution d’un probléme de controle optimal avec une fonction cotit qui met en jeu la
norme L?(0, co; H*?+5(Q2)) de I’état, pour ¢ > 0 assez petit. Par contre, comme expliqué
dans [11], I’équation de Riccati dont dépend la loi de feedback est mal posée. Celle-ci est
définie faiblement pour un espace de fonctions tests qui dépend de la solution de ’équa-
tion. Cette difficulté est intrinsequement liée a la condition de compatibilité de la trace
de la condition initiale. Celle-ci est nécessaire pour obtenir la décroissance exponentielle
de la solution des équations de Navier-Stokes en 3D. En effet, pour obtenir cette condi-
tion, les auteurs ont choisi un opérateur d’observation trop fortement non borné qui ne
permet pas d’obtenir une équation de Riccati en un sens classique. Afin d’obtenir une
équation de Riccati bien posée pour d = 3, 'auteur choisit dans [29] une fonction cotit qui
met en jeu une norme tres faible de la variable d’état.

Rappelons que dans [29], une loi de feedback dépendant du temps dans un intervalle
transitoire initial a été introduite. Comme expliqué dans [3], trouver une loi de controle
indépendante du temps, laquelle satisfait y,|. = K(y,) pour une classe donnée de condi-
tions initiales y,, n’est pas évident. Ce probleme est ainsi étudié dans [3] aussi bien en
dimension deux qu’en dimension trois, et il a conduit a la recherche du contréle v, dans
un systéeme étendu composé du probleme d’évolution

ov

8_tb —Apvy,—on=K(v,vy), v,(0) =vp,
couplé avec le systeme de Navier-Stokes original, ou A, représente l'opérateur de
Laplace-Beltrami et la loi de contréle K agit maintenant sur le couple (v, v,). Dans cette
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étude, l'espace fonctionnel X (2) de la condition initiale est défini comme suit

X(Q)={uecH(Q) : V-u=0in, /u-nzO},
T
avec s € [%2,1]\{1/2}, l'opérateur K est obtenu a partir d’'une équation de Riccati bien
posé et le controle v, est défini sur une partie I' arbitrairement choisie.

Afin de stabiliser les équations de Navier-Stokes autour d'un état stationnaire, sauf
dans les papiers de A.V. Fursikov [18, 19], des lois de feedback sont déterminées en ré-
solvant une équation de Riccati algébrique de dimension infinie [3, 4, 9, 10, 11, 29, 30].
Bien que notre étude ne porte que sur la construction d’un contrdle frontiere, 'approche
de Riccati de dimension infinie évoquée ci-dessus, s’applique aussi aux cas de controles
internes [7, 13]. Dans le cas ou le controle est obtenue en résolvant une équation algé-
brique de Riccati sur un espace de dimension infinie, un probleme de controéle optimal est
résolu. Dans la pratique, ce probléme est tres difficile a mettre en ceuvre. En effet, les ma-
trices apparaissant dans la version discréte de 'équation de Riccati sont de tres grande
dimension, et la solution II de cette équation tel que K = —B*II par exemple, est éga-
lement une matrice de grande taille et pleine. Cela entraine des probléemes de mémoire
rendant la résolution numérique difficile. En conséquence, 'utilisation de contréleurs de
dimension finie peut étre plus appropriée pour stabiliser les équations de Navier-Stokes.
Notons qu’une telle approche est étudiée dans [8, 12], dans le cas d’'un contrdle interne,
et dans [2, 6, 28], dans le cas d’un controle frontiere. Dans ces études citées ci-dessus, les
auteurs cherchent un controle frontiere u de dimension finie de la forme

N
u=> u(t)p;(x), t>0 xel, (12)

j=1
ou
e N : est la taille de 'espace instable d’un certain opérateur A, c’est a dire si (A, )xen-
représente 'ensemble des valeurs propres complexes de A, N est tel que, pour tout

taux de décroissance o > 0 fixé

® p;,j=1,2,3,...,N : est la fonction propre de A associée a la valeur propre ;.
o u;, j=1,2,3,..., N : est exprimé sous forme de feedback.

Dans [28] ou le cas 2D est traité, un contrdle v, de la forme (12) est obtenu a partir de
la solution d’'une équation de Riccati de dimension finie dans R™*", ou n, est la taille
de I'espace instable de 'opérateur d’Oseen. La méme approche est ensuite élargie dans
[2] pour le cas de la dimension trois. En contréle interne dans [8], au lieu d’utiliser I'ap-
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proche de Riccati, une technique de stabilisation stochastique est utilisée. Celle-ci per-
met d’éviter les difficultés liées a la dimension infinie des équations de Riccati. Ensuite,
une procédure semblable est utilisée dans [6] dans le cadre d'un contréle frontiere.

Dans toutes les études mentionnées ci-dessus, une loi de feedback linéaire est d’abord
déterminée en résolvant un probléeme de controle linéaire (x = 0 dans (11)). Ensuite cette
loi de controle linéaire est utilisée pour stabiliser le systéme non linéaire. Un tel procédé
impose de choisir une vitesse initiale assez petite. En plus, les méthodes employées (par
exemple, 'approche de Riccati) exigent de chercher la condition initiale y, dans des es-
paces suffisamment réguliers, selon que d = 2 ou d = 3. Par exemple, dans [6, Theorem
2.3] pour d =2 on a y, € X(Q) = H/2<(Q) N H(Q) our

H(Q) = {uel?Q) :V-u=0, u-n=0 surl'}, (14)

tandis que dans [2, Theorem 2], pour d = 3, on a 'y, € H5((2), s € (1/2,1] avec V -y, = 0.
Nous avons aussi vu que le taux de décroissance o est arbitrairement choisi dans la plus
part de ces études citées, par exemple [2, 6, 18, 19]. Une fois fixé, ce taux détermine la
valeur de C' > 1 dans (10) et la taille de N dans (13). Cependant, dans ces publications
les auteurs ne précisent pas les valeurs exactes de ces deux constantes. Notons que les
valeurs propres (\,)ien+ de A dépendent du nombre de Reynolds R, (ou de la viscosité v),
de I'état stationnaire v et du domaine (2. Par conséquent, méme pour un taux o petit, la
taille de N peut étre tres grande car dépendant de la répartition des (R\, )ien- dans R.
En ce qui concerne le C dans (10), notons que travailler avec une constante trés grande
n’est pas souhaitable car ce phénomeéne pourrait entrainer une croissance exponentielle
de I’énergie au début du processus.

Il existe cependant des méthodes qui ne cherchent pas une loi de feedback par la
résolution d’'un probléme de controle linéaire. Dans [5] avec une approche différente,
les auteurs étudient le probleme de la stabilisation par controéle frontiére des équations
de Navier-Stokes 2D dans un canal borné. Leur approche consiste a trouver une loi de
feedback en utilisant un actionnement de la vitesse tangentielle. Cette loi a permis aux
auteurs d’obtenir un résultat de stabilité du type (10), avec C=1, pour une vitesse initiale
arbitrairement choisie dans I'espace fonctionnel H((2) défini dans (14).

Nous allons maintenant introduire la méthode utilisée dans cette these et présenter
ses avantages.

4 Nouvelle méthode

Dans cette these au lieu de chercher une loi de feedback par la résolution d'un pro-
bleme de controle linéaire, éventuellement par la résolution d’une équation de Riccati,
une nouvelle approche est proposée. Celle-ci differe aussi de 'approche proposée dans
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[5]. Elle consiste a établir une équation impliquant la dérivée de I’énergie par rapport au
temps et les conditions aux limites. La décroissance exponentielle de ’énergie est obte-
nue en choisissant des conditions aux limites adéquates. Cette méthode a été développée
pour la premiere fois dans [31] pour la stabilisation du systéme de Saint-Venant 1D,
ensuite elle a été appliquée dans [22, 23, 17]. Dans [22, 23], avec les équations de Saint-
Venant, les auteurs stabilisent les réseaux de canaux d’irrigation, tandis que dans [17]
les auteurs traitent un systéme couplant les équations de Saint-Venant aux équations
érosion-sédimentation. Cette thése est cependant consacrée a I’étude du probléme de sta-
bilisation par retour d’état ou "feedback" des équations de Navier-Stokes incompressibles
autour d’'un état stationnaire ou d'un état non-stationnaire donné. Bien que certains au-
teurs utilisent le controdle interne (controle effectué sur une partie interne du domaine)
pour stabiliser le probleme de Navier-Stokes incompressible, le cas d’'un contrdle loca-
lisé sur la frontiere du domaine est considéré dans cette these. Le controle s’exprime en
fonction du champ de vitesse a I'aide d’'une loi de feedback non-linéaire. Celle-ci est four-
nie grace aux techniques d’estimation a priori via la méthode Faedo-Galerkin laquelle
consiste a construire une suite de solutions approchées en utilisant une base de Galer-
kin adéquate. Cette loi de feedback assure la décroissance exponentielle de I'énergie du
probleme discret correspondant. Le systeme satisfait par les solutions approchées étant
non-linéaire, le passage a la limite se fait grace au résultat de compacité [26].

L'approche proposée dans cette these présente plusieurs avantages. Elle permet
d’étudier la stabilisation exponentielle (par contrdle frontiere) des équations Navier-
Stokes non seulement autour d'un état stationnaire, mais aussi autour d’'un état non-
stationnaire. La méthode permet aussi de stabiliser le probleme de Navier-Stokes avec
des conditions aux bords mixtes (Dirichlet-Neumann) autour d'un état d’équilibre donné.
A notre connaissance, 'étude théorique de la stabilisation exponentielle par contréle
frontiere des équations de Navier-Stokes autour d'un état non-stationnaire et la sta-
bilisation exponentielle par controle frontiére des équations de Navier-Stokes avec des
conditions aux bords mixtes autour d'un état d’équilibre donné n’a pas été abordée dans
la littérature. En plus, le résultat de stabilisation ||v(¢,x)|| < ||vy(x)]le™7", ¢ € (0,00), est
obtenu pour un certain ¢ > 0 et pour une vitesse initiale v, arbitrairement choisie dans
H(Q)={uel?) : V-u=0, un=0 surl,}. Cet espace impose moins de régularité a
v, comparé aux résultats cités ci-dessus, par exemple voir [6, Theorem 2.3] et ce résultat
de régularité est indépendant de la dimension d = 2 ou d = 3.

Dans la suite de cette introduction, nous présentons de maniére plus détaillée le
contenu de chacun des chapitres de cette these.
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5.1 - Stabilisation frontiére des équations de Navier-Stokes par un contréle feedback via une méthode de
Galerkin

5 Description des résultats obtenus

5.1 Stabilisation frontiere des équations de Navier-Stokes par
un controle feedback via une méthode de Galerkin

On considere un domaine ouvert 2 de R? (d = 2 ou d = 3), borné connexe de classe C?
et de frontiere 02 = I'. Celle-ci est constituée de deux composantes connexes I', and I'; tel
que I' = I', UT,. En particulier, le bord I', est la partie de I' ou le controle frontiere sous
forme de feedback est déterminé. On considere dans (2, un écoulement incompressible
stationnaire décrit par le couple (v, q,), solution systeme de Navier-Stokes suivant

—vAv, + (v, .V)v,+ Vg, =1f,  dans
V-v,=0 dans ,
o (15)
vV, =V, sur I,
v, =10 sur I,

\

ou la viscosité v est strictement positive, le champ de force f, est dans H™!(Q) et la
condition au bord v, appartient a

VYAT,) = {ue H*(T)) : / u-nd¢=0}.

Iy

Rappelons qu’une solution (v, ¢,) de (15), appartenant & H'(Q) x LZ(Q), est connue dans
[20], ou L3(2) est 'espace des pressions a valeur moyenne nulle :

1@ = {pe @), [ px ax=o}.
Q
Soit 7" > 0 un réel fixé, on pose
Q=10,T[xQ, X,=[0,T[xI, et X,=10T[xI,

et on considere le probleme de Navier-Stokes non-stationnaire suivant

'g—ltl—yAu—&—(u-V)u—FVq:fs dans Q,

V-u=0 dans @,

u=v,+u, sur %, (16)
u=20 sur X,

L1y (x) = v, (%) + vy(x) dans (.

25



DESCRIPTION DES RESULTATS OBTENUS

Le couple (v =u—v,,p = g — q,) satisfait alors le probleme suivant

(@ & vAv (v V), (v, V)V 4 (v V)v £ Vp=0  dans Q
(b) V-v= dans @,
(c) v=u, sur ¥, (17)
(d) v=0 sur ¥,

((e) v(t=0,x)=vy(x) dans €.

Le but du chapitre 1 est de trouver, via le systeme (17), un contrdle u, sur >, qui permet
de stabiliser le probleme de Navier-Stokes (16) autour de I'état stationnaire v.,.

Nous résumons les parties essentielles de ce chapitre, ensuite énoncons le résultat de
stabilisation obtenu.

Espaces fonctionnels. On consideére les espaces des fonctions a divergence nulle

V(Q) = {ueH(Q) : V-u:OdansQ,u:OSurFl,/ u-nd¢=0}, (18)

b

V() = {ueHiQ) : V-u=0dans Q}, (19)
H(Q) = {uel’Q) :V.-u=0, u'n=0 sur Fl,/ u-nd¢=0}. (20)
1_‘b
Nous avons, par définition || - ||v) = | - |lar @), car V(Q2) est un sous espace fermé de

H'(Q).

Définition 5.1. On désigne par V'/?(T,) le sous-espace de HY?(T') formé des fonctions
définies dans T, et dont lextension par zéro sur I' \ ', appartient & H'/*(T"). Soit g €
VI2(T,) tel que g -n # Osur Iy et [. g-nd( =0, on définit par

b

W(Q) = {(v,a) e V(Q) xR, tel que v =agsurl,}, (21)

lespace fonctionnel dans lequel la solution v de (17) sera cherchée.

Formes Linéaires. Afin de définir la formulation faible du probleme de stabilisation
des équations de Navier-Stokes, nous introduisons la forme bilinéaire

a(vy,vy) = / Vv, : Vv, dx, VY(v,,v,) € H(Q) x H(Q),
Q
et la forme trilinéaire
b(vy, vy, v3) = /(VIV)VQ vy dx, Y(v,,v,vy) € HY(Q) x HY(Q) x HY(Q).
Q
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5.1 - Stabilisation frontiére des équations de Navier-Stokes par un contréle feedback via une méthode de
Galerkin

En intégrant par parties la forme trilinéaire 0(-, -, -), on obtient les propriétés suivantes :
2
uvy) = 3 [ lgPuen) dd, e V@), ¥(v.a) € W(Q) 22)
Fb
3
wvvy) = 5 [ leleew g, iva) € Q) (23)
I-\b

En plus, d’apres I'inégalité de Holder, on a :
b(vi, va, v3)| < Vil VVallool[Vsll,  Vvi, vy, vy € Hl(Q)a (24)

ot |- floo = | - [loe (-

Nous allons maintenant construire une base de Galerkin pour 'espace W (Q).

Base de Galerkin pour W(Q). Soient {z;,\;,j = 1,2,3,---} les fonctions propres et les
valeurs propres du probleme spectral de I'opérateur de Stokes suivant :

~ Az, +Vp, =Nz, V-z;=0 inQ  z]r=0. (25)

Comme montré dans [32], 0 < A\; < )\, < -+ < A, — oo lorsque j — oc. En plus, les {z,}
forment une base orthonormale dans V({2) vérifiant :

(zj,2),) = 0y, (26)
(Vz,;,Vz,) =Ny, Vi k=123, ..

Lespace W (Q), défini dans (21), est alors réécrit comme suit :
W(Q) = span(z,) uex-y & span(w), (27)
ou w satisfait le systéme suivant :
—Aw+Vg=0, V-w=0in @, w=0on [, w=gon [}. (28)

Puisque g satisfait [ g-n d¢ =0, le systéme (28) admet alors une unique solution (w, ¢)
b
dans V() x L(Q2) (voir [32]).

Probléeme de stabilisation. Pour stabiliser le systeme (17), nous choisissons de cher-
cher la solution v sous la forme v = z + aw, ou z € V(Q2), w vérifie (28) et a, grace aux
techniques d’estimation a priori, satisfait :

0
| Wy g dc= siv.) 29)
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avec
f(v.a) =aa’® + ba — oy||v|*a — vA; (|w]]?a + 2(w, z)) . (30)

Notons que dans (30)
1 2 1 2
a=5 | lgl(g-n)dc et b=c [ [g[*(v, n)d
Fb 1_‘b

A, est la plus petite valeur propre de (25), o, est une constante positive arbitrairement
choisie et a été introduite pour limiter la taille du contrdle.

Puisque v =z +aw,on av = ag sur [', car z = 0 sur ['. En couplant le systeme (17) avec
I’équation (29), le couple (v, p) satisfait maintenant le probléme de stabilisation suivant :

((a) aa—‘t’—VAV+(V'V)VS+(VS'V)V+(V'V)V+VPO dans @,
(b) V-v=0 dans @,
(c) v=at)g(x) sur X,
(d) v=0 sur %, 31)
() v(0,x)=vy(x) dans Q,
0
() [ g o= v

Le controle « est a priori inconnu et grace a I’équation (31-f), il satisfait une loi de feed-
back non linéaire conduisant a chercher des a(v). Puisque (31-f) est indépendant de x,
la fonction a(v) dépend uniquement du temps. Pour simplifier, a(v) est noté o dans la
suite.

Formulation variationnelle. Nous considérons la formulation variationnelle du pro-
bleme de stabilisation (31).

Définition 5.2. Soit T > 0 un nombre réel arbitraire, nous dirons que (v, «) est solution
faible de (31) sur [0,T) si
_ v € [L7(0, T H(Q)) 1 L2(0, T3 V()]

— Jda € L>(0,T) tel que v =ag sur T,

(a) (dwv,v)+rva(v,v)+b(v,v,V)+bv,v,v)+bv,v,v) =af(v,a), 39)

<b> V(0> = Vo,

pour tout (v,a) € W(Q).
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5.2 - Stabilisation frontiere du modele de Navier-Stokes par contréle feedback autour d’un état
non-stationnaire

Résultat de stabilité. Dans le chapitre 1 nous prouvons le théoréme suivant :

Théoréeme 5.3. Soit \, la plus petite valeur propre de (25). Supposons que l’état station-
naire v, la vitesse initiale v, et le profil g satisfont respectivement

g=v\ —||Vv,]sx >0, (33)
v, € H(Q), (v, -n)neHY*T,), (34)
ge VV4(I,) and o,g-n=v,-non I, with g-n#0, o € R. (35)

Pour toute condition initiale v, arbitraire et satisfaisant (34), il existe une solution (v, «)
dans le sens de la définition 5.2, et une distribution p sur <) tel que (31) soit vérifié. En
plus, v satisfait les estimations suivantes :

vl < Ivolle™®, vt >0, (36)

T
| Ivvelra < clv® @7
0

ou la constante C' > 0, o(t) = oyt + 0, [, a*(s)ds > 0 avec o, > O et 0 < oy < .
Remarque 5.4. Le taux de décroissance o(t) est fonction du contréle o

Remarque 5.5. Avec la condition (33), la cible v, est naturellement stable dans le sens
ol si « est identiquement nul (o« = 0), le systeme (31) se stabilise seul. Cependant, si la
condition initiale v, et le profil g sont tels que a,g-n = v, -n # 0 sur '), par exemple, le
controéle « n’est pas identiquement nul (voir Proposition 3.1).

5.2 Stabilisation frontiere du modele de Navier-Stokes par
controle feedback autour d’un état non-stationnaire

On considere ici un domaine ouvert 2 de R? (d = 2 ou d = 3), borné connexe de classe
C? et de frontiere T'. Celle-ci est constituée de deux composantes connexes I'; et T, tel
que I' = I', UT',. En particulier, le bord I', est la partie de I, ou le contréle frontiere sous
forme de feedback est déterminé. Soit 7" > 0 un nombre réel fixé, on pose ) = [0, T[x(2,
Y, = [0,T[xI,, ¥, = [0,T[x[', et on considere le couple (7, q) solution du systeme de
Navier-Stokes non-stationnaire suivant

(W A -Vt Vg=f  dans Q
V- =0 d 3
) ans @ 38)
P =0 sur X,
L =, sur X,
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ou v > 0 est la viscosité du fluide, f représente la force interne agissant sur le fluide
et 1, la condition au bord sur I',. On dira qu'une solution (¢,x) de (38) appartient a
I'ensemble des vitesses admissibles U/, si elle vérifie
124
sup [ Vap(t, %) < -
t<T

Q

(39)

ou

| =1 ll(z2(2)) et C, est une constante positive définie plus tard dans (46).

On considere une trajectoire (u,p), solution des équations de Navier-Stokes non-
stationnaires

%—?—uAu+(u-V)u+Vr:f dans Q,
V-u=0 dans @),
u=0 sur X, (40)
u=v,+1, sur X,
u(0,x) = vy(x) + ¢ (0,x) dans Q.

ou v, représente le controle et v, peut étre considéré comme une perturbation de I'état
initial (38). En remplacant (u,r) = (v + 1, p+ ¢) dans (40), on obtient le systeme suivant

'%—yAv+(v-V)¢+(¢-V)v+(v-V)v+vp:o dans Q,
V-v=0 dans Q,
v=yv, sur %, (41)
v=>0 sur X,
(V(t =0,x) = vy(x) dans €.

Lobjectif du chapitre 2 est de stabiliser, via le systéeme (41), le probleme de Navier-
Stokes (40) autour d’'un état non-stationnaire ¢ € U,,,.

Nous allons maintenant résumer les différentes parties de ce chapitre et énoncer le
résultat principal.

Définition 5.6. On désigne par V'/2(T',) le sous-espace de HY/*(T') formé des fonctions

définies dans T, et dont lextension par zéros sur '\ T, appartient & HY/?(T). Soit g €

VI2(T,) tel que g-n # 0 sur Ty et [, g-nd( =0, on définit lespace fonctionnel W (Q) par
b

W(Q) ={(v,a) e V() x R tel que v =agsurl,}. (42)

Notons que la solution de (41) est cherchée dans 'espace fonctionnel W (Q).
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5.2 - Stabilisation frontiere du modele de Navier-Stokes par contréle feedback autour d’un état
non-stationnaire

Formes Linéaires. Dans le but de définir la formulation faible du probleme de stabili-
sation des équations de Navier-Stokes, nous introduisons la forme bilinéaire

a(vy,vy) = /QVV1 Vv, dx, Y(v,,vy) € H(Q) x H(Q),
et la forme trilinéaire
b(vy,V,,v3) = /Q(V1 vy vy dx, V(v v, vs) € H(Q) x H(Q) x HY(Q).
En intégrant par parties la forme trilinéaire b(-, -, -), on obtient les propriétés suivantes :
b(u,v,v) = %Q/F \g]2(u ‘n) d¢, Vu e V(Q), ¥V(v,a) € W(Q), 43)
b
b(v,v,v) = %B/F lgl*(g - n) d¢, V(v,a) € W(Q). (44)
b

En plus, grace a [20, Lemma 1.1, page 6] on a

blu,vou)| < C, V][ Vul?, Vv € HAQ), u e HY(Q), (45)

w sid=3
C, = (46)

1/2 .
‘9‘2 sid=2.

Probleme de stabilisation. Afin de stabiliser le systeme (41), nous choisissons de cher-
cher la solution v sous la forme v = z + aw, ot z € V(Q2), w vérifie (28) et grace aux
techniques d’estimation a priori « satisfait :

/Fb[vg—:l—pn]-gdézf(v,a), (47)
ou
f(v,a) = A, + Bya + a0 + b — A, (2<W, z) + aHWHQ) — Ka| vl (48)

avec

1 1
o= [ lePe . n=g [ g,

b

A, =b(w,,z) + b(z, ¢, w), By = b(w, ¢, w).
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Notons que dans (48), les constantes )\, et K sont strictement positives, tandis que les
fonctions b,, A, et B, dépendent du temps. Le choix de v sous la forme v = z+aw entraine
v =ag sur I', car z = 0 sur ['. En couplant le systeme (41) avec I'’équation (47), le couple
(v, p) satisfait maintenant le probleme de stabilisation suivant :

((a) ((;—‘t/—VAV+(V-V)’lﬂ—i—(’l,b'V)V-F(V-V)V-FVp:O dans Q,

() V-v=0 dans Q,

(©) v=alex), sur’s,

(49)

(d) v=0 sur X,

(e) v(0,x) = vy(x) dans ,

9,
D) gy —pml-gdc = fv.a)

\

Notons que le controle « est a priori inconnu et satisfait une loi de feedback non linéaire
grace a ’équation (49-f). Dans le but de déterminer «, conduisant a la détermination du
controle frontiere v, = ag, le systéme (49) est résolu via une procédure de Galerkin qui
consiste a construire une suite de solutions approchées en utilisant une base de Galerkin
adéquate. Un résultat de compacité nous permet ensuite de passer a la limite dans le
systéme nonlinéaire satisfait par les solutions approchées.

Formulation variationnelle. Nous considérons la formulation variationnelle du pro-
bleme de stabilisation (49).

Définition 5.7. Soit T > 0 un nombre réel arbitraire, nous dirons que (v, «) est solution
faible de (419) sur [0,T) si
— v € [L7(0, T H(Q)) 1 L2(0,T; V)],

— Jda € L>=(0,T) tel que v =ag sur T,
(@) {dv,¥) + va(v,¥) + b(v,3, %) + b(v,,v,¥) + b(v,v,¥) = 3f (v, ),

(b) (/Qvﬁdx>(0):/gvo.\~,dxj (50)

Y(¥,d) € W(Q).

La condition initiale (50-b) a sens car pour toute solution de (50-a), on voit que la
fonction ¢t — [, v(t) - V dx est continue (voir [14] Corollaire II.4.2).

Résultat de stabilité.
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5.3 - Stabilisation de type « feedback » du systeme de Navier-Stokes avec des conditions aux limites mixtes

Théoréeme 5.8. Supposons que la vitesse initiale v, et le profil g satisfont respectivement

v, € H(Q), (v, -n)nec HY3(T)), (51)

ge VY2(I',) and ayg-n=v,-n on I, with g-n#0, a, € R. (52)

Pour toute condition initiale v, arbitraire et satisfaisant (51), il existe une solution (v, )
dans le sens de la définition 5.7, et une distribution p sur ) tel que (49) soit vérifié. En
plus, v satisfait les estimations suivantes :

IVOI < lIvolle™®, vt >0, (53)

T
| Ivvora < v, (54)
0
ou C' > 0 est constant et pour tout K > 0 fixé, la fonction o(t) est définie comme suit :
t
o(t) = A B+ K/ oz2(5)ds. (55)
0

Remarque 5.9. Dans (55) la constante positive A est la plus petite valeur propre de (25)
et grace a (39), B, = v — C,sup,<7 [|Vp(t,x)|| est un nombre réel strictement positif. En
plus, le taux de décroissance o(t) > 0 dépend du contréle .

Remarque 5.10. Puisque 5, > 0, la cible v est naturellement stable dans le sens ou,
si « est identiquement nul (o = 0), le systeme (49) se stabilise seul. Cependant, en plus
de (51)-(52), si la condition initiale v, et le profil g sont tels que a,g-n=v,-n # 0 sur [,
par exemple, le contréle o n’est pas identiquement nul.

5.3 Stabilisation de type « feedback » du systeme de Navier-
Stokes avec des conditions aux limites mixtes

On considere un domaine ouvert 2 de R? (d = 2 ou d = 3), borné connexe de classe C?
et de frontiere I'. Celle-ci est constituée de trois composantes connexes I',, I', et I', tel que
I'=T,Ul', UTl,. En particulier, le bord I', est la partie de I', ou le contrdle frontiere sous
forme de feedback est déterminé. On considére le couple vitesse-pression (v,, ¢,) solution
du systeme de Navier-Stokes stationnaire

—vVvAvV,+ (v, -V)v,+ Vg, =f, V-v,=0 dans €,
v,=0 sur I},
(56)
v, =1, sur [',,
(YVV,-n—qn=1, sur [',,
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ou v > 0 est le coefficient de viscosité, f, représente les forces massiques s’exercant dans
le fluide, v, est la condition de Dirichlet sur I', et v, est la condition de Neumann sur
I',. En plus, nous supposons que (v, q,) appartient a H' () x L3().

Soient @ = [0, T[xQ, ¥, = [0,T[x[,, ¥, = [0,T[xI", et ¥, = [0,T[xI, on considere le
couple (u, ), solution du probleme de Navier-Stokes non-stationnaire suivant

(g_?_VAu+(U'V)u+Vq=fS, V-u=0 dansQ,
u(x) =0 sur %,
u(t, x) = u,(t,x) + . (x) sur ¥, (57)
vVu-n—qgn=uy(t,x)+ ¥, (x) sur X,
u(t = 0,%) = v,(x) + V() dans 0,

ou vo(x) est considéré comme une perturbation de ’état stationnaire v,. En substituant
u=v-+v,etq=p+q, dans (57), le systéeme du couple (v, p) qui en résulte s’écrit :

(0

8—;,—Z/AV+(V-V)VS+(VS-V)V+(V'V)V+VPZO dans @,

V-v=0 dans @,

v=_0 sur X,

(58)

v(t,x) = u,(t,x) sur %,

vVv-n—pn = uy(t, x) sur X,
\V(t =0,x) = vy(x) dans €.

Lobjectif du chapitre 3 est de trouver un u, adéquat sur X, et un contréle u, sur X, qui
stabilisent le systeme (58).

Nous allons maintenant résumer les différentes parties du chapitre 3 et énoncer le

résultat principal. Commencons par définir quelques espaces fonctionnels.

Espaces fonctionnels. On considere les espaces des fonctions a divergence nulle sui-
vants :

V(Q) = {ueD(Q), V-u=0}, (59)
V,(Q) = lafermeture V(Q2) dans Hj (1), (60)
V(Q) = {ueH(Q) :V-u=0, u=0surl,}, (61)
Z(Q) = {ueH(Q) :V-u=0, u=0surl UL}, (62)
H(Q) = {uel’Q) :V-u=0, u'n=0surl}}. (63)
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5.3 - Stabilisation de type « feedback » du systeme de Navier-Stokes avec des conditions aux limites mixtes

Remarque 5.11. Puisque V() et Z(QQ) sont chacun un sous espace fermé de H'(Q2), nous
avons, par définition

|- llvey =1 llze = I @)

Remarque 5.12. Puisque Z(12) est un sous espace fermé de H'(52), Z(QQ) est donc un es-
pace de Hilbert séparable. A ce titre, il admet une base orthonormale dénombrable (z,),en
qui sera utilisée dans la suite.

Définition 5.13. Soit I', C I, on désigne par V/?(I,) le sous-espace de H'/?(I") formé des
fonctions définies dans T'; et dont l'extension par zéro sur I\ I'; appartient & H'/*(I'). En
plus, on définit

W(Q) ={(v,a) e V(Q) xR, tel que v=agsurl,} (64)
ol g satisfait

ge VAL, g n#0surl, /g-ndCZO (65)

Remarque 5.14. La solution de (58) est cherchée dans l’espace fonctionnel W (Q), lequel
est défini dans (64).

Base de Galerkin pour W (Q). Dans le cas ou la fonction g satisfait les conditions (80),
on considere ce probléeme de Stokes

(a) —Aw+Vg=0 dans €,

by V-w=0 dans €, 66)
() w=0 sur I'UT,,

(d) w=g sur T',.

Dans le cas contraire, la fonction g est construite en adoptant la démarche suivante :
nous supposons que le bord I', est constitué de deux composantes connexes I'; et I'; tel
que I', =I'y UT',. Ensuite, pour tout g,, g, tels que

g € Vl/z(ro) et / gy -nd¢ #0,
r

1
g, e VYA, et g -n#0 sur Iy,

on construit g tel que.

I6; sur [y,
g = gO 0 (67)

gl sur Fla
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g1 -nd¢
oupf = —frll—. La fonction g définie dans (67) satisfait alors (80), et on considére
fro gy 1 dC
le probleme de Stokes suivant
((a) —Aw+Vg=0 dans Q,
(b) V-w=0 dans €,
() w=0 sur [ UL, (68)
(d) w=pg, sur [,
L(e) w=g sur I';.

Puisque w =g sur ', =, UT', le systeme (66) ou (68) admet une solution unique (w, q)
dans H'(Q) x LZ(Q) (voir [14, Proposition II1.4.1]). Par ailleurs, pour toute fonction z €
Z(1)) définie dans (62) et pour tout a € R, nous avons v =z + aw € W(2). En effet, nous
avons z,w € V(Q2) et puisque z = 0 on I, alors v = ag sur I'.. D’apres la remarque 5.12,
I'espace Z((2) admet une base orthonormale (z,),cn. La suite w, z,, z,, z;,--- , est alors
linéairement indépendante. Par conséquent, I'espace de la solution v du systeme (58) est
réécrit comme suit :

W(Q) = span(w) & span(z, ) e (69)

Formes linéaires. Afin de définir la formulation faible du probleme de stabilisation des
équations de Navier-Stokes, on introduit la forme bilinéaire

a(vy,vy) = /QVV1 Vv, dx, Vv, e H'(Q), j=1,2,

et la forme trilinéaire

b(vy, vy, v3) = /(V1 V)vy-vydx, Vv, e H(Q), j =12
0

En intégrant par parties la forme trilinéaire b(-,-,-), on obtient les identités suivantes
suivantes :

2
Wvovow) = g [P do+ S [P d Vv e W@, (70)

3
bv.vy) = / oz ) dC + % / glg ) d, Y(v.a) eW(Q). (D)
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Grace a I'inégalité de Holder, la fonction b satisfait

’b<V1’V2aV3>| < ||V1||L3(Q) ||VV2|| ||V3||L6(Q): VVj € Hl(Q)y Jj=123
En plus, d’apres les inégalités de Sobolev généralisées, on a
1 1
IVillLs) < ClivillZ[[Vvi|Z and  [JvgllLee) < Cl[Vvg|l,  ford =23,

ou C' est une constante positive. On obtient, alors

[b(v1, Vo, va)| < ViV 2 [V [V ] (72)

Probleme de stabilisation. Avant de donner le probleme de stabilisation, nous allons
définir la loi de contrdle et la condition de Neumann u, sur >,. Rappelons que la solution
v est cherchée sous la forme v = z + aw, ou z € Z(Q2), a € R et w vérifie (66) ou (68).
Grace aux techniques d’estimation a priori, le controle « satisfait :

ov
/pb[ya_n_pn]'gdc_}—(v’a% (73)
ou
F(v,a) = aea2 +ba— A, (ozHWH2 + 2<w,z>) +2p5,(Vw,Vz) — Ka|]v||2, (74)

avec A\, 3, >0,
1 2 1 2
a, =5 | lgl'(g-mn)d¢ et b= [ |g[(v, n)dC
2 Jr, 2 Jr,

Concernant la condition de Neumann u, sur ¥, rappelons que si I’écoulement est sortant
sur I',, v-n > 0 et §'il est entrant, v-n < 0. Par ailleurs, puisque par construction, w = 0
sur I',, on a v = z sur I',. En plus, la fonction z est inconnue sur I',. Pour tenir compte
des deux cas : écoulement rentrant \ écoulement sortant, nous prenons la condition aux
limites absorbante (voir [14, Page 247]) sous la forme
1 _ _

u, =~z [(v,'n)"+(z-n)"| sur T, (75)
En rappelant que les parties positives et négatives de tout réel x, sont définies par 2+ =
max(z,0), = = min(z,0), de sorte que 'on a 2z = 2+ — 27, la condition (75) est déduite
de (70)-(71), en utilisant seulement les termes en z. En couplant le systeme (58) avec
I’équation (73) et la condition (75), le couple (v, p) satisfait maintenant le probléme de
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stabilisation suivant :

((a) g—z—yAv+(v-V)v5—|—(vS-V)v+(V-V)v+Vp:0 dans @,
(b) V-v= dans @,
(c) v= sur %,
(d) v =oat)g(x) sur %, (76)
() vVv-n—pn= —%z (v, n)” + (z-n)”| sur X,
(1) [ oV ) g i = Fivo),
[(g) v(t=0,x)=vy(x) dans €.

Notons qu’ici encore, le contrdole o est a priori inconnu et satisfait une loi de feedback
non linéaire grace a 'équation (76-f). Dans le but de déterminer «, conduisant a la dé-
termination du contréle frontiere v, = ag, le systeme (76) est résolu via une procédure
de Galerkin qui consiste a construire une suite de solutions approchées en utilisant une
base de Galerkin adéquate. Un résultat de compacité nous permet ensuite de passer a la
limite dans le systéme non-linéaire satisfait par les solutions approchées.

Formulation variationnelle. En intégrant par parties sur €2 le probleme de stabilisa-
tion (76), nous obtenons une formulation faible qui conduit a la définition suivante

Définition 5.15. Soit T' > 0 un nombre réel arbitraire et v, € H(2), nous dirons que
(v, «) est solution faible de (76) sur [0,T) si
(i) v € [L(0, T;H(Q) N L2(0,T5 V()]

(i) o € L>(0,7T) tel que v(t,x) = a(t)g(x) sur ',
(iit) Vv =z + aw € W(Q), la formulation variationnelle suivante est satisfaite

((a) (dyv, %)+ va(v,¥) + b(v,v,,¥) + b(v,,v,V) + b(v,v,V)

) S

~arwa) L [ @a(ven taw ) an

G </Qv-wx> (O)Z/QVO-GI;X.

Ici aussi, la condition initiale (77-b) a du sens car pour toute solution de (50-a), on voit
que la fonction t — [, v(t) - v dx est continue.

La principale réalisation du chapitre 3, est le résultat de stabilisation suivant.
Résultat de stabilité.
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5.4 - Méthode des caractéristiques-Galerkin pour le contréle frontiere des équations de Navier-Stokes

Théoréeme 5.16. Supposons que l’état stationnaire v, solution de (56) satisfait
B, =v—Cy|[Vv,] >0, (78)

ou la constante C, > 0 est définie dans (3.36). Supposons que la vitesse initiale v, et le
profil g satisfont respectivement

v, € H(Q), (v, -n)nec HY*T),), (79)
ge VY3I,) and oyg-n=v,-non I', with g-n#0, a, €R. (80)
Pour toute condition initiale v, arbitraire et satisfaisant (79), il existe une solution faible

(v,«) dans le sens de la définition 5.15, et une distribution p sur < tel que (76) soit vérifié.
En plus, il existe une constante positive o tel que v satisfait

t
IVl < vl exp (—at—K / a2<s>ds), (81)
0

ot la constante K > 0 est fixée. En outre,

T
/ IVVIP < G, lvol. (82)
0

ou la constant C, dépend de v.

Remarque 5.17. Avec la condition (78), la cible v, est naturellement stable dans le sens
ou, sia« =0etz=0surl, lesysteme (76) se stabilise seul. Dans le cas ou z = 0 sur I',,
en plus de (79)-(80), si la condition initiale v et le profil g sont tels que a,g-n = v, -n #
0 sur '), par exemple, le contréle a n’est pas identiquement nul.

5.4 Meéthode des caractéristiques-Galerkin pour le controéle fron-
tiere des équations de Navier-Stokes

On considére un domaine ouvert ) de R? (d = 2 ou d = 3), borné connexe de classe
C? et de frontiere 9O = T'. Celle-ci est constituée de trois composantes connexes I';, T,
et I', telque I' =T, Ul UT,. En particulier, le bord I', est la partie de I" ou le contrdle
frontiere sous forme de feedback est déterminé. On considére dans (2, un écoulement in-
compressible stationnaire décrit par le couple (v, ¢,), solution systeme de Navier-Stokes
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suivant
(—vAvV, 4+ (v, V)v,+ Vg, =f, dans Q,
V-v,=0 dans €,
v, =V, sur T, (83)
v, =0 sur I},
(vVv, - n—gn=0 sur I',,
ou v > 0 est la viscosité, f, le champ de force et v, la condition au bord sur I';.
Pour tout 7' > 0 fixé, on pose @ = [0,7T[xQ, ¥, = [0,T[xI',, £, = [0,T[x[, et
¥, = [0,T[xI, et on considere le probleme de Navier-Stokes non-stationnaire
(OJu
a—szu%—(u-V)u+Vq:fS dans @,
V-u=0 dans (),
u=v,+u, sur X, (84)
u=20 sur ¥,
vVu-n—gqn=>0 sur X,
(1y(x) = v (%) + v((x) dans Q,
ou u, représente le contréle et v, la perturbation de ’état initiale.
En remplacant (u,q) = (v + v,,p + ¢,) dans (84), on obtient le systéme
((a) 88_;7 —VAVH (v -V)v,+ (v, - V)v+(v-V)v+Vp=0 dans Q,
(b) V-v=0 dans @,
(c) v=u, sur %, (85)
(d) v=0 sur %,
() vWv-n—pn=20 sur X,
\(f) v(t=0,%x) = vy(x) dans (.

Nous allons utiliser la méthode des caractéristiques pour définir le probleme de sta-

bilisation discret en temps, correspondant au systéeme (85).
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Discrétisation en temps du probléme de stabilisation. Soient X (7;¢,x) et Y (7;t,x),
les solutions en 7 des équations différentielles ordinaires

(a) % = v(r, X(7;t,%)) si X(15t,x) € Q,
=0 sinon, (86)
(b) X(t;t,x) =x,
@ L v f2v Y (tx) sV (a0,
T: 0 sinon, (87)

(b) Y(t;t,x) =x.

Dans ces équations, X (-; ¢,x) ou Y (-; ¢, x) représente la position de la particule a I'instant
T qui se trouve au point x = (z, 7y, 7;) au temps t. Lorsque * =0 < t! <> < - <tV =T,
les pieds des caractéristiques X (t"1; ", x) et Y (¢"';¢",x) sont calculés a partir de (86)
et de (87), respectivement :

X"t x) = x — v(t", x)At,

Y ("Lt x) = x — u(t", x)At,
o u=v+2v, et le pas de temps At = t" — "' = T/N. En plus, grace a (86-b) et (87-b),
nous avons X (t";t",x) = Y (t";1",x) = x.

En posant
vi=v(t",x), p'=pt",x), X"=x-v(t"x)At et Y™ =x—u(t",x)At,

la discrétisation en temps de (85) par la méthode des caractéristiques, conduit a

( vn " " n—1
(a) A VAV" + Vp" = A7 dans ©Q,
() V-v"=0 dans €,
(¢) v"=0 sur T, (88)
(d) v"=a,g(x) sur I},
() vVv'-n—p'n=0 sur X,
L(f) v(0,%) = vy(x) dans ,
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Fn—l — (Vn—l o Xn—l +Vn—1 o Yn—l) +VS o Xn—l v (89)

57
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avec v o Z représentant la fonction x — v[Z(x)].

Le but du chapitre 4 est de trouver un contréle «, tel que u, = «,g(x) sur ¥, stabilise
le probleme (88). Avant d’énoncer les résultats de stabilisation obtenus, nous commen-
cons par résumer les parties essentielles de ce chapitre.

Processus de construction de la loi de controle. Puisque le systéeme (88) est li-
néaire, la solution (v",p") est décomposée comme suit

vt = w'+a,w,
B (90)
Pto= g+ g,

ou (w,q) ne dépend pas du temps, alors que (w",¢") représente le terme de correction
calculé a chaque instant. Les détails du processus de construction du contréle sont dé-
crits de la maniére suivante :

(i) Premierement, nous cherchons (w, q) tel que

(a) Ait—yAw—l—Vq:O in
(b) V-w=0 in
(c) w=0 on T, (91)
(d) w=g on I',
((e) YWw-n—gn=0 on I',.

(i) Deuxiemement, a chaque instant, nous cherchons (w”, ¢™) solution de

'(a) X—: —VAW" +Vg"=F"" in Q,
() V-w"=0 in (92)
() whr=0 on I'UTL,
(d) vVw"-n—qg"n=0 on I,.

(iii) Enfin, dans le but de stabiliser (88) avec v = «a,,g(x) sur I';, en utilisant les tech-
niques d’estimation a priori de ’énergie, la quantité «,, doit satisfaire, par exemple,
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la relation suivante

/ [vVv" -n—p'n|-g=—-A\a,, A>0. (93)
r

b

Pour tout n € N, nous supposons

X"x) = x—v'(x)At € Q, (94)
Y'(x) = x—u"(x)At €. (95)

La formule de Taylor nous permet d’obtenir
v, (X"(x)) = v,(x) — AtVv, (x) - v*(x) + O(AL?).
Ainsi, nous supposons
V(X)) = v,(x) = AV, (x) - v (x), (96)
et énoncons les deux propositions suivantes

Proposition 5.1. Soient v, € H(Q), g € V2(I',) avec g # 0 sur I, et v, tel que

1 2vAt
HVvsHS—< 1+ =2 —1), (97)

At C?2

ou C, est la constante de Poincaré. Sous les hypothéses (94)-(95) et (96), il existe un contréle
frontiére a,, sur L', solution de

/ WVv"-n—p'n]-g=-Xa,, A>0 (98)
1—‘b

tel que le systeme (88) avec (v",p") soit exponentiellement stable. i.e. il existe ;i > 0 tel que
v" satisfait

IVl < flvoll exp (=pt™). (99)

Remarque 5.18. Dans la Proposition 5.1, la loi de contréle (98) permet de trouver un
contréle «,, solution d’un polynéme de degré un. Cependant, obtenir un contréle optimal,
en utilisant cette loi de controle, n’est pas évident. La proposition suivante permet ainsi
de définir Uintervalle maximale dans lequel le contréle appartient.
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Proposition 5.2. Sous les hypothéses (94)-(96) et (97), il existe un 0 dans |0, 1] tel que la
solution w" de (92) satisfait

W] < 0[v" 1. (100)

Par conséquence, il existe un contréle frontiere «,, solution d’un polynoéme de degré deux,

rendant exponentiellement stable le systeme (88). i.e. il existe ;1 > 0 tel que
V'l < llvollexp (—pt"). (101)

Pour terminer ce chapitre, nous présenterons des résultats numériques dans le cas
d’un écoulement autour d'un obstacle circulaire.

Nous allons donner la liste des travaux rassemblés dans cette thése et présenter
quelques perspectives ouvertes dans le contexte de la stabilisation frontiere de certains
systemes hydrauliques.

6 Travaux en cours et perspectives

Liste des travaux rassemblés dans la theése. Les différents travaux rassemblés dans
cette these, en collaboration avec Abdou Séne et Daniel le Roux, ont fait I'objet des pu-
blications suivantes
x Chapitre 1 : Boundary stabilization of the Navier-Stokes equations with feedback
controller via a Galerkin method, paru dans Evolution Equations and Control
Theory, Volume 3, Pages 147-166, 2014.
=~ Chapitre 2 : Boundary stabilization of the Navier-Stokes Model with feedback
controller around a non-stationary state, soumis.
* Chapitre 3 : Feedback stabilization of the Navier-Stokes system with mixed boun-
dary conditions, soumis.
* Chapitre 4 : Numerical feedback stabilization of the Navier-Stokes equations
using characteristic-Galerkin method. Le travail en cours sera soumis en juillet
2014.

Nous allons maintenant présenter quelques perspectives ouvertes par les travaux effec-
tués dans cette these.

Controle en dimension fini N. Dans le théoreme 5.3, un résultat de stabilité est ob-
tenu pour une condition initiale arbitrairement choisie dans H({2). Cependant, le taux de
décroissance o est fixé par la condition (33). Lorsque )\, désigne la N-iéme valeur propre
de 'opérateur de Stokes défini dans (25), notre prochain objectif est d’essayer d’obtenir
un taux de décroissance limité par A\ i.e. 0 < 0 < vy — ||Vv,||. Ce résultat permet-

44



5.4 - Méthode des caractéristiques-Galerkin pour le contréle frontiere des équations de Navier-Stokes

tra non seulement d’augmenter le taux de décroissance, mais aussi de stabiliser une
classe plus large d’états stationnaires v,. L'utilisation de 'opérateur de Oseen pourrait
étre envisagée car, dans la plupart des travaux cités, cet opérateur a permis d’obtenir un
résultat semblable pour des conditions initiales assez petites.

Probleme de Saint-Venant ou “Shallow water”. Sans les forces de frottement et
la force de Coriolis, le probleme de Saint-Venant 2D, dans sa forme conservative, est
caractérisé par le systéme suivant :

(
(a) % —vAu+ (u-V)u+gVh=0 dans Q,
oh (102)
(b) E—FV-(hu):O dans Q,
+ condition initiale et conditions aux bords

ou u représente la vitesse, 4 la hauteur du fluide, v le coefficient de diffusion et ¢ le coeffi-
cient de gravité. Ce probleme décrit un écoulement a surface libre en eaux peu profondes.
La stabilisation frontiere du probleme (102) n’a pas été abordée dans la littérature. Ce-
pendant, le cas linéaire a été traité dans [16] ou les auteurs obtiennent un résultat de
stabilité du systeme de Saint-Venant grace a une méthode basée sur la symétrisation
des matrices de flux du modéle linéarisé et 'analyse des invariants de Riemann. Pour
stabiliser le modéle non-linéaire, nous aimerions utiliser la méthode proposée dans cette
these.

Méthodes Numériques. Le probleme de stabilisation tel que défini dans les trois pre-
miers chapitres nécessite que I'on utilise a la fois deux conditions sur le méme bord. Par
exemple dans le systeme (76) nous avons :

(a) v=oa(t)g(x) sur X, = [0,T[xT,
(103)
(b)/F [vVv-n—pn]-gd{=F(v,a).

C’est la raison pour laquelle nous avons proposé dans cette thése une approche numé-
rique basée sur une méthode de Lagrange-Galerkin (ou méthode des caractéristiques).
Celle-ci stabilise le probleme de Navier-Stokes et peut étre plus facilement implémen-
tée. Cependant, la loi de contrdole numérique utilisée est différente de celle définie dans
la théorie. Pour mieux consolider les résultats théoriques, nous envisageons d’utiliser
d’autres approches numériques comme la méthode de Galerkin discontinue en espace et
les méthodes explicites de Runge-Kutta en temps, appliquées aux équations de Navier-
Stokes incompressibles.
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Chapitre 1

Boundary stabilization of the
Navier-Stokes equations with
feedback controller via a Galerkin
method

Abstract

In this work we study the exponential stabilization of the two and three-dimensional Navier-
Stokes equations in a bounded domain (2, around a given steady-state flow, by means of a bound-
ary control. In order to determine a feedback law, we consider an extended system coupling
the Navier-Stokes equations with an equation satisfied by the control on the domain boundary.
While most traditional approaches apply a feedback controller via an algebraic Riccati equation,
the Stokes-Oseen operator or extension operators, a Galerkin method is proposed instead in this
study. The Galerkin method permits to construct a stabilizing boundary control and by using en-
ergy a priori estimation technics, the exponential decay is obtained. A compactness result then
allows us to pass to the limit in the system satisfied by the approximated solutions. The resulting
feedback control is proven to be globally exponentially stabilizing the steady states of the two and
three-dimensional Navier-Stokes equations.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

1 Introduction

Let 2 be a bounded and connected domain in R? (d = 2,3), with a boundary I of class
C?, and composed of two connected components I', and ', such that T' = T',UT,, in order to
impose two different boundary conditions specified in (1.1). In particular, the boundary
I', is the part of I', where a boundary control in feedback form has to be determined.
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The usual function spaces L*(Q), H*(Q2), HS(2) are used and we let L?(Q2) = (L*(Q2)),
H*(Q) = (H*(Q))4, H () = (H5(Q2))?. Negative ordered Sobolev spaces H*(2)(s > 0) are
defined as the dual space, i.e., H™*(Q2) = {H§(2)}'. We denote by (- | -) and || - || = || - || L2(0),
the scalar product and norm in L?(Q2), respectively. Moreover, if u € L?(2) is such that
V - u € L*(Q), then we denote the normal trace of u in H™2(I') by u - n, where n denotes
the unit outer normal vector to I'.

We consider a stationary motion of an incompressible fluid described by the velocity
and pressure (v, q,), which is the solution to the stationary Navier-Stokes equations

(

—vAv, + (v,.V)v,+ Vg, =1f, inQ,
V-v,=0 in 2
v e (1.1)
V.S - Vb on Fb’
(Vs =10 on I,

In this setting, v > 0 is the viscosity, f, is a function in L2(Q), v, belongs to V2(T") defined
as V3(I') = {u € HY*(I) : [Lu-nd¢ = 0}. Recall [17] that a solution (v,,q,) to (1.1) is
known to exist in H'(Q) x L(Q). For T > 0 fixed, let Q = [0,T[xQ, ¥, = [0,T[xT, and
¥, = [0,T[xI', and consider (u, ¢) solution of the non stationary Navier-Stokes equations

(aa—ltl—z/Au—F(u Viu+Vg=f, inQ,
V-ou=0 in Q,
u=v,+u, on X, (1.2)
u=20 on X,
([ 1y(x) = v (%) + vp(x) in ).
Consequently, the couple (v =u — v, p = ¢ — ¢,) satisfies the following system
(a) g—‘;—VAV+(V Vivi+ (v, - V)V+ (v-V)v+Vp=0 1in@Q,
by V-v=0 in Q,
© v=u, ony, (3
(d v=0 on Y,
(e) v(t=0,x)=vy(x) in Q.

In order to stabilize the unsteady solution u of (1.2), for a prescribed rate of decrease
o > 0, we need to find a control u, such that the components v of the solution (v, Vp) to
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the boundary value problem (1.3) satisfies the exponential decay :
[v(t,x)[| < Ce " [lvg(x)[l. t€(0,00), (1.4)

for a constant C' > 0 independent of v (x). It’s worth noticing that, in the present paper,
we let C' = 1.

The control u,(¢) is called a feedback if there exists a mapping F' : X(Q2) — U(I)
such that

w(t) = F(v(t)), te(0,00), (1.5)

and the corresponding feedback law in (1.5) is pointwise in time. However, the feedback
law may be chosen in a different manner, for example as

u, = vy, (1.6)

where Fj, is a mapping belonging to £(X(Q2), U(T',)), but in that case, the feedback law
probleme de stabilisation pointwise in time. The spaces X(2) and U(I',) will be defined
accordingly. Pointwise feedback laws are usually needed in engineering applications as
they are more robust with respect to perturbations in the models.

Different approaches have been pursued in the past, which first determine a linear
feedback law by solving a linear control problem for the linearized system of equations
(for example the Oseen system) and then use this linear feedback law in order to stabilize
the original non linear system (for example the Navier-Stokes system). In such a frame-
work, several significant questions have to be addressed. First, do we obtain a pointwise
feedback law able to stabilize the linearized system ? Secondly, by assuming that F' is a
pointwise (in time) feedback law able to stabilize the linear system in X((2), does F' also
stabilize the nonlinear system for v,(x) in a subspace of {u € L*(Q?) : V -u = 0}, with
lvo(x)|| small enough ? Finally, assuming that the existence of a feedback law stabilizing
the linear system is proved, is it possible to obtain a well posed equation characterizing
F, for example a Riccati equation, which can be numerically solved by classical methods ?

These questions of stabilizing the Navier-Stokes equations with a boundary control
have been first addressed by A.V. Fursikov in [14, 15], where stability results for the two
and three-dimensional Navier-Stokes equations are proved by employing an extension
operator. With an adequate extension procedure for the initial velocity condition v,(x)
in (1.3), which requires the knowledge of the eigenfunctions and the eigenvalues of the
Oseen operator, the author obtains a boundary control of the form u, = Fv,, where
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Fy € L(X(€), L*([0, 00[; U(T,))) and

X(Q) = {uerl(Q):V-uinnQ,u:OOnFl,/u-ndC:O},
Fb
ulr, = {uerl/Z(F):u:OonFl,/ u-nd¢ =0},

Ly

with £ > 1. However, if the feedback controls are well characterized, the corresponding
laws are not pointwise in time.

In [24], as far as the two-dimensional case is concerned, J.-P. Raymond has obtained
boundary feedback control laws, pointwise in time, where the feedback controller is de-
termined by solving an algebraic Riccati equation obtained via the solution of an optimal
control problem with

X(Q) = {ueH"(Q) : V-u=0inQ u-n=0o0nTl},
Ul) = {muel?I): /mu~nd§=0},
r

where 0 < ¢ < 1/4 and m € C*T). Unfortunately, the three-dimensional case is more
demanding in terms of velocity regularity, as explained in [23], and it cannot be trea-
ted in the same manner as the two-dimensional case. Indeed, in the three-dimensional
case the feedback controller needs to satisfy F(v) belonging to HY/4+</2(0, co; L*(T")) with
1/2 < ¢, and in the particular case 1/2 < ¢, the space H'/*+</2(]0, oo[; L?(T")) is a subspace
of C([0,00[; L*(T")), implying that the velocity v has to satisfy the initial compatibility
condition v,|. = F(v,). This is the reason why the feedback law used in [24] cannot be
employed in the three-dimensional case, and why this difficulty has been overcome in
[23] by introducing a time dependent feedback law in an initial transitory time interval.
In order to obtain a stabilization result via the Riccati approach, particular spaces of
initial conditions have to be employed that are given in [3].

The study, performed in [23], also improves in some way the results obtained in [8, 9],
where a tangential boundary stabilization of two and three-dimensional Navier-Stokes
equations is employed with both Riccati-based and spectral-based (tangential) feedback
controllers. In [9], for the three-dimensional case which is highly demanding in terms
of velocity regularity, the existence of boundary feedback laws, pointwise in time, is es-
tablished by solving an optimal control problem with a cost functional involving the
L2(0,00; H¥?*¢(0))) norm of the velocity field, for some 0 < ¢ small enough. However,
such a feedback law cannot be characterized by a well posed Riccati equation, as shown
in [9], and the numerical calculation of the feedback control thus becomes problema-
tic. In [23], for the three-dimensional Navier-Stokes system, J.-P. Raymond chooses a
functional involving a very weak norm of the state variable which leads to a well posed

52



CHAPITRE 1. BOUNDARY STABILIZATION OF THE NAVIER-STOKES EQUATIONS WITH
FEEDBACK CONTROLLER VIA A GALERKIN METHOD

Riccati equation.

Recall in [23], a time dependent feedback law in an initial transitory time interval
was introduced. As mentioned in [2], the problem of finding a time independent feedback
controller satisfying v | = F(v,), for a sufficiently large class of initial conditions v,, is
not obvious. This problem has been examined in [2] for the two and three-dimensional
case, and it has led to search for solutions u, satisfying an extended system composed of
the evolution system

% —Apu,—on=F(v,u,), u,(0)=vy,
coupled with the original Navier-Stokes equations, where the feedback controller ' now
acts on the pair (v, u,) and A is the vector-valued Laplace Beltrami operator. The space
X () is now defined as

X(Q)={ueH(Q) : V-u=0inQ, u-n=0o0nT},

with s € [42,1]\{1/2}, the oprerator F is found from a well-posed Riccati equation and
the controller u,, localized on an arbitrary small part of I', can be obtained.

In the purpose of stabilizing the Navier-Stokes equations around a stationary state,
the feedback control laws are determined by solving a Riccati equation in most of the
studies cited above [2, 3, 7, 8, 9, 23, 24], except in the Fursikov’s papers [14, 15]. The
Riccati equation is obtained via the solution of an optimal control problem and it is
stated in a space of infinite dimension. Although our study is only concerned with the
construction of boundary controllers, the Riccati approach described above, stated in a
space of infinite dimension, applies as well to the case of internal control [5, 11].

In the case the feedback controller lies in an infinite-dimensional space, an optimal
control problem has to be solved, involving the minimization of an objective functional.
In practice, the control is calculated through approximation via the solution of an al-
gebraic Riccati equation, which is computationally expensive. Consequently, the use of
finite-dimensional controllers may be more appropriate to stabilize the Navier-Stokes
equations. Such an approach is performed in [10], in the case of an internal control, and
in[1,7,8,9,22], in the case of a boundary control. Recall the Riccati equation is stated in
a space of infinite dimension in [7, 8, 9]. In [1, 10, 22], the authors search for a boundary
control u, of finite dimension of the form

N

u, = Zuj(t)cpj(x), t>0,xel, (1.7

J=1

where (¢,),_1 5 n 18 a finite-dimensional basis obtained from the eigenfunctions of
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some operator and u = (uy,uy, us,...,uy) is a control function expressed with a feed-
back formulation. In [22], where d = 2, the feedback control is obtained from the solution
of a finite-dimensional Riccati equation stated in R"<*", where n, is the dimension of
the unstable space of the Oseen operator. The same approach is then extended in [1]
for the three-dimensional case. However, in [10, 22] the minimal value of N is a priori
unknown while in [1], NV is greater or equal to the maximum of the geometric multipli-
cities of the unstable modes of the Oseen operator. Finally, finite-dimensional stabilizing
feedback laws of the form of (1.7) are obtained in [6] and [4], in the case of internal and
boundary control, respectively. Instead of employing the Riccati approach, a stochastic-
based stabilization technique is employed in [6] which avoids the difficult computation
problems related to infinite-dimensional Riccati equations. The procedure employed in
[4] ressembles the form of stabilizing noise controllers designed in [6].

In all the above-mentioned studies, a linear feedback law is first determined by sol-
ving a linear control problem for the linearized system of equations and then this linear
feedback is used in order to stabilize the original non linear system. However, such a
procedure imposes to choose the initial velocity small enough. Further, the employed me-
thods (e.g. the Riccati approach) require to search for the control u, and the initial condi-
tion in sufficiently regular spaces, depending on whether d = 2 or d = 3. For example, in
[4, Theorem 2.3], we have

HQ) = {uel?Q) :V:-u=0, u'n=0 surl}, (1.8)
X(Q) = HY>¢Q)nH(Q), (1.9)

in the case d = 2 and, for v, € X(?), with [vy|xq < p and p sufficiently small, the
function v satisfies the following stability estimate ||v|xq) < Ce™"||vy|lx(q), for all t > 0
and for some o > 0, but the value of C is not precisely given. Note that, in the case d = 3,
no control is proposed in [4] to stabilize the non linear Navier-Stokes equations. Further,
in [1, Theorem 2], we have v, € H*(Q) with V - v; = 0, s € [0,1/2) and [[Pvy|lg. o) < ¢in
the case d = 2, where P is the Leray projector, and v, € H}(f2) with V- v, = 0, u = 0,
s € (1/2,1] and ||v|

() < ¢1n the case d = 3, and stability estimates are also obtained.

In this paper, a new approach is proposed. Instead of obtaining the feedback law by
first solving a linear control problem for the linearized system of equations, eventually
via the resolution of a Riccati equation, an extended system is considered. Indeed, in (1.3)
the boundary control u, is rewritten on the form u, = a(t)g(x) on X, where g € HY/?(I")
is assumed to verifyg=0on[,,g-n# 0on I, and be g -n d¢ = 0. The quantity a(¢) is a
priori unknown. In order to stabilize (1.3), with u, = «a(t)g(x) on 3J,, by employing energy
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a priori estimation technics, the quantity «(¢) is found to satisfy the relation

ov

f(v,a) = /r [U(f‘)_n —pn] - g dC, (1.10)

where f is a polynomial in «(¢) of degree 2. Note that «(t) depends nonlinearly on v
and hence «(t), which reads a(v(t)), satisfies a nonlinear feedback law. Such a feedback,
pointwise in time, ressembles to (1.5) but the mapping F' is nonlinear here.

The system (1.3) is then extended by adding (1.10), and the extended system, na-
mely (1.3) and (1.10) with u, = a(t)g(x) on ¥, is then solved in order to determined «(¢),
leading to the determination of the boundary control u,. Such a boundary representation
of u, is also employed in [21] in the two-dimensional case, where a linear feedback control
da(t)/dt is obtained via the solution of a Riccati equation stated in a space of infinite di-
mension. In the present paper, however, the quantities a(¢), and hence u,, are computed
at the discrete level. Further, contrary to (1.7) and [21], where u,(t), j = 1,2,3,..., N, and
do(t)/dt, respectively, are linear feedbacks, «(t) is nonlinear here and it is thus calcula-
ted through a Galerkin procedure instead of being the solution of a finite-dimensional
Riccati equation, for example.

Note that the Galerkin procedure first consists of building a sequence of approxi-
mated solutions via an adequate Galerkin basis. Because the energy bounds are not
sufficient to pass to the limit in the weak formulation, additional bounds are obtained.
A compactness result then permits to pass to the limit in the system satisfied by the
approximated solution, leading to the existence of at least one weak solution. Such a
procedure relies on technics previously introduced in [19], but it is worth to note that the
work performed in [19] is not related to a stabilization problem.

The approach proposed in this paper has several advantages. First, the stabilization
result in (1.4), i.e. ||[v(t,x)|| < Ce 7" ||vy(x)]], for ¢ € (0,0), is obtained with C' = 1 and for
an arbitrary initial data v, belonging to H(Q) = {u € L?(Q) : V-u=0, u'n=0 sur[}},
implying less regularity on v, than in the case of the previous studies cited above, for
example see (1.9). Further, the regularity results are independent of d and they are thus
obtained in the two and three-dimensional case as well.

The paper is organized as follows. In section 2, the notations and mathematical pre-
liminaries are introduced. The stabilization problem is formulated in Section 3, and the
existence of the solution of the nonlinear Navier-Stokes system is established and the
existence analysis is carried out by applying the Galerkin method. Finally, some conclu-
ding remarks complete the study in Section 4.
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2 Notation and Preliminaries

2.1 Function Spaces

Several spaces of free divergence functions are now introduced :

V(Q) = {ueD(Q) : V-u=0}, (1.11)
V(Q) = {ueHYQ) : V-u=0in®, u:()onr,,/ u-ndc=0}, (1.12)
Fb
V() = {ueH)Q) : V-u=0inQ}, (1.13)
H(Q) = {uel?Q) :V-u=0, u'n=0 OnFl,/ u-nd¢=0}. (1.14)
Ijb
Because V(Q) is a closed subspace of H'((2), we have, by definition | - |[vio) = || - [li: ().

Definition 2.1. Let V'/2(T',) be the space of trace functions that, if extended by zero over T,
belongs to H'/2(T).

Let g such that g € V/2(I',) withg-n # 0 on T, and be g-n d¢ = 0, the solution of (1.3)
coupled with (1.10) is searched in

W(Q)={(v,a) e V() xR, st.v=agonl,}. (1.15)

The following lemma [19], will be used in the sequel.

Lemma 2.2. There exists a constant C, > 0 such that, for all (v,«a) € W(Q), we have

la] < Cyllv]. (1.16)

We now define an Galerkin basis for the space W (Q).

2.2 A Galerkin basis for the space W (Q)

Let {z;,\;,j =1,2,3,---} be the eigenfunctions and eigenvalues of the following spec-
tral problem for the Stokes operator :

— Az, + Vp; = \z,, V-z,=0 1in () z|r = 0. (1.17)
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As shown in [25],0 < A} <)\, <+ < \; — o0 as j — oo, and {z;} forms an orthonormal
basis in V(12) verifying :

<Zj7Zk:> :5]‘1@7 (1.18)
(Vz;,Vz,) = X\;6y, Vi k=123, ... '

373k
The space W (Q), defined in (1.15), is then rewritten as
W(Q) = span(z,,) (nen+} ® span(w), (1.19)
where w satisfies the following system

—vAw+Vg=0, V-w=0in 2, w=0on I, w=gon I,. (1.20)

Since g satisfy [, g-n d{ = 0, system (1.20) hence admits a unique solution (w,q) €
b
V(Q) x L), where L%(Q) is the pressure space with zero mean value :

3@ = {pe @), [ b ax =0}
Q
Note that the existence and uniqueness of (w, ¢) in (1.20) can be deduced from [25].

2.3 Linear Forms

In order to define a weak form of the Navier-Stokes equations, we introduce the conti-
nuous bilinear forms

a(vy,vy) = /QVV1 Vv, dx, Y(v,,vy) € H(Q) x H(Q),
and the trilinear form :
b(vy, vy, vy) = /Q(V1V)V2 vy dx, Y(vy, v, vy) € HY(Q) x HY(Q) x HY(Q).
By integration by parts, the following properties hold true
b, v,v) — %2/11 g2(u - n) dC, Yu € V(Q), ¥(v,a) € W(Q), (1.21)
b

b(v,v,v)

3
%/F lgl*(g - n) d¢, V(v, @) € W(Q). (1.22)
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Thanks to Holder inequality, we obtain
b vav)l < e [V llVslie@: Wi, Vo v € HI(Q), (123)

where || - || = || - [|L(@)-

3 Stability Result

3.1 The stabilization Problem

In order to stabilize the non stationary Navier-Stokes System (1.3), we choose to
search the solution v in the form v = z+aw, where z € V(Q2), and « and w satisfy (1.10)
and (1.20), respectively. We then have v = agon I', as z = 0 on I'. Consequently, the state
(v, p) satisfies the following extended coupled system :

(a) %—:—VAv—l—(V-V)vs—l—(vs-V)V+(V-V)V+Vp:0 in Q,
(b) V-v=0 in @,
() v=oa(t)gx) on %, Lo
(d v=0 on %, (1.24)
(e) V(O,X)az vy (x) in €,
1) [ W -l g dc = f(v.)
where
f(v,Q)(t) = ac®(t) + ba(t) — o|[v(t)[|Pa(t) — v, (||W||2a(t) + 2<W,z(t)>) ) (1.25)

with o, > 0 is a constant, ), is the smallest positive eigenvalue of (1.17) and
1 2 1 2
a=5 | lgl'(g-n)d¢ and b= [ [g[*(v, n)dC.
l—‘b Fb

Recall that « is a priori unknown and thanks to (1.24-f), it satisfies a nonlinear feedback
law leading to search for a(v(¢)). Because (1.24-f) is independent of x, a(v(t)) is a function
of t only. For the sake of simplicity, a(v(¢)) is written « in the sequel.

3.2 The variational formulation

We first state to consider the variational formulation of the extended Navier-Stokes
system.
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3.2 - The variational formulation

Definition 3.1. Let T" > 0 be an arbitrary number, we shall say that (v,«a) is a weak
solution of (1.24) on [0,T) if
~ v € [L7(0, TS H(Q) N L0, T5 V(@)

— Jda € L*>(0,T) such that v = ag on I',

(a) (dyv,v) +rva(v,v)+b(v,v,,V)+b(v,,v,V)+bv,v,Vv) =af(v,a),

) S

(1.26)
(b> V<O) = Vo,

forall (v,a) € W(Q).
Theorem 3.2. Let )\, the smallest positive eigenvalue of (1.17), and assume that the
steady state v, the initial condition v, and the profile g satisfy
g=v\ —||Vv,|e >0, (1.27)
v, € H(Q), (v, -n)nc HY3(T),), (1.28)
ge VY4I,) and oyg-n=vy,-non [, with g- n#0,a, €R.  (1.29)
For arbitrary initial data v, satisfying (1.28), there exists a solution (v,«) in the sense of
definition 3.1, and a distribution p on ) such that (1.24) holds. Moreover, v satisfies the
following estimates :
v < |volle®®, Vvt > 0, (1.30)

T
| Ivvrra < el (1.31)
0

where C' > 0 is a constant, o(t) = oyt + 0, fot a?(s)ds > 0, and the constants o, and o,
satisfy o, > 0and 0 < 0, < a.

Note that the rate of decrease o(t) depends on the control a and the constant o, may
be regarded as an accelerator in terms of stabilization.

Remark 3.3. With the condition (1.27), the equilibrium state v, in (1.1) is naturally
stable in the sense that the system (1.26) stabilizes by itself when « is identically zero.
This explains why the choice of the initial perturbation v, in Theorem 3.2, is arbitrary.
However, as shown in Proposition 3.1, the control o is not identically zero as soon as the
initial perturbation v, and the profile g satisfy (1.28)-(1.29) with v,-n # 0. The theoretical
case v, - n = ( remains an open question.

Proof. Let us begin with the proof of the stability estimates followed by the existence
result.
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3.3 A priori estimates
Taking (v,a) = (v,a) € W(Q) in (1.26-a) leads to

1d

§£HVH2 + || VV|? 4+ b(v,v,V) + b(v,,v,Vv) + b(v,v,V) = af(v,a). (1.32)

) ER

Let us estimate the terms in the left-hand side of (1.32). According to (1.21)-(1.23), we
obtain

3
wvvy) = 5 [ Il mdc, (138)
Fb
042 9
Wvavew) = 5 [ Py, mc (1.34)
Fb
vVl < 9V lvIE (1.35)

Using (1.25) and (1.33)-(1.35) in (1.32), leads to
S IVIE + VvV < Vvl lvI® = ogllviPa® — vA, ([[wl*a® + 2a(w,2z)) . (1.36)
Due to (1.20), we have (Vw, Vz) = 0 and from (1.36) we deduce

1d
5 IVIE+va?[Vw® + v Vz|* < [V, [l [IVI* = ool v][*e?

2dt -
— v (lw]*e® + 20w, z)) . (1.37)
Since

>\1”Z||2 =X\ Zgi < Z)‘iei = HVZH27
i=1 i=1

and using v = z + aw, we obtain from (1.37)

1d
57 VP + v VWP + A VP < VYl v = aollviPa (1.38)
For all o, such that 0 < 0, <7 =v\, — ||Vv,] ., we have

1d
§%||v||2 + va?|[Vw|? + (o) + 00 ||v]|* <0 (1.39)

and omitting the second term in the left hand side of (1.39) leads to

d
ZIVIP + 2001 + opa?)Iv]* < 0. (1.40)
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Multiplying (1.40) by >, where o(t) = ot + o, [, a*(s)ds > 0, we obtain

d
a (620(t)||v||2) § 0

and consequently,
VIl < [volle=®. (1.41)

By omitting the third term in the left hand side of (1.39) we deduce

1d
S IVIE + va? | Wl < 0

and integrating from 0 to ¢ yields
t
VI + 20 / o2 Vw|2ds < [[vo*,
0

leading to

/t s < vl (1.42)
0 2w Vwl? '

|? in the two last terms in

Since v = z + aw, we substitute |w|?a? + 2a(w, z) = ||v||* — ||z
the right hand side of (1.36), and this leads to

1d
S IV + v 7V

IN

VYl VI = A VI = llz]1%) = vAllz)® = &(v]?

IN

vAlz]* = vAllv — aw|?

20 ||V + 2vA || w|)?. (1.43)

IN

Integrating (1.43) from 0 to ¢ yields
t t t
Iv|* + 21// Vv]|2ds < ||vll? +41/)\1/ |]V|\2d5+4y)\1]|w|\2/ a’ds, (1.44)
0 0 0

and employing (1.41) and (1.42) we obtain

[

' [[w f o
||VH2—|-2V/ |Vv]|2ds < (1+2)\1HVWH2 +41/)\1/ e ? (t)ds> |voll?.
0 0
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Because o(t) = 0,t + 0, fo s)ds, we have o(t) > o,t, and hence

Iwi® | 2vA

t
2 2 —20,t 2
VI 20 [ vV < (1+2A1HVW”2+ e 1)) Ivoll2.

Therefore, we obtain the a priori estimate

w v\
[ Iovieas <2 (5+M0 ”H2+—) Ivoll. (1.45)

3.4 Existence

The proof of the existence follows a standard procedure. In a first step a sequence of
approximate solutions using a Galerkin method is built. A compactness result from [20]
allows us to pass to the limit in the system satisfied by the approximated solutions.

3.4.1 The Galerkin Method
For all m € N, we define the space W, as :
W, = span({wo, Wi, Wy, - ’Wm}>v

where wy = wand w; = z;, i = 1,2,3,--- ,m. Then for (v,,, ¢,,.) € Wi, v, = > e 0. Wi
and we define the following finite-dimensional problem

(@) Adiv, w;) +va(v,,, w;) +b(v,,, v, w;) +b(v, v, w;)

m? s CRERE 7%

+ b(Vm,Vm,W ) 50jf( m7¢om)’ for .] = 07 1727 e, M, (1-46)
(b) <Vm(0> Vo, W > - O fOI' ] - 07 ]-72

where §,; defined the Kronecker symbol and

f(Vm, ¢Om) - a¢§m + b¢07n - UO||Vm||2¢0m - V)‘l (||W||2¢Om + 2<W7Zm>) ) (147)

with

Lemma 3.4. The discrete problem (1.46) has a unique solution v, € W1 (0,T;W,,).
Moreover this solution satisfies :

1Vl Lo 0,200) + Vil 200,080 () < C, (1.48)
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where C is a positive constant independent of m.

Proof. We rewrite (1.46) in terms of the unknown ¢ =0---m, and we obtain

im?

( m m
d
D e ww) D 6, (0 i ) BV ) b W)
=0 =0
+ Z ¢km¢mb(wiv Wi, Wj) = 5Ojf(vm7 ¢Om>7 (1.49)
1,k=0
Z¢im<o)<wi7wj> = <V07Wj>'
=0

Because the matrix with elements (w;, w;) (0 < i,j < m) is nonsingular, (1.49) reduces
to a nonlinear system with constant coefficients

df;im + Z(bmezj + Z D (bme;Jk o Vm7¢07n 25 Zij’
=0 =0

7,k=0

=Y (Vo w;) Zy,
7=0

where X;.,Y. ., Z,..€ R. Then, there exists 7, (0 < 7., < T) such that the nonlinear

igy Tijky “ijo
differential system (1.50) has a maximal solution defined on some interval [0,7, ]. In

(1.50)

order to show that 7, is independent of m, it is sufficient to verify the boundedness of
®;,., and hence the boundedness of the L?>-norm of v,, independently of m. Following the
same procedure as for the derivation of the a priori estimates (1.41) and (1.45), yields

(@) [Vl < [voll? 20,
T (1.51)
(v) / IV, 1%t < Cllvy %

Consequently, according to (1.51-a), we obtain 7, = T. ]

Moreover, a consequence of the a priori estimates (1.51) is that (v,,),, is bounded in
L*(0,T; V() and L>(0,T; H(Q2)). Therefore, for a subsequence of v, (still denoted by
v,,), the estimates in (1.51) yield the following weak convergences as m tends to oo :

v,, — v weakly in L*(0,7;V(Q)),
(1.52)
v,, — v weakly* in L>(0,T; H(Q)).

Nevertheless, the convergences in (1.52) are not sufficient to pass to the limit in the
weak formulation (1.46), because of the presence of the convection term. Consequently,
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we need to obtain additional bounds in order to utilize the compactness theory on the
sequence of approximated solution (v,,),.

3.4.2 Additional bounds

As in [20], let us assume that B,, B and B, are three Hilbert spaces such that B, C
B C B,.If v: R — B, is a function, we denote by v its Fourier transform

+o00
() = / e~ ()t

Let us recall the following identity about the Fourier transform of differential operators :
DIv(r) = (2imr)¥(7),
for a given v > 0, and let us define the space
H'(R; By, B,) = {u € L2(R, By), Dju € L*(R, B,)}.
The space H?(R; B, B, ) is endowed with the norm
IVl g5, = (IVIZ2eim,) + 11TV Z25,)%-

We also define H7(0,7'; B,, B;), as the space of functions obtained by restriction to [0, 7]
of functions of H7(R; B, B,). Further, we recall the following result [20] :

Lemma 3.5. Let B,, B and B, be three Hilbert spaces such that By C B C B, and B, is

compactly embedded in B. Then for all v > 0, the injection H"(0,T; B,, B;) — L*(0,T; B)
s compact.

For small enough ¢, this lemma is used later with

The main result of the present section, based on utilizing Lemma 3.5, is furnished by the
following lemma :

Lemma 3.6. The sequence v,, is bounded in HY(0,T7;V(Q2),H(Q)) for 0 <~ <

Proof. We denote by v,, the extension of v,, by zero 0 for t < 0 and ¢ > 7, and v,,
the Fourier transform with respect to time of v,,. It is classical that since v,, has two
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discontinuities at 0 and 7', in the distributional sense, the derivative of v, is given by

%\_fm =y +v,,(0)0, — v,,(T)or, (1.53)

where ¢, 6, are Dirac distributions at 0 and 7', and

i, = v,, = the derivative of v, on [0, 7].

m

After a Fourier transformation, (1.53) gives
2TV, (1) = U (1) +v,,(0) — v, (T)e 2™,

where v,, and u,, denote the Fourier transforms of v, and u,, respectively. Since we
already know that v,, is uniformly bounded in L?(0, 7, V(f2)), it remains to prove that

+00
/ 72719, (7) | dr < C. (1.54)

o0

We have that v, satisfies
AL - < S 0.3 1S
—= -vdx+v [ Vv :Vvdx+ | Gy -vdx+ [ G, -vdx+ [ G, -vdx
o Ot Q Q Q Q
= —/ V. (T) - Vo dx + / v,,(0)-vé, dx +aH,,, YVv,a)eW,, (1.55)
Q Q

where G,, = (v,,V)v,,, G, = (v,,V)v,, G = (v,V)v,, and H,, =
apply the Fourier transform to the equation (1.55) and take (v ¢

it yields
2imr / v (7 dx+v / Vv, (7)1 Vv, (7) dx + / G ()9, (1) dx

/GO dx+/G1

= /Q v,,(0)-v,, (1) dx — /Q\_fm(T) v, (T)e 2T dx 4 ¢0m : (1.56)

f,.,0,.,). We now
) as a test function,

where G,,, @En, @}n and ﬁm are respectively the Fourier transform with respect to time
of G,,, G°, Gl and H,,. Note that

Go = 8, (82) +0(8,,)* = 0oFr = v, (B4, )2 IWII 428, (w.2,))
= a0y, (62,) +b(By,)? — 0B — v (¥l = 17, ]12) (1.57)
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where F is the Fourier transform with respect to time of ¢, ||v,||%.

Thanks to lemma 2.2, we have

[Gon ()] < Cyl[¥, (7).

By using (1.57) in (1.56) and taking the imaginary part of (1.56) leads to

IR < 1R (509 ) + 510 B + D] + 19,01
+ 1 @lvie) (1Gnlvie + 1G5 v + GO lvi). (1.58)

Note that in the sequel, C' stands for different positive constants.
We now prove that the right hand side of (1.58) is bounded.

First, we have

IGulvie < allvinlling. — 1GhIvie) < allvallme, s=0.1,

and thanks to the energy estimate (1.51) satisfied by v,,, G, and G;, remain bounded in
L'(R; V'(Q2)) and the functions G,,, G¢, are bounded in L>(R;V’(Q2)). Consequently, we
have

SUP (|G (7) vy + I1G (Pl + 1G (D i) < €,

and the second line of (1.58) is hence bounded.

We now show that the first four terms in the right hand side of (1.58) are bounded.
Thanks to lemma 2.2 and estimate (1.51), ¢ and F,, = ¢,,.||v,,||* are bounded in L'(R),
and hence ¢? and F, are bounded in L>(R) with :

—

sup(¢2 ) <C and sup Z?m <C.

TER TER

Thanks to the energy estimate (1.51-a) satisfied by v
|v,,(0)]| < C. Inequation (1.58) thus finally reduces to

we have v, ,(T)] < C and

m?

IV (OIF < CUVL(E @ + V(D))

<
< COlIva(Mla @),

where C stands for different positive constants.
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For 0 <~ < ;i, we now estimate the norm

“+o0
/ I7|*7]|%,,,(7)||2dT. (1.59)
Note that, (see [20])
1+ |7
2
I7|*7 <c(’y)1_i_|7_|1 -, VT ER

Consequently, we deduce

—+00
/ 72719, () Pl

< o) [T o) [ EISOE

o LH[T]t o LT[

o [V, (7)1 [V (7) [
cg(’Y)/ T 2 dT+C4(7)/ P dr

IN

o0 —00

oo —~ R GmT 1
< ) [ IR Bedr + e | (@ leey (1.60)

. O

The last integral in the right hand side of (1.60) satisfies

TNV () [ @) oo 1 2 too , 3
/_oo Lo 7S (/_oo (1+\T|12v)2d7> (/_oo ”Vm(T)HH1<Q>dT) , (16D

and the first integral in the right hand side of (1.61) is convergent for any 0 < v < i. On
the other hand, using the Parseval equality leads to

+o0 T
/ Wm(T)’@Il(Q)dT:/O Vo ()l oyt < C.

o0

Then, the sequence v,, is bounded in H7(0,7;V(Q2),H(Q)), for 0 <~y < 7 —e. O

1

4
Now, applying Lemmas 3.5 and 3.6, there is a subsequence of (v,,)neny Which

converges strongly in L?(0, 7, H(Q2)).

3.4.3 Passage to the limit

The compactness result obtained in the previous section implies the following strong
convergence (at least for a subsequence of v,, still denoted v,,)

v,, — v strongly in L*(0, T; L*(9)).
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This convergence result together with (1.52) enable us to pass to the limit in the following
weak formulation, obtained from (1.46) by multiplication by ¢ € D(]0,7]) and integration
by parts with respect to time

/ / dxdt+y/ /Vv 1 Vv;p(t) dxdt
+/0T/Q(Vm -Vv,,) - v;0(t) dxdt + /OT/Q<Vm -Vv,) - vp(t) dxdt
#v Tva Sett) asa — [ va009,000) ax

T
/ &y F(Vos S )p(t) At V(F,,@,) € W, (1.62)
0

Using the weak estimates (1.52) leads to

T
/ / ) dxdt = /0 /§2V~§j<p’(t) dxdt,
T
/ /va P VVe(t) dxdt i / /Vv Vv;p(t) dxdt,
o Ja

/ / ) Vie(t) dxdt = / / v Vv,) vp(t) dxdt,

T T
/ /Q(VS -Vv,,) - ve(t) dxdt = / /Q(Vs -Vv) - v;p(t) dxdt,

0 0

for the linear terms. Further, since v,, converges to v in L*(0,7;V(Q)) weakly, and in
L?(0,T;L*(9Q)) strongly, we can pass to the limit in the nonlinear term to obtain

/ / “Vv,,) vip(t) dxdt = / / v Vv) - vp(t) dxdt. (1.63)

Using Lemma 2.2 and according to (1.51-a), ¢, , € L>°(0,7). Then for a subsequence of
b,,, (still denoted by ¢,, ) :

é,,, — a weakly” in L>=(0,T). (1.64)

As far as the right hand side of (1.62) is concerned. Let us notice that the convergence of
v,, in L*([0, 7] x Q) implies its convergence in L'(0,T;L?*(12)). Hence
v, — |v|| in L'(0,T). (1.65)
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Due to lemma 2.2, we have

|00, = Dol < Collvy =Vl Y(Vps 0o, (Vas bo,) € Wi,

and ¢, is then a Cauchy sequence in L!(0,7T) and
Po  —> G in L0, 7). (1.66)

Further, according to (1.64) we have ¢, = a € L*(0,7) from [12, Proposition II.1.26].
| and ¢, are bounded in L*°(0,7"), using (1.65) and (1.66) we obtain

ml

Since ||v

ml — vl in LP(0,T),
Do — a in LP(0,7),

lv

from [12, Corollaire I1.1.24], for all p €]1, +o0].

Now we can pass to the limit in the following terms :

T T
/ a;07 o(t) == / a;0’p(t), (1.67)
T ’ OT
/0 a;b,, IV lPe(t) sz /0 ajofviPe(t), (1.68)
T T
/ a(w,z,)e(t) o / a;(w,z)p(t), (1.69)
0 0

because z,, = v,, — ¢,, w. Consequently

T T
/ & (v b ol / &,/ (v, )p(t)dr,
0 0

where
f(v,a) = aa® + ba — o, ||v]*a — v\ [|[w|*a — 2v\ (W, 7).

Passing to the limit in (1.62) then gives

—/OT/Qv-W(t) dxdt+u/OT/QVv V() dxdt+/0T/Q(v-vV)-w(t) dxdt

n /0 ' /Q (v-Vv.) - Voolt) dxdt + /0 ' /Q (v, - VV) - Voo(t) dxct — / vo¥o(0) dx

Q
T
:/ af(v,a)e(t) dt. (1.70)
0
forallv=v,, Vj =0,1,2,--- ,m. By linearity, equation (1.70) holds true for all v combi-
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nation of finite v; and by density, for any element of W (Q). ]

Finally, it remains to retrieve the stabilized problem (1.24), which requires to prove
the existence of pressure.

3.5 Existence of the Pressure

First, we recall a result obtained in [25]

Lemma 3.7. Let f € D'(]0, T[; H'(Q)) such that (f,V)g-1q)my@) = 0 YV € V(). Then
there exists q € D'(]0, T[; L%*(Q)) such that f = Vq.

This lemma is utilized to prove the following.

Lemma 3.8. There exists p € D'(]0,T[; L*()) such that (v,p) satisfies (1.24-a) in the
distribution sense.

Proof. By choosing ¢ € D(0,T') in (1.70), we obtain

// - vo(t dxdt+u/ /VV vao()dxdt—f—/ /V Vv) - vp(t) dxdt
//V Vv,) - vo(t dxdt+// ©(t) dxdt

:/ af(v,a)pt)dl,  ¥E.a) € W(Q). (1.71)

0

Further, taking a = 0 leads to

g—v VdX—H//VV:V?dx+/(v~Vv)-de
"
—|—/(V -Vv,) - vdx+ /(VS -Vv) - vdx=0,inD'(0,T). (1.72)
0 Q

Then, letting

f = g—‘tf—I/Aij(v Vv, + (v, - V)V + (v V)v,
and using (1.72), we obtain f € D'(]0, 7[; H'(Q)) and (f, V)u-1(q)mi @) = 0, ¥V € V,(Q).
Finally, using Lemma 3.7, there exists p € D'(]0,T[; L*(Q?)) such that f = —Vp. O

Now, we prove that (v, p) satisfies (1.24-f). Let us first define the space
E(Q) ={ueL*Q):divue L*(Q)},
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and recall the following Lemma obtained in [25, Chap I, Theorem 1.2] :

Lemma 3.9. Let Q) be an open bounded set of class C*. Then there exists a linear conti-
nuous operator v, € L(E(Q), H'/*(T")) such that

o0 = the restriction of u-nto I', for every u € D(1).
The following generalized Stokes formula is true for all u € E(Q) and w € H'(Q),
(ua VW) + (dll} u, W) = <7nu7 70W>7 (173)

where v, € LH'(Q),L*(T)) is the trace operator.

By writing (1.24-a) in the form

0 : .
a—: +div(—vVv+Ip)+ (v-V)v,+ (v, - V)v+ (v-V)v=0 in Q,

and using Lemma 3.9, we obtain

/— de+/(1/Vv—[p):V?dx%—((—l/VV—i—[p)-nv

’ >H’%(F),H%(F)

+/(V-Vv)-de+/(v-Vvs)-de+/(vs-Vv)-de:0,
Q Q Q

V(v,a) € W(Q). Since (v,a) € W(Q), we have
pl : Vv =pV -v=0,
~ _ ov
(ORI M),y = 0 [ g ool g

Consequently,

/a—v-?dx%—y/Vv:Vde+/(v-Vv)-de+/(v-Vvs)-de
o Ot Q Q Q

+/(V8-Vv)-§d><:62/ [ya—v—pn]-gdg. (1.74)
9 r on

b

By comparing (1.71) and (1.74), we deduce
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Finally, it remains to verify the initial condition. In this purpose, firstly, we let
E(Q) ={(v,a) e H(Q) xR, suchthat v-n=ag-n on I}, (1.75)
and we obtain the following Lemma
Lemma 3.1. The space W(Q) is dense in £(Q).
Proof. We define
G(Q) = {(w,a)eH'(Q) xR :u=0 onl,, u=ag onTl,}. (1.76)

By construction, we have

Hj(Q) x R C G(Q) C L*(Q) x R, (1.77)
W(Q)=6(Q)NEQ), (1.78)
E(Q)=E(Q)NLA Q) x R. (1.79)

Since H}(92) is dense in L*(2), according to (1.77) we have G(Q) dense in L?(Q2) x R and
hence, thanks to (1.78)-(1.79), the space W(Q) is dense in £(Q). ]

Secondly, we multiply (1.24-a) by v with ¢(7') = 0 and integrate with respect to time

and space
T T
—/ /v v (t) dxdt + I// / Vv : Vvp(t) dxdt
0o Jo 0o Jo
T T
+/ /(V -Vv) - v(t) dxdt +/ /(V -Vv,) - vo(t) dxdt
o Jo o Ja

+ /0 : /Q (v, - Vv) - Veo(t) dxdt — / v(0)vp(0) dx

Q
T
:/ af(v,a)p(t) dt. (1.80)
0

By comparing (1.70 ) and (1.80 ), we obtain [, (v(0) — v;) - Vy(0) dx = 0, and choosing ¢
such that ¢(0) = 1, leads to

/ (V(0) = vo) - T dx =0, V()€ W(Q). (1.81)

From (1.81) and Lemma 3.1 we obtain v(0) = v, in £(Q).
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Proposition 3.1. When v is solution of the stabilization problem (1.24), for a given initial
perturbation v, € H(Q) and profile g € VV/%(T',) such that a,g-n=v,-n#0 onT,, the
control is not identically zero. i.e. o« # 0.

The proof of Proposition 3.1 is given after Lemmas 3.2 is established. We start by
giving the following functionals spaces

H() {fuel?Q) :V-u=0, u'n=0 onT}, (1.82)
Vi(Q) = the closure V(Q2) in Hy(Q) N H*(Q), s > g (1.83)
Lemma 3.2. Let v satisfies the stabilization problem (1.24) with o = 0,
1. In 2-dimensional space,
v e C°[0,T], H(2)). (1.84)
2. In 3-dimensional space,
v € C°[0, T, Huear(Q)), (1.85)
namely, v is weakly continuous from [0, T] into H(S2).
Proof. According to the variation formulation (1.26), the solution v satisfies
—{dyv,z) =va(v,z) + b(v,v,,z) + b(v,,v,z) + b(v,v,z), Vze Vy(Q) (1.86)
and
(dyv,w) +va(v,w) +b(v, v, w)+b(v,,v,w) + b(v,v,w) = f(v,a). (1.87)
If o = 0, according to estimates (1.30)-(1.31), we firstly obtain
v € L=(]0, T[, H()) N L*(]0, T[, V,(Q)). (1.88)

Secondly, by taking the supremum of (1.86) with respect to z € V,(2) with [|z||v ) =1,
and applying inequality (4.4) in [25, Lemma 4.1 Page 217], leads to

‘fl—v € L*()0,T[,V 1)) if d =2,
dt (1.89)
d—z L2(10,T[,V-3(Q)) if d =3

where V_%(Q) = (V%(Q))’ Finally, as in [12, Proposition IV.1.7 Page 217], due to (1.88)-
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(1.89) we obtain (1.84)-(1.85). ]

Proof of the Proposition 3.1. Assume, by absurd, that « = 0. Recall that from (1.81) and
Lemma 3.1 we have

4

v(0) = v, in £(Q). (1.90)

1. In 2-dimensional space, from (1.84), v € C°([0, T], H(Q2)). i.e.

v(t) — v(0) = v, in H(Q2), when ¢ — 0",

which is impossible since v, - n # 0 on [',.

. In 3-dimensional space, according to (1.85), v € C°([0, T], Huwear($2)). Firstly, by the

weak continuity, we have
|voll? < lim inf,_q+ || v(t)]|*.
Secondly, by the energy inequality (1.30),

Hm sup, o+ [[V(£)]* < [|voll*.

Hence lim,; ,o+||v(t)|| = ||v,]|, sufficient condition (thanks to the weak continuity) to
prove the strong continuity of v on 0 i.e.

v(t) — v(0) = v, in H(Q), when t — 07,

which is impossible since v,-n # 0 on I';.

Concluding remarks

In this work the exponential stabilization of the two and three-dimensional Navier-

Stokes equations in a bounded domain is studied around a given steady-state flow, using
a boundary feedback control. In order to determine a feedback law, an extended sys-
tem coupling the Navier-Stokes equations with an equation satisfied by the control on
the domain boundary is considered. We first assume that on X, (a part of the domain
boundary), the trace of the fluid velocity is proportional to a given velocity profile g. The
proportionality coefficient o« measures the velocity flux at the interface, it is an unknown
of the problem and is written in feedback form. By using the Galerkin method, « is de-
termined such that the Dirichlet boundary control u, = ag is satisfied on ¥,, and the sta-
bilizing boundary control is built. The resulting nonlinear feedback control is proven to
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be globally exponentially stabilizing the steady states of the two and three-dimensional
Navier-Stokes equations. This feedback control was shown to guarantee global stability
in the L?-norm.

Finally, in order to take into account (1.24-f) in the variational formulation, the test
functions, for example v, need to be written on the form v = ag. This requires to
construct a finite-element basis which allows such a requirement and hence at least
one element of the basis, for example w, such that w = g on I',. A number of choices, in-
cluding both continuous and discontinuous approximations, may be investigated. Once
the finite-element basis is obtained, equation (1.24-f), satisfied by the control, will be
present in the discrete ODE. A priori, the control « should be robust, since it is bounded
by the perturbation (see inequality (15) in Lemma 2.2), and numerically efficient. In a
forthcoming paper, several test cases are performed and discussed.
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Chapitre 2

Boundary stabilization of the
Navier-Stokes Model with feedback
controller around a non-stationary
state

Abstract

This paper presents a boundary feedback control for the two and three-dimensional Navier-
Stokes equations in a bounded domain ) around a given non-stationary velocity. In order to
determine a feedback control law, we consider an extended system coupling the equations gov-
erning the perturbation with an equation satisfied by the control on the domain boundary. By
using the Faedo-Galerkin method and a priori estimation techniques, a stabilizing boundary con-
trol is built. This control law ensures a decrease of the energy of the controlled discrete system.
A compactness result then allows us to pass to the limit in the system satisfied by the approxi-
mated solutions.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

1 Introduction

This paper presents a boundary feedback control for the two and three-dimensional
Navier-Stokes equations in a bounded domain €2 around a given non-stationary velocity.
Let 2 be a bounded and connected domain in R? (d = 2, 3), with a boundary T of class C?,
and composed of two connected components I', and I'; such that I' = I', UT',. In particular,
the boundary I'; is the part of I', where a Dirichlet boundary control in feedback form has
to be determined. Let 7" > 0 a fixed real number, we take @ = [0,7[x€, £, = [0, T[xT,
¥, = [0,T[xI', and we consider the trajectory (v, ¢) solution of the non-stationary Navier-
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Stokes equations

’%_‘f_uA¢+<¢-V)¢+vq:f in Q,
V=0 in Q, 2.1)
P =0 on,,
\"p:"pb on X,

where v > 0 is the viscosity, f represents body forces acting on the fluid and v, the
boundary condition in I',. Let us first define the set of admissible target velocities U ,.
The solution (¢, x) of (2.1) is said to be in the set admissible target velocities ¢/, if

1%
sup [[Vab(t, x)|| < ==, (2.2)
t<T Osz
where || - || = || - [[(z2@))e, X = (v,y, 2) if d = 3 and C, is a positive constant defined later

in (2.18).

We now consider the perturbed trajectory (u, r) solution of the non-stationary Navier-
Stokes equations

'%-muﬂu-wwvr:f in Q,
Vou=0 in Q,
u=v,+1, ony,, (2.3)
u=>0 on Y,
u(t=0,x) =vy(x)+¥(t=0,x) in(,

where v, is the control input and function v, can be viewed as a perturbation of the
initial state (2.1). By substituting (u,r) = (v + ¢, p + ¢) in (2.3), we obtain the following
system

(Y VAV (v V)t @ V)V (v TV A TP =0 inQ,
V-v=0 in Q,
vV=yv, on Y, (2.4)
v=20 on Y,
([ v(t =0,%x) = v,(x) in Q.

The usual function spaces L*(Q2), H'(Q2), H}(2) are used and we let L2(Q) = (L*(Q))4,
H'(Q) = (HY(Q))4, HL(Q) = (HL(Q))4. Negative ordered Sobolev spaces H™1(12) is defined
as the dual space, i.e. H () = {H{(Q2)}. We denote by (- | -) and ||-|| = ||||r2(«), the scalar

79



INTRODUCTION

product and norm in L?(Q),respectively. Further, if u € L*(Q) is such that V - u € L*(Q),
we denote the normal trace of uin H™2 (I") by u-n, where n denotes the unit outer normal
vector to I'.

Our goal is the following : for a prescribed rate of decrease ¢ > 0, we need to find a
feedback control v, on 3, such that the velocity v in (2.4) satisfies the exponential decay

IV < [Ivolle™® € (0, 00). (2.5)

Note that o(t) is usually written as o,t in previous studies [1, 5, 17, 29], where o, is
positive constant.

The control v,(¢) is called a feedback if there exists a mapping M : X(Q) — U(I,)
such that

v, (t) = M(v(t)), te€(0,00), (2.6)

where the spaces X(Q2) and U(I")) are defined in the sequel.

The theoretical setting of the boundary feedback stabilization procedure, for the non-
stationary incompressible Navier-Stokes equations around a given stationary velocity,
has been studied in a number of papers, e.g. A.V. Fursikov [17, 18], V. Barbu et al.
[5, 10, 11, 12, 13], J.-P. Raymond et al. [29, 30, 31] and M. Badra et al. [1, 2, 3]. In
these publications, a linear feedback law is first determined by solving a linear control
problem, and this linear feedback is then used in order to stabilize the original non li-
near system. Such a procedure leads to use the Oseen-operator and the target velocity
1 in (2.4) is chosen to be independent of time, i.e. ¥ (¢,x) = ¢ (x). However, Another ap-
proach for stabilizing fluid dynamics equations is proposed in [16, 22, 23, 27, 32]. The
method was first published with application on a 1D shallow water equation in [32].
It consists on establishing an equation involving the derivative of energy with respect
to time, and the boundary conditions. Then, by utilizing adequate feedback boundary
conditions, the authors manage to get the energy’s exponential decrease. So far, the me-
thod has been applied to stabilize irrigation channel networks [22, 23], coupled shallow-
water and erosion-sedimentation equations [16], and the Navier-Stokes system around a
steady-state [27]. Note that in [27], an extended system is considered with an additional
equation satisfied by the control on the domain boundary, and the boundary feedback
control is constructed via a Galerkin method. Thereby, the authors stabilize the Navier-
Stokes equations in a bounded domain (2 around a given steady-state which satisfies the
stationary Navier-Stokes equations.

In this paper, the approach of [27], using an extended system is followed in order
to stabilize the two and three-dimensional Navier-Stokes problem around a given non-
stationary state 1(t,x) instead of a stationary state 1(x) employed in [27]. The boundary
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control v, in (2.4) is rewritten on the form v, = a(t)g(x) on ¥,, where g € HY?(T") is
assumed to verify g = 0Oonl,,g-n # Oon I, and be g -n = (0. The proportionality
coefficient « is a priori unknown. In order to stabilize (2.4), with v, = a(t)g(x) on X,, by
employing energy a priori estimations, the quantity « is found to satisfy the relation

9
/F | vor — pn] g dC = f(v.c), 2.7)

where f is a polynomial in « of degree 2, defined later in (2.34). The quantity « depends
nonlinearly on v in (2.7), and hence « satisfies a nonlinear feedback law. Such an ex-
ponential boundary feedback stabilization for tracking the non-stationary velocity (with
1 (t,x)) in the Navier-Stokes equations flows is new, to our knowledge, although the pro-
blem has been considered previously in [8] for the internal exponential stabilization case
and in [24] with a two-dimensional boundary control only, and for an optimal control
problem, i.e. not for an exponential stabilization control.

System (2.4) is then extended by adding (2.7), and the extended system, namely (2.4)
and (2.7), with v, = a(t)g(x) on },, is the stabilization problem considered in this paper,

i.e.
(a) aa—‘;—VAv—I-(v-V)¢+(¢-V)v+(v-V)v—l—Vp:0 in Q,
() V-v=0 in Q,
(c) v=at)gx), on Y,
(d) v=0 on Y, (2.8)
(e) (0, X)a: vy (x) in Q,
5[ W -l do = fv.a)

In order to determined «, leading to the determination of the boundary control v,, sys-
tem (2.8) is solved via a Galerkin procedure, as in [27], which consists of building a
sequence of approximated solutions using an adequate Galerkin basis.

The paper is organized as follows. In section 2, the notations and mathematical pre-
liminaries are given. In section 3, we build the control law and in section 4, thanks to
technics developed in [25] (which are not related specifically to a stabilization problem),
the existence of at least one weak solution of the non-linear Navier-Stokes system is
established by applying the Galerkin method.
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2 Notation and Preliminaries

2.1 Function Spaces

Several spaces of free divergence functions are now introduced :

V(Q) = {ueH(Q) : V-u=0inQ, u:OOnI‘l,/ u-nd¢ =0}, (2.9
1_\b
V() = {ueHi(Q) : V-u=0inQ}, (2.10)
H(Q) = {uel?Q) :V-u=0, u'n=0 onFl,/ u-nd¢=0}. (2.11)
b
Since V() is a closed subspace of H'(Q2), we have, by definition || - [[v) = || - [[m:(o)-

Next, we define the pressure space with zero mean value :

L2(Q) = {p € L2(), /Qp(x) dx — 0}.

Definition 2.1. Let V/?(I',) be the space of trace functions that, if extended by zero over T,
belongs to H'/%(T"). Further, for g € V/2(T',) such that g -n # 0 on T, we define

W(Q) ={(v,a) e V(Q) xR, such that v=agonT,}. (2.12)

The following Lemma [25], will be used in the sequel.

Lemma 2.2. There exists a constant C, > 0 such that, for all (v,a) € W(Q), we have

ol < Gylivl: (2.13)

2.2 Linear Forms

In order to define a weak form of the Navier-Stokes equations, we introduce the conti-
nuous bilinear form

a(vy,vy) = / Vv, : Vv, dx, VY(v,,v,) € HY(Q) x H(Q),
Q
and the trilinear form
b(vy, vy, v3) = /(V1V)V2 vy dx, Y(v,,v,,vy) € HY(Q) x HY(Q) x HY(Q).
Q
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Thanks to Holder inequality, we obtain
1b(vi, Vo, v3)| < [Ivilles@) IV Vol Ivslls@),  Vvi, va, vs € Hl(Q)
Using the generalized Sobolev’s inequality, leads to
IVillu@ < ClIvill2 Vvl and  [[vgllus) < ClIVvsll,  ford =2.3,
where C'is a positive constant, and hence
b(v1, 2, V)| < ClV V][ [V, [ Vv (2.14)

By employing integration by parts, the following properties hold true

b(u,v,v) = %/ ]v]z(u-n) d¢, Yu,v € V(Q), (2.15)
Fb

bv,v,v) = % / V[2(v - n) dC, v € V(). 2.16)
r

b

Thanks to [21, Lemma 1.1] we obtain
lb(u,v,u)| < C,||Vv][|[Vul?, Vv eH(Q), ue H)Q), (2.17)

where

22 seg 3
C = ° (2.18)

e )

Remark 2.3. In the stationary case, if 1(t,x) = 1 (x) is the solution of the Navier-Stokes
problem

—vAY+ (Y - V) +Vg=f, V-¢p=0 1in(Q,
Y=0 on T, (2.19)
Y =1, onl,

with f € H™Y(Q), ¥, € VY2(T,) and if the smallness condition
1%

C

Q

V| < (2.20)

is satisfied (in view of [21, Theorem 2.1]), then 1) (x) is unique. Moreover 1(x) belongs to
U, defined in (2.2).
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In the next Section, the control low is built by employing energy a priori estimations.

3 Control building

In the first step a Galerkin basis is built for the space W (Q) defined in (2.12).

3.1 A Galerkin basis for space W (Q)

Let {z;,\;,j =1,2,3,---} be the eigenfunctions and eigenvalues of the following spec-
tral problem for the Stokes operator :

— Az; + Vp; = \;z;, V-z,=0 1in () z;|r = 0. (2.21)

As shown in [33],0 < A\; <\, < -+~ <\, = 00 as j — oo, and {z;} forms an orthonormal
basis in V() :

<zj,zk> = 0, | (2.22)
CL(Z]», Zk:) = )‘jéjkv VJ, k.

We assume that the boundary I', is composed of two connected components such that

I, = ,UT,. Let g, such that g, € V/2(I';) and fFo g, - n # 0, we consider the following

problem

(a) —Aw+Vg=0, V-w=0 1in
b = T
®) w on o (2.23)
(C) W = ﬁgo on FO7
\ (d> w = gl on Fl’
. . fr g, -nd¢
where g, is such that g, € VV/?(I')) withg, n#0onT,and f = —————.
fro g, 1 d¢
Further, let
on I
g 178 0 (2.24)
gl on F17

we see by construction that g belongs to V'/2(I',) and satisfies be g -n d¢ = 0. Since
w=gonl, =T,Ul,, system (2.23) admits a unique solution (w, ¢) belonging to H'(Q) x
L3(Q) (see [14, Proposition II1.4.1]). Moreover, we notice that (Vw, Vz;) = 0, for all j =
1,2,3,---, and the sequence w, z,, z,, z,,--- , is linearly independent. Consequently, we
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3.2 - The control Building

search for the solution v of (2.4), coupled with (2.7), in
W(Q) = span(w) @ span(z,, ) fnen-y, (2.25)

and v can be expressed as :

v=aw+z, with z= Z 0,z,. (2.26)

i=1

3.2 The control Building

Multiplying (2.8-a) by v and integrating by parts over (2 leads to
SV + VIV 4 (v, v, v) + b(4, v, V) + b(v. 4, v) = af (v, a). (2.27)

Since v = aw + z, the control law f(v,«) is built by employing the terms ||v|?, || Vv]?,
b(v,1,v), b(v,v,v) and b(v,v,v) in (2.27), which are developed as follows :

IVII® = o®wl* + 20(w, 2) + ||z, (2.28)
IVVl® = @?IVw]* + [ V], (2.29)
b<V7 ’1707 V) - b(z7 wﬂ Z) + aAZ + a2B57 (2-30)

where
A, =bw,,z)+b(z,9,w) and B,=>bw,,w).

Note that the term ||Vv||? in (2.27) reduced to (2.29) because (Vw, Vz) = 0.

Further, due to (2.15)-(2.16), the terms b(v, v, v) and b(¢, v, v) are rewritten, respec-
tively, as

b(v,v,v) = %/ [v[*(v-n) = a,a®, (2.31)
Fb
o) = 5 [ P ) = e (2.32)

where

1 9 1 2
ab:§ |g‘ (gl’l) and bb: 5 ‘g’ (’(l)'l’l),
r, r

b

and the functions b,, A and B are time dependent.
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Substituting (2.29)-(2.30) in (2.27), yields

1d

S IV + 002 [Tw] + V]| V2l + bz, ,2) + aS(2,0) = af(v,a) (2.33)

where
S(z,a) = A, + Bea + aya® + by

The control law is now defined as
f(v.a)=S8(z,a) =\, (2(w,z) + af|w|?*) — Ka|v|J?, (2.34)

where the positive constants K and )\, will be defined later. Note that in (2.34), the term
2(w,z) + a||w|]?* is a part of ||v||? in (2.28) while the term — K «||v||? is introduced in order
to limit the size of the control, for an appropriate choice of K.

4 Stability Result

We first establish the a priori estimates for the extended Navier-Stokes system.

4.1 A priori estimates

Multiplying (2.34) by «, substituting in (2.33) and using (2.28) leads to

1d
5 IVIP + vl VWl + v Vel +b(z, 4, 2) = =\, (VI = [12]°) = Klv[*e®. (2.35)

We obtain from (2.17)
b(z,%,2)| < C,||[Ve||[|Va]® < C, sup IVap(t, x)[|[| V|,

and due to (2.35) we have

Ld

S IV + va? [V + B Val® < A, (VI = [12]?) - Kv]*e?, (2.36)

where 3, = v — C, sup,.r ||V (L, x)|. Moreover, since

Mllzl? =) 0F < Y N0 = |V,
1=1 =1

and taking \, = A\, 3, in (2.36) yields

1d
5 IVIP +va?[Vwl? + (A + Ka?) [|v]* < 0,
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4.1 - A priori estimates

namely
d 2 2 2
%HVH +2 (N + Ko?) ||v[]?* <. (2.37)
Multiplying (2.37) by e?*® where
t
o(t)=Mt+ K/ o’ (s)ds (2.38)
0

leads to

CIvIPe ) <o, (2.39)

By integrating (2.39) from 0 to ¢ we obtain the first a priori estimate
IVl < [Iv(0) e (2.40)

Note that due to (2.2-a), we have 3, = v — C, sup,. ||V (t,x)|| > 0, hence A\, = A1 3, > 0.
We then obtain from (2.36)

1d

S ZIVIE + BaP VW + 5192l < Al 2.41)

and using (2.29), we deduce

1d
5 VI + BIVVIE < A o) (2.42)
Let us estimate the term in the right hand side of (2.42). Since
z[|* = [[v — awl[* < 2[v[]* + 20| w]]?,
using Lemma 2.2, we obtain

Mlz)|? < M, |v?, (2.43)

where M, = 2, (1+ C;||w|]*) . Further, employing (2.43) in (2.42) leads to

Ld

S IV + B9V < My v, (2.44)

Integrating (2.44) from 0 to ¢, yields

t t
IVl + 26, / IVviPds < [v(O)P + 20, / IvIPds, (2.45)
0 0
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using the inequality e “() < e=*! obtained from (2.38), and integrating (2.40) from 0 to
t, we obtain

¢ M M, _
V28, [ Ivvias < (1450 - Shene ) o
0 v v
Ml 2 2 2 2
< (14 55) IVOIF = @+ 2¢31w17) Iv o)1

v

Therefore, we obtain the a priori estimate

t 3_,_202 2
/0 IVv|2ds < (%) v (0)]2. (2.46)

4.2 The variational formulation
We now consider the variational formulation for the extended Navier-Stokes system.
Definition 4.1. Let T' > 0 be an arbitrary real number and v, € H(S?), we shall say that

(v, a) is a weak solution of (2.8) on [0,T) if
- v eL®0,T;H(Q)NL*0,T; V(Q)),

— Jda € L>®(0,T) such that v =agon I,

(a) (dpv,v) +rva(v,v)+b(v,,v)+ b1, v,v) +b(v,v,v) = af(v,a),

(b) (/Qv-edx> (0) :/QVO.MX’ (2.47)

V(v,a) e W(Q).

Note that the initial condition (2.47-b) makes sense because for any solution v
of (2.47-a), function t — [, v(t) - V dx is continuous (see [14] Corollaire I1.4.2).
Theorem 4.2. Assume that the initial condition v, and the profile g satisfy
v, € H(Q), (v, -n)nec HYXT,), (2.48)
ge VV3(I,) and oyg-n=vy,-non I, with g- n#0, a, €R.  (2.49)

For arbitrary initial data v, satisfying (2.48), there exists a solution (v,«) in the sense
of definition 4.1, and a distribution p on Q) such that (2.8) holds. Moreover, function v
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satisfies the following estimates :

VO < Ivolle @, vt >0, (2.50)

T
[ Ivvtord < clvlr, 2.51)
0

where C > 0 is a constant and for a fixed K > 0, function o(t) is defined as :

¢
o(t) = A\ St + K/ o?(s)ds. (2.52)
0

Remark 4.3. In (2.52), the positive constant )\, is the smallest eigenvalue of (2.21) and
thanks to (2.2-a), the constant 3, = v — C,sup,.p ||V (t,x)| is a positive real number.
Further, the rate of decrease o(t) > 0 depends on the control .

Remark 4.4. With the condition 5, > 0, the equilibrium state v in (2.1) is naturally
stable in the sense that the system (2.47) stabilizes by itself when « is identically zero.
This explains why the choice of the initial perturbation v, in Theorem 4.2, is arbitrary.
However, as shown in Proposition 3.1, the control « is not identically zero as soon as the
initial perturbation v, and the profile g satisfy (2.48)-(2.49) with v,-n # 0. The theoretical
case v, - n = ( remains an open question.

Proof. We first proof the existence of a weak solution (v, «) and secondly, the existence
of the pressure.

4.3 Existence of weak solution

The proof of the existence follows a standard procedure. In a first step a sequence of
approximate solutions using a Galerkin method is built. A compactness result from [26]
allows us to pass to the limit in the system satisfied by the approximated solutions.

4.3.1 The Galerkin Method
Let m € N*, we define the space
W,, = span(w) @ span(z;){1<i<m}
and we express v,, € W, as:
Vin = Z Xy Wi
i=0
where w, =wand w, =z, fori=1,2,3--- ,m.
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Consider the following finite-dimensional problem

(a) (dpv,,, Wj> + va(v,,, Wj> + b(v,,, ¥, Wj) +b(,v,,, W, ) +b(v,,,v,,, W, )
= 00, f (Vi @,0), (2.53)
(b) <Vm(o) Vo, W > - 0 for .] - 07 1 27 e, M,

where ¢, is the Kronecker symbol and

f<Vm7 aOm) = Azm + BSaOm + abagm + bbaOm - 2)\1,<W, Zm> - ()‘VHWH2 + KHVmH2)a (2.54)

om

is the control law, with z,, = > o, w;, and A, =b(w,,z,,)+ b(z,,, P, w).

Recall that «,,, is a priori unknown and thanks to (2.54) it satisfies a nonlinear feed-
back law leading to search for «, (v,,). Because (2.54) is independent of x, o, (v,,) is a
function of ¢ only. For the sake of simplicity, o, (v,,) is written ¢, in the sequel.

Lemma 4.5. The discrete problem (2.53) has a unique solution v,, € WhH>(0,T;W,,).
Moreover the solution satisfies :

1Vl 2o (0.71200) + [[Vinll L2011 ) < O, (2.55)

where C is a positive constant independent of m.

Proof. We rewrite (2.53) in terms of the unknown «,,,, i =0,1,2---m, and we obtain

m)

= da, i
Z d;:m <Wi7Wj> + Zaim (V a(Wij) + b(d’awiawj) + b(Wiﬂf’»Wj))
i=0 i=0
+ Z akmalmb W; Wkuwj> = 60jf<vm7aom>v (256)

i,k=0
m

> a,, (0)(w;,w;) = (vg,w,), forj=0,1,2-- \m

\ =0

Since the mass matrix with entries (w;, w,) (0 < i,j < m) is nonsingular, (2.56) reduces
to a nonlinear system with constant coefficients

Wl + Zame + Z akmajm ijk Zéojf 1,]7
m P (2.57)
@, (0) = <V07Wj>Zij7
=0
where X,.,Y, . Z,., € R. Then, there exists 7, (0 < 7., < T) such that the nonlinear

g0 Tigky “igo
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4.3 - Existence of weak solution

differential system (2.57) has a maximal solution defined on some interval [0,7, ]. In
order to show that 7, is independent of m, it is sufficient to verify the boundedness of
the L*-norm of v,, independently of m.

Multiplying (2.53-b) by «,,,(0), and summing for j = 0,1,2,--- ,m, lead to

L reaF = [vyva <5 [ il +5 [ v,

Vo (O < v |I*. (2.58)

and then

Following the same procedure as for the derivation of the a priori estimates (2.40)
and (2.46), and using (2.58) yields

(@) (vl < Ilvoll =,
T (2.59)
(v) / IV, l%dt < Cllvy %

If T,, < T, then ||v,,|| should tend to +oco as ¢t — T,, because of the explosion criteria.
However, this does not happen since ||v,,|| is bounded independently of m in (2.59-a), and
therefore 7,, = T. O

A consequence of the a priori estimates (2.59) is that (v,,),, is bounded in
L2(0,T; V() and L*>(0,T; H(Q2)). Therefore, for a subsequence of v, (still denoted by
v,,), the estimates in (2.59) yield the following weak convergences as m tends to oo :

v,, — v weakly in L*(0,7;V(Q)),
(2.60)
v,, — v weakly* in L>(0,7; H(12)).

Nevertheless, the convergences in (2.60) are not sufficient to pass to the limit in the
weak formulation (2.53), because of the presence of the convection term. Consequently,
we need to obtain additional bounds in order to utilize the compactness theory on the
sequence of approximated solution v,,.

4.3.2 Additional bounds

As in [26], let us assume that B,, B and B, are three Hilbert spaces such that B, C
B C B,. If a function v is such that v : R — B, we denote by v its Fourier transform

+oo
v(r) = / e 2Ty (t)dt.

o0
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Let us recall the following identity about the Fourier transform of differential operators :

—

Div (1) = (2in7)"V(7),
for a given v > 0, and let us define the space
HY(R; By, B)) = {u € L*(R, B,), Dju € L*(R, B,)}.
The space H?(R; B,, B, ) is endowed with the norm

~ 1
VIl ®imy,8y) = (IVIIZ2@i8,) + 171 VIIZ2008,)) 2

We also define H7(0,7'; B,, B;), as the space of functions obtained by restriction to [0, 7]
of functions of H7(R; B, B,). Further, we recall the following result [26] :

Lemma 4.6. Let B,, B and B, be three Hilbert spaces such that By C B C B, and B, is
compactly embedded in B. Then for all v > 0, the injection H"(0,T; B,, B;) — L*(0,T; B)
is compact.

For small enough ¢, Lemma 4.6 is used later with

The main result of the present section is obtained by using the following Lemma :

Lemma 4.7. The sequence v,, is bounded in H"(0,T;V(Q),H(Q)) for 0 <y < { — e

Proof. We denote by v,, the extension of v,, by zero for ¢t < 0 and ¢ > 7', and v,, the
Fourier transform of v,, with respect to time. Since v,, has two discontinuities at 0 and
T, in the distributional sense, the derivative of v,, is expressed as

%X_fm =y, +v,,(0)0, — v,,(T)or, (2.61)

where §,, d, are Dirac distributions at 0 and 7', respectively, and

u,, = v',, which denotes the derivative of v,, on [0, 77].
The Fourier transformation of (2.61) gives

27V, (7) = Upn(7) +v,,(0) — v, (T)e 2™,
where v,, and u,, denote the Fourier transforms of v,, and u,, respectively. Since v, is
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4.3 - Existence of weak solution

uniformly bounded in L?(0, T,V (1)), it remains to prove that

+o00
| PR < e (2.62

o0

For all (v,a) € W, , we have that v, satisfies

/a"—m-vczx+u/vvm:de+/Gm-vczx+/Gom-vdx+/G;l-de
Q Q

where G,, = (v,,- V)v,,, G = (v, - V)¢, GL = (¢p-V)v, and H,, = f(v,,, &, ). We apply
the Fourier transform to (2.63) and take (v,,, @, ) as a test function, which leads to

2m/9 (1) dx + y/vim(T) V9 (7) dx + /Q G (7)-9, (7) dx
- /Q GO (7) - ¥, (7) dx + /Qégnm V(1) dx = /va(m V(1) dx
- /Q v, (T)-v, (fe T dx +a, H . (2.64)
where G,,, @gw (A}}n and ﬁm are respectively the Fourier transform with respect to time

of G,,, G°, G and H,,. Taking the Fourier transform of (2.54) and multiplying it by &,
yields

om?

~

a, H, =a, F. +0b,@,) —24, \w,z,) —\|w|*@,,)? (2.65)
where F is the Fourier transform of F,, with respect to time, with

F,=A, +B.a,, +aa. —Ka,, v, (2.66)
By rewriting the two last terms of (2.65), we obtain

H,, =8y, F 4 b,(@,,)7 = X (9,017 = [12,0]17)- (2.67)

Thanks to Lemma 2.2, we have |a,, (7)| < C,||v,,(7)|, and substituting (2.67) in (2.64),
and taking the imaginary part of (2.64) leads to

TR (DI < CITA ) vie) (1Gn() vy + 1G% () vy + IG (Dllvecey)

+ Cl (O (Fl + 19D+ [9,,0)])- (2.68)
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Note that in the sequel, C stands for different positive constants.
We now prove that each term lying in the right hand side of (2.68) is bounded.
Firstly, by using (2.14) and the definition of ,,,, we have

(G, W] = [b(V, Vi, W) < OV 2V, 12V, [ V], va e V),

and since v,, = 0 on I', which is a part of the domain boundary, due to the Poincaré
inequality, there exists a constant C such that ||v,,|| < C||Vv,,||, hence

Gy < CHVm”%-Il(Q)'

Secondly, by employing (2.14) and the definition of G¢ , s =0, 1, lead to

(GO W) = [b(¥,, 0, 0)| < C|Iv,, |2 VV, ][IV Vul, Yue V(Q),  (2.69)

(GL )| = [b(ah, V)| < Cllp]l2 V]2 |V v, | [V, Yu € V(€). (2.70)

mll

Further, since ¢ = 0 on I';, we deduce from (2.69)-(2.70)
(G w)| < Ol Vv, [[[ V]|, Yu e V(Q), s =0,1,
and hence
G llvie) < Cllvyllar ), s=0,1.
Consequently, thanks to the energy estimate (2.59) satisfied by v,,, G,, and G}, remain
bounded in L'(R; V'(2)) and the functions G,,, G¢, are bounded in L>(R; V'(2)) i.e.

U (|G (7)) + 16 () vy + 16 (Tllvren) < €.

We now show that the last three terms in the right hand side of (2.68) are boun-
ded. Thanks to the energy estimate (2.59-a) satisfied by v,,, we have ||v,,(T)| < C and
|v,,(0)]| < C. Moreover, since ¥ € U, ,, thanks to Lemma 2.2 and (2.59-a), we show that
each term of F, defined in (2.66) is bounded in L'(R), hence F, is bounded in L'(R).
Therefore, ﬁm is bounded in L*(R) i.e.

Sup\ﬁm] < C.

TER

Inequality (2.68) finally reduces to

IV (OIF < CUVLEOI+ VDl @) < ClVL (1) @),
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4.3 - Existence of weak solution

where C stands for different positive constants.

For 0 < v < }l, we now estimate the norm

“+o00
/ I7|2|%,,,(7)||2dT. (2.71)
Note that, (see [26])
1+ |7]
< R.
2 < ) e VT

Consequently, we deduce

/OO‘T’TYH{’\m(T)’PdT S C(’y)/_oo ”vm(T)H dT—|—C(’}/)/_ OO|TH|vm<T>H dT

e o 1+ |72 o L1+ |17

2 19,7 o () e
o [ Sy ) [ RSOy

o 14T I N

IN

oo o v, () |l
< ) [ IR+l [ @l ;- g 79)

. o T

The last integral in the right hand side of (2.72) satisfies

oo |15, (Dl oo 1 By )
Homi R < - v . 2.
/_oo T 7S (/oo (1+|r|127>2‘”) (/oo Vo () i “’””)  @7)

and the first integral in the right hand side of (2.73) is convergent for any 0 < v < 411' On
the other hand, using the Parseval equality leads to

ol

+o0 T
| eadr = [ valea < c

o0

Then, the sequence v,, is bounded in H"(0,7;V(Q2), H(Q2)), for 0 <~ < 7 —e. ]

1
4

Finally, by applying Lemmas 4.6 and 4.7, there exists a subsequence of v,, which
converges strongly in L?(0, 7, H(Q2)).

4.3.3 Passage to the limit

The compactness result obtained in the previous section implies the following strong
convergence (at least for a subsequence of v,, still denoted v,,)

v,, — v strongly in L*(0, T; L*(9)).
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Using the above strong convergence result and (2.60) enable us to pass to the limit in
the weak formulation. Note that the weak formulation is obtained by multiplying (2.53)
by ¢ € D(]0,T[), and using integration by parts with respect to time leads to

/ / dxdt+u/ /Vv VA dxdt—l—/OT/Q(Vm-va) - v,p(t) dxdt
+/0 /Q(vm-wb) -v,0(t) dxdt+/ /(¢-va) - Vp(t) dxdt

—/Q H(0)750(0 dx—/ G f (Vg )o(t) b, (3,8, € W(Q).  (2.74)

Firstly, the integrals in the left hand side of (2.74) are examined. Using the weak esti-
mates (2.60) leads to

[ [vwvs@yast e [ [veve asa
[ /vim:w T L
/OTL(VWW)'W(” dxdt 5 /OT /Q (v V) - ¥,0(t) dxdt,
/OT/QW'V%%%@@) dxdt / [ 9w Tl axi,

for the linear terms. Further, since v,, converges to v in L*(0,7;V(Q2)) weakly, and in
L?(0,T;L*(9Q)) strongly, we can pass to the limit in the nonlinear term to obtain

T
/ /(Vm Vv, - vie(t) dxdt = / / v Vv) - vp(t) dxdt. (2.75)
0o Ja

The first and last terms in the left hand side of (2.74) are treated in the same manner.

Secondly, the integral in the right hand side of (2.74) is examined. Using Lemma 2.2,
according to (2.59-a), we have o, € L*(0,7). Hence, for a subsequence of «,  (still
denoted by «,,,) :

a,, — «a weakly” in L>(0,7). (2.76)

Note that the convergence of v,, in L?([0, 7] x Q) implies its convergence in L'(0, T; L*(Q2)),
ie.

| — lIvllin L'(0,T). (2.77)

ml

v
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Due to Lemma 2.2, we have

|Od - O50q| < CbHVp - Vq”? V(V}’Na(]p)’ (Vq’a()q) ew, )

Op — m

hence, o, is then a Cauchy sequence in L'(0,7) and

om
a,,, — ¢in L'(0,T). (2.78)

Moreover, according to (2.76) and using [14, Proposition I1.1.26], we have ¢ = «a €
L>(0,T). Furthermore, since ¢, is bounded in L>(0,7"), by (2.78) and [14, Corollaire
I1.1.24], we obtain «,, — « in L?(0,7T) for all p €]1, +oo|.

Now we can pass to the limit in the following terms :

T . T .
b0 o(t)dt TR b.a’p(t)dt, (2.79)
0 J T om m—-+oo 0 J
T ~ T .
/ B IValPodt s / 3 allv]Po(t)dt, (2.80)
0 0

and since A, =b(w,v,z,,)+b(z,,, ¥, w)withz, =v, —q, W, wehave

T _ T _
/ Wiz ot)dt / 3w, 2)p(t)dt, 2.81)
0
T _ T _
| dteetiit o | aeta (2.82)
0 0

where A, = b(w,,z) + b(z,1, w). Finally,

T~ T~
/ B Voo o)t / 3.1 (v, a)p(t)dt,
0 0

where f(v,a) = A, + Bsa + a,a® 4+ bya — 2),(w,z) — (A, ||w]]? + K|[|v]]?) o
Consequently, passing to the limit in (2.74) leads to

T T T
—/ / V-V (t) dxdt + 1// / Vv : Vv,(t) dxdt +/ /(V -Vv) - Vip(t) dxdt
0 Jo 0 Jo 0o Ja

—|—/OT /Q(V V) - v,p(t) dxdt + /OT /Q(zb - Vv) - vp(t) dxdt — / vov,;¢(0) dx

Q
T ~
— [ G50 dt (2.83)
0
for all v, = &ijj, j € N. By linearity, equation (2.83) holds true for all v combination of
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finite v, and by density, for any element of W (Q). ]

We now intend to prove the existence of the pressure.

4.4 Existence of the Pressure

First, we recall a result obtained in [33]

Lemma 4.8. Let f € D'(|0,T[; H'(Q2)) such that (f,V)g-1q)mi@ = 0 YV € Vy(Q). Then,
there exists q € D'(]0, T[; L*(2)) such that f = Vgq.

Lemma 4.8 is employed to prove the following result

Lemma 4.9. There exists p € D'(]0,T[; L*()) such that (v,p) satisfies (2.8-a) in the dis-
tribution sense.

Proof. By choosing ¢ € D(0,7T) in (2.83), V(v,a) € W(Q), we obtain

// vt dxdtJrV/ /VV vao()dxdt+/ /V Vv) - vp(t) dxdt
/ /V V) - vt dxdt+/ /1,b Vv) - v(t) dxdt

—/ af(v,a)e(t)dt. (2.84)

0

Further, taking @ = 0 we have v € V(Q2), and from (2.84) we deduce

/— vdx+u/Vv:V?dx—l—/Q(V'VV)~i7dx—|—/Q(v-V1,b)'i7dx

+/(7,b -Vv)-vdx =0, in D'(0,T). (2.85)
Q
Then, letting

f:Z—Z—VAv+(v V)b + (1 - V)V + (v - V)v,
and using (2.85), we obtain f € D'(]0, 7[; H'(Q)) and (f, V)u-1 (o) mi @) = 0, ¥V € V,(Q).
Finally, using Lemma 4.8, there exists p € D'(]0,T[; L*(?)) such that f = —Vp. O

We now intend to retrieve the stabilized problem (2.8).

First, we prove that (v, p) satisfies (2.8-f). Let us define the space
E(Q)={uecl?Q):V-ue L*0)},
and recall the following Lemma obtained in [33, Chap I, Theorem 1.2] :
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Lemma 4.10. Let Q be an open bounded set of class C?. Then there exists a linear conti-
nuous operator vy, € L(E(Q), HY2(I")) such that

Y. = the restriction of u-nto I, for every u € D(Q).
The following generalized Stokes formula is true for all u € E(Q) and w € H'(Q2),
(u, Vw) + (V- u, w) = (7,u, W), (2.86)

where v, € LH'(Q),L*(T)) is the trace operator.

By writing (2.8-a) in the form

g—Z—FV-(—I/VV+Ip)+(V-V)¢+(¢-V)V+(V'V)V:0 in Q,

and using Lemma 4.10, we obtain

/Q g_: ¥ dx + /Q(uvv 1) V¥ dx o 0V Ip) m)
—|—/Q(V-Vv)-de—l—/ﬂ(V-V@b)-?dX—l—/Q(ﬂ)'VV)‘dezoa
V(v,a) € W(Q). Letting v = aw € W(Q) yields
pl :Vv=pV-v=0,
((=vVv +1Ip) - n, %H*%(F)H%(F) = —a/rb[Vg—:’l —pn] - g dc.

Consequently,

/a—v-de%—l//VV:Vde—l—/(v-Vv)-de+/(v-V¢)-?dx
o Ot Q Q Q

+/(¢~Vv)-§d><:&/[Va—v—pn]-gdg. (2.87)
[¢) Fb 811

By comparing (2.84) and (2.87), we retreive (2.8-f), namely

Finally, it remains to verify that the initial condition (2.8-e) belongs to H(Q2). In this
purpose, we multiply (2.8-a) by vy, with ¢(7T)) = 0, and integrate with respect to time
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and space

—/OT/QV-GgJ/(t) dxdt+1//0T/QVV:V§g0(t) dxdt—&-/OT/Q(V-VV)-Vﬂt) dxdt

—|—/OT/Q(V-V1,D) -V (t) dxdt—l—/OT/Q(z,b-Vv) -V (t) dxdt—/ﬂv(O)?w(O) dx

_ / " A (v a)(0) ()t (2.88)

By comparing (2.83) and (2.88), we obtain [,(v(0) — v,) - V¢(0) dx = 0, and choosing ¢
such that ¢(0) = 1, yields

/Q (V(0) = vy) - T dx =0 V(¥,a) € W(Q).

Hence, as in chapter 1, v(0) = v, in £(Q) which is defined in (1.75).

5 Concluding remarks

In this paper, the exponential stabilization of the two and three-dimensional Navier-
Stokes equations in a bounded domain is studied around a given non-stationary state
flow, using a boundary feedback control. In order to determine a feedback law, an ex-
tended system coupling the Navier-Stokes equations with an equation satisfied by the
control on the domain boundary is considered. We first assume that on ¥, (a part of
the domain boundary), the trace of the fluid velocity is proportional to a given velocity
profile g. The proportionality coefficient « measures the velocity flux at the interface. It
is an unknown of the problem and is written in feedback form. By using the Galerkin
method, « is determined such that the Dirichlet boundary control v, = ag is satisfied on
¥,, and the stabilizing boundary control is built. We show that the nonlinear feedback
control provides global exponential stabilization of the non-stationary state belonging in
the set admissible target velocities. This feedback control was shown to guarantee global
stability in the L2-norm.
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Chapitre 3

Feedback stabilization of the
Navier-Stokes system with mixed
boundary conditions

Abstract

This paper presents a boundary feedback control for the two and three-dimensional Navier-
Stokes equations in a bounded domain 2 with mixed boundary conditions around a given steady-
state flow. In order to determine a feedback control law, we consider an extended system coupling
the equations governing the perturbation with an equation satisfied by the control on the domain
boundary. By using the Faedo-Galerkin method and a priori estimation techniques, a stabilizing
boundary control is built. This control law ensures a decrease of the energy of the controlled
nonlinear discrete system. A compactness result then allows us to pass to the limit in the system
satisfied by the approximated solutions.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

1 Introduction

Let Q be a bounded and connected domain in R?, d = 2, 3, with a boundary I of class
C?, and made up of three connected components I';, I'. and Iy with ' =T, UT'. UT,. Such
a boundary decomposition is schematized in Figure 3.1. In particular, the boundary I', is
the part of I', where a Dirichlet boundary control in feedback form has to be determined.
The usual function spaces L*(Q2), H'(Q2), H}(Q) are used and we let L*(Q2) = (L*(Q2))4,
H'(Q) = (HY(Q))4, H(Q) = (H}(22))%. Negative ordered Sobolev spaces H™!(2) are defi-
ned as the dual space, i.e., H'(Q) = {H{(Q)}'. We denote by (- | -) and || - || = || - lr20),
the scalar product and norm in L?(), respectively. Further, if u € L?(Q) is such that
V- u € L2(Q), we denote the normal trace of uin H 2(I') by u - n, where n denotes the
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BOUNDARY CONDITIONS

unit outer normal vector to I.

FIGURE 3.1 — Description of the domain (2 and of the three connected components I'., I’
and I',.

In order to define the stabilization problem, we consider a velocity-pressure pair
(v,, q,) solution to the stationary Navier-Stokes equations

—vAv, + (v,-V)v,+ Vg, =f, in
V-v,=0 in Q,
v, =0 onl, (3.1)
v, =1, onl,,
vVv,-n—qn=1, onl,,

where v > 0 is the viscosity coefficient, f, represents the body forces acting on the fluid,
1), is the Dirichlet boundary condition on I', and 1, is the Neumann boundary condition
on I',. Further, we assume that couple (v, q,) belongs to H'(Q2) x L3(2), where L3(Q)
define the pressure space with zero mean value :

3@ = {pe @), [ pox ax=o}.

Let us first define the set admissible target velocities U,,. The solution v, of (3.1) is said
to be in the set admissible target velocities U/, if
14

M

p

INAA R (3.2)

where M, is a positive constant defined later in (3.37).

For T" > 0 fixed, we take Q = [0,7) x Q, ¥, = [0,T) xI';, ¥, = [0,T) x I'. and ¥, =
[0,7) xT's, and we consider the velocity-pressure pair (u, ¢) solution to the non stationary
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Navier-Stokes equations

g—ltl—l/Au—k(u-V)u—qu:fs in Q,
Vou=0 in Q,
u(t,x) =0 on %, (3.3)
u(t,x) = u,(t,x) + . (x) on %,
vVu(t,x) -n—q(t,x)n =u,(t,x) +,(x) on X,
| u(t = 0,x) = v (x) + vo(x) in Q,

where u, is a given Neumann boundary condition on ¥, which is defined later, u, is the
control input which is built later and v,(x) is the initial perturbation and the initial
condition of v in (3.4), it belongs to an appropriate functional space which will be defined
later.

Problems of type (3.3) have already been investigated in the literature. For example,
in [14, 15, 24], energy estimates in velocity-pressure are established and a proof of exis-
tence of solutions is obtained, where the Neumann boundary condition on X, is cho-
sen appropriately. In [14, 15] the Neumann condition is derived from a weak formula-
tion, while in [24], it is treated by pseudo-differential methods. However, the studies
in [14, 15, 24] are only concerned with the existence of velocity-pressure solutions and
not with a stabilization problem by means of a boundary feedback control, which is the
subject of the present paper.

By substituting u = v + v, and ¢ = p + ¢, in (3.3), the resulting system is obtained for
the velocity-pressure pair (v, p)

aa—‘t,—VAV—I—(V-V)VS—F(VS'V)V+(V'V)V+Vp:0 in Q,
V-v=0 in Q,
v=0 on X, (3.4)
v(t,x) = u,(t,x) on %,
vVv-n—pn = u(t,x) on X,
([ V(t=0,%) = vy(x) in Q,

where u, is a given Neumann boundary condition on ¥, defined later.

Our goal is the following : for a prescribed rate of decrease o > 0, we need to find a
feedback control u, on ¥, such that the velocity v in (3.4) satisfies the exponential decay

V@) < [[volle™®, ¢ € (0,00). (3.5)
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Note that o(t) is usually written as o,¢ in previous studies, where o, is positive constant.
The control u,(¢) is called a feedback if there exists a mapping M : X(Q2) — U(I'.) such
that

u,(t) = M(v(t)), te(0,00), (3.6)

where the spaces X(2) and U(I',) are defined in the sequel.

The theoretical setting of the stabilization procedure, for the non stationary incom-
pressible Navier-Stokes equations using a feedback control, has been studied by a num-
ber of authors, e.g. A.V. Fursikov [17, 18], V. Barbu et al. [6, 10, 11, 12, 13], J.-P. Raymond
et al. [28, 29, 30] and M. Badra et al. [2, 4, 5]. In these papers, the authors consider the
Dirichlet condition only and system (3.4) is written in the form

¥'(t) = Ay(t) + Bu(t) + hE(y(t),u(t)), y(t=0) =y, (3.7)

where y(t) is the new state variable, u(¢) the new control variable, A is a linear operator
which is the infinitesimal generator of an analytic semigroup, B is a linear operator,
F' is a nonlinear mapping and « = 0 or 1. Further, the linear feedback law M is first
determined by solving a linear control problem for the linearized system of equations,
i.e. Kk = 01in (3.7), and then this linear feedback is used in order to stabilize the original
non linear system i.e. k = 1 in (3.7).

By employing the extension operator, A.V. Fursikov [17, 18] addressed the stabiliza-
tion of the 2D and 3D Navier-Stokes equations. In [4, 5, 9, 10, 11, 29, 30], the feedback
control laws are determined by solving a Riccati equation in a space of infinite dimension.
In such a case, an optimal control problem has to be solved, involving the minimization
of an objective functional. In practice, the control is calculated through approximation
via the solution of an algebraic Riccati equation, which may be computationally expen-
sive. The use of finite-dimensional controllers may be more appropriate to stabilize the
Navier-Stokes equations. Such an approach is performed in [12], in the case of an inter-
nal control, and in [2, 9, 10, 11, 28], in the case of a boundary control. In [2, 12, 28], the
authors search for a boundary control u, of finite dimension of the form

ue:Zuj(t)qu(X)? tZOa $€F,

where (1;);_, 53 n 18 a finite-dimensional basis obtained from the eigenfunctions of
some operator and U = (uy,uy, us,...,uy) is a control function expressed with a feed-
back formulation. In [28] and [2], where d = 2, and d = 3, respectively, the feedback
control is obtained from the solution of a finite-dimensional Riccati equation while a
stochastic-based stabilization technique is employed in [8], in the case of an internal
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control, which avoids the difficult computation problems related to infinite-dimensional
Riccati equations. The procedure employed in [6] for a boundary control ressembles the
form of stabilizing noise controllers designed in [8].

A linear feedback law is first determined by solving a linear control problem in all
the papers cited above, and this linear feedback is then used in order to stabilize the
original non linear system. Such a procedure leads to choose the initial velocity small
enough and it usually requires to search for the control u, and the initial condition in
sufficiently regular spaces. This is why another approach is proposed in [26], where an
extended system is considered with an additional equation satisfied by the control on
the domain boundary, and the boundary feedback control is constructed via a Galerkin
method. In [26], the system is not written in the form (3.7) and the control law is not
determined by solving a linear problem. Accordingly, the authors obtain a stability result
for an arbitrary initial data in an appropriate space and for prescribed rate of decrease
o > 0, which depends on the viscosity v.

In this paper, the approach of [26], using an extended system is followed, but ins-
tead of considering Dirichlet boundary conditions on the whole domain boundary, mixed
Dirichlet-Neumann boundary conditions are employed instead. The Dirichlet and Neu-
mann conditions are imposed on I', UT'. and Iy, respectively. However, as in [26], the
control is imposed only on a part of the Dirichlet boundary, namely I'.. Such a mixed
Dirichlet-Neumann feedback stabilization problem is new, to our knowledge, and the
problem seems to have been considered only numerically in [1, 3].

The boundary control u, in (3.4) is rewritten on the form u, = a(t)g(x) on X_, where «
is a priori unknown, g € H'/?(T") is assumed to verifyg =0 onI,UTl,,g-n # 0 on I, and
Jr. g -1 = 0. In order to stabilize (3.4), with u, = a(t)g(x) on ¥, by employing energy a
priori estimation technics, the quantity a(t) is found to satisfy the relation

/ w2 ] g d¢ = F(v,a). (3.8)
r. on

where F is a polynomial in « of degree 2 to be defined later. The quantity «(t) de-
pends nonlinearly on v in (3.8), and hence «a(t) satisfies a nonlinear feedback law of

the form (3.6), and the mapping M is nonlinear. System (3.4) is then extended by ad-
ding (3.8), and the extended system, namely (3.4) and (3.8), with u, = a(t)g(x) on X, is
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the stabilization problem considered in this paper, i.e.

((a) aa—::—VAV—f—(V-V)VS—l—(VS-V)V+(V~V)V+Vp=0 in Q,
) V-v=0 in Q,
() v=0 on X,
(d) v=oat)gx) on %, (3.9
() vVv-n—pn=u,tx) on X,
() [ ¥ven— g dc = Flv.a),
(g) v(t=0,x)=vy(x) in

\

In order to determined «(t), leading to the determination of the boundary control u,,
system (3.9) is solved via a Galerkin procedure which consists on building a sequence of
approximated solutions using an adequate Galerkin basis.

The paper is organized as follows. In section 2, the notations and mathematical pre-
liminaries are given. In section 3, thanks to technics developed in [23] (which are not
related specifically to a stabilization problem), the existence of at least one weak solu-
tion of the stabilization problem (3.9) is established by applying the Galerkin method.

2 Notation and Preliminaries

2.1 Function Spaces

Several spaces of free divergence functions are now introduced :

V(Q) = {ueD(), V-u=0}, (3.10)
V,(Q) = the closure of V(Q) in Hy(2), (3.11)
V(Q) = {ueH(Q) :V-u=0, u=0onl}, (3.12)
Z(Q) = {ueH(Q) :V-u=0, u=0onl,UT,}, (3.13)
H(Q) = {uel?Q) :V.-u=0, u=0onT,}. (3.14)

Remark 2.1. Since V() and Z(Q) are closed subspaces of H(12), we have by definition,

| llvey =1 llze = I - @)

Remark 2.2. Since Z(0) is a closed subspace of H'(Q), it follows that Z(Q) is a separable
Hilbert space and thus Z(S)) admits a countable orthonormal basis (z,),eny which will be
used in the sequel.
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Definition 2.3. Let V3 (') be the space of functions whose extension by zero over I belong
to Hz (). Further, we define

W(Q) ={(v,a) e V(Q) xR, st. v=agon.}, (3.15)
where g satisfies
g e V3(IL), (3.16)
g-n#0onl,, (3.17)
/ g-nd(=0. (3.18)

Remark 2.4. The solution of (3.9) is searched in W (Q), defined in (3.15).

The following lemma [23], is used in the sequel.

Lemma 2.5. There exists a constant C, > 0 such that, for all (v,a) € W(Q), with g
satisfying (3.52) and (3.17), we have

o] < Cellvl- (3.19)

Remark 2.6. For all (v,a) € W(Q), inequality (3.19) of Lemma 2.5 holds with (v,a),
where v and & denote the Fourier transforms of v and «, respectively.

2.2 Linear Forms

In order to define a weak form of the stabilization problem, we introduce the conti-
nuous bilinear form

a(vy,v,) = /QVV1 :Vvydx, Vv, e H'(Q), j=1,2,
and trilinear form
b(vy,Vy,v3) = /Q(V1 V)vy-vydx, Vv; e H(Q), j=1,2.
Thanks to Holder inequality, the functional b satisfies
b(vy, vy, v3)| < HV1HL3(Q) [V, HV3HL6(Q)7 VVj € Hl(Q)a J=12,3.
Further, using the generalized Sobolev’s inequality, leads to
Vil < Cilvall 29wl and [yl < Gol|Vvsll,  for d = 2,3,
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3.1 - A Galerkin basis for space W(Q)

where C,, i = 1,2 is a positive constant, and for C, = C,C,, we have

|61, Vo, va)| < OV 2 [[VV |7 [V |[[[Vvs]l. (3.20)

3 Control building

In the first step a hilbertian basis for space W (()) defined in (3.15) is built.

3.1 A Galerkin basis for space W (Q))

We assume that the boundary I', is composed of two connected components such that
I.=T,UT,. Let g, such that g, € V2(I',) and Jr 8 -n # 0, we consider this problem
0

((a) —Aw+Vg=0, V-w=0 1in Q,
b = rur
®) w on it (3.21)
(c) w=pg, on [,
\ (d> w =g on Fl’
. 1 . fr g -n dC
where g, is such that g, € V2 (I";) withg, -n #0on T, and § = ——————. Further, let
fFo gy n d(
on [,
g1 on I';,

and hence, by construction, g satisfies (3.52)-(3.18). Since w = gon I'. = I'y U T}, sys-
tem (3.21) admits a unique solution (w,q) belonging to H'(Q) x L3(2) (see [14, Propo-
sition II1.4.1]). Moreover, for all z € Z({)) defined in (3.13) and for all « € R, we have
v =z+aw € W(Q), where w satisfies (3.21). Indeed, we have z, w € V({2) and since z = 0
on I'., we obtain v = ag on I'.. Due to Remark 2.2, Z({2) admits a countable orthonormal
basis (z,).cn, the sequence w, z,, z,, z,,--- , is then linearly independent. Consequently,
we search for the solution v of (3.9) in

W(Q) = span(w) @ span(z,) fnen-y, (3.23)

and v can be expressed as: v=aw +z, with z=> 7" 6.z

=1 1%
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3.2 The control building

Multiplying (3.9-a) by v = aw +z € W (Q) and integrating by parts over (2, using (3.9-
e) and (3.9-f) leads to

1d

5%”"”2 + VHVVHQ + b<V7 \Z V) + b(VS, v, V) + b(V7 A\ V)

— / u, -z d¢ + aF(v,a). (3.24)
I's

We now define the function u, and build the control law F (v, a) by rewriting the terms
in the left hand side of (3.24) :

VI = a?lwl* +2a(w,z) + |lz]", (3.25)
|Vv]? = o?|Vw]?+2a(Vw,Vz) + || Vz|*. (3.26)

Integrating by parts the following trilinear forms, yields

2
o) = 5 [ v e G [ gl (3.27)
2 s 2 Te
1 9 a’l 9
b(v,v,v) = — | |z°]z-nd{+— [ |g|g -ndC(. (3.28)
2 s 2 T.
In order to define the Neumann boundary condition u,, we recall that for all = € R, we
have
r=z" — x (3.29)
where ¥ = max(z,0) and 2z~ = —min(z,0). From (3.29), we have
v.,.n = (v,-n)" —(v,-n)", (3.30)
z-n = (z-n) —(z-n)", (3.31)

and we define the function u, on I'; by taking (see [14, Page 247])

usz—lz(vs-n)_—lz(z-n)_. (3.32)
2 2
By substituting (3.27)-(3.28) and (3.32) in (3.24) and by using (3.30)-(3.31), we obtain
ld 2 2, 1 2 + 1 / 2 +
Vv g [ i [ e myac

+b(v,v,,v) +a,a’® +b.a* = aF(v,a), (3.33)

) kR
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where
a, = |g| (g m)d¢, b, = / lg|*(v, - n)
We now define the control law F as
F(v,a) = a0 +ba— )\, (a|w|*+ 2(w,z)) +28,(Vw, Vz) — Ka||v|?, (3.34)

where the positive constants )\, and 3, will be defined later. Note that in (3.34), the terms
a|w|* + 2(w,z) and (Vw, Vz) are derived from (3.25) and (3.26), respectively ; while the
term —Ka/|v||? is introduced in order to limit the size of the control, for an appropriate
choice of K > 0.

4 Stability Result

We first establish the a priori estimates for the extended stabilization system (3.9).

4.1 A priori estimates
Multiplying (3.34) by a, substituting in (3.33) and using (3.25) leads to

1
2 2 2 1 20 (0 o\
L vl 4 v + /|z|v g [l
+b(v,v,v) ==\, ( —|z||*) + 2aB8,(Vw, Vz) — K|v|*a*. (3.35)

We obtain from (3.20) |b(v,v,,v)| < C,|v||2||Vv|z||Vv,]||VV], and since v = 0 on T, which

Y ER

is a part of the domain boundary, from the Poincaré inequality, there exists a constant
C, such that |v|| < C,[[Vv|, and hence
b(v, v, V)| < M[[Vv [ Vv, (3.36)

» Vg

where
(3.37)

By taking 3, = v — M, ||Vv || which is assumed positive, using (3.36) in (3.35) and due
to (3.26), we have

1
SV + B,V + 6, Val? + / 2,45 [ 1w
th 2 Jr.
< - (V1P = 1alP) -

(3.38)
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Moreover, since z = 0 on I U T, we obtain ||z|| < C,||Vz|| and taking )\, = —g; in (3.38)
P
yields

1d 1 1
VI Bt [ g [ ey

< — (A + Ko?) |v]%,
and hence
%HV|\2+2(AV+KCY2) [v|* <o. (3.39)
Multiplying (3.39) by ¢2*®), where
t
o(t) =M\t + K/ o?(s)ds, (3.40)
0
leads to
d 2 20(t)
— ([Iv?e*®) <. (3.41)

dt

By integrating (3.41) from 0 to ¢ we obtain the first a priori estimate

IV < [[v(0)[le=o®. (3.42)
Further, from (3.38) we deduce
1 d 2 2 2 2 2
sgIVI7+ Bl I VWP + B[ V2]® < A 2] (3.43)

Let us estimate the term in the right hand side of (3.43). Since
Iz])* = [lv — aw|* < 2[]v]|* + 207 ||w|]%,
using Lemma 2.5, we obtain
Aollzll* < My v)?, (3.44)

where M, = 2), (14 C?||w|*) . Further, employing (3.44) in (3.43) leads to

1d

5 VP + 80 (@PIVw* + [[Val?) < M, |lvIP*. (3.45)
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Integrating (3.45) from 0 to ¢, yields
t t
|!V||2+25u/ (@[Vw? +[[Vz]?) ds < HV(O)H2+2M1/ Iv]|*ds, (3.46)
0 0

obtaining e *® < e~*! from (3.40), and integrating (3.42) from 0 to ¢, leads to

¢ M M, _
26, [ (VW + |Val?)ds < (1+A—1—A—lez ) v
0 v v

IN

(1 n Af-) VO = (3 + 22 [wlP) [v(O)]?

and hence, we obtain the second a priori estimate

K 3+ 2C2||w|?
[ @Iowle 4 1va) as < (2 v (3.47)

Consequently,
t t
/HVV||2dS = /(a2||VW||2+||Vz||2+2a(VW,Vz>)ds
0 0
t
< 2/ ([ Vw|? + |Vz]?) ds.
0

Therefore, we obtain the last a priori estimate

t 2 2
/O IVv|2ds < <3+22¢> v (0)]2. (3.48)

4.2 The variational formulation

In this section the variational formulation of the coupled system is obtained. By inte-
grating by parts in space the stabilization problem (3.9), a weak formulation is obtained
which leads to the following definition :

Definition 4.1. Let T' > 0 an arbitrary number and v, € H({?), under assumptions (3.32)
and (3.34), we shall say that (v, a) is a weak solution of (3.9) on [0,T) if

(i) v € [L>(0, T H(2)) N L*(0,T; V(Q))],
(i) o € L>(0,T) such that v(t,x) = a(t)g(x) on I',,
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(iit) Vv =z + aw € W(Q), the following variational formulation is satisfied

(a) (dyv,V) +va(v,v)+b(v,v,, V) +b(vy,v,v)+b(v,v,V) = / u, -z +aF(v,q),

(b) </Qv.vdx>(t:0>:/gwwx_ S (3.49)

Note that the initial condition (3.49-b) makes sense because for any solution v of (3.49-a),
function t — [, v(t) - vV dx is continuous (see [14] Corollaire I1.4.2).

The main achievement of this paper, is the following boundary stabilization result.

Theorem 4.2. Assume that the steady-state v, solution of (3.1) satisfies
B,=v—M]JVv] >0, (3.50)
where M, is defined in (3.37). Assume that the initial condition v, and the profile g satisfy
v, € H(Q), (v, -n)nec HY*(T,), (3.51)
ge VV2I,) and oyg-n=v,-non I', with g-n#0,a,cR.  (3.52)

For arbitrary initial data v, satisfying (3.51), there exists a solution (v,«) in the sense
of definition 4.1, and a distribution p on ) such that (3.9) holds. Moreover, there exists a
positive constant o such that v satisfies

t
IVl < vl exp (—ot—K / a2<s>ds), (3.53)
0

where K > 0 is a prescribed constant. Furthermore

T
/ IVVIP < G, lvoll2, (3.54)
0

where the constant C|, depends on v.

Remark 4.3. With the condition (3.50), the equilibrium state v, in (3.1) is naturally
stable in the sense that the system (3.49) stabilizes by itself when « = 0and z=0onT,.
This explains why the choice of the initial perturbation v, in Theorem 4.2, is arbitrary.
However, when z = 0 on I',, as shown in Proposition 3.1, the control « is not identically
zero as soon as the initial perturbation v, and the profile g satisfy (2.48)-(2.49) with
v, - n # 0. The theoretical case v, - n = 0 remains an open question.

The proof of Theorem 4.2 is given at the end of this section, after Lemmas 4.4, 4.6 and
4.8 are established. In a first step a sequence of approximate solutions using a Galerkin
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method is built. A compactness result obtained in [25] then allows us to pass to the limit
in the system satisfied by the approximated solutions.

4.3 The Galerkin Method

For all m € N, the space W, is defined as :
Wm = Span({w()7 Wi, 7Wm})7

where w, =wand w; =z;,, 1 =1,2,3,--- ,m. Then for (v,,,¢,,.) € W,,, we write v, in the
m

formv,, = Z ¢, w, and we define the following finite-dimensional problem
1=0

(
(a) <dtvm7 W]> + VCL(Vm,Wj) + b(Vm,VS, W]) + b(vs7 Vins Wj) + b(Vm, Vins W])

— b F W) =5 [ ) = 5 [ @ w ), @.5)

()  (v,(0) = vo,w;) =0, for j =0,1,2,--- ,m.

\

where z,, => " ¢, W;, dy; is the Kronecker symbol and

‘F(Vm7 ¢0m) = ae¢gm + be¢0m - )‘V (QSOmHVVH2 + 2<W7Zm> )
+2B8,(Vw,Vz,) — Koy, v, | (3.56)

Lemma 4.4. The discrete problem (3.55) has a unique solution v, € C*(0,T, ;W ).
Moreover the solution satisfies :

1Vl 2o 0.1 1200)) + [[Vinll 2081 () < C, (3.57)

where C is a positive constant independent of m.

Proof. Classical results of nonlinear ODEs lead to the existence of the greatest 7, in
(0,T) such that the discrete problem (3.55) has a unique solution v,, € C'(0,7,,;W,,).
Indeed, the resulting mass matrix defined as M;; = (w;, w;) (0 <1,j < m) is nonsingular.
In order to show that 7, is independent of m, it is sufficient to verify the boundedness of

the L?-norm of v,, independently of m.

Multiplying (3.55-b) by ¢;,,(0), and summing for j = 0,1,2,--- ,m, leads to

[ va@F = [vovn@ <5 [ w45 [ 0P,
17
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and then
1V, (0) 17 < (vl (3.58)

Following the same procedure as for the derivation of the a priori estimates (3.42)
and (3.48), and using (3.58) yields

(@) (vl < Ivoll =@,
T (3.59)
®) / 17w, 1%t < Cllvy %

If T,, < T, then |v,,|| should tend to +ococ as t — 7,, because of the explosion criteria.
However, this does not happen since ||v,,|| is bounded independently of m in (3.59-a), and
therefore 7, =T O

A consequence of the inequality (3.57) is that (v,,),,,m = 0,1,2,--- , is bounded in
L*(0,T;V(Q2)) and L*(0,T;H(Q?)). Therefore, for a subsequence of v, (still denoted by
v,,), inequality (3.57) yields the following weak convergences as m tends to oo :

{Vm — v weakly in L2(0,T; V(Q)), (3.60)

v,, — v weakly* in L>(0,7;H(Q)).
Nervertheless, the convergences in (3.60) are not sufficient to pass to the limit in the
weak formulation (3.55), because of the presence of the convection term. Consequently,

we need to obtain additional bounds in order to utilize the compactness theory on the
sequence of approximated solution (v,,),,,m =0,1,2,--- .

4.4 Additional bounds

Let us assume that By, B and B, are three Hilbert spaces such that B, ¢ B C B;. If
v : R — B is a function, we denote by v its Fourier transform

+oo
v(T) = / e 2Ty (1) dL.

(o ¢]

Recall the following identity about the Fourier transform of differential operators
Div(r) = (2inT)"9(7),
for a given v > 0, and let us define the space

HY(R; By, B)) = {u € L*(R, By), Dju € L*(R, By)}.
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The space H7(R; By, B;) is endowed with the norm

~ 1
IVl @m0, = (V1 Lm0y + 1171V 22 5,2

We also define H7(0,T'; By, By), as the space of functions obtained by restriction to [0, 7]
of functions of H7(R; By, B;). Further, we recall the following result [25] :

Lemma 4.5. Let By, B and B, be three Hilbert spaces such that By C B C B, and By is
compactly embedded in B. Then for all v > 0, the injection H"(0,T; By, B;) — L*(0,T; B)
1s compact.

Lemma 4.5 is used later with : B, = V(Q2), B=H(Q2), B, =H(Q) and 0 <y < 1.

The main result of Section 4.4 is furnished by the following lemma :

Lemma 4.6. For 0 < y < 1, the sequence v,, is bounded in H"(0,T;V (), H(2)).

Proof. Since we already know that v,, is uniformly bounded in L?(0, 7, V(2)) from (3.57),
it remains to prove that

+o0
/ L A e (3.61)

We denote by v,, the extension of v,, by zero for ¢t < 0 and ¢t > 7, and v,, the Fourier
transform of v,, with respect to time. Classical results show that since v,, has two dis-
continuities at 0 and 7', in the distributional sense, the derivative of v,, is given by

%Vm =1, +v,,(0)0, — v,,(T)0r, (3.62)

where §,, 6, are Dirac distributions at 0 and 7', and

u,, = v, = the derivative of v,, on [0, 7.

By taking the Fourier transform of (3.62) we obtain
2irrv, (1) =1,,(1) +v,,(0) = v, (T)e 27",

where v,, and u,, denote the Fourier transforms of v,, and u,, respectively.

The finite-dimensional problem (3.55) is now considered for all time independent test
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function v =z + aw, € W, , and v,, is replaced by v,,. This leads to

/aL V—FV/VVW:VV—I—/Gm-V—F/an-V—i—/ Zm~§+/(V5-V)Vm~V
o Ot Q Q Q . Q
- —% / (zm.z)(vs.n)—+aHm+/vm(0)-”v“ao—/vm(T).vaT, (3.63)
. Q Q

where H, = F(V,,, d,,,) is defined to be the extension of F(v,,, #,. ) by zero for t < 0 and
t>T,and G, = (v,,-V)v,,, G = (v,,-V)v,and Z,,
transform of (3.63) yields

22717-/ v+u/Vv V?%—/Q@m v—i—/GS v
+/FSZ (7). v+/ﬂ( V)Vmﬁ:—%/rs(zm D(v, n) +all,

+ / v, (0)-v— / v, (T) - ve 2T (3.64)
Q Q

= izm (z,, - n)~. Taking the Fourier

where @m, @fn, Z\m and ﬁm are the Fourier transforms (with respect to time) of
G,,, G:, Z, and H,_, respectively.

We now take (v,a) = (v,,, gEOm) € W, in (3.64), and we obtain

2m7/ﬂ|vm(7)12+y/gvvm(¢>:vvm( )+ /@m(f).em( )+ /@8( )% ()
+/ Em(f)-vm+/9(vs.vwm. :—-/ 5 [2(v, -n)-
+ domH,, + /Q v,,(0)-v, (1) — /Q v, (T)-v, (r)e 2T (3.65)
According to (3.56), we have
GonHy = GonVr +,(Bom)* = Nom (Gom W] + 2(w,7,) ) (3.66)
where ?m is the Fourier transform of
Y, =a,du, +28,(VW,VZ ) — Koy, |7, |2 (3.67)

and rewritting the last term of (3.66) leads to

o~ o~ ~

Gom B = Gom ¥y + be(S0m)” = Ao (19, (DI = 12, (7)) - (3.68)

120



4.4 - Additional bounds

Due to (3.27), we obtain

05 8) =G+ 5 [ ) (3.69)
and using (3.68)-(3.69) in (3.65) yields
QW/ 9 |2+y/vV (T)+/Qém(r).vm(r)+/gé;(r)-vm(f)
# [ 20Tt g [ R = BT = A (R0 = 20 ))
4 /Q v (0)-9,(7) /Q v (T) -9, (r)e 2T, (3.70)

Thanks to Remark 2.6 of Lemma 2.5, we have
[Gom (7)] < C[19,,(7)] (3.71)

and due to the trace theorem, there exists a positive constant C such that
lullzry < Cllullag), Yu € H(Q2) and hence

1V (T) 2y < OV, (T)[[m1(0)- (3.72)

Thus, taking the imaginary part of (3.70) and using (3.71)-(3.72) and Remark 2.1, leads to
19, (P2 < ClF () vy (1Gon () Iveiey + 18 vy + 12D llaqry)

+ C 19, M1V (D] + [ O)] + (¥ (D)) (3.73)

Note that in the sequel, C' stands for different positive constants. We now prove that
each term lying in the right hand side of (3.73) is bounded.

First, we have
G llvio) < cillvialling and [[Ghlvie) < Cllva o),

and thanks to the energy estimates (3.59) satisfied by v,,, the quantities G,, and G?,
remain bounded in L!(R; V/(Q2)), and sequences G,,, G, are bounded in L*(R; V'(Q?)) i.e

m?

sup ([| G, (1) ey + 1G5, (7) lviey) < C.

TER

Thanks to Holder inequality and the trace theorem in [14, P 249, Théoreme V.2.2], we
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have

21 Z,, I,y = 120 (7 - 1) M2y < NZallea@o |20 luie,) < Cllz,lfeg)y  B.74)

Following the same procedure as for the derivation of the a priori estimates (3.47), and
using (3.58) we have z,, € L*(0,7;H'(Q?)). Further, by using (3.74) we show that 7, is
bounded in L'(R;L*(T,)) and hence ~Z,, is bounded in L>(R;L?(T})).

We now show that Y, is bounded in L'(R). From (3.67), thanks to Hoélder inequality
and Lemma 2.5, we have

Vol < 005, + 2 B IVW e @IV, [ 120) + KC v, [1°

and since z,, € L*(0,7;H!(Q)), according to (3.59) we show that Y, € L'(R) and hence
Y,, is bounded in L*(R) with

sup DA/m(T)| < C.
TER

Finally, it remains to show that the two last terms in the right hand side of (3.73) are
bounded. Thanks to the energy estimates (3.59), we have ||v, (T)| < C and ||v,,(0)| < C.
Inequation (3.73) then reduces to

T, < CURL M a@ + 19V, (3.75)
Therefore, we obtain the following inequality
VR (P < ClL (1)l @), (3.76)
where C stands for different positive constants.

From [31, Chapter 3, Section 3.2, page 194] we have

1+ 7]

2y i I B

, Vr e R, with 0 < v < 1/4,

and consequently, we deduce

+oo v, (7)) 7|1V, ()12
[ @ e [ BRI o) [TERDE )

% S oo LA TR

For the first integral in the right hand side of (3.77) the Poincaré inequality is used, and
thanks to (3.76) the second integral in the right hand side of (3.77) is rewritten. This
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leads to

o +o0 119 4o 19 (M) o
/ P9 (I < es(y) / LML B / Lzl )

. o THRD o T[T
o = [ v
<at) [ IRl e [ RETES @

The second integral in the right hand side of (3.78) satisfies

TNV () @ oo 1 3 too , i
/_Oo 1+ |72 = (/_Oo (1+ ]7-|1—27)2) (/_OO va(T)HHl(Q)) ; (3.79)

and the first integral in the right hand side of (3.79) is convergent for any 0 < v < }I. On
the other hand, using the Parseval equality leads to

+o0 T

which implies that the sequence v,, is bounded in H7(0,7;V(Q2), H(12)). ]

Finally, by applying Lemmas 4.5 and 4.6, we conclude that there exists a subsequence
of (v,,)neny Which converges strongly in L?(0, 7, H(Q)).

4.5 Passage to the limit

The compactness result obtained in the previous section implies the following strong
convergence (at least for a subsequence of v,, still denoted by v,,)

v,, — v strongly in L*(0, T; L*(Q2)).
Such a convergence result together with (3.60) enables us to pass to the limit in the

following weak formulation, obtained from (3.55) after multiplication by ¢ € D([0,7))
and integration by parts with respect to time, i.e.

/ / +1// /Vv VV / / @(t)
+/0 /Q(vm-st / / v;(t) —<P(0)/va(0) v
-2 /OT/S(zm-vj)(v - / / 1) (1)

T
+/ 00, F (Vi B )0(1), YV, = a;w,. (3.80)
0
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As a first step the integrals in the left hand side of (3.80) are examined.
The weak convergences (3.60) yield

// Vi () msE /OT/QV-W’@)
[ / Vo Vel g [ [ Vel
[ [enved wet) s [ [0 900 500,
[ [ 5ot s [ [ 995000

for the linear terms in the left hand side of (3.80). Further, by using (3.55-b), we have

/va(())% :/QVOVJ».

Since v,, converges to v weakly in L?(0,7;V(12)), and strongly in L?(0, T;L*(2)), we can
pass to the limit in the nonlinear term to obtain

// Vv, viet)  soe //v Vv) - v,p(t).

As a second step the boundary terms in the right hand side of (3.80) are examined. Since
z, € L*(0,T;H'(Q)), thanks to [14, Proposition V.2.5], we obtain

z,, — zstronglyin L?(0,T;L*T))

m

z,(z, n) +z (v,-n)" — z(z-n)” +z(v, -n)” weaklyin L3(0,T;L3(T)).

Consequently,

/OT/FS(zm.Gj)(VS-n)go(t) s /OT/FS<Z'vj)(Vs‘n)SO(t)»
/OT/s(zm.’Gj)(zm-n)‘gp(t) S /OT/S(Z_;J,)(Z.H)—@@).

As a last step, thanks to (3.56), we prove the convergence of the last integral lying in the
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right hand side of (3.80), which reads

TN T y T _
/0 Oéjf(vm’ ¢Om)(70(t) = ae/o ¢Omaj<p(t> + be/o (bOmOéng(t)
T

Y / (Gom[WII2 + 2(w,2,.) ) &0(t) + 2, / (Vw, Vz,,)d0(1)

0 0
T
— / Dom Vi P00 (2). (3.81)
0

By using Lemma 2.5 and according to (3.59-a), ¢, € L>(0,7"), and hence, for a subse-
quence of ¢ (still denoted by ¢, )

b,,, — a weakly” in L>(0,7).

Let us notice that the convergence of v,, in L*([0,T] x Q) implies the convergence of v,,
in L'(0,7;L*(€)), and hence

v, — ||v| strongly in L*(0, T). (3.82)
Further, due to Lemma 2.5, we obtain
‘¢Op - ¢Oq‘ < CeHVp - VqH, v(vpa ¢0p)7 (qu ¢Oq) S Wm

Consequently, ¢, is a Cauchy sequence in L'(0,7) and it converges to a limit ¢, in
LY0,7) i.e.

Gom — @, strongly in L'(0,7). (3.83)

Therefore, we conclude that ¢, = a € L>(0,7) due to [14, Proposition II.1.26]. By
using (3.57), the quantities ||v,,| and ¢, are bounded in L*°(0,7) and in addition,
from (3.82) and (3.83) we obtain for all p €1, +o0]

[Vl — |lv|| strongly in L*(0,T),
¢om — « stronglyin LP(0,T).
This is due to a result obtained in [14, Corollaire I1.1.24] which states that if a se-

quence of functions converges strongly in L!(0,7) and weakly star in L>(0,7), then
Vp €]1, oo[ the sequence converges strongly in L?(0,7).

Finally, it now remains to pass to the limit in each term in the right hand side
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of (3.81). This leads to

T T
[ a7 e s [ aFv el
0 0
where
F(v,a) =a.0”+ba— )\, (a|w|®+ 2(w,z)) +28,(Vw, Vz) — Ka|[v|>.

As a final step, passing to the limit in (3.80) yields

_/OT/QV-%SDI( +V//Vv Vv, p(t) //VVV - Vp(t)
—|—/OT/Q(V'VVS)' / / (t)—/gzvo§j¢(0)
:_%/OT/F5<z.vj><vs.n>¢<t>_§/0 /Fs<z-vj><z-n>so<t>

T
+ / a;00;F (v, a)p(t), (3.84)
0

for all v, = a,w;, j = 0,1,2,--- ,m. By linearity, equation (3.84) holds true for all v
combination of finite v; and by density, for any element of W (Q).

In the remaining part of this paper, our purpose is first to retrieve the weak formula-
tion (3.49) and secondly (in Section 4.6) to obtain the original system (3.9) including the
initial condition.

By choosing ¢ € D(]0,T) in (3.84) and by integrating by parts (in time) the first term
in the left hand side of (3.84), we obtain

/0 aa—:vcp()—i—u//Vv Vvp(t) //VVV - v(t //VVV Vo(t)
+/O/Q(VS.VV). :——//zzvn ——//zzzn o(t)

T
+ / aF (v, a)p(t), (3.85)
0

for all v =z + aw € W(Q) with z € Z(Q2) and a € R. Consequently, we obtain in the
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distribution sense on |0, 7'

a—v-wu/vv:W+/(v-vv>-e+/(v-vvs)-e+/(vs-vv)-v
o Ot Q Q Q 0

1

= [eamew ) [ @A aFve) D0 (3.86)

for all v =z + aw and (3.49) is satisfied.

It now remains to retrieve the stabilized problem (3.9). Note that (3.9-b)-(3.9-d) are
in W (@), and hence the three conditions are not examined in the following.

4.6 Retrieving the stabilized problem
First, we recall a result obtained in [31].

Lemma 4.7. Let f € D'(|0,T[;Q) such that (£, V)p ) pw) = 0 for all v € V(). Then there
exists q € D'(|0, T[; L*(Q)) such that f = Vq.

Lemma (4.7) is employed to prove the following result.

Lemma 4.8. There exists p € D'(]0,T[; L*(Q2)) such that (v, p) satisfies (3.9-a) in the dis-
tribution sense.

Proof. Fora = 0andz € V(Q2), we have v € V(). The particular choice v € V(Q2) in (3.85)

leads to
ov - - -
/8—-V+V/Vv:Vv+/(v-Vv)-v+/(v-Vvs)-v
o ot Q Q Q
+/(VS-VV)-V:0, in D'(0, 7). (3.87)
Q
By letting
f:g—;’—VAV—i—(V-V)VS—l—(VS-V)V—i-(V'V)V,

and using (3.87), we obtain f € D’'(]0,T[; 2) and (f

V)o@ = 0forall v e V(). Finally,
using Lemma 4.7, there exists p € D'(]0,T[; L*(Q))

such that f = —Vp. O

We now prove that (v, p) satisfies (3.9-e) and (3.9-g). Let us first define the space
E(Q) ={uecL*Q):divuec L*(Q)},
and recall the following Lemma obtained in [31, Chap I, Theorem 1.2].
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Lemma 4.9. Let ) be an open bounded set of class C?. Then there exists a linear
continuous operator v, € L(E(Q),H ') such that ~y,u is the restriction of u -

nto ', foreveryu € D(Q). The following generalized Stokes formula is true for all
ue F(Q) and w € H'(Q),

(u, Vw) + (div u,w) = (1,1, %0w), (3.88)

where v, € LHY(Q), L*(T")) is the trace operator.

By writing (3.9-a) in the form

?9_: +div(—vVv+Ip)+ (v-V)v,+ (v, - V)v+ (v-V)v=0 in Qr,

and using Lemma 4.9, for all (v, a) € W(Q), we obtain

ov - -
—V'V—f—/(l/vv—]p):VV+<(—VVV+I]9)'H,V>
Q

q Ot H™3(D),HE (D)

+/Q(v-vV>-w/g(v-Vvs)-ﬂ/Q(vs-Vv)-?=0~

Since (v,a) € W(Q), we have pl : Vv =pV-v =0 and

~ - ov ov -
((=vVv +1Ip)-n, V>H‘%(F),H%(F) = — /1“5[V% —pn|-g— / [ya—n —pn] - V.

Consequently,
ov  _ ~ ~ ~ ~
/a—~v+1//Vv:Vv+/(V-Vv)-V+/(V-Vvs)-v+/(v$~Vv)-v
o Ot Q Q Q Q
~ ov ov ~
—O‘/Fe[’/%—pn]‘g‘f‘/FS[Va—n—pn]'V- (3.89)

Particularly, for & = 0, namely for any test function v satisfying v =0on I';Ul’., we have

ov ~ ~ ~ -
—V~V+I//VV:VV+/(V-VV)'V+/<V~VVS)'V+/<VS~VV)'V
o Ot Q Q Q

Q
ov -

— / [ya—n — pn] -V, (3.90)
s

By comparing (3.86) with @ = 0 and (3.90), we deduce

/[V%_pn].g:_%/(Z.g)(vs.ny_l/(z.v)(z.n)-, WezZ(@), (39D
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and hence

ov 1 _ _
Vs T Pn= —52((V5-n) +(z-n)") on X,. (3.92)

Finally, by inserting (3.92) into (3.89) and comparing with (3.86), we obtain
/ Vov —pn]-g = F(v,a). (3.93)
r. on

According to (3.92) and (3.93), we retrieve (3.9-e) and (3.9-g), respectively.

In order to verify that the initial condition belongs to H({2), we multiply (3.9-a) by v
with ¢(7T") = 0 and integrate with respect to time and space

//vaa +y//vva //vvva)
/ [ wv) vt / JCRCRECEY U0
:__//Szvvn _-//Szvzna)

+ /0 aF(v,a)p(t). (3.94)

By comparing (3.84) and (3.94), we obtain /(V(O) —vp) - vip(0) = 0, and choosing ¢ such
Q
that ¢(0) = 1, leads to

/Q (v(0) = vy) ¥ =0, Y(¥.a)eW(Q).

Hence, as in chapter 1, v(0) = v, in £(Q) which is defined in (1.75).

5 Concluding remarks

In this work the exponential stabilization of the two dimensional Navier-Stokes equa-
tions in a bounded domain with mixed boundary conditions is studied around a given
steady-state flow, using a boundary feedback control. In order to determine a feedback
law, an extended system coupling the non stationary system (3.4), with equation (3.8)
satisfied by the control on the domain boundary is considered.

Neumann and Dirichlet boundary conditions are imposed and the velocity boundary
control u, = ag is satisfied on the Dirichlet part. The velocity profile g satisfies (3.52)
and (3.17) and the proportionality coefficient «, an unknown of the problem, measures
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the velocity flux magnitude at the interface. Note that the size of the initial velocity
v,(x) is arbitrary and does not need to be bounded. A Galerkin method is employed, and
« is determined such that the boundary control u, is satisfied on a part of the Dirichlet
boundary, and the stabilizing boundary control is built. The resulting feedback control
is proven to be globally exponentially stabilizing the steady states of the Navier-Stokes
equations. This feedback control is shown to guarantee global stability in the L?-norm.

130



References

[1] L. Amodei and J.-M. Buchot, A stabilization algorithm of the Navier—Stokes equa-
tions based on algebraic Bernoulli equation, Numerical Linear Algebra with Appli-
cations, 19 (2012), 700-727.

[2] M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite-
dimensional feedback or dynamical controllers : Application to the Navier-Stokes
system, SIAM J. Control and Optimization, 49 (2011), 420-463.

[3] M. Badra, J.-M. Buchot and L. Thevenet, Méthode de pénalisation pour le contréle
frontiere des équations de Navier-Stokes, Journal Européen des Systémes Automa-
tisés, vol. 45, numéro spécial Méthodes numériques et applications des systemes a
parametres répartis, 2011.

[4] M. Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based
on an extended system, ESAIM COCYV, 15 (2009), 934-968.

[6] M. Badra, Lyapunov function and local feedback boundary stabilization of the
Navier-Stokes equations, SIAM J. Control and Optimization, 48 (2009), 1797-1830.

[6] V. Barbu, Stabilization of Navier-Stokes equations by oblique boundary feedback
controllers,SIAM J. Control Optimization, 50 (2012), 2288-2307.

[7] V. Barbu, "Stabilization of Navier-Stokes Flows, Communications and Control En-
gineering,” Springer-Verlag, London, 2011.

[8] V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier-Stokes
equations, SIAM J. Control Optim., 49 (2011), 1-20.

[9] V. Barbu, I. Lasiecka and R. Triggiani, " Local exponential stabilization strategies of
the Navier-Stokes equations, d = 2, 3, via feedback stabilization of its linearization,
In Control of coupled partial differential equations”, volume 155 of Internat. Ser.
Numer. Math., pages 13-46, Birkhaiiser, Basel, 2007.

[10] V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary
stabilization of Navier-Stokes equations by high- and low-gain feedback controllers,
Nonlinear Anal, 64 (2006), 2704-2746.

[11] V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-
Stokes equations, Mem. Amer. Math. Soc., 852 (2006), 1-145.

131



REFERENCES

[12] V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with
finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.

[13] V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM : Control,
Optimisation and Calculus of Variations, 9 (2003), 197-205.

[14] F. Boyer and P. Fabrie, "Eléments d’analyse pour Uétude de quelques modéles d’écou-
lements de fluides visqueux incompressibles, Mathématiques et Applications”, vol.
52, Springer, 2006.

[15] C.-H. Bruneau and P. Fabrie, New efficient boundary conditions for incompressible
Navier-Stokes equations : a well posedness result, RAIRO, Modélisation mathéma-
tique et analyse numérique, 30 (1996), 815-840.

[16] P. Constantin and C. Foias, " Navier-Stokes Equations”, Chicago Lectures in Ma-
thematics, The Univ. of Chicago Press, Chicago, IL, 1988.

[17] A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary
control. Partial Differential Equations and Applications, Discrete and Cont. Dyn.
Syst., 10 (2004), 289-314.

[18] A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with
help of boundary feedback control, J. of Math. Fluid Mechanics, 3 (2001), 259-301.

[19] A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications”,
Transl. of Math. Mongraphs, 187, AMS, Providence, Rhode Island, 2000.

[20] G. P. Galdi, ” An introduction to the mathematical theory of the Navier-Stokes
equations”, Vol. II, Nonlinear steady problems, volume 39 of Springer Tracts in
Natural Philosophy. Springer-Verlag, New York, 1994.

[21] G.P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equa-
tions”, vol. 1, Springer-Verlag, 1994.

[22] V. Girault and P.A. Raviart, "Finite Element Methods for Navier-Stokes Equations :
Theory and Algorithms”, Springer, Berlin, 1986.

[23] C. Grandmont, B. Maury and A. Soualah, Multiscale modelling of the respiratory
tract : A theoretical framework, ESAIM : Proc., 23 (2008), 10-29.

[24] G. Grubb and V. A. Solonnikov, Boundary value problems for the nonstationary
Navier-Stokes equations treated by pseudo-differential method, Math. Scand., 69
(1991), 217-290.

[25] J. L. Lions, "Quelques méthodes de résolution des problemes aux limites non li-
néaires”, Dunod, 2002.

[26] E.M.D. Ngom, A. Séne and D. Y. Le Roux, Boundary stabilization of the Navier-
Stokes equations with feedback controller via a Galerkin method, Evolution Equa-
tions and Control Theory, 3 (2014), 147-166.

132



REFERENCES

[27] S.S. Ravindran, Stabilization of Navier-Stokes equations by boundary feedback,
Int. J. Numer. Anal. Model, 4 (2007), 608-624.

[28] J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two-

dimensional Navier-Stokes equations with finite-dimensional controllers, Discrete
Contin. Dynam. Systems, 27 (2010), 1159-1187.

[29] J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incom-
pressible Navier-Stokes equations, J. Math. Pures Appl., 87 (2007), 627—-669.

[30] J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-
Stokes equations, SIAM J. Control Optim., 45 (2006), 790-828.

[31] R. Temam, “Navier-Stokes Equations, Theory and Numerical Analysis”, Amer.
Math. Soc., Providence, RI, 2001.

133



Chapitre 4

Numerical feedback stabilization of
the Navier-Stokes equations using
the characteristic-GGalerkin method

Abstract

In this work we study the numerical feedback stabilization of the two and three-dimensional
Navier-Stokes equations in a bounded domain 2, around a given steady-state flow, by means of a
boundary control. In order to determine a feedback law, we consider an extended system coupling
the Navier-Stokes equations with an equation satisfied by the control on the domain boundary.
While most traditional approaches apply a feedback controller via an algebraic Bernouilli equa-
tion (ABE) or a model reduction, a characteristic-Galerkin method is proposed instead in this
study. The characteristic-Galerkin method permits to construct a stabilizing boundary control by
solving a polynomial equation of degree one or two. Further, by using energy a priori estimation
techniques, the exponential decay is obtained. The numerical relevance of this approach is illus-
trated by stabilizing the two-dimensional flow problem, around a circular obstacle.

Keywords : Navier-Stokes system, feedback control, boundary stabilization, Galerkin method.

1 Introduction

Let ) be a bounded and connected domain in R?, d = 2, 3, with a boundary I of class
C?, and composed of three connected components I',, I', and I, such that ' =T, UT,UT,.
In particular, the boundary I', is the part of I', where a Dirichlet boundary control in
feedback form has to be determined. The usual function spaces L*(Q), H*(Q), H3(Q)(s >
0) are used and we let L2(Q2) = (L*(Q))4, H*(Q2) = (H*(Q))? and H(Q) = (Hg(2))% The
same conventions are used for spaces of traces L?(I") and H*(T'"). Finally, we denote by
(-] -)and |- | = || - [lL2(), the scalar product and norm in L*((2), respectively.

134
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Consider a stationary motion of an incompressible fluid described by the velocity and
pressure couple (v, ¢,) solution to the stationary Navier-Stokes equations

(— VAV, + (v, V)v,+ Vg, =f, inQ,
V-v,=0 in Q,
v,=0 on [, 4.1)
V, =V, onl’,
vVv,-n—qgn=0 onl',

where n is the unit outer normal vector to I', f, represents body forces acting on the fluid
and v, denotes a specified boundary velocity. Further, R, = @ is the Reynolds number,
with v, L, and U, being the kinematic viscosity, characteristic length and characteristic
velocity, respectively.

For T' > 0 a fixed real number, we let ) = [0,7) x , ¥, = [0,7) xI',, ¥, = [0,T) x T
and X, = [0,7") x I',. Further, ¥ (¢,x) and ¢(¢,x) denote the velocity and pressure fields,
respectively. The initial boundary value problem associated with the non-stationary in-
compressible Navier-Stokes system is then given by

(W Ayt @ Vg Ve=f, Q.
V=0 in Q,
P =0 on Y, (4.2)
PY=u,+v, on X,
vV -n—gqn=>0 on X,
| ¥(0,x) = v, + v, in Q.

The function u, is the control input and the function v, can be viewed as a perturbation
of the initial state. By substituting (¢, q) = (v, + v, ¢, + p) in (4.2), we obtain

\

'(a> 86_:_VAV+(V'V)VS-F(VS'V)V+(V-V)V+Vp20 in Q,
) V-v=0 in O,
(¢) v=0 on Y, 4.3)
(d) v=nu, on Y,
() vVWv-n—pn=20 on X,
(f) v(0,x) = vo(x) in Q.

The goal of this study is to determine a control law M on R x I', in the form of a state
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feedback law u, = M(v) such that
IVOI < Cllvolle™, vt >0, (4.4)

with a prescribed rate of decrease p > 0.

The theoretical setting of the stabilization procedure, for the non-stationary incom-
pressible Navier-Stokes equations using a feedback control, has been studied by a num-
ber of authors, e.g. A.V. Fursikov [19, 20], V. Barbu et al. [5, 9, 10, 11, 12], J.-P. Raymond
et al. [33, 34, 35] and M. Badra et al. [2, 3, 4]. In these papers, the linear feedback law M
on R xI'; is first determined by solving a linear control problem for the linearized system
of equations (for example the Oseen system) and then this linear feedback is used in
order to stabilize the original non linear system. However, the development of fast com-
putational algorithms for feedback control design of fluid dynamic systems is hindered
by a few intrinsic difficulties. Indeed, in [3, 4, 8, 9, 10, 31, 34, 35], the feedback control
laws are determined by solving a Riccati equation in a space of infinite dimension. In
such a case, an optimal control problem has to be solved, involving the minimization of
an objective functional. In practice, the control is calculated through an approximation
via the solution of an algebraic Riccati equation (ARE), which may be computationally
expensive. The use of finite-dimensional controllers may be more appropriate to stabilize
the Navier-Stokes equations. Such an approach is performed in [2, 5, 8, 9, 33] without
numerical experiments, and in [1, 32] with a few numerical illustrations.

In [32], the author consider the optimal boundary feedback stabilization of fluid flows
governed by the Navier-Stokes equations using model reduction. The model reduction is
carried out using a combination of proper orthogonal decomposition (POD) and Galerkin
projection. The resulting reduced-order model is employed in the optimal linear quadra-
tic regulator (LQR) design to derive a feedback control. The feedback control is then used
in the nonlinear Navier-Stokes equations to stabilize the system. However, the problem
of rigorously proving that the finite-dimensional reduced-order controllers proposed in
[32] is able to stabilize the infinite dimensional model is not addressed in [32] and this
is still an outstanding problem.

In [1], the authors obtain the feedback operator M from the solution of the algebraic
Bernoulli equation (ABE) associated with the penalized linearized Navier-Stokes equa-
tions around an unstable stationary solution. The operator M is then used to locally
stabilize the original nonlinear equations. As mentioned in [1], if £ is the rank of M, the
ABE is particularly relevant when k is small, compared with the size of the problem.
This is the case for the Navier-Stokes equations at low Reynolds regimes R, < 200, that
are considered in [1].

A linear feedback law is first determined by solving a linear control problem in all
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the papers cited above, and this linear feedback is then used in order to stabilize the
original non linear system. Such a procedure leads to choose the initial velocity small
enough and it usually requires to search for the control u, and the initial condition in
sufficiently regular spaces. This is why another approach is proposed in [29], where an
extended system is considered with an additional equation satisfied by the control on
the domain boundary, and the boundary feedback control is constructed via a Galerkin
method. The boundary control u, in (4.3) is rewritten on the form

u, = a(t)g(x) on I, (4.5)

where g € H%(F) is assumed to verify g-n # 0 on I', and be g -n = 0. The quantity «a(t)
is a priori unknown. In order to stabilize the Navier-Stokes system, with u, = «a(t)g(x)
on Y,, by employing energy a priori estimation techniques, the quantity a(t) is found to
satisfy the relation

/ v ) g = F(v,a), (4.6)
r, n

where F is a second order polynomial with to respect to a. The quantity «(¢) depends
nonlinearly on v in (4.6), and hence «(t) satisfies a nonlinear feedback law. However in
practice, because (4.5) and (4.6) are defined at the same boundary I',, the numerical me-
thods for discretizing (4.5) and (4.6) cannot be easily implemented. The goal of this study
is to develop a practical computational algorithm easy to implement. In this respect, the
characteristic-Galerkin method is employed to search for (v,p), solution of (4.3). Let us
denote by (v", p") the approximations of the velocity and pressure (v, p) at time ", and «,,
the approximation of the control « at time ¢". After the time discretization is performed,
a linear system is obtained and (v", p") is decomposed as

{v" = W'+ a,w 47

pto= 4"+ o,
where
(i) (w,q) does not depend on time and w satisfies w =0on [, and w =gon I',.

(i) (w",¢") depends on time but does not depend on «,, and w" satisfies w” = 0 on

(iii) The control «,, is searched such that «,, = M(v"), where M is specified later

in (4.37) or (4.48).
The paper is organized as follows. In section 2, the notations and mathematical pre-
liminaries are given. The feedback law is defined in Section 3 thanks to technics de-
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veloped in [17], which are not related specifically to a stabilization problem, and the
characteristic-Galerkin method. Finally, we illustrate numerically the effectiveness of
the method by stabilizing the Navier-Stokes equations around a circular obstacle.

2 Notations and Preliminaries

2.1 Notations

Spaces of free divergence functions are introduced :

V(Q) = {ueH(Q) : V-u=0inQ, u=0onT}, (4.8)
V(@) = {ueH(Q) : V-u=0inQ, u=0onT,UT,}, (4.9)
H(Q) = {uel?) :V-u=0, u'n=0o0nl}. (4.10)

Let us denote by Vz(T',) the space of functions whose extension by zero over I' belong to
H: (D). For g € V2(I',) with g # 0, we define the space of solution

W(Q) ={(v,a) e V() xR, s.t.v=agonl,}.

In order to define a weak form of the Navier-Stokes equations, we introduce the conti-
nuous bilinear forms

a(u,v) = / Vu:Vv, VYu, veHY(Q),
Q

b(v,q) = /qu, Vv € HY(Q), Vg € L*(Q).
Q

2.2 Preliminaries

For an initial data v, belonging to an appropriate functional space, we search for the
numerical solution of the stabilization problem (4.3) by using the characteristic-Galerkin
method. Let v be the velocity field of the fluid, and denote by X (7;¢,x) and Y (7;¢,x) the
solutions of the following ordinary differential equation in 7

dX
(a) = = v(T, X(7;t,%)) if X(7;t,x) € Q,
T
=0 otherwise, (4.11)
(b) X(t:t,x)=x,
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@ LY r2vrntx) Y €0
-
-0 otherwise, (4.12)
(b) Y(t;t,x) =x,

where X (-; ¢t,x) and Y(-; t,x) are the particle path that passes at x = (z,,z,) at time ¢.
Let D% denotes the material derivative (also called Lagrangian derivative) of the velocity
field. We have

1Dv 1|Dv
§E<t’ x) = 3 [E(T’ Y(7;t,%)) .
1[dY ov
=5 [EVV(T, Y(r;t,x)) + E(T, Y (7;t,%)) ) (4.13)
Using (4.12) and (4.13), we deduce
1Dv lov 1
55( ,X) —55+5(VV)V+(VSV)V (414)
Similarly, we obtain
1D(v+2vs)(t - 1 D(v+2vs)( X(r:4,%))
2 Dt X g Dy oo\mhR)
1 [dX ov
= 3 [EV<V +2v,)(r, X(7;t,x)) + E(T, X(1;t,%)) ) (4.15)
Using (4.11) and (4.15), we deduce
ID(v+2v,) 1ov 1
Thus, summing (4.14) and (4.16), problem (4.3) can be rewritten as
1Dv  1D(v+2v,) B .
(a) §E+§T—VAV+VZ7—O 1n Q,
(b) V-v=0 in Q,
() v=0 on ¥, (4.17)
(d) v =oat)g(x) on ¥,
() vVv-n—pn=20 on X,
(f) v(0,x) = vo(x) in Q.

\
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3 Time discretization and Assumptions

3.1 Time discretization of stabilization problem

Let t° = 0 < t! <2 < ... <tV = T with t" — "1 = At = T/N denotes the time
step. We propose a time discretization of the material derivative, e.g. by means of the
backward Euler method. Using (4.13) and (4.15) respectively, we obtain

Dv . o v Y(t"t"x)) - v(tL Y (it e x))

Du u(t™, X (1", x)) —u(t" X (1, x))

— (" x) = 4.1
TR At ’ (4.19)

where u = v + 2v,. The characteristics foot X (¢"';¢",x) and Y (t""!;{", x) are computed
from (4.11) and (4.12), respectively using the following linear discrete interpolation :

X ("Lt x) = x — v(t", x)At,
Y (" x) = x — u(t, x)At.

Due to (4.11-b) and (4.12-b) , we have X (t";t",x) = Y (t";t",x) = x and hence (4.18)
and (4.19) become respectively

Dv, . . v(t"x)— v LY (i x))
Du, . = u(t" x)— u(t"t X ("1 x))
Dr (t",x) = ; , (4.21)

where X(t" ' x) = X(t"Lt",x) and Y(¢t" !, x) = Y(t" " x). Setting (v, p") =
(v,p)(t",x), the approximations of the velocity and pressure at time ¢", the time dis-
cretization of the stabilization system (4.17) leads to

4 n n—1

v n n o__ .
(a) o vAV" 4+ Vp" = A o Q,
(b) V-v"=0 in Q,
(C) Vn - 0 on Fl’ (4.22)
(d) v"=a,g(x) on I',
() vVv"'-n—p'n=20 on X,
(f) v(0,x) = vy(x) in Q,
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with

Fn—l — (Vn—l oXn—l + Vn—l o Yn—l) + VS oX’rL—l — v (423)

CR

N | —

where v o Z denotes the function x — v[Z(x)].

For an initial data v, in an appropriate functional space, our goal is to find a feedback
control «,, such that v, solution of the system (4.22), satisfies (4.4).

3.2 Controller building process

Since system (4.22) is linear, the solution (v",p") is decomposed as

{v = W'+ o, W, (4.24)

'

Pt o= q"+a,q,

where (w,¢) does not depend on time, while the couple (w",¢") represents correction
terms which are calculated at each time step. The details of the controller building pro-
cess is specified as follows :

(i) Firstly, we search for (w, ¢) such that

() & —vAwW+Vg=0 in
b)) V-w=0 in Q,
() w=0 on T, (4.25)
(d w=g on I',
((¢) vWw-n—qn=0 on I..

(i) Secondly, at each time step, we search for (w”,¢") such that

( W n—1

(a) A vAW" +Vq" = A7 in Q,

(b) V-w"=0 in Q, (4.26)
() wr=0 on I''UTL,

(d) vVw"-n—q¢"n=20 on I',.

(iii) Finally, in order to stabilize (4.22) with v = «,,g(x) on I';, by employing energy a
priori estimation techniques, the quantity «,, needs to satisfy the relation

/ [vVv"-n—p'n]-g=—-Av,, A>0. (4.27)
r

b
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Such a procedure relies on technics previously introduced in [17], but it is worth to note
that the work performed in [17] is not related to a stabilization problem. To show the
stability result, we need the following assumptions.

3.3 Assumptions and main result

Firstly, for all n € N, we assume that

X"(x) =x—v"(x)At € Q, (4.28)
Y"(x) =x —u"(x) At € Q. (4.29)
Note that the classical spatial approximation of the characteristic curves (4.28)-(4.29)
has been used in a number of papers, e.g. in [18, 25, 30]. Such assumptions mean that
the foots of the characteristic curves are not allowed to lie outside the domain boundary.
In practice, the foots of the characteristic curves may lie outside the domain boundary

due to (small) space and time truncation errors of the numerical method, and in such a
case they are projected orthogonally on the domain boundary.

Secondly, by using the Taylor’s theorem for multivariate functions, we obtain
v, (x — v*(x) At) = v (x) — AtVv, (x) - v (x) + O(A?).
Hence, by neglecting the second order term, we obtain the following assumption
vy (x — v (x) At) = v, (x) — AtVv,(x) - v"(x). (4.30)

Lemma 3.1. Under the assumptions (4.28)-(4.29) and (4.30), the following assumption
holds
1) < (1 + AtV [ v (4.31)

Proof. According to (4.23) and using (4.30), we obtain
1] < Slv™ o X[+ SlIv™ o Y[ + At Vv [[[lv"]. (4.32)

Let Z" = X™ or Y™ and let J" be the Jacobian matrix of the transformation y = Z"(x),
we obtain

v o Z"|* = /Q(V”[Z”(X)])Z)dx = / (v"(y))*( det J")~ dy.

Zm(Q)

By definition, we have from [13]
t
J(15t,x) = —/ Vv(r, Z(t;t,x))dT + 1, (4.33)
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3.3 - Assumptions and main result

and since V - v = 0, using (4.33) yields det J" = 1. Further, Z"(Q2) C (2, and hence

ozl = [ (et )ty < [ (epax= IR @)
Zn(Q) Q

Inserting (4.34) in (4.32), we deduce (4.31). ]

In the following we attempt to find a boundary feedback control «,,, with a control law
similar to that employed in the first three chapters of this thesis i.e

v =q,8 inl,
(4.35)
[ ovn gl g = o),
1_‘b
and this leads to the following proposition.
Proposition 3.1. Let v, € H(Q2), g € V2(T',) with g # 0 on ', and v, such that
1 2UAt
< — — :
I9v.l < M( LG 1), (4:36)

where C, is the Poincaré constant. Under the assumptions (4.28)-(4.29) and (4.30), there
exists a boundary feedback control «,, on I, solution of

/ [vVv"-n—p'n|-g=—-Av,, A>0 (4.37)
r

b

such that system (4.22) with (v",p") writen as in (4.24) is exponentially stable. i.e. there
exists pn > 0 such that v satisfies

vl < [[vollexp (—put™). (4.38)

Proof. We define
B(z,7) = / vVz-n—7n]-g,
r

b

and using (4.24) we obtain
B(v",p") = o, B(w,q) + B(wW",q").

B(w",q")

M—B—(W,q) satisfies (4.37).

Consequently, o, = —
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The variational formulation of (4.22) is defined as

1 ~ ~ 1 ~ o~
E(v”,v) +va(v",v) = E(F’“l,v> + oz/r [vVVv"-n—p'n]-g,

for all (v, @) € W(Q). Taking v = v" in (4.39) and employing (4.23) yields

1

n n 1 n— n 3
SV < S a [ v en gl
r

— 2At

b
Using (4.37) in (4.40), we obtain
[v"[|? + 2vAL|| V|2 + 2AAta? < ||F" 7|2
By using Lemma 3.1 and Poincaré inequality in (4.41), we obtain

C2 + 2v AtV < C’p(l + AtHVVSH) N

and hence, we deduce that

1+ At|| Vv,

WAL
r

vl < 6v*="|| with 6=
1+

According to (4.36), < 1 and recursively we obtain
V[ = lvE)I < 0" [lvol|-

In(0)

To achieve the proof, we show that (4.43) implies (4.45). Taking ;1 = — A

using (4.43) leads to

V"] < 0"[voll = exp(nin(0))|[voll = exp (—punAt) v,
exp (—pt") ||voll,

and hence, estimate (4.45) is obtained.

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

> 0, and

]

For equilibrium states v, corresponding to small Reynolds numbers, whatever the
initial velocity, Proposition 3.1 may be employed, and an exponential decrease of the
energy is obtained. However, it is difficult to find the appropriate interval for «,, in order
to obtain an optimal decrease. This suggests to employ a more appropriate control law
in order to find such an inteval for «,, and it is the subject of the following proposition.

Proposition 3.2. Under assumptions (4.28)-(4.30) and (4.36), the solution w" of (4.26)
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satisfies
W < olvm, (4.44)

where 0 is defined in (4.42). Consequently, there exists a boundary feedback control «,,
solution of a polynomial of degree two such that system (4.22) with (v",p") writen as
in (4.24) is exponentially stable. i.e. there exists i > 0 such that v" satisfies

IVl < flvoll exp (=pt™). (4.45)

Proof. The varitional formulation of (4.26) is defined as

1, - e~ 1 ~ ~
A—t<Wn,V> +va(w",v) = A—t<F"_1,V>, Vv € V(). (4.46)
Taking v = w" in (4.46) yields

W2 + 24t || VW™ |2 < || F 2 (4.47)

and by using Lemma 3.1 and Poincaré inequality in (4.47), estimate (4.44) is obtained.

From (4.24) we deduce
V"7 = llwl®oq + 2(W", w)a, + [[W"],
and the polynomial P(«,,) of degree two with real coefficients is considered
Pla,) = V"] = V" 7HJ* = lwll*ar, + 2(W", w)a,, + [W"[|* = 0%[[v" . (4.48)

Consequently, we have |[w"[|? — 6%||v"!||* < 0 from (4.44) and since ||w||> > 0, P has
two solutions o, < 0 and o, > 0. For all o, € [, ,, | we have P(«,) < 0 and hence,
V7] < [lvoll exp (—put™). O

4 Numerical simulations

In this section, numerical simulations are performed in order to validate the theore-
tical results obtained in the previous sections. As in [36], two-dimensional test cases are
considered by simulating the flow around a cylinder with circular cross-section.

4.1 Finite-element variational formulations

A weak formulation and a mixed Galerkin finite-element method are used to ap-
proximate the stationary problem (4.1) and the stabilization systems govern by (4.25)
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and (4.26). The spaces V, and W, are introduced

V() = {fueH(Q):u=00nl,u=¢onl,}
W) = {ueH(Q):u=00nT,UT,}.

and L is the pressure space with zero mean value

L2(Q) = {p € L2(Q), /Qp(x) dx = 0}.

Let 7, a standard finite-element triangulation of 2 with . being the maximal length of
the edges of 7, and ¢ € Hz(I'). The spaces V", W/, Ul and S are the discrete coun-
terpart of V,, W, U, and L, respectively, and we have V} C V (), Wi C W(Q),
Ul c HL(Q) and S} C LE(Q).

The Galerkin formulation of the problem is defined as follows

(i) For (4.1), and k = 1,2,3,---, find v, € V| and pj; € S{! such that

(a) va(vy), %) +oc(vi? vie 9, + evi Y v ) + 03, p1)
= oe(viF D v vh) (4.49)
(b)  b(vE,m,) =0,
V(v,,m,) € Uy x St

Given the velocity v and an integer m, one can generate the sequence (v}, pf) (k =

2,---) by solving the linear problem (4.49) with ¢ = 0 for £ < m and ¢ = 1 for

k > m. The algorithm terminates when the maximum value of Hv}(f) (k 2 /v (k) I

is less or equal to ¢, where € is the prescribed tolerance.

(i) For (4.25), find w;, € V! and ¢, € S} such that

(a) At<Whth> +va(wy, v,) + b(vy, q,) =0, (4.50)
(b) b(WhﬂTh) =0,

V(v,,,m,) € Ul x Sp.
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(iii) For (4.26), find w} € W/ and ¢} € S} such that

1 1
a) —— (Wi, v,) +ra(Wp,v,) + bV, qh) = —(F" ', v,),
(a) 2t< B Vi) (W5, Vi) (Vh, 1) At< 2 (4.51)

(b)  b(wp,m,) =0,

V(v,,m,) € Ul x Sp.

4.2 Geometry and parameters of the model

The geometry of the channel with an obstacle is described in Figure 4.1. As in [36],
we consider a rectangular domain 2 = [0,2.2 m] x [0, H]| with a disk of diameter D = 0.1
m and centered at point (0.2,0.2). For a channel height H = 0.4 m, the inflow condition
imposed at the bottom I', = {0} x [0, H], is a parabolic flow defined by

)

v,(0,2,5) = 41}00% (1 - ﬁ) , vy = 0. (4.52)

The Reynolds number is then defined by R, = % with the mean velocity
Uy(t) = 2v,(t;0,H/2)/3.

On I'}, defined by the top and bottom parts of the channel, the no-slip conditions v, =
vy = 0 are imposed. At the outflow boundary of the channel, located at ', = {2.2} x [0, H],
we take the natural boundary condition »Vv”" - n — p"n = 0, that arises from the weak
formulation. In the sequel, the kinematic viscosity is fixed as v = 107*m?/s and the time
step At = 1073s.

FIGURE 4.1 — Description of the domain 2 and of the four connected components I',, [';,
I'yand I,
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4.3 Numerical tests

Accurate mixed Galerkin finite-element computations are obtained using the P, — P,
Taylor-Hood finite element pair [15, 27], with

VZ = {vy | v, €CQ), vplpe(PR)?, VI €T,; vy=0only; v,=¢,onT, =0 UL},
Wi = {v,|v,€C%Q), vplp €(P)*, VI €T, v,=00onl, Ul UT,},
Ug = {vilv, € Y (Q), Vilr € (P)?, VT € Ty v, =0onT},

So = {anla, € C°), aqlr € P, YT €T, / an = 0},
Q
where P, is the space of the polynomials of degree < k, expressed in terms of x = (2, x,).

4.3.1 Test1:Control on ', with R, = 500

In the first test, the control is built on I',, namely at the entrance boundary. The
steady-state (v,,q,), shown in Figure 4.2, is obtained by solving (4.49) with v, = 0 on
r,ul, v, = (vy,vy) onT', with v = 0.75 m/s in (4.52), yielding the Reynolds number R, =
500. Such a steady-state (v,, ¢,) is employed as an initial condition to solve for the Navier-
Stokes system with R, = 1000, i.e. using v, = 1.5 m/s in (4.52). The solution obtained
at t = 5 s, and shown in Figure 4.3, is not symmetrical along the axis y = H/2, and this
behavior is due to the use of a large Reynolds number (2, = 1000 in the experiment). The
break in the symmetry can be explained by the influence of the various truncation and
rounding errors that are present in the calculations. The perturbed solution in Figure 4.3
is then employed as an initial solution to solve for the control problem (4.22) with R, =
500.

FIGURE 4.3 — Tests 1 and 2 : Streamlines of the initial velocity for £, = 1000.

The control problem (4.22) is solved in three steps :
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(i) Firstly, we search for (w,, ¢,) satisfying (4.25) with
w,=0onl,Ul'y, vVw, - n—¢n=0onl, and w,=(v,,v,) onl,,

where (v, v,) satisfies (4.52) with v = 0.3 m/s as the starting velocity, namely g
in (4.22-d).
(ii) Secondly, at each time step we search for (w}, ¢,") satisfying (4.26) with

w,=0onIl,Uul'yull’,;, and vVw,"”-n—¢"n=0 onl,.

(iii) Finally, we search for the solution (v}, p,") of (4.22) such that

vl = w'+aw
Ph = dn oy,
where the control o,,, n =1,2,3,---, is chosen such that
aplwill? + 20, (wy, wi) + W32 < v =% (4.54)

To obtain «,,, we take
A= HwhH27 Bn = 2<Whaﬁz>7 Cn = H{R}ZHz - HV271H27 An = B72L —4x An X Cn
According to (4.44) we have A, > 0, and consequently, for all constant X > 2, we obtain

—-B 4+ /A
+ n n
W = (4.55)

Figure 4.4 shows the energy and the control evolution («;") in time for K = 2.01 (the red
curve) and K = 4.01 (the blue curve). As the values of K increase, the energy decreases
and o tends to zero, as expected. The quantities o and «;, correspond to inflow and
outflow conditions, respectively, for the control problem (and not for the Navier-Stokes
system). The choice o; is consistent with o, € [a, o, |, with o, < 0 and «,, > 0,
in (4.48). The first component (along the z,-axis) of ¢ = v, + v, with K = 2.01 is also
displayed in Figure 4.8 at different times of the simulation. We observe that the system
is progressively stabilizing towards an equilibrium steady state.
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Energy [L2] Control

0.6 0.0 =
— K= 201
— K=4.0 /\/
0.5 -0.5 /
0.4 /
\ -1.0
0.3 !

0.2 \
. \ -2.0

0.0 -2.5 t
0 1 2 3 4 5 0 1 2 3 4 5

Time [s] Time [s]

FIGURE 4.4 — Test 1 : Energy and control evolution (a;") in time for K = 2.01 (the red
curve) and K = 4.01 (the blue curve).

(a) Time =0.1s (b) Time =0.2 s

(¢) Time =0.3 s (d) Time =0.4 s

(e) Time=1s f) Time=2s

(g) Time =4 s (h) Time =5 s

FIGURE 4.5 — Test 1 : The first component (along the z,-axis) of ¢ = v, +v, with K = 2.01
at different times of the simulation.
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4.3.2 Test 2: Control around a part of I', with R, = 1000

This section is devoted to the suppression of vortex shedding past a cylinder. Our goal
is to control the Navier-Stokes system, but instead of building the control at the entrance
boundary I',, the control is built on a part of I'; (the right section). Compared to Test 1,
the difference is to try to stabilize the solution around the steady state v, at R, = 1000, by
starting from an initial perturbation, also obtained at R, = 1000. The initial perturbation
is the same as for Test 1, and it is shown in Figure 4.3. As for Test 1, the steady state
v, is obtained by solving (4.49), with v, = 0 on I';, and v, = 1.5 m/s in (4.52), yielding
R, = 1000. The first component (along the x,-axis) of v, is displayed in Figure 4.6 for
R, = 1000.

FIGURE 4.6 — Test 2 : The first component (along the x,-axis) of the steady-state velocity
v, for R, = 1000.

The control build on the right part of I'; is a suction-blowing action normal to
the boundary of the disk on the two slots C; = [0.21,0.25] x [0.0,0.2] and C; =
[0.21,0.25]x]0.2, 0.4], symmetrical with respect to the axis z, = 0.2. To solve for the stabi-
lization problem (4.22), we let D(v, p) = vVv-n —pn and we denote by N'(x), i = 1,2, the
outward normal unit vector to C;.

The problem is again solved in three steps :

(i) Firstly, we search for (w},¢}) satisfying (4.25) with :
w; =0 on[,UT,U(T,\C}), D(w;,q) =0 onT,, w; =0.01 x N'(x) onCj,
and (w3, ¢?) satisfies (4.25) with :

w; =0 onT,UT, U \C3), D(wi,qi) =0 onT,, w; =0.01 x N*(x) onCj.

(ii) Secondly, at each time step we search for (w}, ¢,") satisfying (4.26) with :

Due to the symmetry breaking, the pressure force exerted on the boundary C} and
C3 is disproportionate. To restore this imbalance, we search for 3, such that

B, By (W), @, wy) = By(Wy", s wh), (4.56)
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where B,(W,", 3,"; w),) = / VW, n— g, "] Wi,
4
By taking (w7, q?) = (8,w} + w3, 3,q; + ¢7) which satisfies (4.25) and according to
(4.56), we have B, (w)", ¢,"; wy) = By(W),", ¢,"; wy,).
(iii) Finally, we search for (v}, p,") of (4.22) such that

vyl = W+ a,w}
{ " o " (4.57)
Ph = @ Ty,
where the control a,,, n =1,2,3,- -, is chosen such that
an[Wh* + 20, (wii, W) + Wil = [vilI* < Cllvi 1%, (4.58)

where the constant C' > 1.

Note that for the uncontrolled case, «, = 0 for all n > 0, whereas for the controlled case,
we take

A, =|wil®, B, =2(wp,wp), Cp=[Will* = [Ivi %, A, =B, —-4x A, xC,.

According to (4.44) we have A, > 0, and consequently, we search the control «, as fol-
lows :

—B, £ /A, .
——~ = ifn < Iter = 100, 200 or 300,
n 1.99 x A,
Q, = B + \/_ (4.59)
5 0L X otherwise .

Note that ||v}|| > [|[vi || if n < Iter and ||v?| < [|vi || if n > Iter.

Figure 4.7 shows the energy and the control evolution («;") in time for different values
of Iter. As the number of iterations increases, the energy stabilizes over time, and during
the stabilization process, the lower values of energy are obtained for the higher values
of Iter. However, shortly after the beginning of the simulation, pics of energy are obser-
ved before the stabilization process and the higher values of energy are reached for the
higher values of Iter. The origin of the pics is due to the choice of o, at the early times of
the simulation. Indeed, we purposely choose a;; < «,, or o;; > «, , in order to avoid the
presence of propagating eddies close to the right part of I' ;. As soon as the control area
is free of such eddies the choice «,, € [anl , an2], is imposed and the stabilizing energy pro-
cess can take place. The switch in «; is done at time 0.3 s for Iter = 300 when the energy
reaches its maximum value. As the control o7 weakens and is close to zero, the energy
progressively stabilizes around an unstable state. Note that the pics in energy, observed
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at the beginning of the simulations are not present for low Reynolds numbers, namely
R, = 500, and in that case the stabilization process converges around a steady-state.
This suggests that Test 2 is a very challenging test case. The remark made about «;, for
Test 1 in Section 4.3.1 is still valid. The first component (along the x,-axis) of ¢ = v, + v,
with Iter = 300 is also displayed in Figure 4.8 at different times of the simulation. We
observe that the system is progressively stabilizing towards an equilibrium steady state
up to 2 s. After the steady state is reached, the eddy process starts to propagate again,
as observed in Figure 4.8, since the control vanishes.
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Energy [L2] Control
1.0 T T T 50
Iter = 100
— Iter = 200
0.9 Iter = 300
— Uncontrolled 0 P==
0.8 /1
-50

- \V//

=200
0.4 X
/
0.3 \QQ ///’/ 280 v
0.2 \ o =300 71 ter = 100
S — Iter = 200
<< et
0.1 -350 t f
0.00.51.01.52.02.53.03.54.0 0.00.51.01.52.02.53.03.54.0
Time [s] Time [s]

FIGURE 4.7 — Test 2 : Energy and control evolution («;") in time for different values of
Iter.

(a) Time =0.1s (b) Time =0.2 s

(¢) Time = 0.3 s (d) Time =0.4 s

(e) Time=1s ) Time =2 s

(g) Time =4 s (h) Time =5 s

FIGURE 4.8 — Test 2 : The first component (along the z,-axis) of ¢ = v_+v, with /ter = 300
at different times of the simulation.
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5 Concluding remarks

In this paper, the numerical feedback stabilization of the two and three-dimensional
Navier-Stokes equations in a bounded domain is studied around a given steady-state
flow, using a boundary feedback control. In order to determine a feedback law, an ex-
tended system coupling the Navier-Stokes equations with an equation satisfied by the
control on the domain boundary is considered. We first assume that on 3, (a part of the
domain boundary), the trace of the fluid velocity is proportional to a given velocity profile
g. The proportionality coefficient o measures the velocity flux at the interface. It is an
unknown of the problem and is written in feedback form. By using the characteristic-
Galerkin method, « is determined by solving a polynomial equation of degree one or two
and the stabilizing boundary control is built such that the Dirichlet boundary control
v, = ag is satisfied on XJ,. Numerical solutions of two test problems to simulate the boun-
dary feedback control, by stabilizing the two-dimensional Navier-Stokes system around
a circular obstacle, illustrate the theoretical results of the present paper. Such an ap-
proach appears to be promising.
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