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Résumé

Ce mémoire de thése concerne I’analyse mathématique et numérique du comportement asymp-
totique de certains modéles de type coagulation-fragmentation intervenant en physique ou en
biologie. Dans la premiére partie on considére le systéme d’équations de Lifshitz-Slyozov qui
modélise I'immersion d’une population de macro-particules en interaction avec un bain de mo-
nomeéres. Ce modéle développe en temps long un comportement dépendant d’une maniére trés
particuliére de I'état initial et ses spécificités techniques en font un véritable challenge pour la
simulation numérique. On introduit un nouveau schéma numérique de type volumes finis basé
sur une stratégie anti-dissipative ; ce schéma parvient a capturer les profils asymptotiques atten-
dus par la théorie et dépasse en performances les méthodes utilisées jusqu’alors. L’investigation
numérique est poursuivie en prenant en compte dans le modéle des phénoménes de coalescence
entre macro-particules a travers 'opérateur de Smoluchowski. La question est de déterminer par
I’expérimentation numérique comment ces phénoménes influencent le comportement asympto-
tique. On envisage aussi une extension du modéle classique de Lifshitz-Slyozov qui prend en
compte des effets spatiaux via la diffusion des monomeéres. On établit I'existence et I'unicité des
solutions du systéme couplé hyperbolique-parabolique correspondant.

La seconde partie de ce mémoire aborde des modéles d’agrégation-fragmentation issus de
la biologie. On s’intéresse en effet a des équations décrivant les phénomeénes de croissance et
de division pour une population de cellules caractérisée par sa densité de répartition en taille.
Le comportement asymptotique de cette densité de répartition est accessible a l’expérience et
peut étre établi théoriquement. L’enjeu biologique consiste, a partir de données mesurées de la
densité cellulaire, & estimer le taux de division cellulaire qui, lui, n’est pas expérimentalement
mesurable. Ainsi, retrouver ce taux de division cellulaire fait appel a I’étude d’un probléme inverse
que nous abordons théoriquement et numériquement par des techniques de régularisations par
quasi-reversibilité et par filtrage.

La troisiéme partie de ce travail de thése est consacrée a des systémes couplés décrivant des
interactions fluide-particules, avec des termes de coagulation—fragmentation, de type Becker—
Doring. On étudie les propriétés de stabilité du modéle et on présente des résultats d’asympto-
tiques correspondant & des régimes de forte friction.

Mots-clés: Analyse asymptotique, Problémes hyperboliques-paraboliques, Modéles d’agrégation—
fragmentation, Equations de Lifshitz-Slyozov, Modéles collisionnels, Modéle de Smoluchowski,
Modele de Becker-Doring, Schémas volumes finis, Schémas anti—dissipatifs, Probléme inverse,
Interactions fluide-particules.
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Abstract

This thesis concerns the mathematical and numerical analysis of the asymptotic behavior of
some coagulation-fragmentation type models arising in physics or in biology. In the first part we
consider the Lifshitz-Slyozov system that models the dumping of a population of macro-particles
in interaction with a bath of monomers. This model develops in long time a behavior depending
in a very particular way on the initial data and its technical specificities make a real challenge
for the numerical simulation. We introduce a new numerical finite volume type scheme based on
an anti-dissipative strategy ; this scheme succeeds in capturing the asymptotic profiles waited by
the theory and exceeds in performances the methods used before. The numerical investigation
is pursued by taking into account in the model the phenomena of coalescence between macro-
particles through the Smoluchowski operator. The question is to find by numerical experiment
how these phenomena influence the asymptotic behavior. We also consider an extension of the
classical Lifshitz-Slyozov model which takes into account the spatial effects via the diffusion of
monomers. We establish the existence and the uniqueness of the solutions of the corresponding
hyperbolic-parabolic coupled system.

The second part of this thesis deals with approaches coagulation-fragmentation models stem-
ming from biology. Indeed, we are interest in equations describing the phenomena of growth
and division for a cells population caracterised by its size density repartition. The asymptotic
behavior of this size density repartition is accessible to the experiment and can be established in
theory. The biological stake consists, from measured data of the cellular density, to estimate the
cellular division rate which is not experimentally measurable. So, to find this cellular division
rate requires the study of an inverse problem which we approach numerically and theoretically
by techniques of regularizations by quasi-reversibility and by filtering.

The third part of this thesis work is devoted to coupled systems describing fluid-particles
interactions with coagulation-fragmentation terms of Becker-Déring type. We study the stability
properties of the model and we present some asymptotic results corresponding to the regime
with strong friction force.

Keywords: Asymptotic analysis, Hyperbolic-parabolic problems, Aggregation-fragmentation
models, Lifshitz-Slyozov equations, Encounters models, Smoluchowski model, Becker-Doring
model, Finite volumes schemes, Anti-dissipative schemes, Inverse problem, fluid-particles in-
teractions.
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Introduction Générale

Ce manuscrit est le fruit de mon travail de thése mené en co-tutelle entre I'’Université des
Sciences et Technologies de Lille 1 (France) et I'Université Gaston Berger de Saint-Louis (Séné-
gal). Ce travail a été réalisée en partie au sein de I’équipe SIMPAF du centre de recherche INRIA
Lille Nord Europe. Il développe un ensemble de résultats obtenus sur I’analyse mathématique et
la simulation numérique de divers problémes liés aux phénoménes de coagulation et fragmenta-
tion.

Les phénomeénes de coagulation et fragmentation interviennent de facon naturelle dans plusieurs
processus physiques (aérosols, fumées, formation de gouttelettes, cristallisation et fabrication
d’alliages métalliques), chimiques (polymérisation), biologiques (division cellulaire), astrophy-
siques (formation des planétes et galaxies), etc. Ils permettent de décrire la dynamique d’évolu-
tion d’une population de particules ou de cellules subissant des changements d’états par collisions
et agrégation ou par divisions. La modélisation de ces phénoménes de coagulation et fragmenta-
tion peut se faire a différentes échelles :

Microscopique : ou 'on s’intéresse & chaque individu de la population de particules ou de cel-
lules en supposant que le processus par lequel deux individus coalescent est aléatoire. Un premier
modeéle de ce type a été proposé par Smoluchowski [168], puis d’autres modeéles furent établis
par A. Marcus [127], A. Lushnikov [126], D.J. Aldous et J. Pitman [3| et J.F.C. Kingman [109].
Meésoscopique : on ne s’intéresse plus & une description individuelle, mais on étudie plutét
I’évolution collective de groupes d’individus de la population considérée, chaque groupe étant
caractérisé par une variable de taille et éventuellement par sa position.

Macroscopique : au niveau macroscopique on modélise typiquement 1’évolution de la moyenne
d’une certaine quantité liée & la population considérée; par exemple il peut s’agir de la taille
moyenne des individus ou de leur vitesse moyenne d’évolution.

Dans ce présent mémoire, nous nous focalisons sur une modélisation & 1’échelle mésoscopique
des phénomeénes de coagulation-fragmentation intervenant dans les processus étudiés. Ce choix
conduit a étudier la dynamique d’évolution de la population de particules ou de cellules consi-
dérée par sa densité de répartition (par exemple en taille). Les phénoménes de coagulation-
fragmentation sont alors modélisés mathématiquement, par exemple, par les équations de coa-
gulation de Smoluchowski ou par les équations de Becker-Déring.

© 2012 Tous droits réservés. http://doc.univ-lille1 fr
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Modéle discret des équations de coagulation-fragmentation

En 1917, Smoluchowski adopte un point de vue discret pour décrire les phénoménes de coa-
gulation, [169]; il aboutit au systéme (infini) d’équations différentielles ordinaires suivant

i—1 oo
d .
il > kjicififioi =Y kmijfifi Vi1,
= i=1
= Qf —Q;

ou fi(t) représente la densité des individus (particules ou cellules) de taille {i} € N\ {0} a
Iinstant ¢. La quantité s; ; > 0 pour 7, j entiers non nuls peut étre reliée a la probabilité de
coagulation par unité de temps entre individus de taille {i} et individus de taille {j} suivant le
schéma

O )
le résultat de cette réaction étant la formation d’une particule de taille ¢ + j. L’hypothése de
symétrie

Kij = tji =0

apparait ainsi naturelle. Le terme QZF représente le gain en individus de taille {i} di aux coa-
gulations de deux individus de tailles plus petites {j} et {i — j}, avec 1 < j < 4. Le terme @Q;
représente quant a lui la perte en individus de taille {i} par coagulation avec un individu de
taille quelconque {j} > 1. Le modéle de Becker-Doring, établi en 1935 [16], est une variante de
ce systéme ol seuls le gain ou la perte de monomeéres, c’est-a-dire d’individus de taille j = 1,
sont autorisés. Plus généralement, un modéle discret prenant en compte a la fois les phénoménes
de coagulation et de fragmentation s’écrit comme suit :

d
fi(0) = £}

ou l'opérateur Q; = (Qlﬂ- — Qgﬂ') — (Qg,i - Q4,i) est de la forme

=
Qui(f) = 3 Z kji—jfjfi—j gain en individus de taille {¢} par coagulation
j=1

[e.e]
Q2i(f) = Z rijfifj perte en individus de taille {i} par coagulation
=1
i—1

Qsi(f) =

Bji—;fi perte en individus de taille {7} par fragmentation

=
2],:1

oo
Qui(f) = Z Bijfiv; gain en individus de taille {i} par fragmentation
j=1

et B ; est le noyau de fragmentation lorsqu'un individu de taille {7 4 j} se fragmente en deux
individus de tailles {i} et {j}.

© 2012 Tous droits réservés. http://doc.univ-lille1 fr
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Notion de solution faible du modéle discret de coagulation-fragmentation
L’analyse des équations de coagulation-fragmentation discrétes exploite la définition suivante.

Définition .1. Soit la donnée initiale f? > 0 vérifiant > 20 ifY < 0o. On appelle solution faible
du modele discret (1) une fonction t — f(t) = (fi(t))i>1 € M ou M désigne l’ensemble

M = {(hi)izl € R, h; > 0, Z’th < OO}

i=1
telle que Q;(f) soit localement sommable en temps et vérifie de plus :

[e.e]

%)

. . 20

i E Zfzg Zfia
i=1

=1
d o o
o D fisi=) Qi(Hoi
=1 =1

pour toute suite (¢i)i21 tendant vers 0 «suffisamment vites.

Notons que, d’un point de vue physique, la quantité Y -2, if; est proportionnelle a la masse
totale du systéme de particules. Il est donc naturel de supposer cette quantité finie. L’existence de
solution du modéle discret de coagulation-fragmentation (1) peut s’obtenir par deux approches
fonctionnelles différentes. Par exemple P. Dubovskii et I. Stewart [70] en 1996 utilisent un ar-
gument de point fixe dans I'espace M, alors que J. Ball, J. Carr et O. Penrose [10] en 1986
raisonnent par compacité (au sens fort et faible) dans l'espace

X = {hzo,iihi <oo}.

i=1

Cette derniére approche conduit a mettre en évidence le principe de stabilité suivant.

Principe de stabilité.  Soit (f"),>1 une suite d’approximations du modéle discret de
coagulation-fragmentation (par exemple obtenue par troncature en ne considérant qu'un nombre
fini de tailles). Si pour tout 0 <t < 7T < oo, f™(t) et Q;(f™)(t) appartiennent a un sous-ensemble
faiblement compact de X et l'application t — 3 >, f7*(t)¢; appartient & un sous-ensemble
fortement compact de L'(0,7) pour toute suite (¢i)i>1 a décroissance assez rapide, alors il
existe une sous-suite qu’on persiste a désigner par f™ et une fonction f tel que f™(t) — f(t) et
Q(f™)(t) = Q(f)(t) dans X, pour presque tout 0 < ¢ <T.

Ces arguments permettent d’établir 'existence de solutions aux équations de coagulation-
fragmentation, pour une large classe de noyaux k;; et (3;; vérifiant certaines hypothéses de
croissance. Par ailleurs les phénoménes de coagulation-fragmentation n’affectent pas en général
le bilan de masse au sens ou

Z iQi(f) = 0.
=1

La question consiste donc a déterminer si les solutions obtenues ont la méme masse pour tout
temps. On impose ’hypothése de croissance suivante sur les noyaux :

P .
sup —2 — 0, sup & — 0 lorsque j — oo.
i<N ] i<N J
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Sous cette hypothése il y a bien conservation de la masse. Lorsque cette hypothése de croissance
est violée, il y a possibilité de perte de masse en temps fini et de formation d’un individu de
taille infinie, c’est le phénoméne de gélation. On se réferera & la synthése de M. Escobedo, S.
Mischler, B. Perthame [77] pour une analyse fouillée de cette question. L’unicité de solution pour
des modéles discrets généraux (1) est étudiée par P. Laurencot et S. Mischler [115].

Modéle continu des équations de coagulation-fragmentation

On peut aussi s’intéresser & des modeéles continus, ol la variable de taille décrit toute la
demi—droite x > 0. La version continue des équations de coagulation-fragmentation prend la
forme d’une équation intégro-différentiellle

d
—f=Q(f), (t,z) €10, 00[x]0, o0,
at (2)

fOx)=f(t=0,2) >0, z€][0,00],

ou f(t,z) est la densité de répartition des individus (particules ou cellules) de taille ou de volume

x a l'instant ¢ et Popérateur Q(f) se décompose en (Ql(f) - Qg(f)) - (Qg(f) - Q4(f)) avec

I'interprétation

1 xT
Q1(f)(t,z) = 3 / k(y,z —y)f(t,y)f(t,x —y)dy gain en individus de taille x
0
par coagulation
Q2(f)(t,x) = / k(z,y)f(t,x)f(t,y)dy perte en individus de taille x par coagulation
0
1 €T
Qs(f)(t,x) = 3 / Bly,x —y)f(t,z)dy perte en individus de taille 2 par fragmentation
0
Qi(f)(t,x) = / B(z,y)f(t,z +y)dy gain en individus de taille x par fragmentation.
0

Les paramétres k > 0 et § > 0 sont respectivement les noyaux de coagulation et de fragmentation
et sont supposés symétriques.
Notion de solution faible du modéle continu de coagulation-fragmentation

Comme pour le cas discret on introduit une notion de solution faible adéquate.

Définition .2. Soit la donnée initiale f° > 0 vérifiant [;°(1 + z)f%(z)dz < oo, et soit ¢ €
D(Ry). On appelle solution faible du modéle continu (2) toute fonction f satisfaisant

Wl e
5 [ [ (stensea s - st +0) (o6 ) - o) - o)) dz

Comme dans le modéle discret, 'existence de solution du modéle continu s’obtient soit par
Papproche de P. Dubovskii et I. Stewart [70] dans I'ensemble L{ = {f >0, (1 +z)f € L'(R;)}
soit par I’approche de J. Ball, J. Carr et O. Penrose [10] dans I’espace L'(R,). La conservation
de la masse réclame encore une hypothése de croissance sur les noyaux de coagulation et de
fragmentation. On trouvera de nombreux détails et références dans le travail de P. Laurencgot et

4
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S. Mischler [115].

Le lien entre les modéles discret et continu de coagulation-fragmentation a été étudié par certains
auteurs comme R. L. Drake [69] et M. Aizenman, T. A. Bak [2]. Le passage du modéle discret
au modéle continu avec des hypothéses générales sur les noyaux de coagulation et fragmentation
est établi de fagon rigoureuse par P. Laurengot et S. Mischler [114]. La simulation numeérique
des équations de coagulation-fragmentation souléve des questions spécifiques, notamment liées
4 la nécessaire troncature de la variable de taille, et reproduire avec acuité le phénoméne de
gélation ou au contraire préserver la masse sont des problématiques sources de difficultés. F.
Filbet et P. Laurengot [82] ont développé des méthodes performantes et originales pour aborder
ces problémes et ces techniques seront reprises dans ce mémoire de thése.

Dans cette thése on aborde des problématiques d’ordres mathématique et numérique faisant
intervenir des phénomeénes de coagulation et fragmentation, avec des applications principalement
motivées par la physique et la biologie. Ainsi dans la premiére partie on s’intéresse au systéme
d’équations de Lifshitz-Slyozov, une variante continue du systéme de Becker-Déring, dont le com-
portement asymptotique des solutions est particuliérement inhabituel. Dans le premier chapitre
on introduit un nouveau schéma de type volumes finis a stratégie anti-dissipative pour simuler
numériquement les équations de Lifshitz-Slyozov. En s’inspirant des travaux de F. Filbet et P.
Laurengot [82], on met en évidence par des expérimentations numériques le role des collisions
entre particules dans le processus de sélection du profil asymptotique. Le second chapitre prend
en compte la diffusion spatiale des monoméres et détaille I’analyse mathématique du modéle
de Lifshitz—Slyozov correspondant, qui prend la forme d’un systéme d’EDPs couplées de types
hyperbolique et parabolique. La deuxiéme partie du manuscrit considére des questions issues des
applications en biologie et médecine. En biologie, la compréhension et le controle de 1’évolution
d’une population de cellules structurée en taille et subissant des phénoménes de croissance, de
division et de mort constituent des enjeux majeurs, par exemple dans I’étude des maladies neuro-
dégénératives. Par des techniques de mesures biologiques, par exemple par flux cytométrique, on
peut déterminer la densité de la population cellulaire au bout d’un temps T donné; mais on
n’a pas accés au taux de division cellulaire. On développe donc des techniques de probléme in-
verse pour fournir des méthodes mathématiques permettant d’estimer ce taux de division ; c’est
I'objet du premier chapitre de la seconde partie de ce mémoire de thése. Le second chapitre
traite d’'un modéle spécifique de polymérisation avec coalescence pour le prion (Proteinaceous
infectious only). Dans la troisiéme partie du manuscrit nous abordons un modéle de couplage
microscopique-macroscopique d’interaction fluide-particules ou des phénoménes de coagulation-
fragmentation sont pris en compte par un terme de type Becker-Doring. Nous nous intéressons
a I’étude de stabilité et 'analyse asymptotique de ce modéle d’interaction fluide-particules.

1 Systéme d’équations de Lifshitz-Slyozov

1.1 Simulation numérique du modéle de Lifshitz-Slyozov standard
Contexte général

Historiquement, le systéme d’équations de Lifshitz-Slyozov est un modéle physique établi par
E. Lifshitz et V. Slyozov [124] en 1916 pour modéliser la cinétique de formation de grains par
précipitation dans une solution solide super-saturée. Il s’agit d’un modéle trés couramment utilisé
en métallurgie, pour décrire la formation de certains alliages. La dynamique d’évolution peut étre
vue comme l'interaction entre macro-particules, décrites par une fonction de densité f(¢,z), z > 0
étant la variable de taille, et des monomeéres dont la densité est notée c(t). Mathématiquement,
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en notant par a(z) > 0 et b(x) > 0 respectivement les taux en gain et perte de monomeéres par
les macro-particules, le modéle s’écrit comme une équation de transport

Of(t,x)+ 0, (V(t,z)f(t,x)) =0, te0,00[, x€]0,00],

V(t,x) = a(x)c(t) — b(x),

couplée & une équation intégrale décrivant la conservation de la masse totale

c(t) +/Oooxf(t,a:)dx =p,

avec p la masse totale initiale.

Malgré son apparence simpliste, ce couplage continue d’intriguer un bon nombre d’auteurs,
notamment en ce qui concerne I’étude du comportement asymptotique en temps des solutions.
En effet Lifshitz et Slyozov avaient émis la conjecture suivant laquelle les solutions suivent en
temps grand un profil universel, indépendant a un facteur d’échelle prés de I'état initial. Une
suite de résultats d’analyse et d’expérimentations numériques, établis par B. Niethammer et
R. Pego [145] en 2000, J. A. Carrillo et T. Goudon [35] en 2003, M. Hermann, B. Niethammer
et J. J. L Velazquez [104] en 2008, ont montré que cette conjecture n’était pas vraie. Contraire-
ment aux conjectures de Lifshitz et Slyozov, il existe une famille de profils asymptotiques et, en
partant d’'une donnée initiale & support compact, la dynamique choisit le profil ayant le méme
comportement que la donnée initiale au bord du support. L’analyse de ce comportement asymp-
totique étrange est délicate et requiert l'introduction de notions de stabilité nouvelles. Parvenir
a capturer numériquement le profil correct est un challenge difficile, la diffusion numérique ayant
tendance & lisser artificiellement le profil des solutions et a conduire de fagon erronée vers le
profil, régulier, prédit par Lifshitz et Slyozov. L’étude numérique effectuée par J. A. Carrillo
et T. Goudon repose sur un schéma WENO (Weighted Essentially Non—Oscillatory) d’ordre 5.
Numériquement ils obtiennent les profils asymptotiques donnés & la figure 1 pour la solution
f du modéle de Lifshitz—Slyozov en partant de deux données initiales différentes avec le choix
a(x) = '3 et b(x) = 1.
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Figure 1 — Reconstruction numérique avec WENO 5 du profil asymptotique suivant deux données
initiales différentes.

Bien que le schéma WENO soit d’ordre élevé, on remarque que ce dernier développe une
certaine diffusion numeérique, comme le montre la figure 1. Bien que celle-ci soit réduite, et en
général tout a fait tolérable pour la plupart des applications et simulations de lois de conservation,
elle conduit ici & perdre pour des temps de simulation grands le profil asymptotique attendu. Il est
trés probable que des conclusions trompeuses aient été déduites de ce type de phénomeénes, bien
plus sensibles avec des schémas moins performants que WENO (voir [35] pour des illustrations
utilisant des schémas comme Upwind ou de Lax—Friedrichs).
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Modéle de Lifshitz-Slyozov en variables auto—similaires

L’étude du comportement asymptotique du modéle de Lifshitz-Slyozov repose sur un chan-
gement de variables adapté :

( 1 T
ft,x) = mg(ln(l +1), 1—+t)’
r=In(l4+1), y= 1&“ d(r) = (1 +)/3¢(t),
W(r,y) =y"Bd(r) —1—y.

En supposant que lim,_, o, d(7) = K, ce qui correspond a la conjecture de Lifshitz—Slyozov suivant
laquelle le rayon moyen des particules évolue comme t1/3, et en posant Wk(y) = YUK —1—y,
on obtient le modéle de Lifshitz-Slyozov mis & 1’échelle suivant

Org(r.y) + 0, (WK@)g(T, y)) — 4(r.9),

o (3)
/0 yg(t,y)dy = p.

L’analyse de I’équation (3) montre I'existence d’une famille de profils asymptotiques paramétrée
par K. De facon plus précise il est prouvé que :

e Pour K < K;g = 22% aucune solution stationnaire Mg n’est admissible.

e Pour K = Kg on obtient la solution stationnaire My prédite par Lifshitz et Slyozov

Mg ,s(y) = <1 B (2y)1/3>11/3 <1 . 1/2(2y)1/3>7/3=

0<y<uyo=1/2,

L 0, Y > Yo-

e Pour K > Kg on obtient comme profil admissible

( (1- (y/y0)1/3>p_1

<yo Y- y+>1/3 =
L—(y/y-)'/? L—(y/y+)'/?
(1) (1= wimerr)

0<y<yo=1/2,

1—r?

07 Y > Yo,

avec les paramétres p > 0, ¢,r dépendants de K (voir [35]); en particulier on a K =
3(p+1)
G+ 1P

On trace sur la figure 2 les différents profils correspondant & K¢ (p = 00), K =9x 7723 x271/3
(p=2) et K =6 x 572/3 (p =1). Le profil de M, o est trés régulier tandis que plus K est petit,

8
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moins le profil Mg est régulier.
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Figure 2 — Plusieurs profils asymptotiques Mg admissibles.

On remarque sur la Figure 2 que pour p = 1 la solution stationnaire My présente un front
raide, comme une fonction indicatrice. Ainsi en partant des conditions initiales suivantes

(01, =xe€[10,30] = o N _
g(z) = { 0, sinon p d=dlr=0)=1 p=4l, @

les simulations numériques réalisées dans [35] a l’aide d’un schéma WENO d’ordre 5 ont montré
que la solution se comportait pour de «grands» 7 comme le profil Mg correspondant & p = 1.
Toutefois, plus on augmente le temps de simulation, plus il est difficile de préserver le front de la
solution : la diffusion numérique lisse le profil. La figure 3 présente au temps 7 = 20 (c’est-a-dire
t = € en variables originales), le résultat d’une simulation avec le schéma WENO du systéme
de Lifshitz-Slyozov en variables (7,y) avec la donnée (4) sur une longueur de domaine [0, 40] avec
1000 points par unité de longueur.

Pour de tels temps de simulation, 'effet de la diffusion numérique, en dépit des qualités du
schéma WENO, n’est pas négligeable et éloigne la solution du profil attendu. On peut en effet
comparer le profil obtenu & celui correspondant & une donnée réguliére, comme dans la figure 4.
Ces résultats illustrent a la fois la difficulté d’ordre numérique pour préserver en temps long le
profil asymptotique correct, mais aussi combien les notions de stabilité a introduire pour analyser
ces phénoménes sont délicates.
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Figure 3 — Effet de la diffusion numérique sur le profil asymptotique en variables auto—similaires
avec le schéma WENO 5.

Contribution

L’étude du comportement asymptotique en temps long du sytéme de Lifshitz—Slyozov se
réveéle donc étre un cas-test redoutable pour les schémas numériques développés pour les lois de
conservation, en dépit de la simplicité apparente du probléme. Au chapitre 1, nous proposons
un nouveau schéma de type volumes finis pour simuler les équations de Lifshitz—Slyozov. Ce
schéma repose sur une stratégie anti-dissipative basée sur une technique de «décentrage aval avec
contrainte amont», dans 'esprit des méthodes introduites par B. Després et F. Lagoutiére [57].
Il s’avére trés performant pour capturer les profils asymptotiques corrects de Lifshitz—Slyozov,
permettant d’atteindre des temps de simulation bien plus élevés qu'avec WENO (et a temps
de simulation égal, pour un cott moindre). En fait, le schéma s’applique a toute équation de
transport de la forme :

Of(t,x)+ 0, (V(t,z)f(t,x)) =0, t>0,2>0

ou V (t,z) représente le champ de vitesse.

On considére un maillage régulier de pas d’espace Ax > 0 : [x;_q /2> Tyl /2], k € N avec
T_1/3 =0, X412 = (k+1)Az. On pose At™ le pas de temps & la niéme itération, contraint
par une condition de stabilité de type Courant-Friedrichs-Lewy (CFL). L'inconnue numeérique
[ s’interpréte comme une approximation de ﬁ i) /2 f(nAt, z) dz. On définit le schéma par

Tk—1/2
la relation

= - E(fk+1/2vk+1/2 — fiz12Vit1y2)

ot le point clef réside dans la définition du flux numérique f}', /2 permettant d’avoir le caractére
anti-dissipatif grace a des contraintes de stabilité et de consistance sur les paramétres numériques.
On impose que ce flux numérique vérifie

()

min(f, fir ) < f£+1/2 < max(fy, fi',,) contrainte de consistance,
Ves1so < fii12 < Biaye contrainte de stabilité,

10
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Figure 4 — Effet régularisant de la diffusion numérique due au schéma WENO sur le profil
asymptotique en variables auto—similaires.

avec
1 n n n n n
Dpy1jo = —ankn (ff —max(fg, fir-1)) +max(ff, fiq),

1 n . n n : n n
Biiip= y"—V,f(fk —min(fg, fi_y)) + min(f7, fiq),

ou V" = Aﬁ—(;) tand que V' # 0.

On établit que ce schéma est TVD (Variation Totale Décroissante), qu'il vérifie un principe
du maximum, qu’il est stable et consistant. On désigne ce schéma par ADM (Anti-Dissipative
Method). Pour le modéle de Lifshitz-Slyozov, la figure 5 montre les solutions obtenues au temps
t = 2000 en variables originales pour des données de type créneau ou réguliére.

La figure 6 donne le résultat d’une simulation avec le schéma ADM en variables auto—similaires
(7,y), sous les mémes conditions que celles de la figure 4, pour une fonction initiale en créneau.
On observe cette fois que le profil raide est bien préservé.

11
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Figure 5 — Reconstruction numérique avec ADM du profil asymptotique suivant deux données
initiales différentes en variables originales.

L’article original de Lifshitz et Slyozov suggére de modifier I’équation originale en y incor-
porant un terme de coagulation. En effet, puisque la dynamique forme des agrégats de taille
de plus en plus grande, pour des temps longs on ne peut plus négliger les interactions directes
entre macro-particules qui conduisent & des phénoménes de coagulation, la rencontre d’agrégats
de tailles respectives x et y produisant une nouvelle particule de taille  + y. Ces collisions

12
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Figure 6 — Reconstruction numérique avec ADM de ’advection d’une donnée initiale de type
créneau en variables auto—semblables.

apparaissent dans le modéle & travers 'opérateur de coagulation de Smoluchowski comme suit :
([ Ouf(t,2) + 0u(V (t,2) f(t,2)) = ANQeoag (f)(t,2), t €[0,00[, x € [0,00],
V(t,z) = a(x)c(t) —b(z); A >0,

Qcoag / f t T — tvy) dy - /OOO f(t,x)f(t,y) dy = joag(f) - Q;)ag(f)y (6)

k c(t)—l—/oooatf(t,x)dznzp.

Le terme Qcoag( f) représente le gain en particules de taille x résultant de la coagulation des
particules de tailles 0 < y < z et x — y tandis que le terme Q,,,(f) représente la perte en
particules de tailles x lorsque cette derniére entre en collision avec une autre particule de taille
y > 0. L’opérateur de coagulation Qo4 satisfait d’une part & la propriété de conservation de la
masse

/R Z Qeoag(f)(t,z)dz =0

et d’autre part a la propriété de diminution du nombre total de particules
Qcoag(f)(t, x) dx <0.
+

Les arguments développés par Lifshitz et Slyozov indiquent que ces processus de coagulation
pourraient jouer un role dans la sélection des profils asymptotiques. L’analyse mathématique
de ce modéle «corrigé» est encore balbutiante, un premier pas étant du & M. Herrmann, B.
Niethammer et J. Velazquez [104]. Le chapitre 1 se donne pour objectif d’étudier numériquement

13
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I'influence de ce terme de collisions sur le comportement asymptotique des solutions du systéme de
Lifshitz—Slyozov. La simulation numérique de ce modéle (6) de Lifshitz-Slyozov avec coagulation
repose sur ’équation de transport

8tf + a:c(v(ty x)f) = )‘Qcoag(f)

que 'on décompose en deux parties «schéma de splitting». En premier, on résout I’équation de
transport

of +0.,(V(t,z)f) =0

avec le schéma ADM, ce qui permet d’obtenir ’approximation

n T2 Ir — A—x((vf)k—i-lﬂ - (Vf)k—l/2)‘

En second, on résout ’équation
8tf = AQcoag(f)- (7)

A cette fin, on propose deux approches. Une premiére approche dite «naive » consiste a réécrire
I'équation (7) sous la forme

O + ML) % £ = N Quang ) = £ X 1P L) = [ f(e.m)a.
Ainsi en adoptant un point de vue semi-implicite on écrit ’équation précédente comme suit
L0 = expOL 0@, (1)

On intégre sur 'intervalle d’un pas de temps en supposant que Qj;ag( f) et L(f) restent constants,
ce qui conduit & 'approximation

. . . 1 — exp(—1"Y2 At
f/ZH_1 = eXp(—lk+1/2At)fk Tz + Qk+1/2< ol )>

ln+1/2
k
ol qZH/ % ot ZZH/ ? sont respectivement les approximations discrétes des quantités /\Qjoag( ,? +1/ 2)

et AL( f,? 1/ 2). L’avantage de cette approche est qu’elle préserve naturellement la positivité des
solutions. Cependant cette méthode s’avére cotiteuse en temps CPU.

Une deuxiéme approche s’inspire de la méthode introduite par F. Filbet et P. Laurencot [82]
évoquée plus haut. L’idée de cette méthode est d’écrire 'opérateur Qcoqq(f) comme la dérivée
d’un certain flux J, ce qui permet de fagon naturelle d’utiliser la méthode des volumes finis. Pour
ce faire, I'équation (7) est réécrite comme suit

2O f = Az Qcoag(f) = _Aaxj(f)

avec

T(f)(t,2) :/Ox /io wf (1) £ (1 v) do du.

L’approximation du flux J nécessite d’introduire un paramétre 0 < R < oo de troncature pour
évaluer l'intégrale du domaine infini. Ici, on privilégie 'approche «conservative»ou 1’expression
de J(f) est remplacée par

z prR—u
7 xTr) = u u v)dvdu
Tt = [ s doa
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pour 0 < x < R < oo. On remarque que J2,_ (f)(t,R) = JE, .(f)(t,0) = 0 et par conséquent la
solution fr de I’équation

2O fr = N0 JE (fr), t>0,0<z<R<o0

conserve le moment d’ordre 1 :

R R
/ z fr(t,z)de = / xfr(0,z)dz.
0 0

En effectuant le changement de variable w = u + v on obtient

T R
R X)) = u u w—Uu w adu.
TR (F)(t) /0 / F(t ) f(tw — ) dwd

On en déduit I'approximation

(kAz) fit! = (kAz) frH172 — )‘M(Jk+1/2 —Ji1)2)

ou Ji! /2 est le flux numérique approchant JZ  ( f1). Cette approche, couplée au schéma ADM
pour traiter la partie convective de I’équation, s’avére trés performante.

La conclusion majeure de ce chapitre 1 est que la prise en compte des phénoménes de collisions
entre macro-particules régularise les différents profils asymptotiques observés pour le modéle de
Lifshitz—Slyozov standard vers un profil quasi-universel. En guise d’exemple nous montrons a la
figure 7 les simulations obtenues avec différentes données initiales sous l'effet des collisions avec
approche conservative. On se place sur une longueur de domaine [0,2200] avec 20 mailles par
unité de longueur ; on considére que la concentration initiale des monoméres vaut ¢ = 1, que la
masse totale initiale p = 41 et on a A = 1/100. Enfin, les simulations semblent indiquer qu’en
faisant tendre le paramétre de collisions A vers 0, les solutions en temps longs ressemblent au
profil régulier de Lifshitz- -Slyozov.
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Figure 7 — Reconstruction du profil asymptotique avec le schéma ADM, plus approche conserva-

tive des collisions.

1.2 Equations de Lifshitz-Slyozov avec diffusion spatiale

Formalisme du couplage

Nous nous intéressons ensuite & une autre variante du modéle de Lifshitz—Slyozov, dans
laquelle les monomeéres sont aussi soumis a une dynamique de diffusion spatiale. En notant
maintenant ¢ > 0 la variable de taille et z € Q C RY la variable d’espace, on est conduit au
systéme suivant, qui couple des EDP de types hyperbolique et parabolique,
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1. Systeme d’équations de Lifshitz-Slyozov

Le chapitre 2 analyse ce systéme d’équations et en établit le caractére bien posé, pour une
large classe de coeflicients et de données initiales, physiquement pertinente. Nous présentons
brievement un schéma numérique pour simuler le comportement des solutions. Cependant il
convient de noter que, si la densité f obéit toujours & une simple équation de transport, les
coefficients de celle-ci sont maintenant paramétrés par la variable d’espace. Ceci rend les calculs
rapidement lourds, tant en encombrement mémoire qu’en temps de calcul.

Contribution

Pour ce couplage hyperbolique-parabolique (8) nous avons considéré la condition aux bords
de type Neumann homogéne suivante

d,c=Ve-v=0, on 0f2
et les conditions initiales suivantes

c(0,z) = cinit(x) > 0, f(t,2,8) = finie(x,&) > 0.

Nous avons adapté les différents résultats obtenus au cas o les conditions aux bords sont de
type Dirichlet et aussi au cas ot I'espace est RN tout entier.

L’interprétation physique des mécanismes de transfert de masse conduisent aux hypothéses assez
naturelles suivantes :

Cinit € LOO(Q)v finit € Loo(Qa Ll(]ov 00[7 (1 + 6) dg))

Les coefficients cinétiques a et b vérifient
e bL=1,
e a est une fonction croissante avec a(0) = 0 et a(4o00) = +00,
e ac CO([O, oo[) nct (]0, oo[) et pour tout & > 0, il existe Lq o > 0 tel que 0 < a/(§) < Lgo
pour tout & > &.
Le résultat principal s’énonce sous la forme suivante.

Théoréme .3 (Tine, Goudon, Lagoutiére). Sous les hypothéses précédentes sur les données
initiales et les coefficients cinétiques, il existe une unique solution faible (c, f) du systéme (8)
telle que

VO<T <oo, ce L™(0,T[xQ)NL*(J0,T[ H (), f € L>®(10,T[x L' (]0,00[, (1+£) d€));

c € C°([0,T); L*(Q) — faible), f € C°([0,T7; L' (2x]0, 00[) — faible).

De plus la solution du systéme couplé vérifie I’équation de conservation de masse totale suivante

%[/ﬂ/ooogf(t,x,g)dﬁdzn+/Qc(t,:n)dx} ~0.
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2 Modélisation en dynamique de population structurée en taille

La structuration d’une population d’individus (cellules) se fait en biologie a I’aide d’un mar-
queur x positif représentant soit leur taille, leur masse, leur volume, leur age soit le contenu en
nutriments ou parasites de chaque individu. Comprendre ’évolution d’une population d’individus
structurée en x est un enjeu de taille d’une part dans I’étude des mécanismes de divisions cellu-
laires ou de polymeérisations et d’autre part dans I’étude de la prolifération de certaines protéines
telles les prions (Proteinaceous infectious only), responsables des Encélophalopathies Spongi-
formes Transmissibles (EST) qui sont des maladies neurodégénératives mortelles et infectieuses.
Parmi ces maladies, on peut citer I’'Encélophalopathie Spongiforme Bovine (ESB), cause de la
crise de la «vache folley» chez I’animal dans les années 1990. On mentionne également le KURU
apparu au cours du 20° siécle chez I’homme et qui a ravagé presque toute une tribu en Papouasie-
Nouvelle-Guinée, et aussi la maladie de Kreuzfeld-Jacob transmise par injection d’hormones de
croissance et par transfusion sanguine. Face aux limites des expérimentations biologiques pour
une compréhension compléte de tous ces mécanismes, plusieurs modéles mathématiques ont été
élaborés a des fins de prédiction. Deux types de descriptions ont été privilégiés : des modéles
de populations structurées en 4ge connus sous le nom de modéles de MacKendrick-Von Foerster
[7, 129, 174, 60| et des modéles de populations structurées en taille [60, 157, 137, 134|. Dans cette
partie de thése, on s’intéresse a 1’évolution d’une population d’individus (cellules) structurée en
taille x > 0 et on traite d’une part un probléme inverse pour un modéle général d’agrégation-
fragmentation et d’autre part on aborde un modéle spécifique de polymérisation avec coalescence
pour le prion.

2.1 Probléme inverse pour un modéle général d’agrégation-fragmentation

Plusieurs modéles mathématiques pour la modélisation des mécanismes de croissance et de
division cellulaire existent [60, 59, 137, 135, 138, 157, 39, 8, 101, 100, 84, 161]. Plus particulie-
rement, pour les mécanismes de polymérisation nucléée, le modéle le plus utilisé aujourd’hui est
celui de M. Masel [106] qui est constitué d’un nombre infini d’Equations Différentielles Ordinaires
(EDO). Une version continue de ce modéle est due a J. Greer et al. [95]. En notant n(t,z) la
densité de répartition a l'instant ¢ des cellules de taille x, on va s’intéresser au modéle suivant

on(t,x) + coz(g(z)n(t,x)) + B(x)n(t,z) = 2/000 B(y)k(z,y)n(t,y)dy, t>0, x>0,

n(t =0,7) =n’(z), x>0, (9)

Le paramétre g(x) représente la vitesse de croissance des cellules de taille  par absorption de
nutriments, par exemple avec un taux c. La fonction B(z) représente le taux de division d’une
cellule de taille z et x le taux de formation d’une cellule de taille x & partir de la division d’une
cellule de taille y > x.

L’étude du comportement asymptotique en temps d’un tel modéle d’agrégation-fragmentation
joue un réle majeur pour les applications, notamment par son caractére prédictif sur I’évolution
de la population considérée. Les travaux menés sur ce sujet (voir par exemple [157, 135, 116,
63, 62]) conduisent a l'existence d’éléments propres principaux (Ao, N, ¢) solutions de I'équation
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2. Modélisation en dynamique de population structurée en taille

stationnaire

0,(9(x)N(2)) + (B(z) + M) N(z) = 2 /0 " BN dy = >0,

gN(z=0)=0; N(x)>0; / N(z)dz =1, Xo>0,
0

cg(2)0p6(x) — (B(z) + Mo)d(x) = —2B(x) /0 " iy, 2)b(y) dy.

o) > 0; /0 T p(o)N (@) do = 1,

Ces éléments propres dirigent le comportement en temps long puisqu’on a
o s
| ntt.)exp(=xat) = poN @)l 6(a) do = 0
0

ou pg = [~ n%(x)¢(x) da.

Contribution

Les résultats théoriques sur le comportement asymptotique de la densité de répartition en
taille de la population peuvent étre confrontés a I’expérience. Par exemple la technologie du flux
cytométrique permet de mesurer a chaque instant donné le nombre d’individus (cellules) de la
population considérée. Cependant il n’existe aucune technique biologique permettant de mesurer
le taux de division cellulaire B(z) alors que le controle de cette quantité serait d’une importance
cruciale dans I’étude de la prolifération de certaines protéines telles le prion. Ainsi, connaissant
la densité de répartition N de la population et le coefficient malthusien Ag, on étudie au chapitre
3, le probléme inverse associé

2 /0 " Bly)s(z.y)N(y) dy — B@)N(x) = cdy(g(x)N () + AN (z). (10)

dont l'inconnue est maintenant la fonction B. On cherche & reconstruire, a partir de données
mesurées N. de N, le taux de division cellulaire B, le paramétre ¢ évaluant l'erreur commise
par les mesures sous une norme appropriée sur les données N.

Toutefois, B. Perthame et J. Zubelli ont montré dans [158|, pour un cas particulier du mo-
deéle, que le probléme inverse (10) est mal posé. Une des obstructions est qu’on a aucun moyen
pour mesurer J,(g(z)N:(z)) et donc reconstruire B.. On introduit donc des régularisations de
I’équation (10) afin de définir un taux approchant le vrai taux de division cellulaire. A cette fin,
on propose deux méthodes de régularisation. La premiére méthode, nommée quasi-réversible,
consiste a chercher, sous certaines conditions, une solution H; , = B, N du probléme approché
suivant

xR, (e* T H, o(2)) + He o(x) — 2/ k(x,y)He o (y) dy = —ca,c0:(g(2)Ne () — AcNe(z),
0
H.,(0)=0;, 0<a<l keRy,

(11)
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ol le paramétre de régularisation « est destiné a tendre vers 0.
Une deuxiéme méthode exploite une régularisation par filtrage : ceci consiste a chercher, sous
certaines conditions, une solution H, o, = B, /N, du probléme approché suivant

Hoale) =2 [ n ) a0y = g+ (~eoulale Vo) = ANe))
H. (0) =0,

ol p, est une suite régularisante définie par

1 o
5 peCE®). [ p@de=1, p=0. Suwp(p)c 0.1 a>0
0

x)=—p(—
palr) = —p(=
L’énoncé principal sur ce sujet prend la forme suivante.

Théoréme .4 (Doumic et Tine). Sous des hypothéses sur k, g et B énoncées dans le chapitre
3, il existe une solution (en un sens faible) H. o € L*(2P, dx), p > 2 du probleme inverse (11)
avec les estimations

|ce.a —¢| < C(p,N)e,
e
[ Be,a — BllL2(arn2,da) < Cp, N)( + a)
ou C dépend de D, /\0, k‘, HBN‘|H1((1+:(:P+1),dx)7 ||9N||L1(dx); HNHLl((l—l—x—i-g(x))dx) et HNHHl((xP—i-l),dx)'

Par ailleurs, il existe une solution faible H o € L?(xP, dz), p > 1 du probleme inverse (12)
avec les estimations
‘Ce,a - C‘ S C(p7p7N)(a + 6)7

9
HBa,a - BHLZ(xPNQ,d:c) < C(p7p7 N)(a + a)

ot C une constante dépendant de p, des moments de p et Oxp, Mo, |gN w11 (az), 19N | 52 (1427, do)»
[N 1 (14ap, dz) € IN] L1 (1atg(2)) da) -

Dans cette étude du probléme inverse, on a aussi proposé des schémas pour la résolution
numeérique des problémes (11) et (12) avec comme données d’entrée la solution stationnaire N
obtenue en résolvant I’équation de croissance-fragmentation (9).

2.2 Modéle spécifique de polymérisation avec coalescence pour le prion

Dans le cas oul la population d’individus considérée est une population de protéines prions,
un mécanisme important & prendre en compte est d’'une part la polymérisation ou agrégation
entre deux protéines (polymeéres) et d’autre part la dépolymérisation qui correspond a la perte
d’un monomere (protéine de taille négligeable) par détachement. En supposant 1’absence de
production et de dégradation de protéines, nous considérons pour cette partie dans le contexte
in vitro un modéle prenant en compte ces mécanismes de polymérisation et de dépolymérisation.
On note V(t) la concentration des monomeéres et u(t,z) la densité de répartition en taille des
protéines et on obtient

d

prAd VN _/OOOT(V(t),x)u(a:,t) da,

u(x,t) = —8,(T(V(t),z)ulz,t)) + Qu)(x,t), (13)

L u(0,t) =0, wu(z,0)=wug(x) >0 et V(0)=V,>0.
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3. Interaction fluide/particules avec coagulation-fragmentation

Le terme de transport

’T(V(t),x) =V (t)kon(z) — kogt(z)
fait apparaitre une compétition entre le processus d’agrégation des monomeéres aux polymeéres
avec un taux kop(z) > 0 et le processus de détachement des monomeéres des polyméres avec
un taux kog(z). L'opérateur Q(u) = Q.(u) — Qf(u) représente l'opérateur de coagulation-
fragmentation et s’exprime sous la forme

1 o0

Qulu)(a) = [ hely — ) )l = )y~ u(o) [ bl ule)

0

et
1

Qu)w) = yu(o) [ bt~ vy~ [ by uto +y) d.

Deux polymeres de tailles respectives x et y s’agrégent suivant le taux de coagulation k. (z,y) pour
fournir un polymeére de taille  + y et inversement suivant le taux de fragmentation k¢(y, z — y)
un polymeére de taille x se fragmente en deux polyméres dont 'un de taille y < x et I'autre de
taille x —y > 0.

L’absence de production et de dégradation de protéines induit la propriété de conservation
de masse au cours du temps suivante

% <V(t) - /OOO zu(t, z) dx) =0.

Au chapitre 4, on s’intéresse a la simulation numérique de cette équation de polymérisation avec
coalescence. On développe un schéma d’ordre élevé avec un traitement spécial de 'opérateur de
coagulation-fragmentation permettant au niveau discret de préserver la propriété de conservation
de masse du modeéle. En effet on écrit I'opérateur de coagulation—fragmentation sous une forme
conservative introduite par P. Laurengot et F. Filbet [82] :

1Qu(u)(@) = ~0,C)(x) et 2Qi(u)(x) = —0,F(u)(x),

avec
)= [ [ vkt murazay e Fue = [° 7 g e azay
Ainsi ’équation de distribution en taille des protéines s’écrit

wOu(z,t) + 0, (T(V(t), ) zu(z, t) + Clu)(t, z) + F(u)(t, a:)) = T(V(t),2)ulz,t).

La simulation de cette équation est faite par le schéma WENO d’ordre 5, qui est un schéma de
type volumes finis trés approprié pour le transport conservatif et avec la propriété d’étre numé-
riquement peu dissipatif. Ce schéma est utilisé pour évaluer les éléments propres caractérisant le
comportement en temps long du systéme.

3 Interaction fluide/particules avec coagulation-fragmentation

3.1 Etude de stabilité et analyse asymptotique du modéle
Formalisme du couplage

La dispersion d’une densité de particules dans un fluide engendre des phénoménes d’interac-
tions décrites d'une part par les équations d’Euler compressibles pour le fluide et d’autre part
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par I’équation de Vlasov-Fokker-Planck pour le mouvement microscopique des particules. Le cou-
plage de ces équations micro-macroscopiques se fait a travers la force de friction mutuelle entre
fluide et particules. De plus les phases denses et disperses peuvent étre soumises & des forces
extérieures de type gravitationnel, centrifuge, électrique ou magnétique. Ce type de modéle de
couplage fluide/particules a été présenté par R. Caflisch et G. Papanicolaou [28] et s’applique
dans plusieurs domaines tels que I’étude de la formation des gouttelettes d’eau, le traitement
des eaux usées, 1'étude de processus de pollution [26, 172], la modélisation des moteurs Diesel
[176, 175, 5] ou l'optimisation d’écoulements biomédicaux [13].

En posant f(t,x,v) la densité d’un unique groupe de particules a 'instant ¢ contenu dans un
domaine infinitésimal centré en (z,v) € R x R3 et de volume dz dv alors le modéle de couplage
standard s’écrit comme suit |36, 37|

ko
8tf+v’vxf_vx¢'vvf:%vv’ <(U_u)f+7vvf>7

%7“13/)19
on+ V- (nu) =0, (14)

pro(nu) + ppDivg(nu @ u) + pranVga¢ + Vep(n) = 67T,ua/ (v—wu)fdv—purAu.
R3

Le fluide est décrit par sa densité n(t,z) et son champ de vitesse u(t,z). La force de friction
mutuelle entre fluide et particules est proportionnelle a la vitesse relative u(t,xz) — v. De plus
on suppose que les forces extérieures agissant sur le couplage sont d’intensité a et dérivent du
potentiel ¢ indépendant du temps. Les parameétres p, > 0 et a > 0 représentent respectivement
la masse volumique et le rayon moyen des particules, tandis que p; > 0 et u représentent la
masse volumique et la viscosité du fluide. En notant 6 > 0 la température du milieu environ-
nant et par k la constante de Boltzmann alors I'agitation «Brownienne»des particules est prie en
compte par le terme de diffusion en la variable v et le coefficient de diffusion s’obtient grace a la
formule d’Einstein [72]|. Suivant le phénoméne a observer, plusieurs variantes du modéle de cou-
plage fluide-particules sont étudiées dans [87, 102, 98, 89, 88, 20] et les références qui y sont citées.

Dans notre étude, on traite au chapitre cing une variante du modéle (14) en considérant non
plus un unique groupe de particules mais plutdt une famille de groupes de particules dont chaque
groupe est indexé par sa taille moyenne 7. On s’intéresse donc aux densités de répartition f;(t, z,v)
avec i € N\ {0}. D’autre part on prend en compte les phénomeénes de collision entre particules a
travers l'opérateur de coagulation-fragmentation. Ainsi la variante du modéle considérée s’écrit
comme suit

9 k0 1
Oufi+v-Vafi = Vad - Vofi = 525V, ((v —u)fi + sz-) +=Qi(f),
pPa; 3Taspp Te
on+ V- (nu) =0,

prO(nu) + prDivy(nu @ u) + pranVz¢ + Vyp(n) = 6mpu Z/ (v —u)fia; dv — prAzu,
; /RS

ol (Q; représente 'opérateur de coagulation-fragmentation de Smoluchowski avec 7. le temps
caractéristique correspondant.

1 i—1 00 o) 1 i—1
Qi(f) =3 > kjicififiog =Y mighfifi+ Y Biiili — 3 > Bi-ifi
=1 =1 =1

j=i+1
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avec d'une part x; ; le taux de coagulation lorsque qu’'une particule de taille i rencontre une autre
de taille j pour donner naissance a une particule de taille i + j et d’autre part (3; ; le taux de
fragmentation lorsqu’une particule de taille 7 + j se fragmente en une de taille 7 et en une autre
de taille j.

La prise en compte des phénoménes de coagulation et fragmentation réduit le nombre total de
particules tout en conservant la masse totale ce qui se traduit par les hypothéses suivantes :

D Qi) <0, D iQi(f)=0
=1 i=1

Contribution

Pour ce modéle d’interaction fluide-particules avec coagulation-fragmentation on dérive par
des techniques de dimensionnalisation des propriétés de dissipation d’entropie conduisant d’une
part & l'existence de solutions d’équilibre stable et d’autre part & des estimations nécessaires
pour 'analyse du coupage.

La dissipation d’entropie liée & la coagulation-fragmentation est basée sur la fonctionnelle

=3 a(n(%) ) "

avec la suite {4, #5, ...} satisfaisant 1'équation Q;(.#) = 0 ce qui équivaut a résoudre

Kij MMy = B j Miyj for any 4,7 > 1. (16)

une solution de 1’équation (16) si elle existe, est connue sous le nom «detailed balance equi-
libriumy». La fonctionnelle Z(f) joue le réle d'une fonction de Lyapounov pour une équa-
tion de coagulation-fragmentation pure. Ainsi la dissipation d’entropie liée & la coagulation-
fragmentation s’écrit sous la forme

0, In (L2
> () <o

et elle s’annule si et seulement si f; = ;.

Concernant la dissipation d’entropie lié a I'interaction fluide-particules, on considére la fonc-
tion d’énergie totale du couplage F(f,n,u) comme somme des énergies libres associées respecti-
vement aux particules et au fluide. Ainsi grace & des hypothéses sur la pression du fluide et sur
le ratio de densité pp/pr on prouve la relation de dissipation d’entropie générale suivante :

Attt [ Salars 25 [ [ o= Lo 2T
:T_c;/ﬂ RS@(f)ln(%)dvdng,

avec le parameétre € mesurant le rapport du temps de Stockes 7 par rapport au temps d’obser-
vation T et B mesurant la fluctuation de la vitesse par unité de vitesse d’observation.

dvdx

(17)

23

© 2012 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Léon Matar S. Tine, Lille 1, 2011

Introduction Générale

En s’intéressant aux régimes hydrodynamiques lorsque 0 < € < 1, on devine a l'aide de la
relation (17) que le comportement de la densité des particules prend la forme
pi(t7x) ( ‘|U_u(tv$)/ﬁ|2>
i(t,x,v) ~ ———— exp| —i————————— lorsque € — 0,
filtb ) = o v P 2 q

et dépend de la concentration macroscopique p;(t,z) = / fi(t,x,v) do, de la vitesse u(t,x) et
R3

de la densité n(t,z) du fluide.

Suivant la variation du parameétre ¢ on définie deux régimes qu’on appelle communément «flowing
regime» et «bubbling regime» dont on montre les différents modéles caractérisant 1’évolution
des particules sous l'effet de ’écoulement du fluide et des forces extérieures.
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Chapitre 1

Simulation des équations de
Lifschitz-Slyozov avec coagulation

Ce chapitre est consacré a 'analyse numérique des équations de Lifshitz-Slyozov [124] modé-
lisant la formation de grains par précipitation dans une solution solide super-saturée. Le compor-
tement asymptotique en temps de la densité de répartition des grains est trés intrigant de par sa
dépendance ou non soit a la répartition initiale ou a la prise en compte des effets de collision entre
grains. Suivant des notions de stabilité assez rigoureuses, nous proposons un nouveau schéma nu-
mérique de type volumes finis permettant de capturer griace a sa propriété anti-dissipative, les
différents profils asymptotiques possibles. On met aussi en évidence, en s’inspirant des travaux
de F. Filbet et P. Laurencot [82], le role des collisions dans le processus de sélection du profil
asymptotique quasi-universel.

Ce travail a été réalisé en collaboration avec Thierry Goudon et Frédéric Lagoutiére et a été
soumis pour publication sous le titre Simulations of the Lifshitz-Slyozov equations : the role of
the coagulation terms in the asymptotic behavior [92].

1.1 Introduction

The Lifshitz-Slyozov system models the formation of grains in supersaturated solid solutions.
The dynamics can be thought of as an interaction between macroparticles and momomers. The
particles are described by their size-density f(¢,x), where the variable x > 0 is interpreted as the
volume of the particle ; the momomers are described by their density ¢(¢). The evolution of the
solution is governed by addition to or removal from clusters of monomers. We denote by a(x) > 0
and b(z) > 0 respectively, the rates characterizing these phenomena. Accordingly the density f
obeys the following transport equation

hf+0.,(Vf)=0, t>0, >0, (1.1)
V(t,x) = a(x)c(t) — b(x), :

associated with a non-negative initial value f(0,z). It is coupled to the integral equation
o0
c(t) + / zf(t,z)dx = p, t >0, (1.2)
0

25

© 2012 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Léon Matar S. Tine, Lille 1, 2011

Chapitre 1. Simulation des équations de Lifschitz-Slyozov avec coagulation

which determines the monomers concentration ¢(t) (the initial values are also assumed to satisfy
c(0) =p— fooo xf(0,z)dx > 0). This relation is interpreted as a constraint of mass conservation.
Indeed, fooo xf(t,x)dx is (proportional to) the mass of material contained in the grains, thus
adding c(t), which is (proportional to) the mass of monomers, we obtain the total mass which
remains constant. The dynamics depends on the precise dependence of the coefficients a,b with
respect to the size variable. All the physics of the precipitation/dissolution process is embodied
into these coefficients. Considering that mass transfer is driven by monomers diffusion, we obtain

a(z) = 2'/3, b(x) = 1. (1.3)

For details on the model, we refer to the seminal paper of Lifshitz and Slyozov [124]|. Further
comments can be found in the treatise [123] or in [163]. More recently, this model has been
derived from mean-field theory and homogenization arguments [143]. A derivation from the
Becker-Déring system, a discrete model of coagulation-fragmentation, is proposed in [48]. We
point out immediately two key features of the model :

— First, the rate of growth at x = 0, that is a(0)c(t) — b(0), is naturally negative. Hence,
neglecting any difficulty associated to the lack of regularity of the coefficients, the charac-
teristics associated to V (¢, z) are outgoing on the boundary = = 0, which explains that we
do not need a boundary condition.

— At any time, there exists a unique critical size x..i(t) where the growth rate changes sign.
More precisely, any grain with size 0 < x < x..+(t) shrinks, while grains larger than x..;
grow. This phenomenon where large grains are growing at the expense of the smaller ones
is known as Ostwald ripening. For (1.3), we have zq.(t) = 1/c(t)3.

The system (1.1)-(1.3) together with non-negative initial conditions has been mathematically
investigated, and we refer to the developments in [47, 112, 145, 147| for the existence theory
in various functional frameworks. It turns out that the question of the large time behavior
of the solutions, which is of central importance in physical chemistry, is highly intriguing and
challenging. Based on physical arguments, the following conclusions have been proposed in [124] :
as t goes to infinity,
¢(t) tends to 0 and behaves like Krst~3 where Kpg > 0 is a universal constant,

— The total number of macroparticles My(t) = fooo f(t,z) dz behaves like Cpst~! where CLg
depends on Krg and p,
— The mean radius of the particles

Rmean(t) = ! /OO !El/sf(t, l‘) dzx

Mo(t) Jo

goes to +oo like t1/3 /K,

The solution f(t,z) behaves like a rescaled universal asymptotic profile, that we denote
Mg, 5.

The analysis of the problem has motivated a series of papers 34, 49, 146, 144]. It turns out
that the asymptotic behavior is much more rich and complicated. Investigating the large time
behavior relies on the self-similarity properties of the equation. We can exhibit a one-parameter
family of self-similar solutions : the parameter, that we denote K, characterizes the size of the
support of the self-similar solution and its regularity. The LS profile corresponds to the unique
infinitely smooth profile, which is also the solution with the largest support. The other solutions
are infinitely smooth, but at the tip of their support where they behave as a power law. Hence we
address the question of the selection of the asymptotic profile among the members of this family.
The — highly surprising — answer is that the selected profile depends on the initial data, and more

26

© 2012 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Léon Matar S. Tine, Lille 1, 2011

1.1. Introduction

precisely on its shape at the end of its support. The analysis of this unusual selection process is
very intricate and suitable notions of stability need to be introduced. The influence of the tail
of the initial data is pointed out in [25, 130] and we refer to [146, 144] for a sharp mathematical
analysis of these phenomena. The numerical investigation proposed in [35] brings out the strange
selection process. Furthermore, it also shows that the problem is highly challenging for numerics
since fronts have to be preserved with accuracy on a long time range and spurious smoothing
effects should be eliminated to preserve the correct asymptotic profile. Let us point out that
the question is relevant for instance in metallurgy engineering where the design of certain alloys
production processes are based on the Lifshitz-Slyozov predictions. Lifshitz-Slyozov’s claim is
also subject to controversy for experimentalists and quite recent micro-gravity investigations
bring out the need of further analysis of the model [159].

Before detailing the aims and scopes of the present paper, it is worth mentioning that several
modifications of the system (1.1)-(1.3) have been introduced in order to restore a more standard
large time behavior. An interesting attempt consists in introducing diffusive corrections, derived
from a discrete-to-continuous regime : we expect with such a reasoning to recover a behavior
similar to what is known for the Becker-Doring system. This viewpoint is discussed, among
others, in [53, 50, 48, 51, 155, 142, 119]. Going back to a more microscopic description and
the mean-field derivation of the Lifshitz-Slyozov system, it can be shown that fluctuations of
the particles distribution can also lead to diffusive corrections, as detailed in [150]. A different
approach has been discussed in [124, Section 3| : since the precipitation/dissolution process
produces larger and larger grains, the modeling assumption that the distance between clusters
remains large so that they do not interact directly becomes questionable as time becomes large.
Accordingly, encounters between particles should be taken into account and (1.1) is replaced by

8tf + a:c(vf) = )‘Qcoag(f) (1'4)

where A > 0 and the coagulation operator Qcoqq(f) is given by

Qung(£)t2) = 5 [ fta =) dy— [ 10007008 = Qlagl1) = Qg (15)

The gain term eroag( f) characterizes the gain of particles with size x produced by the coalescence
of particles with size 0 < y < x and x—y ; the loss term Q;)ag( f) characterizes the loss of particles
with size  due to the collisions of such a particle x and another grain having size y > 0. The
operator (Q.oqg satisfies the following mass conservation property

/OOO choag(f) dz =0

while it implies a decay of the the total number of particles since

/000 Qcoag(f)(t,z)dz <O0.

As far as we are concerned with existence issues, the analysis of the modified model is discussed
in [46, 111]. From the discussion in [124], where the family of self-similar solutions is already
identified, it is expected that the collision term induces a selection process which in turn, in the
limit of vanishing A, makes the LS profile the most physically relevant. A breakthrough in this
direction is due to [104] where the existence of a stationary solution for the model with collision is
proved. The obtained solution decays exponentially fast and it is isolated in a suitable functional
space. In this paper the question we address is two-fold.
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— As pointed out in [35], capturing the correct asymptotic profile is numerically challenging :
numerical diffusion smoothes out the fronts so that we can be artificially led to the LS
profile. We also refer to the conclusions of the sharp investigations in [42]. The investigation
of the coagulation-free problem in [35] uses the WENO scheme, see [107, 43], but for
sharp profiles the problem is very stiff and the computational cost is high. On the other
hand, a specific Finite Volume scheme is introduced in [82], but even if the scheme has
nice analytical properties, it is not able to capture non-smooth profiles (see results and
comments in [82, Section 5]). Therefore, we wish to design a specific scheme, with reduced
numerical diffusion. Our approach is based on an adaptation of downwinding techniques,
as developped in [57].

— In the same spirit as in [35], we wish to discuss on numerical grounds the effect of the
coagulation term Qcoqg- The method we propose relies on a time splitting where we first
solve the transport part of the equation, and second the collisional part. To this end, we
tested several methods to evaluate the collision operator. This revealed that it is performing
to make use of the conservative Finite Volume method presented in [82].

The paper is organized as follows. In Section 1.2 we collect some basic material about the
Lifshitz-Slyozov model. In particular, we describe a relevant rescaling of the equation and re-
mind the derivation of the self-similar profiles. Section 1.3 is devoted to the presentation of the
numerical scheme for (1.1)-(1.3). By contrast to the WENO scheme, which is a high order re-
construction flux method for the advection equation, we introduce a first order (explicit) scheme.
However, the construction relies on an anti-dissipative approach which eliminates numerical dif-
fusion and, in turn, we will be able to confirm the results of [35] for a reduced computational
cost. We detail in Section 1.4 possible treatments of the coagulation operators, paying attention
to the incorporation of the Finite Volume approach of [82] in our scheme for the Lifshitz-Slyozov
model.

1.2 Basic results

Let us start with a few remarks concerning the model (1.2)-(1.5). We shall perform here some
formal manipulations in order to bring out interesting properties. Due to the singularity of the
kinetic coefficients at = 0, the justification of these relations might need some technicalities,
see [46, 49, 112]. Firstly, since V (¢,0) < 0 and [;~ Qeoag(f) dz < 0, we have

d o0 o0 o0
E/0 f(t,a:)d:z::—/o 8x(Vf)(t,:n)dx+/\/0 Quong(f)(t, ) dz < 0.

Hence the total number of macroparticles is non increasing. Secondly, for the evolution of the
monomers concentration, we have

d [e.e] oo

0 = = [ Venstnar =2 [ eQuy ()t d

0

-'Ecrit(t) 00
= = [T veastaa- [T veose) .
0 T

crit (t)

Therefore ¢t — c¢(t) does not have a priori a monotone behavior. Nevertheless this relation shows
that ¢(t) remains positive for any time. Indeed if we assume the existence of ¢, > 0 such that
c(ty) vanishes, then the time derivative satisfies

%c(t*) = /0 N b(x)f (ts, x) dz > 0,
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which leads to a contradiction. The final remark is concerned with a simplification of the model.
As it is expected that the monomers concentration tends to 0, we replace, for large times, the
mass conservation relation (1.2) by the constraint

/ooznf(t,x)da::p.
0

Accordingly, in the growth rate, the definition of ¢(¢) is modified and we are finally led to consider
the system

8tf + 8 (Vf) )‘Qcoag(f)

Vit z)c(t) — b(z),

/ b t:ndx(/oooa(x)f(t,x)da:)_l.

In the specific case of coefficients (1.3), ¢(t) is nothing but the inverse of the mean radius. It
is referred to as the Lifshitz-Slyozov-Wagner (LSW) model; it can be derived form the original
model through suitable asymptotic arguments, see [113]. This is the model dealt with in [145]
and [34] (the last one with the simplification a(z) = z, b(z) = 1).

For discussing the large time behavior of the solutions of (1.1)-(1.3), or the model with coa-
gulation (1.2)-(1.5), it is convenient to consider the following rescaling, see [35] and the references
therein : we set

ft,z) = (1it)2g<ln(1+t) 1j—t>

X

T A=),

=In(1+1), Yy =

As we shall see below, the rescaling is particularly important for numerics since it provides a
natural way to reduce the computational domain. Indeed, since the dynamics tends to form
infinitely large clusters as time becomes large, we would need a huge computational domain
to evaluate the behavior of the solution on a large time range. Accordingly, the computational
resources needed for the simulation would become prohibitive. In rescaled variables, most of
the information remains in a bounded domain. In rescaled variables the Lifshitz-Slyozov system
becomes

0-9(7,y) + 0y (y*3d(T) =1 = y)g(,9)) = 9(7,y) + AQloug (9)(T,y) 720, y >0,

d(r) exp(—7/3) + /0 " yg(ry)dy = p, (16)

9(0,y) =¢°(y), yeRy,  d(0)=d"

(g) reads

coag(9)(T,y) = % /0 ’ 9(t,y — u)g(t,u) du — /0 h 9(7,y)g(7, u) du.

Notice that the homogeneity of the collision kernel is crucial in this manipulation (here we work
with a constant collision kernel, but the reasoning applies for more general kernels as in [104]).
As a matter of fact, we still have the conservation property

/0 choag( )(Tr y) dy = 0.

The coagulation operator (),

29

© 2012 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Léon Matar S. Tine, Lille 1, 2011

Chapitre 1. Simulation des équations de Lifschitz-Slyozov avec coagulation

As time tends to 400, we expect that c(t)t1/3 tends to a constant K > 0; in order words

lim d(7) = K.

T—00

Accordingly, d(7)exp(—7/3) ~ K exp(—7/3) becomes negligible for large rescaled times 7. We
are thus led to the following rescaled version of the LSW equation, for 7 > 0, y > 0

((0rg+ 0y (Wg) = g+ A Qroug(9),

W(t,y)=Ky'3 —1—y

/ yg(T,y)dy = p,

K = / (r,y dy(/ y'g(r, y)dy>_l-

We are interested in stationary solutions, that is, we search for y — Mg (y) verifying

By (WP K —1— ) M) = My + A Qo (M), /0 yMg(y)dy=p.  (L7)

Equation (1.7) can be seen as an ODE with the term Q7,,, as a perturbation.
Let us first discuss the coagulation-free equation

By ((y"PK — 1 —y)Mg) = M.

M) =~ [p< X ﬁ)] (18)

The question is now to identify parameters K that make the solution Mk admissible. The discus-
2
sion relies on the properties of the function Tk (z) = Kz —1— z3. We observe that %TK(Z) <0

We obtain

for any z > 0; thus Tk is concave, and it reaches its maximum at z = /K/3 : for any z > 0

K\ 3/2
Tx(z) < TR = 2<§> ~ 1.

The function K +— Tj?%* is increasing from [0, +-00[ to [—1,+o0[ and it vanishes at K¢ = 22%

We are thus led to the following cases :

K < Krg  The solution Mg is not admissible since its first moment blows up. Indeed, noting
tx(c) = Tk (c'/3), we have tg (o) < 0 for any ¢ > 0 and we remark that

But Kg'/3do

T tr o)) ~o—o° —K o5/ which is integrable at infinity. Therefore,

Y do
lim (1 47 ) _
yugrl(—l-y)exp(/o tK(O')> 1 >0,

and we deduce that

Y Y do 1 [ 1
yMicly) = = (1Y) eXp</o tK<a>> Ty ATty

holds for y > Y > 0 large enough. Consequently yMg (y) ¢ L'(R,) for K < K.
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K =Kig The point zy = 2-1/3 is a double root of Tr,s(2) and then we can write
Tr,s(2) = —(z — 271/3)2(2 4 2%/3). Tt allows to compute My, , : we arrive at
( (2y)1/3
eXp(‘ - <2y>1/3>

M s(y) = <1 - (2y)1/3> <1 -+ 1/2(2y)1/3>

07 ) > Yo-

K> Kjg The polynomial Tk (z) admits three distinct roots that we denote z_, zg, 24,
with z_ <0 <2y < \/g < z4. We set

([ —Tx(z) = (z = 20)(z — 2¢)(z — 2-),

2y = 1/2<—z0 + /4K — 322 >

323 322 —322

T o)t —20) T ) —2) | (er ) (es — )

and we are finally led to the following expression, see [35]

(1- (y/y0)1/3>p_1

1- (y/y—)l/3>l_q<1 - (y/y+)1/3>1_r

0<y<yo=1/2,

] )

0 Y > Yo,

with the relation

3(p+1)

~ G+ 3 (1.9)

We plot in Fig. 1.1 the functions My corresponding to Krg = 3/(2%%) (p = o), K =
9x 723 x 273 > Krg (p=2) and K = 6 x 523 > Krg (p = 1). The profile M, ,
is infinitely smooth, while the smaller K, the less regular the profile M. Similarly, letting K
decrease reduces the size of the support of the profile Mk.

Coming back to the evolution problem (1.1)-(1.3) we expect that

A T
f(t,:n) ~t—00 m MK(l——I—t)

where A, = p( fooo yMg (y) dy)_1 is a normalizing constant related to mass conservation. Of
course, it remains to precise the selection of the parameter K in the asymptotic behavior. The

conjecture of Lifshitz and Slyozov [124] is that the solution of (1.1)-(1.3) behaves for large time
as the smooth profile M, ., whatever the shape of the initial data is. However, both numerical
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Figure 1.1 — Plot of asymptotic profiles Mg for p=1, p =2, p = oo.

simulations [35] and mathematical analysis [144, 146, 149] have shown that the selection of the
profile is much more amazing : considering a data with compact support, the large time behavior
selects K according to the shape of the initial data at the tip of the support! Such a phenomenon
is highly unusual and it has motivated the introduction of sharp notions to describe the behavior
of a function at the end of its support, and for numerics it requires performing schemes with as
reduced as possible numerical diffusion.

Of course, dealing with the equation (1.7) containing the non linear collision term is certainly
much more difficult. It could be quite natural to think of the solution as a fixed point of the
mapping ¢ — ¢, with g solution of

Oy(4 K — 1 4)g) = g+ AQlony (): /0 T yaly) dy = p. (1.10)

This iterative process is already described in [124]. This viewpoint is further developped in [104]
to prove the existence, for A small enough, of a stationary solution close to Mk, ;. Our goal here
is to propose a numerical scheme to treat the Lifshitz-Slyozov equation with coagulation and to
investigate numerically the influence of these encounters on the large time asymptotics.

What we observe based on the numerical simulations is the regularization effect of the collisions.
Considering different initial data leading to different asymptotic profiles in the coagulation-
free case, the numerical large time solutions become similar with collisions. Furthermore as the
parameter A in front of the coagulation operator tends to zero, the large time profile looks like
the smooth Mp,, profile. Of course further analysis will be necessary to decide whether this
effect is due to the numerical approximation or really to the effect of encounters. However, the
use of a specific non-dissipative scheme reduces the numerical diffusion, at least for the transport
part, and the scheme is validated by performing simulation of the coagulation-free problem.
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1.3 An anti-diffusive Finite Volume scheme for the Lifshitz-Slyozov
system

In this part we set up a new numerical scheme for the (collisionless) Lifshitz-Slyozov system
(1.1)-(1.3). The scheme we propose is a Finite Volume scheme, with a flux reconstruction that
cancels out the numerical diffusion. The method is first-order accurate, but in comparison to
the 5th-order WENO scheme used in [35], it allows simulations of the solutions with a given
accuracy for a reduced computational cost, and furthermore it allows to capture the large time
behavior far beyond the capabilities of the WENO scheme. We point out again that reducing
the numerical diffusion is crucial to capture the correct asymptotic profile. Even if WENO is
very performing in preserving fronts, the problem becomes so stiff that the computations can be
quite long when dealing with non smooth data, as reported in [35]. We start by describing how
downwinding techniques taken from [57] apply for the conservative transport equation. Then, we
detail the splitting scheme we use for solving (1.1)-(1.3). Finally, we compare numerical results

with those obtained with the WENO scheme.

1.3.1 A scheme for the transport equation

In this section we are concerned with the simple transport equation
Of(t,x) + 0, (V(t,x)f(t,z)) =0, (1.11)

where V (t,x) is a given smooth velocity field. We neglect any difficulties due to truncation of
the computational domain, and we consider the problem set on ¢t > 0, x > 0, assuming that
V(t,0) < 0. We introduce a regular mesh, with constant step Az > 0 : the cells are the intervals
[Tr—1/2, Tkt1/2), B € Nwith 2_y /5 =0, 341/2 = (k + 1)Az, and we denote by 3 the midpoint
of the cell : z, = (k+ 1/2)Az. We denote by f;' the numerical unknown, which is intended to

be an approximation of ﬁ f;:jll//; (™, 2)dz, where 0 =0 <t < ... <t < ¢+ defines

a time-discretization, with possibly variable step At = ¢ +1) _ () ip order to adapt to the
time variation of V. We denote by V;* the approximation of the velocity in the cells (meaning
that the approximation is piecewise constant) and by V," | /2 the velocity at the cell interfaces :
namely, we set

Vi =V (it zy), n €N,k €N,
an—1/2 = V(t(n)795k—1/2)7 ne€NkeN.

The scheme is defined by the relation
At

f]?+1 = fl? B A—x(vkrfl—l/2f£+l/2 - an—1/2f£—1/2)- (1.12)
It remains to define the interface fluxes f;! /o To this end it is convenient to rewrite (1.12) as
follows : )
k+1 = fi— Evk (fk+1/2 - fk—1/2)
At

—A—$(f§+1/2(vk11/2 = Vi) + i1 oV = Vil o))

The last term is an approximation of f (%V(t("), xr) and the definition of the fluxes will be driven
by anti-diffusive strategies for the advection equation

Ouf +Vauf = 0. (1.13)
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Additionally to the anti-diffusive features, the construction of the fluxes will be requested to
satisfy stability properties, that lead to some constraints on the numerical parameters. Let us

introduce the following notation :
= At()
- Az )
_ mZ+71L/2 j mln(j;,?,f,g‘ﬂ) and Mk+1/2 max(f7, fi'r1),

1 n n n n
Vpy1yo = v ——(fF — max(f7', fi1)) + max(fi, fi_y) = "V" (fF - Mk—1/2) + My
1 : n n n n
B£+1/2 g (f —min(fy, f_ 1)) + min(fy, fr1) = "V” (fk mk—1/2) +mg_q/9,
Vili I
min ( B ,my — — Z ifm? ., >0,
‘@1?-1-1/2 < k+1/2> M—1/2 Vk+1/2 Iy Vk+1/2> k—1/2
By /2 otherwise,

STV Vi s <0

n 1 n rn n n
bk 1/2 I/”|V"| (f maX(fkvfk—i—l)) +max(fk7fk+1) V"|V"| (fk Mk+1/2) +Mk+1/27

By )= y"]V"](fk min(fy, fity1)) +min(fi, i) = Vn‘vn‘(fk Migt1/2) + M 1y2;

Vi1l s
min <B ,m7 k ) if m? >0,
‘@Z 12 = k—1/2>"""k+1/2 |Vn /2| Vn|an—l/2| k+1/2
By, /2 otherwise,

-tV 7Vk+1/2’ Vk 1/2 do not have the same sign, we set bk+1/2 <%’Z+1/2 = frif an+1/2 >0
and bk+1/2 k+1/2 = fiq if Vk+1/2 <0.

,uk+1/2 = max(mzﬂﬂ, bk+1/2) and ///k+1/2 = min(M]?Hﬂ, '@Zﬂ/z)
The following statement makes the principles on which the construction of the fluxes is based
clear.

Proposition 1.3.1. We assume that the following standard Courant-Friedrichs-Lewy (CFL)
stability condition
At
Az

1s satisfied. Then, for any k the set [MZH/Z,///,?H/Q] is non-empty. Suppose that for any k the

ml?x(|an|,|VkT:_1/2|) <1 (1.14)

fluzes satisfy fﬁ+1/2 € [uﬁ+1/2,///,:‘+1/2]. Then, the following assertions hold :
i) The scheme (1.12) is consistent with (1.11),
@) If fi' > 0 for any k then f;‘“ > 0 too, if Ax is sufficiently small (otherwise a restricted
CFL condition is requested to ensure the non-negativity : (At /Ax) max (|an+1/2|) <

1/2).

ii1) Let us set

At(") "
=i — Vk (fk+1/2 fk—1/2)7 k e N.
Let j € N. If V* > 0 then m f"* < M" "2 while if V* <0 then m” e < <<
My
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Proof. To discuss the properties of the scheme, we first suppose that V" | /2> 0, V;* > 0 and

Viti1/2 > 0. Owing to (1.14), we have
1
-—1>0
2%
and thus
(o~ DU~ min(fE, ) 2 0.
AL TR
It follows that )
V"—V"(f'? — min(ff, fy_y)) +min(f, fi 1) > fi- (1.15)
k
On the same token, we have
(v — D~ max(f. ) <0
AT TR =
that leads to )
e (F — max(fE )+ max(F ) < - (1.16)
k
By definition f! € [mZ+1/2’MI?+1/2] while (1.15) and (1.16) tell us f;' € [bZ+1/2’BI?+1/2]‘ When
vn n n
mZ—1/2 > 0, we also observe that (1.14) implies mz—1/2 V]ifljz anfli ; > Vn‘}:’i ; > i
k+1/2 k+1/2 k+1/2

Hence we have f! € [bf /2 By /2]. The argument adapts when V' is locally negative (leading
to fi € [m}_, /2,M,?_1 /2] n e, /2,B]?_1 /2]) or changes sign (in which case the requirement
T /2 € (1541 /2 M /2] implies that the scheme is the upwind scheme). The consistency of the

scheme follows from the very definition of mj /2 and M | /2

Let us now prove that f,?“ remains non-negative. The non-negativity f,?“ > 0 is equivalent

to
v (Vk11/2f£+1/2 - an—1/2f1?—1/2) < fi-

Again, we start by assuming, for k fixed, Vil /2 Vit /2 Vit > 0. Then f,?“ > 0 is equivalent to

n n

fk k—1/2
=y Vi 12 Vi1

Assuming f;' | /2 2 my_q /2 yields the following sufficient condition for this relation to hold :

n n

n k n k—1/2
Fere = o FMeap
kot 1/2 k172

which justifies the definition of %’ /2

In the case V' | /2 Vi, /29 V¥ < 0 we obtain the following analog condition
Ir —Vide
Jicay2 < + My :
/ V"Vl / Vil
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In the other cases we just choose the standard upwind flux, which is known to ensure the non-
negativity under the restricted CFL condition

NAL)
Ax
Let us analyze this case in detail. In the case where V}", | /2

of f,?“ is ensured without any condition on the time step. The only problematic case is when

Vit /2> 0 and V" | 2 < 0 (where the cell can be “emptied” from the two sides). In this case,

choosing the upwind fluxes leads to

max (’Vlgf}-l/ﬂ) <1/2.

<Oand V" | /2> 0, the non-negativity

ka = Ik (1 T Az (Vk+1/2 - Vk—l/2>> :

Thus the non-negativity condition is

DRV .
Aa (Vk+1/2 - Vk—1/2> <1

(which explains the CFL condition restriction by a factor 1/2 in general). But now, assume that
the velocity is Lipschitz with coefficient L. Then one has V" | /2~ Vit /2 < LAz and a sufficient
condition on the time step becomes

At <1/L.

Asymptotically when Az tends to 0, this is automatically satisfied when the CFL condition of
the proposition is satisfied, that is why we retain only this classical condition.

We finally turn to the proof of iii) which relies on the discretization of the advection equation
(1.13). The construction is taken out from [57| and is based on the requirements to preserve the
L norm and to satisfy the Total Variation Diminishing (TVD) property. We have already seen
that, in the case an—l/z >0, V' >0, an+1/2 > 0,
fl? S [mz+1/27 Ml?—i—l/2] N [bZ+1/2: BZ+1/2] 7'é (Z)

Now, we require that the numerical flux f /2 fulfills the same constraints

{ m2‘+1/2 < f]?+1/2 < M]?+1/2 consistency constraint, (117)

Z+1/2 < f£+1/2 < BZ+1/2 stability constraint.

Combining the stability constraint in (1.17) to the consistency constraint m} /2 < i, /2 <
M /o We obtain

1
Q%A

1
g

(ff - M£—1/2) + i1y < frpaye < i = mz—1/2) + fio1y2:

Therefore, we deduce that

myp_yyy ST = T8 V'V (Fiaye — fimaye) S My, (1.18)

holds. We conclude that the discrete solution satisfies the following maximum principle

Tn* < n
max(f") < max(fy)

s n* > 3 n .
min(f¢™) = min(fy)
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The TVD property is also insured, it follows from LeRoux and Harten’s incremental analysis
[99, 121]. The same can be done when the velocity is negative or changes sign : this ends the
proof.

The point now consists in defining fl?+1 /2 S0 that on the one hand, Proposition 1.3.1 holds,
and on the other hand the numerical diffusion is as reduced as possible : to this end we adopt a
downwinding approach. When V" o > 0, Vi > 0 and Vi | 2 > 0, we choose the closest value
to f;'y; that fulfills the requirements of Proposition 1.3.1. Namely f;" /2 will be the solution of
the following problem

To minimize ]f£+1/2 — fial

under the constraint fi', | o € [ty o, A1 o]
This minimization problem leads to the following three cases (again assuming that V," | /2> 0,
Vit > 0 and sz-l/2 > 0)

Ty = gy A < 1
T = o G < Fia <A (1.19)

n —_ n 3 n n
Fisaye = ///k+1/2 i fir 2 Ao

When the velocity is locally positive, we note that the stability constraint involves f;' ; and f}!
only that are upwind values for f’ /2 it justifies the naming of downwind flux under upwind
constraint.

1.3.2 Simulation of (1.1)-(1.3)

Let us explain the derivation of the anti-dissipative scheme for the conservative equation (1.1)
based on the idea developed in section 1.3.1 by using a time splitting

— First, we solve the transport equation (1.1). Here, we know the discrete density f;' and the
concentration ¢”, approximation of the average of f(t(™,-) on the kth cell and ¢(t(™). The
concentration is assumed constant during the time step, and thus the velocity field V (¢, z)
is replaced by the given quantity 21/3¢" — 1. The equation has the form (1.11) and we apply
the scheme designed in the previous section. It defines f"*!. Note that by construction the
solution is non-negative.

— Second, we update the monomers concentration by setting :

vl — p— A:EZ xkf]?—l—l
keN

(recall that z is defined as the center of the kth cell : xp, = (k + 1/2)Ax for any k € N).
In the algorithm, the time step At(™ is evaluated at each iteration, it is computed so that the
scheme satisfies the CFL condition (1.14).

Simulations of the Lifshitz-Slyozov system : comparison with a fifth order WENO
scheme.

To validate the scheme, we compare the simulations with those in [35]. The domain is [0, 800]
with 80 points by length unit. We set p = 41. As an initial condition we set

Fz) = { 0.1 for z € [10,30],

0 otherwise. (1.20)
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This is a step function and the corresponding profile My is determined by K = 6 X 52/3
(that is p = 1, see Section 1.2). This is the hardest case dealt with in [35]. We perform the
simulation with a Courant number v" max [V, V" | /2] = 1/2 (the maximum of the velocities is
actually computed on the domain [0,800]). The scheme detailed above is referred to as ADM
(Anti-Dissipative Method) and we compare in Fig. 1.2 with results provided by the 5th order
WENO scheme developed and used in [35]. The evolution of the monomers concentration is
basically the same. However, the interesting point is the discrepancies observed at the final time
t = 2000 in the particles distribution profile. At such a large time we observe the smearing in the
WENO simulation, and numerical diffusion is sensible. By contrast, the ADM scheme preserves
accurately the shape of the expected profile. Furthermore, while we use the same mesh size, of
course, the ADM run is faster by a factor 3/4 than the WENO simulation. The smoothing effect
is confirmed by the movie of the time evolution in Fig. 2.2 : the numerical diffusion in the WENO
simulation becomes visible after 1000 time units. The maximum is damped and the shape of the
solution, in particular at the tip of the support, is smoothed. The effect increases as time grows.

0.12 \
ft=0,z) ——
0.1
0.08
0.06
0.04
0.02
0
0 20 40 60 80 100
x
1 T T T T T T
c(t) with ADM —— 0.0007 f(t =2000,z) with ADM —— |
0.9 c(t) with WENO ’ f(t = 2000, z) with WENO
08 0.0006
0.7 0.0005
0.6 0.0004
0.5
0.0003
0.4
‘ 0.0002
0.3
0.2 0.0001 |
0.1 0
0 500 1000 1500 2000 0 100 200 300 400 500 600 700 800
t T

Figure 1.2 — Comparison WENO vs. ADM schemes. Top : step initial function. Down left :
evolution of the monomers concentration. Down right : final solution at ¢ = 2000.
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Figure 1.3 — Comparison WENO vs. ADM schemes. Evolution of the solution all 250 time units.
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1.3.3 Simulation of the Lifshitz-Slyozov equation in rescaled variables

As detailed in Section 1.2, in rescaled variables the Lifshitz-Slyozov system becomes

8Tg(7—7y) + ay(W(T, y)g(Tvy)) = g(Tvy)7 T 2 07 Yy Z 07
W(ry) =yd(r)—1-y, 7>0,y>0,

d(t)exp(—7/3) + / yg(T,y)dy = p, (constant) T >0,
0

900,9) =¢°(y), y=>0.

The advantage now is that the solution is expected to converge for large 7 to a compactly sup-
ported profile, while in original variables the mean radius goes to +oc. Therefore, for the rescaled
problem we considerably reduce difficulties related to the truncation of the computational do-
main. However, as remarked in [35], the price to be paid is to increase significantly the stiffness of
the problem. In practice, it requires for the WENO scheme some restrictions on the CFL number
to prevent the apparition of spurious oscillations and smoothing effects.

The notations here are straightforwardly extended from the one of the discretization in the
original variables. We again make use of a time-splitting :

— First, we solve the advection equation

Org(m,y) + 0y (W (r,9)g(7,y)) = g(7,).

Knowing d™ and g™ approximations of the rescaled monomers concentration d and particles
distribution g at time (™ respectively, we use the ADM scheme to determine

=g - A—y(Wk+l/2gk+l/2 — Wiy )295-12) + Artgp.

The only modification is to take into account the zeroth order term, but it is straightforward
to adapt the scheme and Proposition 1.3.1 to this situation.
— Finally, we update the monomers concentration with

d(r) exp(—7/3) + /O T yglry)dy = p.

For the discrete unknowns, it yields

K
dmtl = <p — Z ye gt Ay) exp((n +1)A7/3), with y, = (k+ 1/2)Ay.
k=0

Using the scheme in this way we observe the apparition of spurious oscillations. In fact, in rescaled
variables it seems that additional stability constraints need to be considered in the definition of
the monomers concentration d. A rough derivation of a criterion that prevents the formation of
oscillations works as follows. We have

dde(r) - eT/?’(g - g /OOO yg(r,y) dy — /OOO W (y,7)g(r,y) dy).

From this relation we deduce that dde can be estimated by & (eT/ 3). By analogy with the basic

theory of numerical integration of ODE, this estimate suggests to impose AT < Ce™™/? as a

stability criterion. Of course, as time increases this becomes much more restrictive than the CFL
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condition (1.14) associated to the transport equation. We are not able to propose a complete
analysis, nevertheless this condition turns out to be efficient. From our numerical experiences it
seems also difficult to relax it.

Again we compare the results with the ADM and WENO schemes. The data are defined as
follows :

— the domain is [0, 40] with 1000 points by unit length,

. 0.1 ye[10,30],

— the initial data is :  ¢°(y) = { 0 otht[—)rwisi

— the total initial mass, p = 41, is such that the initial monomers concentration is d® = 1.
Results are displayed in Fig. 1.4 at the final time 7 = 20. We also show the time evolution of
the particles distribution in Fig. 1.5. We remind, see the comments in [35], that the rescaled
problem is highly stiff and sensible to numerical diffusion. The non-dissipative character of the
ADM scheme is definitely an asset to capture with accuracy the correct profile. Indeed, with
the chosen numerical conditions, the effects of numerical dissipation appear sensitively at time
7 = 7.5 with the WENO scheme. Since this time, the smoothing effect propagates and, continuing
the simulation, the asymptotic profile we obtain looks like the smooth LS profile (see Fig. 1.6
for simulations starting from a Maxwellian initial state). This is confirmed by looking at the
behavior of the monomers concentration d : the ADM method keeps d close to the expected

value (K = 2.05197), while with WENO it decays to K1s = 1.88988.
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Figure 1.4 — Comparison WENO vs. ADM on the rescaled equation. Top : step initial function.
Down left : evolution of rescaled monomers concentration. Down right : final rescaled solution.
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Figure 1.5 — Comparison WENO vs. ADM on the rescaled equation. Evolution of the rescaled
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© 2012 Tous droits réservés.

43

http://doc.univ-lille1.fr



Thése de Léon Matar S. Tine, Lille 1, 2011

Chapitre 1. Simulation des équations de Lifschitz-Slyozov avec coagulation

0.12 \ \ 1.6 \ \
glr=0y) — glr=0y) —
14
/\
1.2
0.08 / \
1l
0.06 0.8 / \
0.6
0.04 / \
04
i
NIEVALY
0 0
0 9 0 1 20 25 30 3 40 45 0 b 10 15 20 25 30 39 40
Yy Yy
1000 ; ; ‘ ‘ 3000 . ‘ ‘ ‘
—_g(r =20,y) with Maxwellian j’ g(T =20, y) with Maxwellian
900 S g(r=20,y) with Step 1 / g(r=20,y) with Step
/ \ |
- /, 2500 ;
, J
700 ; \ 2000 H“
600 -/ 7
/ \ 3
500 F- : 1500 g
/ 1 |
10 | \ /
300 | 1000 T
\ rf
20 \ 500 1/
100 :
0 N _ 0 o
0 0.1 0.2 0.3 04 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
Yy Yy

Figure 1.6 — Top left : Step initial function. Top right : Maxwellian initial function. Down left
WENO?5 : final rescaled solution with these two initial functions. Down right ADM : final rescaled
solution with these two initial functions.

Furthermore, this simulation in rescaled variables, goes twice faster with the ADM scheme
than with the WENO scheme (using the same CFL parameter as in [35]) despite the restriction
imposed by the exponential stability condition.

Finally, we end the validation of the ADM scheme by imposing the analytic asymptotic profile
(here with p = 1 see Fig.1.1) as initial condition and d(7) = 2.05197. The result reported in Fig.
1.7 shows that the solution is well-preserved by the scheme.
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Figure 1.7 — ADM : behavior of the rescaled solution by starting with the analytic asymptotic
profile for p = 1.

1.4 Treatment of the coagulation operator

In this Section we wish to investigate numerically how the coagulation term @.oqg modifies the
asymptotic behavior of the solutions. To this end we need to incorporate in the time-splitting
algorithm the treatment of the collision term. We first propose a “naive” approach where the
integral operator is evaluated directly. As we shall see the computational cost of this method is
quite heavy. Therefore, we adapt the treatment of coagulation terms introduced by F. Filbet and
P. Laurencot [82]. The idea is to make from Qcoqq the derivative of a flux d,J appear, which, in
turn, can be naturally treated in a Finite Volume framework.

1.4.1 Direct evaluation of the coagulation term

We remind that Qcoag(f) = ;t)ag(f) - Q;)ag(f) where

Quns )= £ X LD L0 = [ st
The PDE governing the size density is

O f + a:c(vf) = )‘Q;t)ag(f) —fx )‘L(f)

Then, the scheme splits into the following steps
— First, we solve the transport equation

atf + 890(V(t7$)f) = 0.

Here, we assume that the monomers concentration does not change : ¢(t) is replaced by

¢ and we make use of either the WENO or the ADM scheme. It defines f*T1/2. We

n+1/2 _ f]? N (Vn

write f, e k+1/2f£+1/2 — Vk”_1/2f£_1/2), and the fluxes f,?+1/2 are chosen

according to the anti-dissipative method or the WENO scheme.
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— Second we solve
O f(t, ) + AL(f) % f = AQaq(f)-
We adopt a semi-implicit viewpoint. We rewrite this equation as

t

4 [ Fexp (2 /0 L)) ds)} — exp (A /0 L(F)(5) d5 ) AQoug (1)

We integrate over a time step, assuming that Q7,,,(f) and L(f) do not change on (t() | ¢(n+1)),
We are led to the following formula

_ __pn+1/2 (n)
f]?—i-l — exp ( _ €n+1/2At(n))fl?+1/2 + qz+1/2<1 exp(—{ At ))

fnt+1/2

where qZH/ 2 and €"+1/2 correspond to the discrete version of the integral operators AQf,, (f n+1/2)
and AL( frtt/ 2), the monomers concentration being still determined by ¢”. The advantage
of such a formula is that it naturally preserves the non non-negativity of the solution.

— We update the monomers concentration with

c(t)—i—/oooxf(t,a;)dx = p.

We thus set
Al — p— Az Z $kf]?+1-
keN
For the simulations, the data are given as follows
— the domain [0,2200] with 20 points by length unit,

— the initial function is
() :{ 0.1, z € [10,30], (1.21)

0, otherwise,

— the total initial mass is p = 41 so that the initial monomers concentration is ¢ = 1.

We show in Fig. 1.8 and 1.9 a comparison between the ADM and 5th order WENO schemes
(“asymptotic” profiles at the final time ¢ = 800, and pictures of the evolution of the particles
concentration each 75 time units). Here we have set A = 1/100. We observe a remarkable agree-
ment between the two methods. However, the ADM run is faster by a factor 2. Then we do
not observe any numerical interference between the discretization of the transport term and the
treatment of the coagulation term. Since the ADM scheme has better performances, we shall use
it for further simulations.
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Figure 1.8 — Comparison WENO vs. ADM on the equation with encounters. Top : step initial
function. Down left : evolution of monomers concentration. Down right : final solution at time
t = 800 with A = 1/100.
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Figure 1.9 — Comparison WENO vs. ADM on the equation with encounters. Evolution of the
solution all 75 time units with A = 1/100.
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Next, we compare the evolution when we start from different initial data : we consider the
step function and the following Maxwellian distribution

4 (z—10)?
fo(sv)—\/%eXp< e > (1.22)

All the other parameters are kept the same, and we work with the ADM scheme. Results are
displayed in Fig. 1.10. The noticeable point is that now the shapes of the solutions look equally
smooth after 800 time units. Comparing the time evolution in Fig. 1.9 (step function) we can
see that the regularizing effects come from the largest particles and propagate to smooth out the

front.
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Figure 1.10 — ADM scheme for the equation with encounters for A = 1/100 : Top left : step
initial function. Top right : Maxwellian initial function. Down left : solution corresponding to
the step initial function. Down right : solution corresponding to the Maxwellian initial function.
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Finally, we make the parameter A vary : as it increases, the influence of the coagulation is more
important. As A becomes close to 1 we need a extended computational domain to keep accurate
simulations : indeed, due to the convolution operator, the support of the solution spreads out and
larger particles have to be considered as A increases. For example with A = 1/10 we work with
the domain [0,6000] and 10 points by unit length, see Fig. 1.11 and 1.12. The rate of convergence
towards the asymptotic profile seems to be highly dependent on the coefficient A : the larger A,
the faster the convergence.
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Figure 1.11 — Comparison WENO vs. ADM on the equation with encounters. Top : step initial
function. Down left : evolution of monomers concentration. Down right : final solution at time

t =800 with A = 1/10.
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Figure 1.12 — Comparison WENO vs. ADM on the equation with encounters. Evolution of the
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© 2012 Tous droits réservés.

51

http://doc.univ-lille1.fr



Thése de Léon Matar S. Tine, Lille 1, 2011

Chapitre 1. Simulation des équations de Lifschitz-Slyozov avec coagulation

0.12 : 16 : :
A=0m U T —
14 I
0.1 \\
12 U‘
0.08 “ |
1 t
|
0.06 0.8 ‘ i
0.6 | |
0.04 | |
04 foo \
|
0.02 ||
0.2 -
I
| \
0 0
0 20 40 60 80 100 0 20 40 60 80 100
x x
3.50-05 . ‘ , 3.5¢-05 . ‘ . :
f1(t =400, z) with Step fa(t = 400, z) with Maxwellian
3e-05 3e-05
2.5e-05 2.5e-05
2e-05 2e-05
1.5e-05 1.5e-05
1e-05 le-05
5e-06 5e-06
0 —— 0 ——
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
x z

Figure 1.13 — ADM scheme for the equation with encounters for A = 1/10 : Top left : step initial
function. Top right : Maxwellian initial function. Down left : solution corresponding to the step
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Simulation of the model with encounters in rescaled variables

We switch to the system (1.6) written in rescaled coordinates. Hence, the time-splitting adapts
as follows

— First, we solve
87’9 + ay(Wg) = ga

with fixed monomers concentration d”. We use the ADM scheme and it defines ¢"*+1/2 as

follows
A7)

n+1/2 n n n n n n
9y, 2= 1+ Art)gn — E(Wk+1/2gk+1/2 — Wil i/29%-1/2)

— Second, we consider the collision terms which leads to consider the following ODE

Org(1,y) + AL (9)9(7,y) = AQroag(9) (T, y)

where
1

L (g) Z/Ooog(y) dy and QLf,(9) = §/Oyg(y—u)g(U) du.

We adopt a semi-implicit viewpoint to solve

Org(t,y) +07g=4q",

or, in other words, we set

n n TN n rn 1 — ex _éT’,n—‘,—l/Q AT(n)
gk+1 = gk+1/2 exp(—¢" F1/2 A 7 ( )) +qy +1/2< p( e ) ))

where ql:’n+1/2 and ¢""1/2 correspond to the approximation of /\ngrag(g) and A\L"(g)

respectively, defined with ¢"*/2 and d".
— Finally, we use the mass constraint

d(r) exp(—7/3) + /O ya(r,y) dy = p,
which yields

K
d"t = (p > wegpt! Ay) exp (t"/3).
k=0

We perform the simulation of the rescaled equation with encounters considering the following
data :

— We bear in mind that considering the coagulation terms, we lose the support property of

the solution in rescaled variables. Indeed, QT and L are integral operators and they act like

a convolution so that the support of the stationary solution is expected to fill the whole

line y > 0 : the main part of the information is likely contained in a bounded domain but

the effect of the tail can be important, see [124, 104]. Accordingly, the definition of the

computational domain is very sensitive, as already shown in original variables, to the value

of the parameter \. Then we choose the domain [0, 100] with 200 points by unit length for

A =1/100 and for A = 1/10 we choose the domain [0, 150] with 200 points by unit length.

— the total initial mass p = 41 is chosen so that the initial monomers concentration is d® = 1.
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In figure Fig. 1.15 we compare the solutions associated to a Maxwellian initial data or a step
function with A = 1/100. Of course the remarkable fact is that d(7) tends to the same constant,
which however differs from Kjpg ~ 1.88988, while the solutions have a very similar profile at
7 = 12. We can expect that the stationary solution has an infinite support and we indeed
observe that large particles should be considered compared to the compactly supported profiles
of the collisionless equation. We see on Fig. 1.15 and 1.16 the time evolution of the particles
distributions, where we can observe the regularizing effects due to the collision term and the
spreading of the support. All these effects appear similarly when we make A vary, see for instance
Fig. 1.16. We remark that the asympotic value of d depends on A. However our numerical
investigation shows that letting A go to 0, the large time value of d(7) tends to K.

1.4.2 (Conservative) Finite Volume approximation of the coagulation term

In this Section we propose another method to evaluate the coagulation operator, inspired
from [82]. Let us remind how the scheme of F. Filbet and P. Laurengot [82] works when dealing
with

8tf = AQcoag(f)-
The starting point of the method consists in rewriting the problem as follows
:Eatf(tv:E) =A $Qcoag(f)(t7$) = _)\amj(f),
where

J(f)(t,x) :/Ox/io uf(t,uw)f(t,v)dvdu.

The next step relies on the approximation of the integrals that define J(f) and the necessary
truncation, embodied into a parameter 0 < R < oo, of the infinite integration domain. In [82]
two approaches are designed :

— The “conservative method”, which consists in replacing J(f) by

z rR—u
i = u u v)dvdu
T2y = [ [ Cupea s o

for 0 < x < R < co. We remark that Jgag(f)(t, R) = Jgag(f)(t,O) = 0. Consequently, the
solution fgr of

20, fr(t,x) = N0, JE  (fR) t>0,0<z<R<x

coag

satisfies the preservation of the first order moment :

R R
| atnttayar= [ asno.0)ar
0 0
— The “non-conservative method” where we set
T R
T (F)(t, @) z/ / wf(t,u)f(t,v)dvdu,
0 r—u

for 0 < z < R < o0. Again, we have

20 fr(t, z) = —A0u I (fR)

but now the first moment of fg is non increasing.

o4
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Figure 1.15 — ADM scheme for the equation with encounters for A = 1/100 : Top left : step
initial function. Top right : Maxwellian initial function. Down left : evolution of d(7). Down right :
evolution of the density of particles.

We refer to [82] for a thorough analysis of the method and in particular for convergence analysis
as R — oo, which typically holds under sublinear growth assumption on the coagulation kernel
(see also [70, 131]). The problem addressed in [82] is essentially concerned with the capture
of the gelation phenomenon, that is a loss of mass in finite time, a typical feature of certain
coagulation equations. Here, the situation is different and it turns out that the conservation of
the first moment by the encounters process is crucial for the accuracy of the scheme and the
evaluation of the monomers concentration in the last step of the splitting. For this reason, we
work here with the conservative method.
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To obtain the discrete expression of the operator

of variables w = u + v so that J£ recasts as

coag

JR

o6
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coag

evolution of d(7). Down right :

it is convenient to introduce the change

T R
Coag(f)(t,x)Z/O / wf(t,u)f(t,w—u)dwdu.
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Recall that xp = (k + 1/2)Ax, for k € {0, .., kpr — 1} where ky = R/Ax is the number of cells.

We use the following approximation

k K
Thag(Pisrys = DD wif] fit; Ax? (1.23)

§=0 1=k

with the boundary condition Jcoag(f)1/2 = Jc}(?}ag(f)ZM—l/z = 0. Then, the time-splitting is
organized as follows :
— First, we solve on a time step

Of + 0u(Vf) = 0.

To this end, we make use of the ADM scheme by assuming that the monomers concentration
does not change : ¢(t) is replaced by ¢". It defines f: /2 45 follows

At(")

n+1/2 n n
frE = (Vk+l/2fk+1/2 Vil1 o fii/e)-

— Second, we solve
Ou(2f) = =Nz Tibag(f)

We are led to the following formula

o f7 = f +1/2 (7 +1/2 +1/2)

A$ k+1/2 — Yk—1/2

where the numerical flux Ji! /2 is the approximation Jcoag( i /2
— We update the monomers concentration by "' =p — Z xkf;:"'le.

k=0
We consider the same data as when dealing with the “naive” approach for the problem with

coagulation in original variables. It allows to compare the two methods. The decisive advantage
for the conservative Finite Volume approximation of the coagulation term relies on the fact that
it does not need a very large computational domain. In turn, the computation is definitely less
costly.

o7
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Figure 1.18 — ADM+Filbet-Laurengot approach for encounters with A = 1/100. Evolution of the

solution all 75 time units.
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The numerical results obtained with the Filbet -Laurencot approach in Fig.1.17, 1.18 are
very close to the corresponding results based on the ‘“naive” approach in Fig. 1.8 and 1.9. The
numerical results show again the regularizing effect of the encounters in the asymptotic behavior
of the model. For instance, Fig. 1.20 compares the solutions starting form the step and the
Maxwellian initial data, as in Fig.1.11.
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Figure 1.19 — ADM+Filbet-Laurencot approach for encounters with A = 1/100. Top left : step
initial function. Top right : Maxwellian initial function Down left : solution corresponding to the
step initial function. Down right : solution corresponding to the Maxwellian initial function.

Numerical study in rescaled variables with coagulation operator in conservative form
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In rescaled variables the system reads

9-g9 + 0y(Wg) = g(7,y) + AQoqag(9), T>0, y>0,
d(T)exp(—7/3) + / yg(T,y)dy = p, T >0,

0
900,9) =¢°(y), y>0;,  W(r,y)=y2d(r)-1-y, 7>0,y>0,

where p is a constant. We proceed as previously with the following time splitting :

- 79+ay(W9) :g(Tvy))

- 0rg = )‘QZOQQ(Q)'
The fundamental point consists in transforming this last equation in the conservative flux form
as above. As it is straightforward and we omit the details.

Simulation in rescaled variables with coagulation operator in conservative form
The data are defined as follows :
— The length domain is [0,40] with 1000 points by unit length what means Az = 4.1072.

— The initial function is
O(w) [ 0.1 =zel10,30],
9= 0 x> 30.

— The total initial mass p = 41 is chosen so that the initial monomers rescaled concentration
is d = 1.

Results are displayed in Fig. 1.21 for the parameter A = 1/100 and in Fig. 1.22 for A = 1/10.

The results confirm what has been said above. Using the conservative approach for the coagu-
lation term allows to keep a reduced computational domain, and thus preserves the computational
cost. The effect of the coagulation term is again to smooth out the profile.

1.5 Conclusion

We discuss on numerical grounds several aspects of the Lifshitz-Slyozov system. To this end,
we introduce a new scheme for the the colisionless model : based on anti-diffusive strategies, the
scheme captures the singular profiles exhibited by the system in large times, and it outperforms
other methods used to address the problem. Next, we investigate the effects of the addition of a
coagulation term in the equation. Results should be considered cautiously and they have a purely
experimental status but the preliminary study indicates that the coagulation operator can have
a regularizing effect, which in turn can dictate the selection of the smooth profile predicted by
Lifshitz-Slyozov. We wish this work will be a source of inspiration for further analysis of this
challenging problem.
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Chapitre 2

Equations de Lifshitz-Slyozov avec
diffusion spatiale des monomeéres

Dans le chapitre précédent nous avons étudié le systéme d’équations de Lifshitz-Slyozov
standard modélisant de fagon spécifique I'immersion d’une population structurée en taille de
macro-particules dans un bain de monomeéres caractérisé par sa concentration. Dans ce présent
chapitre, nous proposons une extension de ce modéle standard & un modéle plus général prenant
en compte la dimension d’espace en supposant que les monoméres suivent une diffusion spatiale.
Ainsi on obtient un nouveau modéle se présentant sous forme d’EDPs couplées de type hyperbo-
lique et parabolique dont nous montrons, sous des hypothéses physiquement réalistes, I'existence
et 'unicité de la solution.

Le travail présenté dans ce chapitre a été réalisé en collaboration avec Thierry Goudon et
Frédéric Lagoutiére et a été soumis pour publication sous le titre The Lifshitz-Slyozov equation
with space—diffusion of monomers [91].

2.1 Introduction

We are interested in the mathematical modeling of the late stage of the precipitation kinetics
in supersaturated metastable solid solutions. The problem is for instance motivated by the design
of industrial processes for producing metallic alloys (stainless steel, a mixture of iron, nickel, and
chromium, or gold and nickel alloys used in jewelry to name a few), based on theoretical and
numerical predictions. The supersaturated alloys under consideration are made of two phases :
solute monomers and coarsening precipitates. Existing models phrase the time—evolution of the
solution in terms of a PDEs system for the monomers concentration and the distribution function
of the precipitate in size space. The latter gives the concentration of solute clusters of a given size.
The kinetic equations for cluster concentrations are driven by the rates at which clusters absorb
and lose a solute atom. The attachment and detachment processes are actually governed by basic
principles of overall reduction of the interface energy, where volume effects, which favor growth,
compete with surface effects, which favor dissolution. It turns out that minimizing the total
interfacial surface energy of the system leads to the growth of larger particles at the expense of
smaller particles, which are thus assigned to become still smaller and the overall process results
in an increase in the average particle radius, a phenomenon referred to as Ostwald ripening.
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The Lifschitz—Slyozov equations are commonly used in an effort to understand ripening from a
theoretical perspective.

The standard Lifschitz-Slyozov system, as introduced in [123, 124], describes the evolution of a
solution of polymers. In this model, macro-particles, or polymers, interact with free particles,
or monomers. The macro-particles are described by their size distribution function f(¢,¢), with
t > 0 and £ > 0 the time and size variables respectively, while the monomers are described by

their concentration ¢(t). Therefore [ CCI f(t,&) d¢ is interpreted as the number of polymers having

at time ¢ their size between ¢ and ¢’ while ff/ £f(t,€)d¢ is proportional to the corresponding
mass. The dynamics is governed by the growth rate

V(t,€) = a(§)c(t) — b(§)

with a,b given non negative functions : these kinetic coefficients represent the rates at which
monomers are added to or removed from the macro-particles with size £. The precise expression of
the coefficient relies on the modeling of the precipitation/dissolution processes; in [124], assuming
that mass transfer is based on monomer diffusion, the following expression is proposed

a(@) =&73, b =1. (2.1)

We refer to [163] for other relevant formulae for the kinetic coefficients. In this paper we shall
assume the following

Hypothesis 2.1.1. The kinetic coefficients a,b are required to satisfy :
i) b=1,
i) a is non decreasing with a(0) =0 and a(+o00) = 400,
iii) a € CY([0,00)) N CL((0,00)) and for any & > O there exists Lqo > 0 such that 0 <
0(€) < Lag for £ > & > 0.

Note that these assumptions cover the case of the Lifschitz—Slyozov coefficients (2.1). As a
matter of fact we remark that at any time ¢t > 0 the size space splits into two parts : 0 < & < &.(1)
and & > &.(t) where &.(t) is the unique positive number verifying a(&.(t)) = 1/c(t). It agrees
with the basic principle of ripening where larger particles grow and smaller particles shrink.
In this model, direct collisions of clusters are not considered. Therefore, the dynamics of the
precipitation process is embodied into the transport equation

Ohf+0:(Vf)=0 (2.2)

coupled to the mass conservation relation

(t) + /0 T ef( e de = p (2.3)

a given positive constant. Eq. (2.2) is a conservation law for the polymer concentration in size
space, while (2.3) expresses the fact that the total mass is conserved, the solute material being
accounted for either as dissolved particles or as macro-particles. We point out that for £ = 0, the
growth rate V'(¢,0) = —1 is negative so that we do not need a boundary condition.

Despite its apparent simplicity the Lifschitz-Slyozov system is quite intriguing for the ma-
thematical analysis, and some aspects remain unclear even for physicists. We refer to [47, 112,

111, 145, 147] for existence-uniqueness results in various functional frameworks (bounded, in-
tegrable or measure—valued solutions). While crucial for the applications, the understanding of
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the large time behavior is highly challenging, definitely far from the asymptotic trend to a uni-
versal profile, as derived in [124]|. The Lifschitz—Slyozov system admits a family of self-similar
solutions for the clusters distribution function. All of the profiles have compact support and can
be parameterized by the value of the logarithmic derivative at the edge of the support which
determines the asymptotic value of the (rescaled) monomers concentration. The selection of the
correct self-similar solution which defines the profile for large time associated to a given initial
data is highly non—trivial : it is precisely determined by the behavior of the data at the tip of its
support ! We refer on these questions to the analysis performed in [49, 144, 146] and the numerical
simulations in [35, 42, 92|. These results are in apparent contradiction to most of experimental
results which appear to show strong selection, insensitive to initial conditions. However, recent
microgravity experiments have also revived the controversy from a practical perspective and have
shown that the subject deserves thorough investigation [159]. Finding selection principles appeals
to go beyond the classical Lifschitz—Slyozov model.

To this end, modifications of the Lifschitz-Slyozov system (2.2)—(2.3) have been discussed in
the literature. The addition of a coagulation operator is suggested in [124, 164] to account for
possible coalescence of large clusters formed on the late stages of the process. Analysis of the
Lifschitz-Slyozov equation with such a coagulation term can be found in [46, 111]. The impact of
the coalescence terms on the selection of the asymptotic profile is analyzed in [104] ; we also refer
to the numerical experiments in [92]. Other variants of the Lifschitz-Slyozov system (2.2)—(2.3)
are obtained by introducing parabolic corrections. Such corrections can be motivated through
suitable asymptotic arguments, deriving the Lifschitz-Slyozov model from the Becker-Déring sys-
tem, an infinite system of ODEs where clusters’ size is a discrete variable. The corrected model
is intended to share more basic features with the discrete Becker-Doring model, in particular
concerning selection mechanisms of the large time asymptotics. This aspect has been detailed in
various ways by many authors, for instance we can refer to [48, 51, 53, 50, 142]. Another diffusive
correction is discussed in [150], based on a deep mean field analysis.

In this paper we wish to discuss another relevant version of the Lifschitz-Slyozov equations
by assuming that monomers are also subject to space diffusion. The model we wish to investigate
is derived in details in [124, Section 4|, with the formation of vacancies (which are the clusters in
this framework) in a crystal as a specific application, in connection to the description of sintering
processes. It is likely that considering diffusion of monomers induce spatial correlations in the
Lifschitz—Slyozov model, which in turn can modify the asymptotic trend. This question is beyond
the scope of the paper. Here, as a preliminary step, we restrict to investigate the well-posedness
issues, dealing with physically relevant functional spaces, while the preliminary numerical study
we propose gives some hints on the qualitative behavior of the solutions. Let @ C RY be a
smooth bounded domain, with boundary 0% ; given z € 92 we denote v(z) the outward unit
normal vector at point 2. Then, we are interested in the following variant of (2.2)—(2.3), where
now the unknowns also depend on the space variable and monomers are subject to diffusion :

O f(t,2,€) + Oe((ale(t, x) = ) f(t,2,8)) =0 >0, 2€Q,£>0

o (2.4)
E?t(c(t,x) +/0 ff(t,x,@df) —Age(t,z) =0 t>0,x€Q.

To start with, the diffusion equation is endowed with homogeneous Neumann boundary condition

O,c=Vec-v=0, on 012, (2.5)
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but we will detail below adaptations to Dirichlet conditions (see Section 2.4.4) and to the free-
space problem (Section 2.4.5). Finally, the problem is completed by initial conditions

C(Ov$) = Cinit(x) 2 07 f(07x>£) = finit(:EvE) 2 0. (26)
In view of the physical interpretation it appears quite natural to assume
Hypothesis 2.1.2. The data satisfy

® cinit € L(12),
L finit € LOO(Qa Ll((ov OO), (1 + é) dg))

By using the conservation equation for f and integrating by parts, we observe that

at/ EF(t,m,€)dE = / c(t,2)f(t,z, &) dE — /ftw§§ (2.7)

It allows to rewrite the equation for the monomers concentration in the more familiar fashion

8tc+c/ooo a(§)f(t,x,&)dE = Agze+ /OOO f(t,z, &) de. (2.8)

Owing to (2.5), the system preserves the total mass : we have

%[/Q/Ooogf(t,a;,{)dgdw—i-/Qc(t,a;)dx} =0.

We point out that a coupling with the stationary diffusion equation is derived in [143| through
homogenization arguments, the model being further analyzed in [148]. In this paper we shall
establish the following well-posedness statement for the system (2.4)—(2.6).

Theorem 2.1.1. Suppose that Hypotheses 2.1.1 and 2.1.2 are fulfilled. Then, there exists a weak
solution (c, f) of (2.4)~(2.6) with, for any 0 < T < oo, ¢ € L=((0,T) x Q) N L%(0,T; H' (1)),
f e L>e(0,T) x Q;L((0,00), (1 + &) d€)), ¢ € C°([0,T); L*(Q2) — weak), f € C°([0,T]; L* (22 x
(0,00)) — weak).

The difficulty of course arises from the non-linear coupling which involves PDEs of different
types acting on different variables. This work is organized as follows. In Section 2.2, we briefly
set up the necessary material on transport and diffusion equations. Then, in Section 2.3 we
make use of a fixed point strategy to obtain the existence-uniqueness of solutions associated
to bounded initial data when the kinetic coefficients are globally Lipschitz. Section 2.4 extends
the result in several directions : more general data, singular coefficients, Dirichlet boundary
conditions and free—space problem can be dealt with as well. Finally, in Section 2.5 we introduce
a numerical scheme for the simulation of (2.4)—(2.6) and we conclude with some commented
numerical experiments.

2.2 Basic results on diffusion and transport equations

In this Section we collect some statements on diffusion and transport equations which will
be useful for our purposes. We start with the following claim.
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Proposition 2.2.1. Let 0 < T < +o00. Let A and B be non negative functions in L>((0,T) x Q).
Suppose that 0 < B(t,xz) < Cy < oo for almost every (t,x). Then, for any cini € L*(Q), there
exists a unique ¢ € L*(0,T; HY(Q)) N C([0,T); L*()) with dyc € L?(0,T; (H(Q))') solution of

Oc+ Ac—Ayge=B  in(0,T) x Q, oy,c=0 on 09,
with initial data c(t = 0,2) = ciit(x). Furthermore if ¢y > 0 belongs to L*°(Y), then the

solution ¢ satisfies 0 < c(t,x) < Kp with K a constant depending on Cy, ||¢init|lco and T'. We
also have for 0 <t <T < o0

t
/ le(t, z)[* dz < O, / / V.c(s,x)[*deds < Of
Q 0 Jo

for some constant Cr depending on Co, T, Q and ||cinit || 2(0)-

Proof. The existence result is a direct consequence of a general statement on parabolic equation.
Indeed, the bilinear form

A(t;e,c) = / Vwc-Vmde—l—/ Ac-edx
Q Q
is well defined on H'(Q) x H'(2) and it verifies the continuity estimate :
At e, o) < (L4 1Al L (0 myxe) el 1Ellm @)-
Furthermore, we also have the coercivity property
. _ 2 2 2 2
A(t;c.c) = /Q Vac] dﬂ?+/QAC dz > [lellz ) — llellzzq)-

We can therefore apply the analog of the Lax-Milgram theorem for parabolic equations, see e. g.
[24, Theorem X.9, p. 218], and we get the existence uniqueness statement in Proposition 2.2.1.

In order to prove the uniform estimate, we proceed as follows. Consider a function G €
C*(R.) such that

e There exists My > 0 such that |G'(s)| < My for any s € R;

e The function s — G(s) is increasing on (0, +00);

e G(s) =0 on (—o0,0].
We start by checking that c(t,z) > 0. We set

SERI—>H(S):/OSG(O')(10' and te[O,T]»—»go(t):/QH(—c(t,x))deO.

In particular, we observe that

since cinit () > 0. Next, we compute
O (t) = — /Q G(—c(t,2))B(t,z)dz — /QG'( —c(t, z)) |ch(t,x)|2 dz
+/ G(—c(t,z))A(t,z)c(t,z)dz <0,
Q
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since tG(t) > 0 and G'(t) > 0. We conclude that ¢(t) = 0 and thus H(—c(t,z)) = 0 for a.e. (¢, z)
It implies ¢(t,z) > 0 a.e.
Next, we prove the bound from above. To this end, we set

K(t) = ||t || L ) + Cot

and

We have ¢(0) = 0 and

o' (t) = / G(c(t,z) — K(t)) (B(t,z) — Cp) da — / G (c(t,z) — K(t)) ‘ch(t,a:)‘2 dz
Q Q
G(c(t,z) — K(t)) A(t,z)c(t,z)dz < 0.

Q
It follows that ¢(t) = 0 and thus H(c(t,z) — K(t)) = 0 for a. e. t > 0, & € Q which implies
0 <c(t,z) < K(T) a.e. on (0,T) x Q. The last estimate follows from standard energy estimates
and application of the Gronwall lemma.

Let us now recall a few facts about transport equations. For the time being we neglect the
space variable which appears only as a parameter in the equation for the size density. Thus, we
are concerned with the problem
{ of+0(Vf)=0,

f(07 g) = finit(g)

ont >0 and & > 0 where the function (¢,£) — V(¢,&) is required to satisfy

(2.9)

Hypothesis 2.2.1. We have V (t,£) = a(&)c(t)—b(&) with continuous and non negative functions
a,b,c, such that a(0) = 0, b(0) > 0. We suppose that ¢ is locally bounded while a' and b/ belong
to L>®(R). Accordingly, for any 0 <t <T < oo, there exists My such that for any £,& > 0, we
have
vt
V(t,

<0
t,€) < Tf and |V (t,€)] < Mp(1+4€)
i ’V( S, T

) = V(t, &) < Mrl|§ = ¢'|.

Remark that V(t,z,£) = a(§)c(t,z) — 1 satisfies the requirements in Hypothesis 2.2.1, uni-
formly with respect to the parameter z € 2, as far as the kinetic coefficient ¢ has a globally
bounded derivative (see Hypothesis 2.3.1 below, ||a/||cc < L,) and satisfies a(0) = 0, and the
monomers concentration satisfies the L™ estimate 0 < ¢(t,z) < K (with My = L,Kr).

Owing to Hypothesis 2.2.1, we can solve (2.9) by means of integration along characteristics.
Indeed, we can define the characteristic curves solutions to the ODE

0)
§)
3

d
ds E(S t 6) ( 7E(S;t7§))7 s € R7

(2.10)
E(t;t,8) =¢&.

Then, (2.9) recasts as

d

E[f(s,E(s;t,g))} = —8§V(S,E(S;t,§)) f(s,E(s;t,g)).
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It yields
f(£.8) = fnir(E(0;2,€)) J(0;1,) (2.11)
with .
J(s5t,&) = 0¢=E(s;t,&) = exp <—/ 0¢V (0,=2(03t,8)) da> >0, (2.12)

the Jacobian of the change of variables £ — ( = E(s;t,£). The fundamental properties on the
characteristics that are needed for our analysis are summarized in the following claim. (We refer
to [47| for similar considerations and details.)

Lemma 2.2.2. Let Hypothesis 2.2.1 be fulfilled. Then, we have
i) for any t >0, 2(0;¢,0) > 0,
i) for any t >0, limg_o Z(0;5t, &) = oo,
iii) for any 0 <t <T < 0o and & > 0, there exists Ly > 0 such that Z(t;0,£) < Ly &.

Proof. Derivating with respect to the initial time, we obtain
OE(s;t,€) = —V(t,£)J(s:1,€).

Since J > 0 and V(¢,0) < 0, we deduce that ¢t — Z(0;¢,0) is non decreasing and thus i) holds.
Next, we have
52
St €) - Eerit.8) = [ V(oE(t.6) don
51

(Note that Z(s2;t,£) > 0 for so <t owing to the fact that V' (¢,0) <0.) Since V(¢,¢&) < M7 we
obtain for 0 <51 < sy <t < T

s2
0< S(s0:,6) < E(s131, ) + MT/ =(03,6)do

S1

and the Gronwall lemma yields
0 < E(sg;t,8) < M2 (554, €).

With sy =t we have eMT(171) ¢ < H(s):t,£) which allows to conclude for ii) by letting & go to
oo. The third item is a direct consequence of the Gronwall lemma.

Proposition 2.2.3. Let Hypothesis 2.2.1 be fulfilled. Let f be the solution of (2.9), as given by
(2.11). Then, the following assertions hold
i) If fuie € L1((0,00)) with & fuss € L1((0,00)), then for any ¢ > 0,
Ef(t, &) are integrable. More precisely, we have f € C°([0,T]; L*((0,
estimates hold for any t > 0

§— f(t,€) and § —
o0)) and the following

[ iseonde < [Tl (2.13)
0 0

and, for any 0 <t <T < ©

/ € 1F(,€)]de < Ly / € e (€)] e, (2.14)
0 0

with Lt depending on Mt in Hypothesis 2.2.1.
i) If finit > 0, then f(t,£) > 0 too.
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0 for any t,& > 0, then if finit belongs to

wi) We assume furthermore that 0V (t,§) >
x (0,00)) with

L>((0,00)), we have f € L*>((0,00)

[ lloo <[] finitloo-

Proof. We simply integrate (2.11) and use Lemma 2.2.2 to obtain

/0 (8.6 de = /_ o @l < /0 Fonie(€)] .

Similarly, we have

/ E1F (1. 6)] de = / (40,€) fu ()] d€ < Ly / € |fun (6] dc.
0 = 0

ity
When 0,V > 0, we observe that 0 < J(s;t,£) <1 holds when s < t. Therefore we obtain
’f(t7 6)‘ = ‘finit (E(O, t, 6)) ‘ J(O, t, 5) < ”finit”oo

for almost every (t,£). O

2.3 Existence-uniqueness for bounded data and smooth coeffi-
cients

In this Section, we restrict to the case where the data are bounded and the coefficients are
globally Lipschitz. To be more specific we strengthen Hypotheses 2.1.1 and 2.1.2 as follows

Hypothesis 2.3.1. Additionally to the requirements in Hypotheses 2.1.1 and 2.1.2 we suppose
a) a € C1([0,00)) and there exists a constant L, > 0 such that 0 < d’(&) < L, for any € > 0,
b) finit c LOO(Q X (0, OO))

We wish to prove the well-posedness of the non homogeneous Lifschitz-Slyozov equation in
this framework.

Theorem 2.3.1. Suppose that Hypothesis 2.3.1 is fulfilled. Then, there exists a unique weak
solution (c, f) of (2.4)—(2.6) with, for any 0 < T < oo,

c€ L*>®((0,T) x Q)N L3(0,T; H(Q)),

f e L(((0,T) x @ x (0,00)) 1 L=((0,T) x & L((0,00), (1 + &) dE)),
c € C[0,T]; L3(Q) — weak),

f€C0,T); L (2 x (0,00)) — weak).

The proof uses the Schauder fixed point theorem, see |71, Corollary 3.6.2]. We set 27 =
[0,7] x € for a fixed 0 < T < oo. Let us denote

Cy = sup /000 finit(z, &) d€ < 0. (2.15)

z€Q

We associate to this quantity the constant Kp as defined in the proof of Proposition 2.2.1,
K7 = ||¢init]|co + CoT. We introduce the set

Gr = {é € L2(QT) such that 0 < é(t,z) < KT}.
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Then, we define the mapping

T 6r — L*(27)
¢ +— () =c
with ¢ solution of
Oe(t,x) — Age(t,z) + A(t,x)e(t,x) = B(t,x) fort >0, z €,
d,c=10 on 0},
Clt=0 = Cinit on 2,

where the coefficients A, B are given by

Ata) = [T a@ftede B = [ reagds
f being solution of

{ Ocf(t,x,€) +85((a(§)6(t,a:) — 1)f(t,a;,§)) =0 fort>0,z€Q, £>0,
fit=0 = finit on Q x (0, 00).

From now on we adopt the convention to denote by L7 > 0 a constant that depends on T,
Co, ||Cinit|loo, and on the Lipschitz constant L, of a, even if the precise value of the constant
might change from a line to another. Conversely, we will denote by C1 a constant which depends
only on T, Cy and ||¢init||cc but not on L, (like K7). According to Hypothesis 2.1.1, for any
¢ € %r, the rate V(t,2,§) = a(§)é(t,z) — 1, which is now parametrized by z € 2, satisfies
the estimates required in Hypothesis 2.2.1, uniformly with respect to x € Q. (Namely My in
Hypothesis 2.2.1 is L,K7.) Up to a slight abuse with regularity issues we can therefore appeal
to the results established in Section 2.2. Indeed, within the functional framework adopted here,
for fixed x € Q, t — é(t,x) cannot be considered as a continuous function of the time variable.
The classical theory of characteristics with C'' solutions of the ODE (2.10) does not apply. The
alternative to circumvent the difficulty is as follows. The first option consists in dealing with a
less regular notion of characteristics. The standard Picard iteration scheme actually shows that

E(s5t,€) =£+/t V(0,E(0;t,8)) do

admits a continuous solution assuming only integrability of V' with respect to the time variable
and all the necessary estimates on = hold in this framework (see [44, Theorem 1.1, p. 43| for
an existence theorem without regularity in time). The second option consists in replacing ¢
in the convection term by ( *;, ¢, with (. a convenient sequence of mollifiers. Again, all the
necessary estimates are not affected by the regularization process and are uniform with respect
to €. Accordingly, the compactness arguments detailed below apply to pass to the limit as e
goes to 0. We do not detail further this issue, adopting the slight abuse of working with the
characteristics Z, parametrized by the space variable x, without any further precision. Hence, we
can apply Proposition 2.2.3 : f reads

f(t7 z, g) = finit(gjy E(O7 t) z, g)) J(07 t7 z, E)
with = and J defined by the characteristics equation associated to ¢. In particular, we have

0< f(t7$7£) < Hfinit”oo a.e.,
0

g fy om0 [ funle 0= Co <o o1
sup [ € f(t.2,)d6 < Ly sup [T € fu(w.6)d6 < oc.
zeQJ0 € J0
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It follows that A(t,2z) > 0 lies in L>°((0,7") x ), and 0 < B(t,z) < Cpy. Coming back to Proposi-
tion 2.2.1 we conclude that .7 is well defined with ¢ = .7 (¢) € L?(0,T; H*(Q))NnC([0, T]; L*())
and furthermore 0 < ¢(t,z) < Krp. In other words .7 (¢7) C ér.

Let us now show that .7 (%7r) is a compact set in L?(27). In fact Proposition 2.2.1 also shows
that
¢ = 7 (@) lies in a bounded set in L?(0,T; H()).

The equation satisfied by ¢ finally tells us that
dsc is bounded L*(0,T; H~1(Q)).

Since H!() embeds compactly in L?(£2), we can therefore apply the compactness results in [166,
Corollary 4] to conclude that .7 (%7) is a compact set in L?(27).

It remains to establish the continuity of .7 in the sense of the L?(27) norm. To this end, let

us consider a sequence (6n)n cn I €7 which converges to some ¢ (strongly) in L?(2r). Clearly
¢ € 1. We define f,, and f as to be the solution of the transport equations

O fu(t,z, &) + 0 ((a(&)en(t, x) — 1) fu(t, 2,€)) =0
O f (2, ) + 0 ((a(€)é(t, z) — 1) f(t,2,£)) =0

fort >0, x € Q and £ > 0, with the common initial data fi,;t. Using the characteristics

{ dims;t,x,é) = a(Z,(s;t,3,))En(t,2) — 1, iE(s;t,a:,é) =a(Z(s;t,z,8))e(t, x) — 1,

S ds
En(tit, x,8) = (b t,2,8) = ¢
we write
fn(taxaé) = finit(x75n(0§ taxaé)) Jn(0§t7x7§)a
f(t7x>£) = finit($7E(0;t7$7£)) J(07t7gj>£)
with

Ju(sit,m, &) = exp<— /: d (E(o;t,z,€)) in(o;2) da>,
J(sit2,€) = eXp<— /: o (20:t,2,€)) 0:2) da>.

The first step of the the proof consists in establishing the following claim

Lemma 2.3.2. Let us set
+00 +oo
Ayt 7) = /0 a€) fultiz.€)de, Alt,z) = /0 al€) f(t,2,€)dE,
+00 +oo
Bo(t.x) = /0 fult.2,6)de,  Bta) = /0 F(t 2. ) de.

Then, A,, and B, tend to A and B, respectively, in L*(2r).

In order to establish this property, we need an estimate on the distance between characteristic
curves associated to different rates.
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Lemma 2.3.3. We assume that Hypothesis 2.5.1 is fulfilled. Let ¢; and co in 61 and set
Vilt,z, &) = a(§)ci(t,x) — 1, i = 1,2. We denote by E1 and Zy the associated characteristics.
Then, we have for any 0 < s,t <T < 00

+ 1/2
10— Sal(sit., ) < Lr (1+€) ( / \cl—czﬂo,x)do) | (2.17)

Proof. We detail the proof for the case 0 < s <t < T, the other situation follows by the same
argument. By using the equation for the characteristics, we arrive at

t
|El(s;t7$7£) - 52(s;t7$7£)‘ = ‘ / [a(El(U;t7$7£))cl(J7x) - (I(EQ(O';t,ﬂj‘,g))Cg(O',ﬂf)} dO"
£

< / Cl(J,x)‘a(El(U;t,ZE,E)) _a(E2(J;t7gj>£))‘d0—
5ot
+/ a(Eg(U;t,%,f)) |Cl _02‘(07'%)(10
s t
< KTLa/ |El(a;t,x,§)—Eg(a;t,:n,&)‘da

(/1

) 12 , a 1/2
o(@lostn ) ar) ([ a0 - o) do)
On the one hand, since a(0) = 0, we have

4@ = [a0)+ [ (0| < L[]

On the other hand, we remark that

‘Eg(s;t,:n,ﬁ)‘ = ‘{ + /ts (a(Eg(a;t,:E,E))cz(J,x) - 1) da‘

€+ /t (14 KrLa|Z2(0:t,2,6)] ) do

IN

holds. The Gronwall lemma then yields the estimate
‘52(8; t,x, g)‘ < LT(l + g)

It follows that
|a(2a(s;t,2,€))| < Lr(1+€)

holds. Therefore, we obtain
|El(8;t,x,§) - 52(3; t,l’,f)‘
t t 1/2
<ir [ Floitad) - St lar+ 149 ([ lal) - aleoli) ).

Applying the Gronwall lemma again leads to (2.17).
Proof of Lemma 2.3.2. By using the characteristics, we write

(B, — B)(t,z) = /0 finit (2, En (058, 2,€)) I (058, 2, &) A€
+o00

- 0 flmt(flf,E(O,t,x,f))J(o,t,x,f) dé.

+00 too
= /: fimit(x,y) dy—/ Jinit(2, y) dy.

n(05t,2,0) =Z(05t,z,0)
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It follows that

Zn(05t,z,0)
| finit (2, )| dy

—_
—
—

|Bn — B(t,z) <

< | finitl Lo (xR )| Bn (0st,7,0),

=(05t,z,0)

and integrating over z € () it yields

—_ —2
1B = B)(t, )22y < I il e /Q 2, — E[(0st,,0) da

Hence, using Lemma 2.3.3, we get

t
~ ~12
(B0 = B)e ey < B ol [ [ Jon = e l0r2) do o

We apply similar manipulations to evaluate
An(ti) = Ato) = [ a(@fultnds ~ [ a©)f(ta.€)dg
0 0
— [ a(Ea(t0.2.9)) fuie( ) dy

E (05t,2,0)

_ /OO (E(t 0 x y))flmt(x y) dy

Z(05t,2,0)

Indeed, we have

=Z(05t,z,0)
An— Al < | [ a0 St )
Zn (05t,z,
“+00

+/ |a(Z0(t:0,2,9)) — a(Z(40,2,9))| finit(2,y) dy
=(05t,z,0)

IN

=(05t,z,0)
‘/ (0 0 "‘n t 0 Zz y)‘ flnlt(x Yy dy‘
=Zn (05,2,

+/ ‘ (ta07$7y) - E(ta07$7y)‘ finit(xyy) dy) .
(0;¢,2,0)

We observe that

Zn (05t,2,0) 0
= ‘/ exp < —/ a/(En(a;t,:E,E)) én(o,x) do*) d&‘
Y t

by using Hypothesis 2.1.1. Since we are concerned with y restricted to the interval defined by
Zn(0;t,2,0) and Z(0;¢,x,0) we have
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It yields
=(05t,z,0) 400
‘/ ( Hn t 0,z y)) flnlt(x Yy dy‘ <Lr “—'_‘—'n‘ 0 t,x 0) finit(x7y) dy (218)
Zn(05t,2,0) 0
Moreover, Lemma 2.3.3 allows to estimate
t 5 1/2
20 - El(60.2.0) < Lr 0+ 9) ([ fon - o)) (2.19)
0

Combining (2.18) et (2.19) we are led to

+o0o
|(An — A)(t,z)| < Ly <|En - E|(0;t,x,0)/0 finit(z,y) dy

+</Ot [&n = &* (o) da) v /0+°°(1 + ) finit (7, y) dy> .

HAn - AHLQ(QT) < LTH6" o 6HL2(QT)'

Therefore, we deduce that

It finishes the proof of Lemma 2.3.2. o
We are left with the task of proving that ¢, = 7 (&,) converges to ¢ = 7 (¢) in L*(2r). We
remind that ¢, and ¢ are the solutions of

Oren(t, ) — Agen(t,x) + Ap(t, z)e,(t, ) = By(t, ),
Oe(t,x) — Age(t,x) + A(t, z)c(t,x) = B(t, ),

Oycn = 0, d,c=0 on 0€,

cn(0,2) = ¢(0, ) = cinit(2).
We obtain the following energy estimate
1d (cn — ©)%(t,z) dx + / |Va(cn — c)‘2(t,3:) dzx
=— / (cn — ¢)(cnAp — cA)(t, ) dx + / (cn —¢)(Bn — B)(t,z)dx.
Q Q

It can be recast as

li C—C2 xT)ax C—02 x)dax C—62 x)ax
s (e Pt [ (9 - P oot [ Ale, - Pt

_ —/ e (cn =€) (A — A)(t,2) dz —I—/(cn _¢) (By — B)(t,x) dx.
Q

Q

We make use of the Cauchy-Schwarz and Young inequalities, together with the fact that ¢, € 1
to obtain

li 6—62 x X C—C2 x x C—C2 X x
s (e = Pt [ (9o~ P oot [ Ale, - Pta)a

—C2 X X K—% — 2 X xl — 2 X X
§/Q(cn 20, )d+2/Q(An AVt 2)d +2/Q(Bn B)2(t, ) da.
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Eventually, an application of the Gronwall lemma yields

/(cn —¢)?(t,z)dz < Cr </ |B,, — B|*(s,z)dxds +/ A, — A?(s,z) da ds>
Q 27 7

on 0 <t <T < oo where Cp depends only on T', Cy and ||¢init||oo. Coming back to Lemma 2.3.2
we conclude that ¢, tends to ¢ in L?(27). o

Having established the properties of the mapping .7, we can apply the Schauder theorem
which proves the existence of a fixed point ¢ = 7 (¢) € €. The fixed point ¢ then satisfies

Oic+Ac=Ayc+ B on (0,T) x €,

endowed with d,c =0 on I and the initial data cj;—g = cinit, where

Az) = | T a©f (e, €)de, Blta) = / it e de,

and

O f + 0 ((a(&)c(t,x) —1)f) =0 on (0,T) x 2 x (0,00),

with initial data fii—o = finit- This ends the proof of the existence of solution to the system

(2.4)—(2.6).
What we did can be used to justify the uniqueness of the solution as well. Indeed let us

assume that (cq, f1) and (co, f2) are solutions of (2.4)—(2.6) for the same initial data (cinit, finit)-
Reproducing the arguments for proving the continuity of .7, we arrive at

/Q(c1 — 2)2(t,2) dz < Oy (/Ot/Q (1B = Bl + 41 — 40P (s.2) dwds) .

Now, coming back to the proof of Lemma 2.3.2, we can estimate the right hand side so that

t
/(cl —¢9)?(t,x)dz < Ly / / ler — e9)?(s, ) dz ds.
Q 0 JQ

The Gronwall lemma then implies that ¢; = co.
As a concluding remark of this section, we observe that

d (o] o
a/o Ef(t,z,6)dE = /0 (a(f)c(t,a:) — 1)f(t,x,§) d¢ = A(t,z)c(t,x) — B(t,x) (2.20)

holds. (It follows by integrating by parts, we refer to [47, Lemma 3| for details.) Thus, with the
Neumann boundary condition (2.5), the obtained solution satisfies the mass conservation relation

/Qc(t,:n)dx—I—/Q/Ooogf(t,x,ﬁ)dgdm:/Qcinit(:n)daz—I—/Q/Ooogfinit(:n,ﬁ)dédx. (2.21)

2.4 Further existence—uniqueness results

2.4.1 Existence for general initial data

In this section we wish to relax the assumptions on the initial data, requiring only
finie € L2(€; LH((0, 00), (1 +€) d€))
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and removing the finiteness of the uniform norm of fi,;; which could be physically questionable. To
justify the existence of solution in this framework, we appeal to approximation and compactness
arguments. To this end, we consider a sequence f{1;; made of bounded functions which converge
to finit in LY (Q x Ry, (1 +€)déda) :

0 < 1n1t(‘7: é) < Cn? 0 < 1n1t(‘7:7€) S finit(x7§)a

QJ0

/OOO 1n1t(‘7: é- df </ flnlt x 6) df < C(), /OOO Sfi?lit(a:7€) d€ < /Ooogfinit(xyg) df

(with C), possibly tending to +oo; for instance we can set fil; (%,€) = lo<f, i (2,6)<ninit (7, §))-
According to the previous Section we can associate to the solution of the system

1n1t
atfn(t7x7£) + 85((&(6)6”(@:17) - 1)fn(t7x>£)) =0 t 2 07 WS Qv 5 2 07
O (t, ) — Agc™(t,x) + A™(t, z)c"(t,z) = B"(t,x) t>0, ze€Q,
d,c" =0 on 0f),
Ata) = [a@rtag)ds B = [ e de,
0 0
f \7;:0 = 1?111;7 Cﬁzo = Cinit-
(2.22)

We can collect the following estimates, on 0 <t < T <
0 %OCn(t,ﬂj) S KT(: ||Cinit||oo + COT)7
[t @, §)d€ < Co,

0
/%ﬂ@@m+//ww|@@m¢<@<m

// {f”dgdx</ txdw+// EfM(t,x, &) dEde

</Qcmlt( dx+// e §)d§dx</cmlt( dw+// ¢ finst (2, €) A€ dz,

with Cr a finite constant depending on ||cinit || 72(q), Co and T'. Accordingly,
A" and B" are bounded in L*(Z27).

Therefore, d;c" is bounded in L?(0,T; H~1(2)). We can apply the compactness statement in
[166] which implies that, possibly at the price of extracting a subsequence,

c" — ¢ strongly in L*(27) and a. e.

We can also show that ¢ converges to ¢ in C°([0,T]; L?(Q2) — weak).

Next, we discuss further estimates on f™. From the uniform integrability of (f™), and by
using De La Vallée Poussin’s lemma, see |55, p. 38|, there exists a non negative function ®
satisfying

o(7)

®(0) =0, lim = +00, ® is convex,
T——400 T

and such that
Sup/ / 1n1t df dx < C < oo.

neN
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Using characteristics, we show that the property extends to the solution f™. Indeed, we have,
with obvious notation,

fr(t2,€) = fine (2, 57058, 2,€)) J"(05t,2,8).
Since 0 < J"(0;¢,x,&) <1 and ®(0) = 0, the convexity of ® yields
e(f"(t2,8)) < @ (fins (2, Z" (05, 2,6))) J"(03, 2, €).

Integrating leads to the following uniform estimate

| [ otre.g) asas /Q/;O_m@(fizm,s))dgdx

( 1n1t( é)) dfdx S C < 00.
Since moreover the first moment with respect to £ of f™ is controlled, the Dunford-Pettis theorem,
see e. g. 71, Theorem 4.21.2], implies that f™ is relatively compact in L'((0,T") x € x (0, 00))
for the weak topology. We can thus assume that

f — f weakly in L'((0,7) x Q x (0,00)).

IN

IN

QJo

Furthermore, we can apply the De La Vallée Poussin Lemma again to exhibit a non negative
function ¥ such that

v
¥(0) =0, lim (7) = +00, ¥ is convex,

T——400 T

sup [ [7w(©) fiwdgdr< [ [T fudedn <0 <ox

This is the De La Vallée Poussin Lemma applied to the function (£ — &) € L1 (2x (0, 00), finit A€ dz).
As remarked in [41, Proposition I.1.1], we can suppose moreover that ¥’(7) > 0 and ¥’ is concave.
Therefore we have (see [112, Lemma A.1])

W(E) < EW(€) < 29(¢).
Integrating the equation satisfied by f” we get

d o n o o / a Cn ) — n T
5| voreeoaw = [Twe@en s 1) e

< Ky /0 T W (©a(e) £t 0) de.

and

We evaluate the right hand side by separating small and large sizes : let £y > 0 and write

[e%S) &o [e%S)
/ V()a(e) f(t . £)dE = / V(€)a(€) fr(tx,€)dé + / V()a(€) [tz €) dé
0 0 &o

sup (¥'(z / 't z,8)d§

0<z<&o

Lug /0 V()€ f(t, 2. €) de
< s (V()al0)Cot 2o [ WO (1066

0<z<8o

IN
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where C is defined in Equation (2.15). Hence applying the Gronwall lemma yields the uniform
estimate

// ¢) (¢, z,&)d¢dx < Oy

on 0 <t<T < oo with Cr > 0 depending on Cy, &, 2 and T

Therefore, for any function ¢ such that |p(§)| < C(1 + &), we can show that

/0 T Ot €) dE /0 T SO (1,2, €) dE weakly in L1(0,T) x 9).

As a consequence A™ and B" converge weakly to A(t,x) fo ft,z,£)d¢ and B(t,z) =
fO f(t,z,€)d¢ in LY((0,T) x Q), respectively. Slnce " is umformly bounded and converges
a.e. to ¢, a classical application of the Dunford-Pettis and Egoroff theorems proves that ¢ f"
converges weakly to c¢f in L'((0,T) x Q x (0,00)). Similarly A™c" converges weakly to Ac in
LY((0,T) x Q). Note also that 9;f™ is bounded in L>((0,7) x ;W ~11(0,00))!, so that f" is
compact in C°([0,T]; L' (2 x (0,00)) — weak). Finally, we can let n go to oo in (2.22); it shows
that the pair (c, f) satisfies

atf(t7x7§) + ag((a(g)c(t,x) - 1)f(t,1‘,€)) =0 t>0, z¢c Q7 g >0,
Ore(t, x) — Age(t,x) + A(t, x)c(t, z) = B(t, ) t>0, xeQ,
dyc=0 on 09, (2.23)

Alt,z) = /0 T a©) (e, €)de. Bltix) = /0 Y f(ta,6) de,

Jit=0 = finits  Cji=0 = Cinit-

Note that we also get the mass conservation relation

[ eteayaes [ ] T ef (0, 6)dedu = [+ [ | " & s, €) d€ da

2.4.2 Existence for singular coefficients

We remark that in the arguments developed above, the estimates do not involve the Lipschitz
constant L, that appears in Hypothesis 2.3.1. Therefore, we can adapt straightforwardly the proof
to deal with non smooth coefficients a(&), as stated in Hypothesis 2.1.1, including the physical case
a(§) = ¢1/3 . Tt suffices to consider a sequence of smooth coefficients which converges pointwise
to a(§). We prove that a subsequence extracted from the associated solutions converges to (¢, f),
solution with the coefficient a. We refer to [112] for such an extension in the context of the
homogeneous Lifschitz-Slyozov equation.

2.4.3 Uniqueness

Let us consider (¢, f(N) and (¢(?), f)) solution of (2.4) as obtained in the previous Section
and let 0 < T' < 0o be fixed once for all. We wish to prove that ¢) = ¢® and f() = f@ for a.e
(t,z) € (0,T) x Q and & > 0 when the initial data coincide. We start by deriving an L' estimate

Here, for 1 < ¢ < 0o, we denote by W ~9(Q) the space of distributions which write as finite sums of zeroth and
first order derivatives of functions belonging to L4(Q2). Given 1 < p < oo, for 1/p + 1/q = 1, W™1%(Q) identifies
with the dual space of W, (), the closure of CS°(Q2) in WP(RQ), see [171, Definition 31.3 & Proposition 31.3].
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for the monomers concentration instead of the usual L? energy estimate. To this end, let n > 0
and introduce the function S, (z) = z/+/n + 22 which approaches the sign function. Observe that

Sy € CY(R) with Sj(s) = W > 0 so that by Stampacchia’s theorem for w € H'(Q), S, (w)

belongs to H!(£2) too. Note also that Z,( fo ) dT approaches |s| as n goes to 0, with
0 < Z,(2) < |z|. We have

(at — A, + A(l))(c(l) _ 0(2)) =W _p® 4 (A(2) _ A(l))c(2)_
It follows that
i/ (D) — 2 dx+/ Vo (D — @2 8 (D) — ) dz
dt Jo n
+ A(l)( (1) _ n(C( ) _ (2))d:13

Q
_ / (BY — B® 1 (4 — A0)®)5, (D) — ) dg.
Q

Since |5, (2)] <1, S;(2) > 0 and 25,(2) > 0, we arrive at the following estimate

/Zn(c(l) — )t z)dz < /Z (c(l) (2))(t x)dx
Q

init 1n1t

//|B — B@|(s,z) dz ds

+Kr //\A 2 — AW|(s, z) da ds.
0 JQ

Letting n — 0 yields
L1 —nydr < [ ()~ i) da

t
//]B(1 (s a;)dxds+KT/ /\A(z)—A(l)\(s,x)da:ds.
0 Jo

(2.24)
The next step of the proof of uniqueness relies on an adaptation of the reasoning and estimates
in [112] for the homogeneous case. We associate to f*) (k = 1,2) the repartition function

F®(t,2,6) = / 02,0 de.
3

As a matter of fact, we have

85F(k) = —fk)

and

FO)(t,,0) = / T 9, e, 6) de = BP (), / T F0 (1,0, 6) de = / T 19 (2,6 de.
0 0 0

We need to introduce {r > 0 such that for any 0 < & < &7, we have a(§) Kr—1 < a({p)Kr—1 < 0,
which makes sense owing to Hypothesis 2.1.1. Furthermore, we can pick r > 1 large enough such

that
Kra(ér) +1

KTa(f) -1<-2 r

<0 holds for any 0 < & < &7
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In what follows, L, 7 will stand for the Lipschitz constant of a on [{7,00). We will use weighted
L' estimate, which relies of defining the auxiliary function

1
WT@{ &) T 1_alg rOsEsen

1 for £ > &,
Note that )
0< < W <1
S ES I
We have
A (f M — @y 4 35(((16(1) —1)(f® — f(2))) = 0 (a(c(2) — C(l))f(Z)),
and thus

O(FWM — FCY 4 (acM — 1)55(1:(1) — F) = —q(c® — M) @),

Up to a regularization argument we deduce the following inequality (obtained formally by mul-
tiplying the previous relation by [Wz(€)["sgn(F() — F®?)) and integrating over & € (0, 00)).

fe'e) t
/ W (@) |FO — FO)|(t,2,€) dé + / W) [FO — FO)|(s,2,0)ds
0 0

< / T W@ 1FY - FO) (e, 6) e + / t / T a6) 16 — W (s,2) (s, x, ) de ds
0 t [e'e) 0 0
[ [T 0@ 5,) - DIWRONIED — FOs,,)deds.
0 0

The last integral in the right hand side can be recast as

ér _
/t / /(W@ (UL 0 ) 1 a(€)e(s,2) - 1) [FO — FO(s,,€) d€ s
0 0
t [e'e)
/ (1) 1) _ (2
+/0 /&a@)c (s,2) |[FO — FO|(s,2,£) e ds.

When 0 < & < &7, the integrand is dominated by

ra/ @@ [ (L 4 a(e)) 1] 1P - O,
< —(Kra(r) + 1)d () Wr(©)HFO — FO|(s,2,€) <0

according to the definition of {7 and the choice of . When & > &7 we can simply use the fact
that a/(¢) is bounded far away from & = 0. Note that we can also dominate, for some &y > 0,

t oo t o 00
@ _ M) 2 —
/0 /0 a(§) |c V(s x) [ (s,2,§)dEds /0 </0 ...d{—i—/ﬁo ...d§> ds

<2 sup (af0)) /O |1 = l(s,0) £ ) d s

0<€<&o

t 00
oo [ 71— 0 0) €725, de s
0o Jo
t
< (2 sup (a(€)) Co+ Layo C’T> / 1@ — W(s,z)ds.
0

0<€<&o
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Finally, we are led to the following estimate

/0 T WO [FO — FO|(t,,€) de
[ ) 17O - PO ,2,0)as

H(Kra(er) +1// W@+ a(¢) [FD — FO|(s, 2, ) dé ds
s/o W@ |FY — FO(t,,€) d

+(2 sup (a(é)) Co+LaoCT> / "6 05, ) ds

0<5<§o

+LaT// 2|(s,2,€) e ds,

where Crp is the bound on fooo EFB)(t, x, &) dE.

We combine the obtained relations, bearing in mind that Wrp is bounded from below and
above and that B®)(t,2) = F®)(t,2,0). Let A > 0 to be precised. By using (2.24) and (2.25),
we are led to

(2.25)

+1 // ~F® <tm£>d§dx+x/|c — (1, 2) da

+(< B // B — BOl(5,2) do ds
+KTCL£T )+ 1 ///5T F(l F(2)|(S z,€6)dédzds

a(ér) —I— 1r+t
< / / ’ 1n1t 1n1t‘(t €z 5) dédz + )\/ ’CImt - Cl(il)t (t LZ') dx
QJo
+<2 sup (a(€)) Co + Layo C'T / / eV — c?|(s,2) da ds
0<§<§0

+LaT/ // — FO|(s,2,¢)de ds

—I—)\KT/ / — AW|(s,z)dz ds
0o Ja

on 0 <t <T < oo. It remains to discuss the last integral of the right hand side. We split as
follows

A0~ 40).a) = | [T a©® - 15,2, de] = | [ a2 - PO, 0.)

= \/Oooa’(é)(F“)—F@))(s,x,g)ds\ - \/jT.,.+/:O...\

ér o
< / a'(€) |[FY — FO|(s,2,8)dé + Lo / IFO — F|(s,2,€) d.
0 &r
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We now rearrange terms to obtain
// —F® ](ta;{)d§da:+)\/]c —A|(t,z) dx
/\) / IBY — B?)|(s,2)dzds
0 JQ

t ér
—)\KT) i /Q/ d(€) |[FY — FO|(s,2,6)de da ds

0

+<< <sT> 1y
( Kra(ér) +1
(alér) + 17T

o0

< [ [ - Pl s g dgde v [ 1 - hita) da
o Jo
i
+<2 sup (a(€)) Co+ Layo C'T>/ / |V — c@|(s, ) da ds
0<£<&o 0 JQ

t 00
+La7(1+ AKT)/ / / |[F — FO)|(s, 2, £)dE dz ds.
0 QJO

Thus, we pick A > 0 so that

! >A>0 and a(ér) + 1/ K7

(a(ér) +1)" (a(ér) +1)r+t

It suffices to apply the Gronwall lemma to conclude with a continuity estimate where

// |[FO) — FO)(¢, 2, €) d¢ da and /|c(1)—c(2)|(t,:n)d3:
o Jo Q

are dominated on 0 <t < T by

PT </ / "F;Elllt 1n1t’ x g df dx + / ’clnlt - clnlt )dx>

with a suitable constant I't > 0.

> A > 0.

2.4.4 Dirichlet boundary condition

Let us consider the same problem, but we replace (2.5) by the Dirichlet condition
oo = 0. (2.26)

This is precisely the case presented in [124]. The total mass conservation does not hold because
there is a diffusion current from the boundary. Nevertheless, the general strategy of proof can be
adapted to this case. Let us indicate where the main modifications are, within the arguments.
The discussion of Section 2.2 adapts readily using the space Hg(Q) instead of H(£2). Therefore,
we can repeat the arguments of Section 2.3 ; the derivation of all the necessary estimates works
exactly as before, except (2.21). However, (2.20) can still be used to estimate the first order
moment of the cluster distribution, since we infer

00 00 t
0< /0 Ef(t . €)de = /0 € i, €) dé + /0 (Ac — B)(s,z)ds,

where

OSB(tv‘T) :/0 f(taxag)dgg/o finit(x7§)d§
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and, by using Hypothesis 2.1.1,

0< Alt,a) = /0 a(€)f(t,2,€) d
< 2a(%) / F(t,2,€)dé + L / Ef(t,,€)de.
0 0

Applying the Gronwall lemma, we conclude again that

/Oooé.f(txag)dg SCT

holds for x € Q and 0 <t < T < oo. This estimate, which does not require a global Lipschitz esti-
mate on the kinetic coefficient a, allows to deal with general initial data and singular coefficients
as we did in the previous subsections.

Theorem 2.4.1. Suppose that Hypotheses 2.1.1 and 2.1.2 are fulfilled. Then, there exists a
weak solution (c, f) of (2.4)—(2.6), where (2.26) replaces (2.5), with, for any 0 < T < o0, ¢ €
Lo((0, T)x@QNLE(0, T HY (), £ € L=((0, T) x93 L1((0, 00), (1+€) d€)), ¢ € CO([0,T]; L2(2)—
weak), f € CO([0,T]; L' (2 x (0,00)) — weak).

2.4.5 Free—space problem

It is finally worth to investigate the situation where €2 is replaced by the whole space RY thus
neglecting any boundary effect. Technically, it induces new difficulties because we are working
in an unbounded domain and the compactness argument does not work directly. Hence, we need
to establish some weighted estimates. In the context of Proposition 2.2.1, the estimates for the
diffusion equation can be obtained as follows

d |c(t,3:)|2dx—|—2/ Voot 2)2de+2 [ A(t2) let.o)Pde =2 [ Bt z) oft, 2) da
dt ]RN ]RN ]RN ]RN
g/ |c(t,:13)|2d:13+/ B(t,2)2 da
RN RN

together with
d
— \x!2 \c(t,a:)]2 dx+2/ \x!2 \Vgcc(t,a:)]2 dx+2/ A(t,x) \x!2\c(t,az)]2 dz
dt ]RN 9 ]RN ]RN
c

= —/ 4z - Vm<—> dx+2/ |z|? B(t,z) c(t,z)dx
RN 2 RN

§2N/ \c(t,az)]de—i—/ || \c(t,az)]de—i—/ 22| B(t, z)|? dz.
RN RN RN

By using the Gronwall lemma and repeating the arguments of Section 2.2, we are thus led to the
following analog to Proposition 2.2.1.

Proposition 2.4.2. Let 0 < T < +o0. Let A and B be non negative functions in L*((0,T) x
RN), with furthermore \/1+ |x[2B € L>(0,T; L*(RY)). Suppose that 0 < B(t,z) < Cy < oo for
almost every (t,z). Then, for any cinix € L*(RN) with |z|cinie € L2(RY), there ewists a unique
ce L*0,T; HY(RN)) n C([0, T); LA(RN)) with d,c € L2(0,T; (H*(RN))') solution of

dc+ Ac—Age=B  in (0,T) x RY,
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with initial data c(t = 0,2) = cinie(x). Furthermore if cinie > 0 belongs to L2 (RY), then the
solution ¢ satisfies 0 < c(t,x) < Kp with Kp a constant depending on Cy, ||Cinit|lco and T. We
also have

sup / (11 [2?)
0<t<T JRN

for some constant Cr depending on Co, T and [|\/1 + |x[?cinit || 2@

T
c(t,z)|*dz < Cr and / / (1 + |z))|Vae(s, z)|* dzds < Cr.
0 JrN

The estimate on A and B can be deduced from the transport equation : since the space
variable is only a parameter, we have (2.16) as well as

00 2 0o 2
2 2 .
s /R (el )( /0 f(t,:v,ﬁ)d£> dx < /R N<1+|x|>< /0 flmm,g)ds) aa.

It allows to apply the same reasoning as in Section 2.3 once it has been remarked that the set
{¢p € HY(RYN), |z|¢ € L2(RY)} embeds compactly in L2(RY). Finally we can make use of the
mass conservation to extend the result to unbounded data and singular coefficients, as we did in
Section 2.4. The first order moment is bounded independently on the (global) Lipschitz constant
of a, and we can show that the sequence of approximations f™ (resp. A™ and B™) is weakly
compact in L'((0,T) x B(0,R) x (0,00)) (resp. L*((0,T) x B(0,R)) for any 0 < T, R < oc.

Details are left to the reader, which lead to the following statement.

Theorem 2.4.3. Suppose that Hypotheses 2.1.1 and 2.1.2 are fulfilled (with Q@ = RY ). Furthe-
remore, assume

0 2
[ a+lPem@Pas<oo, [ +la) ( / finit(x,f)d§> da < oo,
RN RN 0

Then, there exists a weak solution (c, f) of (2.4) associated to the initial condition (Cinit, finit),
with, for any 0 < T < 0o, c € L>®((0,T)xQ)NL?(0,T; H (RN)), f € L>((0,T)x€; L' ((0,00), (1+
€)de)), c € C°([0,T]; L>(RN) — weak), f € C°([0,T]; L*(RN x (0,00)) — weak).

2.5 Numerical simulations

In this Section we present a numerical scheme to simulate the behavior of the density of
particles and monomers concentration, when monomers are subject to space diffusion, namely we
design a scheme for (2.4). The construction of the scheme takes care of the mass conservation and
we give some hints concerning stability issues. Note that adding the space variable considerably
increases the computation cost in comparison to the homogeneous case. The scheme is satisfactory
to investigate transient states, but, definitely, it seems difficult to expect relevant numerical
experiments of the large time behavior. For the sake of simplicity we consider the problem set on
the one-dimensional slab z € (0, L), but the extension to higher dimension is straightforward.

2.5.1 Presentation of the algorithm

We consider time, space and size steps At > 0, Ax > 0, and A& > 0, respectively. We
define discrete time t" = nAt, discrete size {; = jAE, and position z; = iAz for n,i,j € N. We
consider the discrete cells C; = (§;_1/2,§j+1 /2) centered on &;. The discrete unknowns ¢}’ and
fZ"J are intended to be approximations of ¢(t",z;) and ALg f(Jj f(t™, x;,¢)dC, respectively. The
scheme is based on the following time—splitting :
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e The updating of the particles distribution follows by integrating the advection equation
over the finite volume cells C; ; for any fixed i, we set

A
an—i—l = [ - A_z <(V P12 — (V f)Zj—1/2> with V(t,z,§) = a(&)e(t,x) — 1,

which requires a suitable definition of the numerical fluxes at the interfaces §;1/3. In our
simulation we use the Rusanov scheme where

n

(v f)i,j+1/2 = B) [(V f)i,j +(V f)i,j+1] - 7(fi,j+1 - i,j)v L = 1}13{1( ’Vi,j’

for all fixed space indices 7. Then we have the following approximation

==L A—g)fm‘ - E( Dt (Vi = L) = [l (Vi + L )>-

In practice, the index j spans a finite set {0, ..., jmax } and we need fictitious mesh points,
where data and unknowns are defined as follows :

n n n _ n n _ n n _ n
m,jmaz«kl - ‘/;7j111ax’ ‘/7;7_1 - Vi,00 fi7jmaz+1 — J%,Jmax’ fl -1 = fiyo'

)

The stability of the scheme is guaranteed by the CFL condition At < %. We point out

that we tried other classical finite volume schemes like WENO (Weighted Essentially Non-
Oscillatory method) or the ADM (Anti Dissipative Method) method described in [92] but

we did not observe any substantial changes in the results (for short times).

e For updating the monomers concentration, we use the following numerical finite difference
approximation

Al ol NS
(E) At = N T At Z 3 (f”Jr - fi,j) Vi € N,
§=0

or the implicit version

I C;H—l B C? _ C?—l—-i_ll - 26?—’_1 + c?jll Ag Ju . n+1 n i N
() At - A2 N Z £ (fi,j - ivj) ve N

7=0
It can be written in matrix form
A 0" = A0 — prt1/2 (2.27)
with C™ = (c])ie(0,.cvimats ™72 = (A &G = £ ict0. i)
-2 1 0 .
1 -2 1 0
A=| ¢ .
0 1 -2 1
0 0 1 -2
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and either A; = I, the identity matrix, Ay = %A for scheme (E) or A; =1 — %A,
Ag =1 for scheme (I). The stability of the explicit scheme (E) requires the CFL condition
At < Az?/2. Since this condition is usually more restrictive than the one obtained at the
previous step, it can be efficient to use a subcycling method where we perform one time
step Ataqy for f while several time steps Atgig < At.gy for c. Anyway, the parabolic CFL
condition leads to a prohibitive computational cost for multi-dimension simulations where
the implicit scheme (I) will be preferred. It requires the inversion of the sparse positive
definite matrix I — %A, that can be done by using performing algorithms like the conju-
gate gradient method. In numerical simulations we do not observe significant discrepancies
between results obtained by either the explicit or the implicit scheme. The numerical re-
sults in the next section are provided by the explicit one. Owing to the Neumann boundary
conditions, the discrete mass conservation relation

Axd @ + AzAEY D G = A D+ AsALD Y G (2.28)
) [ 7 [ ) 7

holds. We check numerically that this quantity is indeed exactly conserved.

2.5.2 Numerical results

The numerical simulations are performed in the slab = € [0,100] with 10 points by length
unit. The size variable is truncated to £ € [0, 100] meshed with 20 points by size unit. The initial
data are defined by

Cinit () = 0.5 1,¢(20,35]5
(2.29)

Jinit (z,€) = 0.01 1,¢20,35) X Lee[30,35)-

Figure 3.2 shows the initial data fin;t(z,€). On Figure 2.2, the solution finit (7, x, &) at the final
time 7' = 20 can be compared to the solution obtained by getting rid of the diffusion term in the
monomers equation. We clearly observe the influence of the diffusion of monomers on the space
repartition of the macro-particles.

The monomers concentration in the same situations is displayed in Figure 3.4 (diffusion
case on the right, diffusion—free case on the left). As said above, the simulations also show a
numerical evidence of the conservation of the total mass. The time evolution of the monomers
concentration can be found in Figure 3.5. As expected the support of the concentration spreads
as time increases, by contrast to the diffusion free case. Note however that the maximum of
¢ seems unchanged between the two cases. Of course, since the space repartition of monomers
is modified, it influences the dynamics of the whole system. In Figure 3.6 we show the time
evolution of the mean value of ¢ and f over space, that is compared to the usual solutions of
the Lifschitz-Slyozov system. It clearly shows that, even considering only mean values, space
diffusion changes the behavior of the solutions, for both the monomers concentration and the
particles distribution function.

As explained in the Introduction, many questions arise with the large time behavior of the
solutions of the Lifschitz-Slyozov equations (2.2)-(2.3), and capturing the correct asymptotic
profile is numerically challenging. Similar questions can be addressed for the modified model
with space diffusion of monomers. Like for the standard model a numerical difficulty comes from
the formation of particles with large sizes. As time goes, the support of f(¢,x,&) might reach
the largest size of the numerical domain, which then induces a fictitious loss of mass. Increasing
the size domain leads to a considerable increase of the computational cost because f now also
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Figure 2.1 — initial density.
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Figure 2.2 — left : density at time 20 without diffusion term; right : density at time 20 with
diffusion term.

depends on the space variable. Therefore, the present method is restricted to quite short times
of simulations.
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0.5 - - T T — 0.5 - - - T —
cattime 0 cattime 0
cattime20 - cattime20
04 1 04 1
03 4 03 4
0.2 | B 02 1
0.1 B 01 1
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0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
X x

Figure 2.3 — left : evolution of the monomers concentration without diffusion ; right : evolution
of the monomers concentration with diffusion.
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Figure 2.4 — Evolution of the monomers concentration all 2 time units with diffusion term.
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i cdz without diffusion
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Figure 2.5 — Comparison of mean values of the unknowns (dashed line=diffusion case). Top :
time evolution of [ ¢(t,z)dx ; Bottom : size variation of [ f(t = 20, x,§) dx.
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Chapitre 3

Probléme inverse pour un modéle
général d’agrégation-fragmentation

Cet article étudie le probléme inverse permettant de déterminer le taux de division cellulaire
& partir d’'une mesure en temps long de la densité de répartition pour une équation générale de
type agrégation-fragmentation. Nous proposons des méthodes de régularisations de type quasi-
réversible et filtrage permettant d’estimer le taux de division cellulaire pour un noyau de frag-
mentation et un taux de croissance assez généraux. Nous présentons également des résultats de
simulations numériques sur la reconstruction de ce taux de division cellulaire & partir de données
mesurées de la densité en temps long de la population cellulaire.

Le travail présenté dans ce chapitre a été réalisé en collaboration avec Marie Doumic et a été
soumis pour publication [68].

Introduction

To model the behavior of a population where growth and division depend on a structuring
quantity of the individuals such as size, the following mass-balance equation is currently used :

—+00

gtn(t,a:) + c(%(g(x)n(t,a:)) + B(x)n(t,z) =2 ; B(y)k(z,y)n(t,y)dy, t >0, z >0,

(3.1)
Here, n denotes the density of the individuals structured by the size variable x at time ¢; the
growth rate is given by g(z); the division rate B(y)r(x,y) represents the rate at which a given
individual of size y gives birth to two individuals of size respectively x and y — z, whereas B(y)
is the total rate of division for individuals of size y. This physical interpretation of x(x,y) leads
to the following assumptions :

k(z,y) =0 Yo >y, /OOO k(z,y)de =1, k(z,y) = k(y — x,y). (3.2)
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By simple integration and symmetry, it leads to the following well-known relation, expressing
the conservation of mass by the division process :

/ xzk(z,y)de = Y.
0 2

Problem (3.1) or its variants arises in many different contexts, ranging from cell division, protein
polymerization, telecommunication, neurosciences, and its mathematical study can provide useful
information on the qualitative behavior of the phenomenon under consideration (see, among many
others, [60, 156]). To be able to use it as a predictive model however, it is crucial to be able to
estimate quantitatively its parameters g, B and k.

A first step consists in the use of the asymptotic behavior of this equation, as first proposed
in [158]. Indeed, by general relative entropy principle it is proven (see e.g [157, 136, 63|) that
under suitable assumptions on k, g and B one has

/ In(t, @)™ — poN ()| é(a)de — 0,
0

with pg = f n x)dx and (Ao, N, ¢) is the unique eigenpair solution of the following problem :

P +00
o (a@N @) + (B@) + )N =2 [ By N () d,
i 0
gN(x =0)=0; N(z)>0; /OON(x)da: =1, X >0,
0 (3.3)

eyl >§ - (B(@) + M)o(o) = 2B(0) [ ()0l do
) >0 / ¢(x)N(x)dx = 1.

The use of this new problem allows to restrict the need for information to a non-temporal measure,
and the problem becomes : How to recover information on g, B and k from an experimental
measurement, of the asymptotic profile N and the global exponential rate of growth Ag of the
population 2 ?

In the case when the equation models cell-division, direct measures of the growth rate g(z)
is possible. Direct measures of « is also possible, by a study of the sizes of the two daughter cells
born from a mother. The most delicate point is thus the measure of the division rate B, what
implies to follow each cell from its birth to its division or death.

In [158] and [67], the problem of recovering the division rate from a measured N was addressed
in the case when the growth rate is constant, i.e g(x) = 1, and the daughter cells are twice smaller
than their mother, i.e. when (x,y) = d,—,/2. In this case, Problem (3.3) writes :

cgN + (B(z) + Xo) N = 4B(2z)N (2z). (3.4)

In this particular case, the inverse problem reads : How to recover H = BN (x) solution of

L(H) = F(N), (3.5)

2Growth can naturally be balanced by death, by the addition for instance of a death term d(x)N(x) on the
left-hand side of the equation. This would lead to possible nonpositive rates Ao, but our whole study would remain
unchanged.
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with £: H — 4H(2z) — H(x), and F(N) := c0y N + XAoN ? The method used to solve Equation
(3.5) 3 strongly uses the analytical study of the operator £, and it was shown that the most
efficient technique was then to view the problem as written in the variable y = 2z rather than
in = (see the discussion in [67]).

In this paper, we address the inverse problem of determining the cell division rate B when
g and k are known - or guessed - functions, but fully general ; hence, we cannot apply anymore
the inversion of the operator £ as done in [67], and new tools have to be designed.

We model the experimental measure of the distribution N by an approximation data N, of
N satisfying [N — N.|| < ¢ for a suitable norm ||e|| 4

The paper is organized as follows. We first study the regularity of the direct problem, what is a
necessary step for a better understanding of the inverse problem. In a second part, we investigate
the inverse problem of determining B by the Quasi-reversibility and Filtering methods proposed
in [158] and [67] and properly adapted to our general context. In a third part we develop new
numerical approaches in order to recover the rate B following the two regularization methods;
we give some numerical illustrations of our methods.

Main notations and assumptions

We use the following notations.

P:={f>0:3pu,v>0, limsupz " f(z) < oo, liminfz" f(z) > 0}, (3.6)
Lh:={f, Ja>0, feLP(0,a)},  L2:=L*(R:,aPdx). (3.7)

We work under the following technical assumptions, that guarantee well-posedness of Problem
(3.3) as stated in [63] (we refer to that paper for a complete discussion and justification).

J0<c<t  Vpz2 75( Jdz < ¢ < (3.8)
c< g p>2, yp/fx,y r<e<y. :
0
Be L, R)NP, Fag>0, g€ LRy, z*dr) NP (3.9)
V K compact in 0, 4+o00[, I3my > 0: g(x) > my Vo € K (3.10)
3b >0, suppB = [b, +00) (3.11)
x 1 v ) x
3C>0,7v>0,— € Ly ; k(z,y)dz < min (1,C(=)7) (3.12)
g(x) 0 y
B(z) ..  xB()
; — +4-00. 3.13
o) M g e &1

3the method was first developed in [158], then investigated deeper and solved numerically in [67] in a de-
terministic setting, and in [65] in a statistical setting. It was also successfully applied to experimental data in
[66].

4A more precise model for the measured data, in a statistical setting, can be found in [65].
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3.1 Regularity of the direct problem

Before studying the inverse problem, it is necessary to have a proper knowledge of the direct
one, which states as follows : What is the regularity of the map I': (¢, B) — (Ao, N) solutions
of Problem (3.3) ? How can we define a proper definition domain for I"?

In [67], Theorems 3.1. and 3.2 establish that the map I'g : B — (Ao, IV) is Lipschitz-continuous
forc=1fixed, g =1, Kk = %596:% and division rates B such that 0 < B,, < B < By < oo; in
other words, for division rates uniformly positive and uniformly bounded.

In this paper, we want to state such results for general growth rates g and division kernels
k, with division rates B not necessarily uniformly bounded. Our study is thus first based on the
well-posedness of this general eigenvalue problem (3.3), as performed in [63].

Let us first settle a proper definition space for the division rates B. Theorem 1 of [63] states
that, under Assumptions (3.2) and (3.8)-(3.13), there exists a unique eigenpair (Ao, IV, ¢) solution
of Problem (3.3). Hence, we first need that g and & satisfy Assumptions (3.2), (3.8)—(3.10). Then,
to study the regularity of the map T" : (¢, B) — (A, N), one needs not only that such division
rates B satisfy Assumptions (3.9), (3.11) and (3.13) but also that they satisfy them uniformly.
This leads to the following definition.

Definition 3.1.1. Let g, k satisfying Assumptions (3.2), (3.8)-(3.10). For a constant b > 0 and
functions fy € L(l], foo oo 00 ome defines the set
T— 100

Mhhk»=&%L%®DﬂRA%W@F%Saﬂm,?sh,fgzm}

In such a set, division rates B satisfy uniformly Assumption (3.13), what allows to use the
powerful estimates proved in [63].

Under such assumptions, we also recall that we have the following results (see Theorem 1 in
[63]) for the unique solution (Ag, N, ¢) to Problem (3.3) :

29N € [P(R+) Va > —y, V1<p< +oo; x%%gN € WHHR+) Va >0, (3.14)

and

JE>0,C>0, ¢(z) <C(1L+2%); ¢dpep € L®(R+). (3.15)

The two following fundamental estimates are straightfully obtained by integration on [0, co[ of
Equation (3.3) or (3.3) multiplied by x :

No = /O " BN () e, (3.16)
T aN@ de = & [ g@N(@)d 3.17
A $wx—%A 9(@) N () da. (3.17)

We are now ready to state our regularity result.

Theorem 3.1.2. Let parameters g and k satisfy Assumptions (3.8)-(3.10), then
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i) The map T : (¢, B) — (Ao, N) is :
e continuous in (c, B) under the L — weak-xtopology for B from any set R%. xD(b, fo, foo)
to R% x L' N L®(Ry).

e injective.

2
ii) Let moreover g satisfy T e L% with ~ defined in Assumption (3.12). Then the map T' is
g

Lipschitz-continuous under the strong topology of R% x L’ N D(bf, fos foo)- More precisely,
denoting 0B = B — B, A = ||B — B|12gr,), 6c =¢—c¢, SN = N — N, 0A = A\g — Ao, we
have the following estimates, for k as in (3.15) :

’(5)\‘ < Cl(B,B)A + CQ(B,B)‘(SC’, ”(SNHL2(R+) < Cg(B,B)A,

with

(142" gN | oy + 1 (142 g N | 2| B 2,

0, I0+aNe . +C
C

C,=C AN : —
! H1+kaL X Noda 2

where C' > 0 is an absolute constant.

Proof.

i) The continuity of the map I' directly follows from the proof given in [63], Theorem 1.
Therefore, we only sketch the main steps and let the reader refer to this article.
Let ¢, — ¢ > 0 in R% and B, = B in L%(R.). Denoting (\,, N,) the respective ei-
genpairs solutions of Problem (3.3) settled for (¢, By), we can prove the same uniform
estimates for N,, as in [63] due to the fact that since B,, € D(b, fo, foo), Assumption (3.13)
is uniformly verified. Such estimates give strong compactness in L' for N,,, and hence, up
to a subsequence, we have a strong convergence of (A, N,,) to (A, N). Similarly, we prove
A > 0, and passing to the limit in the equations for N,,, we deduce that (A, N) has to be
the solution of Problem (3.3) settled for (¢, B). Since such a solution is unique, the whole
sequence (A, N,,) converges to it.
Let us show by contradiction that I is an injection function.
Let B; € L}, (R%) and ¢; positive constants Vi € {1,2} such that (c1, B1) # (c2, B2) and
P(Cl, Bl) = P(CQ, Bg) = ()\(), N)
We then integrate the two equations satisfied by (Mg, V) against the weight z, to obtain

g@)N(z)de = — [ yN(y)dy = — [ yN(y)dy,
0 €1 Jo €2 Jo
what implies ¢; = ¢3. By the contradiction assumption we get By # B, so by making the
difference between the fellowing Equations (3.18), (3.19) with consideration to the equality
Cl1 = C

01%(9(33)]\7(%)) + (Bi(z) + X)N(z) = 2/000 B1(y)k(x,y)N(y) dy, (3.18)
02(%(9(33)]\7(%)) + (B2(x) + Xo)N(z) = 2/000 By (y)k(x,y)N(y) dy, (3.19)
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we obtain after multiplying by zP, p > 2 the following relation
2|y - Bof(@)N () <2 [ a¥|Br ~ Bal(w)NWn(a. ) d
0

We integrate this relation on (0, 00) and due to Assumption (3.8) for p > 2 we deduce the
following strict inequality :

/ xP|B; — Ba|(x)N(z)dz < / xP|B; — Ba|(x)N(z)dz, Vp>2
0 0

what is contradictory.

”
ii) First, the fact that T e L% implies that for all p > 0, N € Lz((l + 2P) da;). Indeed,
g

o0
by (3.14) and since g € P, / N%(z)(1 + 2P)?dz < oo, and it only remains to bound
0

0o 2y
/ NZ%(1 + 2P)* dz. This is given by writing N?(z) = (N2g¢? _27)( ), product of and
g°

L° function with a L(l) function.
By making the sum between the two following equations

-(9 (@)N(z)) + ¢(2)(B(2) + Ao)N(z) = ¢()2 /Ooo B(y)r(z,y)N (y) dy

we obtain
0, - 0 = o5 T > 2 =
S o (aV) + - (cgN9) &) + (OB + 3 — B~ o]} ) = 26(0) | Bly)wlern) V(0)dy

—2N(z)B(z) /0 ’ Ky, 2)p(y) dy

we then integrate this equation on [0, 00) that leads

b 6 - (gNd:L"—i—é)\/ ¢Ndx+/ ngcSde—Q/ 5B(y (/ oz xyd:z:)d.

5)\/ o(z dx—/ 5B(x ( / o(y)k(y, z) dy—d(z )> dx—l—éc/gNa%qbdx.

The first term of the left-hand side gives the term with C;(B, B) of the estimate on d\ by
using the fact that 3 k& > 0, _f € L*°(R4). For the second term, we use the equation

for ¢ and write
e W (CRP R (R e I
T C 0
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and it provides the term with Co(B, B) in the estimate for ).

To prove the estimate on 6V, we make the difference between the two following equations

o @ @) + (Bla) + 30N (@) =2 [ s )V () dy
- @N() + (B) + )N —2/ Bl p)N () dy

we obtain
0 - 0 - _ _
deg-(gN) +e5-(90N) + (Mo +B)N = Ao+ B)N + (Ao + B)N

= 2/0OO (BN — BN + B]V) (y)k(z,y)dy.

That implies

5c§(gN) + cg(géN) + (Mo + B)IN = [2 /OO N(y)k(z,y)dB(y) dy — (6A + 5B)N]
T T 0
2 [ BN dy
We recast the previous equation as follows
c%(g(:nﬁN(:n)) + (Mo + B(z))0N(z) =2 /000 B(y)dN (y)k(x,y)dy + dR(z),  (3.20)
with

= 2/ N(y)k(z,y)dB(y)dy — (6A + 6B)N — 5c§(gN) (3.21)

We can bound ||dR(z)||z2 as we previously bound |0A|. The estimate on |[0N||z2 thus
follows from the following lemma.

Lemma 3.1.3. Under the assumptions of Theorem 3.1.2 for g and k, with 0N defined as in
Theorem 3.1.2 and 6R defined by (3.21), there exists v(c, B) > 0 a constant depending only on
the eigenvalue problem (3.3) stated for given parameters ¢ > 0 and B € L?> N D(b, fo, fs) such
that, for all € > cq > 0 and B € L> N'D(b, fo, f~), one has

VI[ON| 2w, ) < I0R] 2 r,)-

Proof.
We argue by contradiction and assume that for a sequence ¢, > co > 0, By, € L2ND(b, fo, fo),
one has, for a vanishing sequence vy,

VelloNk Il 2ryy > 10 Rkl 22(r )5

with 6N, = Ny — N, Ny, solution of Problem (3.3) stated for ¢ and By, §R}, defined by (3.21)
stated for V.

As for the proof of continuity above, compactness arguments as done in [63] lead us to extract
a converging subsequence N, — N strongly in L', so N, — 6N strongly in L'. Moreover,
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2y

_ . x

estimates as in [63] imply that Ny, is uniformly bounded in L? (we write N? = 2727¢*N 2—2 and
g

g _
use the assumption T er? together with the result (3.14), result which is uniform for all Ny),

hence 0N}, satisfy quuation (3.20) with ||0Rg||z2 — 0. Passing to the limit, it implies that JN
satisfies Equation (3.3), so by uniqueness of a solution we have 6N = C'N for a given constant
C € R. Since [ Ndx = [ Nydz = 1, we have [dNdx = C = 0 : it is contradictory with our
assumption on (v;). O

3.2 The inverse problem and its regularization

As in [66, 65|, we consider the problem of recovering the cell division rate B and the constant
¢ from the a priori knowledge of the shape of the growth rate g(z) and the experimental measure
of the asymptotic distribution N and exponential growth A\g. To model this, we suppose that we

have two given measurements N. € L'NL>(R, ) and A, > 0 such that ||N_N€||L2 ((pr) dm) <e,

|Ao — A\c| < &.5 The problem is : How to get estimates (c., B.) of (c, B) solutions of

a o

co-(9(@)N(2)) + (B(2) + do)N(z) = 2/ k(z,y)B(y)N(y) dy. (3.22)
7 0

Firstly, one remarks that B cannot be recovered from Equation (3.22) when the distribution
N vanishes : our inverse problem consists in recovering H = BN rather than B directly. Our

problem can now be viewed as : How to recover (¢, H) solution of

o 0
L)) = H(x) =2 [ wla ) H)dy = —e5 (g@N@) = XoN@) (329
when we have measurements (A, N¢) of (Ao, N)?
Secondly, since the measure N, is supposed to be in L2, there is no way of controlling directly

—(gN:) even if g is known (see Section 2 of [158] for a discussion, or yet [74]).To come up this

7)

dixfﬁculty, two regularization methods were proposed in [158, 67| for the particular case of division
into two equal cells, i.e. when k(z,y) = d,—,/2, a third method has also been proposed in [97],
and a statistical treatment to estimate the derivative in [65]. Indeed, looking at the problem in
terms of H = BN and not in terms of B makes it almost linear in H; almost, because A\g being
also measured, the term A\g/N can be viewed as quadratic. Hence, the classical tools designed
to regularize linear inverse problems (see [74]|) can be used, as illustrated by the three foreseen
methods, as soon as the operator £, can be inverted.

This is the third and last difficulty : inverse the operator L, defined by Equation (3.23).
None of the three regularization methods of [158, 67, 97| can be directly applied here : indeed,
they strongly used the fact that for the kernel x = §,_ Y, the left-hand side of Equation (3.23)
simplifies in 4BN(2x) — B(z), and can be viewed as an equation written in y = 2z. Then, a
central point of the proofs in [158] as well as in [67] or [97] is the use of the Lax-Milgram theorem
for the coercitive operator £ : H — 4H (y) — H(%).

Nothing such as that can be written here, and the main difficulty, numerically as well as
theoretically, is to deal with a nonlocal kernel [ k(x,y)H (y)dy. The operator L is replaced by

5See [65] for a statistical viewpoint on the data (Ne, Ac) : supposing that N. € L? means that we deal with
some preprocessed data. However, once the problem is solved in a deterministic setting, as we do in this article,
it is immediate to apply the method of [65] to this general case.
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Ly. Fork =46,_ ¥, L, has been proved in [67] (Proposition A.1. in the appendix) to be coercitive

in L2(2Pdx) if p > 3, or in contrary L is coercitive if p < 3. Due to the nonlocal character of

the kernel, it seems more natural now to look for cases when the first part of the operator Ly,
o

i.e. identity, dominates the nonlocal part 2 [ u(y)x(z,y)dy. This is expressed by the following
x
proposition.

Proposition 3.2.1. Let k satisfy Assumption (3.2) and p € R satisfy the following assumption :

C, = T dy < 1 3.24

p=sup | y—pﬁ(:v,y) y<7 (3.24)

Then for all F € L*(Ry,2Pdx) there exists a unique solution u € L*(zPdz) to the following
problem :

u(w) =2 [ uy)ute.y) dy = F. (3.25)

xT

and we have the following estimate

||u||L2(:cde ||L2(x1’d:c
1 —-2,/C

Proof. We define the bilinear form
+oo +o0o +o0o
A(u,v) = / u(z)v(x)xP doe — 2/ u(a:)/ k(2 y)o(y) dy 2P dz =< u, v > p2(4p 4z) —2B(u, v),
0 0 T

where <,>72 denotes the scalar product. We apply the Lax-Milgram theorem in L?(2P dz).
Indeed, we have

B(u,v) = /Ooo/m o u(@)yEv(y)s(@, y) do dy

y2

< \//000/:0 z% u?(2) a:ydxdy\// / yPo? (y)k(z, y) dz dy
< \// /OO z” k(z,y) dy azpdzn\// yPv?( (:L",y) da:) dy
<

¢ /O Pu2(z)C, GW /O o) dy = /Tyl 200 a0l 2o o)

what proves the continuity of the bilinear forms B and A. Moreover, it implies

A(u,u) = (1= 28/Cp)lul |22 w azy = Bllull72 (4 4z
with =1 —2,/C), > 0 under assumption (3.24). It ends the proof of Proposition 3.2.1.

Remark 3.2.2. Assumption (3.24) can be linked to Assumption (3.8). One can easily check that
for k(z,y) = 596:%, it is verified for p > 3 : we recover part of the result of Proposition of [67]. It

corresponds to the cases when the first part of the bilinear form (i.e., /uva dxz) dominates the
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second one (// k(z, y)u(z)v(y)z? dedy). Solving it for smaller p, i.e. prove in which cases the
nonlocal part dominates the identity, remains an open problem.

1
For the uniform kernel k(x,y) = — for x <y, Assumption (3.24) is verified iff p > 4.
Y

1
More generally, for homogeneous kernels k(xz,y) = —k:o wzth/ ko(z)dz = 1, Assumption
0
(3.24) reads

1
1
/zp_lko(z)dz <7
0
1
Since for p = 2, we have /k‘o(z)z dz = 3 Equation (3.24) implies p > 2.

3.2.1 Filtering method

This regularization method consists in looking for a solution H, ,, of the following regularized
problem

+o0o
En(Hs,a)($) = Hs,a(x) - 2/0 K(z, y)He,a(y) dy = pa * <_C€,a(%(9($)N6(x)) - >‘€N€($)>v
(3.26)

where p, is a mollifiers sequence defined by

pal@) = ~p(2), peCER), /prmdx:l, p>0, Supp(p)C 0,1, (3.27)

1 =z
a o

One notices that ¢, o is uniquely defined : indeed, integrating Equation (3.26) against the weight

z leads to
/:vNE dx
(3.28)

/pa * (gNe)dw'

We want to study the well-posedness of this problem and estimate the distance between B; , =

Cea = Ae

£,

Neo
result.

and B in order to choose an optimal approximation rate «. This is given by the following

Theorem 3.2.3. Let g, B and k satisfy Assumptions (3.2) and (3.8)—(3.13), and moreover
g
x_ € L% with v defined in Assumption (3.12). Let (Mo, N) the unique eigenpair solution of

Pmblem (3.3) (as stated in [63]). Let p > 1 satisfy Assumption (3.24). Let N. € L*'NL>(R,.) and
Ae > 0 satisfy Hg(N N )HL2 zP dx) < €||9N||L2(xp dz)» |/\ )\0| < o, ||N_N€||

el ((+a+g(2)) de) and

1N = N1l ((zp+1) de) = €||N||L2((mp+1)dx)'
Then there exists a unique solution H. , € L?(zP dz) to Problem (3.26).
Defining Be o := XN.. ,(z)20He,a/Ne,o we have the following estimates :

L ((1+a+9(2)) de) <

|cea — ¢| < C(p,p, N)(a +¢), (3.29)
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€
||B€7OZ - B||L2(£BPN2 dz) < C(p7p7 N)(Oé + a)v (330)
where C' is a constant depending on p, moments of p and %p, Ao, HgNHH2 ((pr)dx),

s 19N lwia(daz) and [|N|

IV (A+a+g(@)) de) H ((a?+1) da)’

The estimate (3.34) of Theorem 3.2.3 relies, on the one hand, on the estimate of Proposition
3.2.1, and, on the other hand, on general approximation properties of the mollifiers, as expressed
by Lemma 3.2.4 right above.

Lemma 3.2.4. Let p > 1, f € L?((zP + 1)dx), po a mollifiers sequence defined by (3.27) and
0 < a < 1. Then we have the following estimates.

1| f *pallL2(@r azy < C(0, p)|If]] 12 ((or+1) o) With C(: p) only depending on p and moments

of p,
1

(07

0
2. Ha_x(f*pa)HL2(xpdx) <

moments of p and a%p.

Cp, p)IIfl 12 ((er+1) o) WO C(p,p) only depending on p and

3. ||f * Pa — f||L2(de:c) < C(p)aHfHHl(:cde) if € H* ((1 +$p) dl‘)
4 * pa = fllr < Clp)allfllwra

5 Mpa* fllor < |Ifllpr-

Proof. The proof of this result is classical and relies on Minkowski inequality for convolution
products ; we let it to the reader.

Proof of Theorem 3.2.3. We decompose the left-hand side of Estimate (3.34) as follows
||B€,aN - BNHL?(dex) = ||Be,a(N — Na + No — Ne,a) + He,a - BNHL?(:cP dz)

= ”BE,a”LO" <HN - NaHLZ(dex) + ”Na - NE,a”L2(xP dx))

+HHE,Ol - BNHLZ(:(:de)

A

On the right-hand side, the first term is bounded by C(p, ,z))OzHNHH1 ( due to Lemma

( xP+1) d:c)
3.2.4, Estimate 3. The second term is bounded by C(p, p)&?HNHL2 (( due to Lemma 3.2.4,

:(:P—l—l)d:c)
Estimate 1 applied to f = N — N.. For the third term, we apply Proposition 3.2.1 to u = H, o —

BN and F = p, * (CE»‘X@Q (gNa) +)\5N5> — <c§ (g(a;)N(m)) +)\0N>. We treat these terms in a

similar manner. Let us detail briefly the most binding term (with the notation L2 = L*(a? dx)) :

9

Ox
0

Hewa =l 2 (V) 1z

0

0
pa* (gNe = gN) |22 + llpa * 5-(9N) — —(gN)IILg,>

0 0
o0+ g (a2) = - @)l < oo (9N - o

T

(S))
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The first term is bounded by C’ngNHLz(xp dz) by Lemma 3.2.4 Estimate 2, the second one by
a
CallgN || g2 (z» dz) by Estimate 3. For the third term we write

en—el = A [ xN:dz B J xN(z)dx |
Coa™C = [ po * gN: dz Ofg(x)N(a:) dx
N f:EN€ \ fa:Nd:E . fa:Nd:E B Ofl’Nd:E’
Efpa*gNedx afpa*gN€d$ fpa*gNed$ ngdl’
f:EN€ fl’Nd:E fa:Nd:E f:EN dz
< |>\€ — e |+|)\€ — 0
| pa * gN: dz [ pa * gN: da | pa * gNe dz | pa * gN: dz
N dz N dz
—H)\o f f ‘

fpa*gNedaz_ Ongd:E

The assumptions of Theorem 3.2.3 together with Estimates 4 and 5 of Lemma 3.2.4 give the
estimate for |c. o — ¢| and ends the proof.

3.2.2 Quasi-Reversibility Method

To regularize the exact inverse problem (3.23), the so called quasi-reversibility method pro-

posed in [158| for the case k = 0,—y consisted in adding a term derivative ag(BN(Q:E)) with
€T

a small @ > 0 to the right-hand side of Equation (3.22), viewed as an equation taken in the
variable y = 2x. The main difference is that we need here to take this term in the variable z
and not 2z due to the general form of the nonlocal kernel k. We choose to define, for a > 0 and
k € R, the following regularised problem

LY(H:)(x) := am‘kag(kaHE(x)) + H.(z) — 2/ k(z,y)H:(y)dy = —ca,ag(gNe(x))—)\ENe(x),
H(0)=0; 0<a<l1, keR. " :
(3.31)
This equation has to be understood in a distribution sense in R; undowed with the measure
xP dz. We moreover assume that Supp(N.) C R7. Other adaptations would be possible, all

consisting in adding a small term derivative of the form +af; (x)g(fg(x)BN(a:)), with o > 0

and a boundary condition taken either in z = 0 if @« > 0 or = :x—l—oo if @ < 0. Numerically
indeed, a < 0 proved to give better results (see below Section 3.3.3). The key point is to check
that the regularised operator L satisfies Proposition 3.2.6 below.

The choice of ¢, . is not directly given by integration of the equation, contrarily to the case of
[158]. Neglecting the regularisation terms involving «, we thus define, as for the exact equation
(3.22) :

A / N (z) dz
e [ s@n.a) s .

Theorem 3.2.5. Let g, B and k satisfy Assumptions (3.2) and (3.8)—(3.13), and moreover
g
% € L2 with v defined in Assumption (3.12). Let (Mo, N) the unique eigenpair solution of

Problem (3.3) (as stated in [63]). Let p > 2 satisfy Assumption (3.24). Let N. € L' N L=(R,),

106

© 2012 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Léon Matar S. Tine, Lille 1, 2011

8.2. The inverse problem and its regularization

Supp( ) C Rj—a and Az >0 satzsfy Hg(N N )HL2 zP dx) < E”gN”L2 zP dz)>» ’)‘ )‘0’ < €, ”N_

6HLl((1+ac+g(ac))clac) <elNv HLl( L+a+g(z)) de) andHN N” £2((ap+1)da) = 6HNHL2(( P41)dz)’ Let
H. € L*(zP dz) be solution to Problem (3.31)(3.32).
Defining B; o = XNE(:C)#OHE/NE we have the following estimates :
|cea — | < C(p,N)e, (3.33)
€
||B€,a _B”Lz(xPstdx) < C(pa N)(Oé—|— a)v (334)
where C' is a constant depending on p, k, Ao, HBNHHI((prH)dx), ”N”Ll((1+x+g(x az)’ lgN || 1
and ”N”Hl((xp+1)dx)‘

Proof. The estimate for |c. o — c| is obtained in a similar manner as for the filtering method.
For the estimate for B, we first write

”BE,aNa - BNEHB(de) < HB&aNE - BNHLZ(dex) + ”BN - BNE”LQ(LBP dz)-

The second term of the right-hand side is simply bounded by

||B||L2(:(:de)||N - N€||L2(xp dx) < €||B||L2(xp dx)-

For the first term of the right-hand side, as for the filtering method, we decompose H. — BN,
and for this we need to establish some regularity properties of the operator £f defined in Equation
(3.31) and designed to approximate £,. This is given by the following proposition, which is for
the quasi-reversibility method the equivalent of Lemma 3.2.4 for the filtering method.

Proposition 3.2.6. Let p > 2, F = f1 + %h with fi € L*((1 + z)dz) N L?(2Pdz) and
fo € HY((1 + 2P)dx) N Whi(xdx). Let k,g,p satisfy the assumptions of Theorem 3.2.5. There
exists u € L' (z dz) solution of the following problem, where k # —2 and 0 < a < 1:

0

2 (:EkHu) + Ly (u) = F. (3.35)

L3 (u)(x) == ax

Moreover, we have the following estimates for a constant C' > 0 only depending on g, k, k and
D

1. ||uHL2(dem 1 _2\/— ||L2(gcpdgc
1
||uHL2(dem < _||f1+f2(1+ )HL2 (zP dz)-

Proof. Let us first establish the existence of a solution in L!(z dz). We rewrite (3.35) as follows

omcag(u(a:)) + (a(k+ 1)+ Nu(z) =2 /;O k(z,y)u(y) dy + F(x).

x (3.36)

u(0) =0, p>2.
We consider v € L'(R,, 2 dz) and define u = T'(v) the explicit solution of

a [e.9]
azz-(u(z)) + (a(k +1) + Nu(z) = 2/ v(y)r(e, y) dy — F(z),

i 0
u(0)=0, p>2
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Let v1 and vy two functions of Ll(R+, x dz) associated to u; and ug then by doing the difference
between the two equations satisfied in the one hand by w1, v; and in the other hand by uo, vo we
have

mg(éu(az))—i-(a(k+1)+1)5u(m) = 2/ 0v(y)k(z,y)dy, with du = u; —ug and dv = v1 —vy,
0

a o
(3.37)
what implies the inequality (see [156], prop.6.3 for instance)

omca%féu(x)’ + (a(k +1) 4+ 1)|ou(z)| < 2/0oo |6v(y) |k, y) dy.

Multiplying by x and integrating on [0, co[ we deduce the estimate

o 1 o
/0 zlou(z)|dz < m/{) ylov(y)| dy.

This proves that T is a Lipschitz function and we deduce the existence of a solution u €
L'(Ry,zdx) by the Schauder fixed point theorem.

For the first estimate, we multiply Equation (3.35) by zPu and integrate from 0 to x. Using
2

that uxp_kag(kau) = (k+ 1)aPu? + a:pHg (u2 ), it gives
/ alk + 1)zPu?(x) de + a:p+1 2(x / L( x)zP doe = / F(z)u(x)zP dz.
0 0

From this, we deduce

/ L, z)aP dz < / F(z)u(z)2” dz. (3.38)

Applying the coercitivity on L%(zP dx) of the bilinear form A(u,v) = /En(u)v$p dzr we get

immediately the first estimate.
For the second one, we integrate by part, on the right-hand side of Equation (3.35), the term

0
with R f2, and use the equation to express a—(u) with the other terms of the equation :
€T x

/(a%fﬁuxpdx — _/fg(%(xpu)dxz—/§f2uxpdx—/f2$p(%(u)dx
_/gfgua:pdx+/k+l

_ /w‘ﬁum‘pdl‘—l-é(/%fg(ﬁﬁ(u)(l‘) —fl(:n))gjpdﬂ?—l-p%l/fzzgjp—?dﬂ?)

fouaP dx + / a—lez(ﬁn(u)(ﬂf) — fi(z) - ng)x”da;

C p
< EHfQHL%(xP*l—I—:BP)dx)(HUHL2(QUP dz) + ”fl”LQ(xP dm)) + a”f2”%2(xp*2 dx)

Together with the first estimate, it provides the desired inequality.
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We are now ready for the proof of Theorem 3.2.5. We see that H,. can be viewed as solution

of Equation (3.35) with F' = —ca,ag(gNe(x))—)\ENe(x), whereas H = BN would be solution

of (3.35)if a =0and F' = —cg (gN(z))—XoN(z). To isolate in the error term the contribution

due to the a—regularization from the one due to the measurement error e, we thus define an

%@N(zz))—wm.

intermediate function H, as the solution of Equation (3.35) with F' = —c

We then write :
”BE,OJNa - BN”L2(mP dz) — ”H€ - H”L2(.CEP dz) < HHE - HOCHLZ(dex) + ”HOJ - H”L2(.CEP dz)-

The function H. — H,, is solution of Equation (3.35) with

0
Fe,a = 8_( - Ca,egNe(:E) + CQN(:E))_AENE(JJ) + /\0N(l’),

€
and we can use Estimate 2 of Proposition 3.2.6 to obtain an error term in the order of —. The
@

0
difference H, — H is solution of Equation (3.35) with F' = —am‘ka—(wkHBN), and we can use
Estimate 1 of Proposition 3.2.6 to obtain an error term bounded bngC'ozHBNHH1 (( ) It

ends the proof of Theorem 3.2.5.

1+zpt+l)dx

3.3 Numerical approach of the inverse problem

3.3.1 The direct problem

Assuming that the division rate B, the growth rate g and ¢ > 0 are known, we solve the
time-dependent problem (3.1) and look for a steady dynamics.
We choose to split the time evolution of the problem into its conservative advection part and
into its gain and lost part by division as follows

gtn(t,:n) + ca%(g(:n)n(t,:n)) =0

gtn(t,a:) + B(z)n(t,z) = 2/ B(y)k(z,y)n(t,y) dy.

xT

We use an upwind finite volume method with computation length domain L and grid number
points ka : z; = iAz, 0<1i < ka with Az = L/ka

T, 1
nh— L[
o Ax ),

.

At
’I’L(k‘At, y) dya é / n(k‘At + S, :L'Z) ds ~ nf‘i_l'
0

[N

For the time discretization one can choose, thanks to the CFL (Courant-Friedrichs-Lewy) sta-

bility condition, the time step At < with the notation ¢g; = g(iAz) and

C
B+ - g
ieIlr}.a..},{ka( it A:Egl)

The numerical scheme is given for ¢ = 1, ..., ka by nlg and
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e First for the conservative equation

k+1/2 At
n; - nf - CA—x((Qn)fH/z - (gn)f—lﬂ)’

the interface fluxes (gn)iC \L1/0 Are defined by upwind method.
e Second for the gain and lost part by cellular division we compute

nktl = (1— At B,-)nfﬂ/2 + 2At FF

Tka
where .7-? ~ / B(y)nkﬂ/z(y)’i(xiay) dy.

Z5

e At last we renormalize the discrete solution by

ke _ k1
ka
Z ’I’L;H—lA:E
j=1
ka
what allows to have aFt! —— N, N;Ax =1, N; >0, where N is the dominant

k—o00

i=1
eigenvector for the discrete problem associated to the following steady equation

+o0o
co-(9(@)N(2)) + (B(2) + do)N(z) = 2/ B(y)r(z,y)N(y) dy
T 0

with Ag the dominant eigenvalue associated to N.

3.3.2 The inverse problem without regularization

As illustrated in [67], solving numerically Equation (3.23) without regularization is unstable.
Indeed this recovering naive method gives bad reconstructions of H = BN as soon as the observed
N is irregular ( see above the estimates and see also (3.23) ). Here what we more over observe
is that, at the neighborhood of = = 0, the solution explodes. As an example of this we consider a
length domain L = 25 and the total number grid points ka = 300, then by an Upwind method we
compute numerically the Equation (3.23) and compare the result with that obtained by solving
the direct problem (D.P).

3.3.3 The inverse problem : Quasi-Reversibility discretization

In this section we numerically investigate the regularization of the inverse problem (3.23) by
the Quasi-reversibility method based on Equation (3.31) that we rewrite, by dropping the index
g, as follows

—Qx

_ka%ukHBa(x)N(w)) + ca%(g(x)N(w)) + (Ba() + M)N(2) =2 / K ) Baly)N () dy,

(BaN)(0) =0, (BaN)(c0)=0; 0<a; keR,.
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BNlnDP B—exp( 008(x—12) ), c=0.015
0.006 : 3 BN in “brute force" method

ool N |

20,002 |

0004 ]

-0.006 i i i i i i i

x

Figure 3.1 — Numerical reconstruction of BN by “brute force method” with the choice g(x) = z

and k(z,y) = —lpcy.
Y

Assuming that N and A are measured, we first define ¢ by (3.32) and then look for an estimate
of the division rate B,. For this, we put the notation

H,=B,N and L= —cag(gN) — AoN.

By a standart upwind method we obtain, when dropping the index «, the following discretization

k+1 k+1 ka
r  Hiyn — o, H;
_O[J,’i_k< i+1 2+23j ) + H; — ZZHJ'I{Z'J’A:L‘ =1L,
j=i
 +Nii1 — a:N;
wmlgz—Mme<%”’E %’>,Vi:Lm$a
X

Hy=0and H; =0, VYI> ka.

By developping this discrete equation we obtain
i1 k+1 .

<—a% 2kii+1Ax | Hip+ | 1+ai—2k; ;Ax | H;—2 Z Hjk; jAx =L;, Yi=1,.. ka.

Jj=i+2

We rewrite it under matrix shape A x H = L with A the matrix of coeficients of size ka x ka;

H is the unknown vector of size ka and L is a known vector of size ka.

The matrix A being a upper triangular one, what allows to solve directly the linear system thanks

to the following iterations

Lka
H a — )
¥ Aka ka
H; = ( E:A”H>; Vi=ka—1,..,1.

j=i+1
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The matrix A satisfying A; ; > 0 for j > ¢ + 1, we can choose Az small enough so that A;; =
1+ ai — 2k;;Az > 0 for all 4. This guarantees that no oscillations appear.

3.3.4 The inverse problem : Filtering discretization

This section is devoted to the numericall discretization of the inverse problem (3.23) by the
Filtering method based on Equations (3.26)-(3.27). The aim is to numerically solve the Equation
(3.26) that we rewrite when dropping the index ¢ as follows

B oo
:L"pcaa—(g(w)Na(x)) + 2P (Bo(x) + M) No(z) = 233”/ k(z,y) Ba(y) Na(y) dy,
0

T

(BaNa)(0) =0, >0,

with N, = N % p, and p, a sequence of mollifiers.
As previously, we want to estimate B, from a measured density N and Malthus parameter .
We first define ¢ by (3.28). We then rewrite the regularised equation as follows

2P By () Ny () — 2 /OO 2Pr(x,y)B(y)No(y) dy = —:Epcaa% (9(z)Na(2)) — Aaz? Ny (z)

For the convolution terms arising in the previous equation we use the combination of the Fast
Fourier Transform and its inverse which we respectively note by F' and F* then we define the

mollifiers p,, by its Fourier transform : p, (&) =

This leads to the following approximations

No = F*(pal&) F(N)(E)): a%(gz\m ~ dGN, = F* (i6(€)F(gN)(€)).

For the discretization we put the notation
H, =B,N,and L, = —c,dGN, — AyN,

then in each grid point x; = iAx we obtain when dropping the index « :

Ho =0
ka
(1 — 2k, ;Ax)H; — 2 Z 2’ Hjk; jAx =aPL;; Vi=1,.. ka.
j=it+1

We rewrite this previous discrete equation under matrix shape A x H = L with A the matrix of
coeficients which is an upper triangular one and of size ka x ka.

The shape of the matrix A allows to use adequately the LU iterative numerical method, and
then we deduce the following iteration

Lka
Hy, =
b Aka,ka
1 ka
H; = A—<L -y A,-ijj> ; Vi=ka—1,..1

j=i+1
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3.4 Numerical Tests

For the numerical tests we use as input data the noisy one N, which correspond for € = 0 to
the eigenfunction N obtained by solving numerically the long time behavior of the direct problem
in section 3.3.1. The direct problem is solved in the length domain L = 25 for ka = 300 number
grid points with two differents initial data : a step initial data and a maxwellian one, as follows

1 (z — 10)?
0 _ B
(@) = 0.47 eXp( 0.4 )
0

r <L

n’(x) =02 5<x<10,

n0(z) = 0 other where ~axwellian:

Step function : {

IN

n
v

(3.39)
and the steady solution is taken when ||n(t,z) — N(z)||;1 <= 10710,

In order to show the unique asymptotic profile of the direct problem we plot in pictures

Fig.3.2 the steady cellular density N related to the two previous initial data with different values

of ¢, B and with the choice g(z) = z/? and k(z,y) = 1]I{:L,<y}.
Yy
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02 |
m(t=0,z)
015
0.1
0.05
0
0 5 10 15 2 2%
xr
0.025 2
1(t =20.4,2) with B = min(1, ’i—ﬁ) -
Q(t = 204, Z') with B = min(L m) ,,,,,,,,
002 |/
[
e' \\
0.015 \
-
001 \
\\
0.005
\\
0 -~
0 5 10 15 %0

0.9

nz(t = 0,‘25)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

15

20 25

0.01

ny(t = 24,75, z) with
ng(t = 2475, ) with

[ssls]

08(z —12)7)
0Br-127)

0.008

0.006

0.004

0.002

10

T

15 20 25

Figure 3.2 — Direct problem ¢ = x'/2 : Top left : Step initial function. Top right :Maxwellian
initial function. Down left : Steady solutions of cellular density with ¢ = 1. Down right : Steady
solutions of cellular density with ¢ = 0.5 .

3.4.1 Numerical reconstruction of BN in the noiseless case ¢ = ()

For the case where the input data are exactly known i.e. for € = 0, we recover thanks to
the Quasi-reversibility and Filtering methods the division rate B by computing numerically the
value of BN with N obtained by solving the direct problem with high precision and for various
choices of the division rate B as shows in figure Fig.3.3 below.

114

© 2012 Tous droits réservés.

http://doc.univ-lille1.fr



Thése de Léon Matar S. Tine, Lille 1, 2011

3.4. Numerical Tests

1.2 - I | Bl—mln(l 5)
B = exp(—0.08(z — 12
B : Tray-function
1+ | ,3 |
/ ‘
0.8 e
0.6 -
//
0.4 | /
//
0.2 b/
) 10 15 20
x

25

In figure Fig.3.3, the Tray-function is defined as follow

Figure 3.3 — Various choices of B to solve the direct problem

0, for <2

92
(z—2) for x € [2,15]

132 7
for = > 15.

L

Then with the notation D.P for the direct problem we obtain

e For the choice x(z,y)
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0-007 | T T T T T T T .\ T R T . T T
BN in D.P: B =exp(~0.08(z - 12)*),c = 0.015 —— BN in D.P with B :Tray-function, ¢=0.5 ——
BN in Quasi-tev : a = 0.01,k =234 0.025 BN in Quasi-rev . = (.00648, k = 2.34
0.006 1 BN in Filtering : a = 0.00355 BN in Filtering : @ = 0.013
A "
0.005 | 0.02 i
\y \
\ / s\\
0004 \ [
' \\ 0.015 f ,
a / !
\. / \
0.003 | f \
g 0.01 /
0.002 | \
\
| 0.005
0.001 \
0 B \;; ,,,,, 0 R
0 2 4 § 10 12 Ui 0 10 15 2
T T
0.18 : - :
BN in D.P :B =min(l, f7),c =1
0.16 . BN in Quasi-rev :ae = 0.0195,2 =234 i
/‘\ BN in Filtering : o = 0.037 -
0.14 -
0.12 |
0.1 \
\
0.08 )
0.06
0.04 | )
0.02
0 / T .
0 5 10 15 20
T

e

Figure 3.4 — Numerical reconstruction of BN for each regularization method in the case € = 0.
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error = HBN - (BN)E,aHL2

IBN[.
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where BN is the exact numerical solution of the direct problem and (BN)., represents the
numerical reconstruction either by the Quasi-reversibility method or by the Filtering one. So we
obtain for instance for the given parameters g(x) = /3, ¢ = 0.5 and k = 2.34 the following
reconstruction error of the division rate as a function of .

025 T H T T 011 o Tes s s o T T T
error for B = exp(~0.08(z - 12)3) nDP —e— s for B = min(1, ’—; nDP ——
+ enor for B=min(1, 1) in DP e 01F extor for B = exp(~0.08(z - 125 mDP e
serror foi B : Tray-function in D.P -~ error for 5% Tray-function in D.P ---e--
02 " 0.09 °

. 008 \

015 rog, | \
A 006
; 0 X

0.05

’9609009*6 X }{
004 \{

003

0.02 ;
W

0 0.01 '
0 0.005 0.01 0.015 0.02 0.025 0 0.01 0.02 0.03 0.04 0.05

0] 0]

Figure 3.5 — Numerical errors for ¢ = 0 with different choices of B in the direct problem. Left :
errors by Quasi-reversibility method. Right : errors by Filtering method.

1
e For the choice k(z,y) = ;no(g) with kg N,/\/’(%7 %)
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0.0016 : : : : 0.004 : : :
BN in D.P with B :Tray-function, ¢ = 0.1 —— BN inD.P: B =exp(~0.08(z - 12)),c=05 ——
00014 BN in Quasi-rev : o = 0.03541,k = 2.34 0,005 BN in Quasi-rev e = 0.03743, k = 2.34
| BN in Filtering : o= 0.001 - | | BN in Filtering : @ =0.003 |
00012 I 0.003 N
0001 — 0005
/
0.0008 0.002 .
0.0006 % 0.0015
0.0004 0.001
/ % j
o 00065 f
0 0 = \\\«4\‘_
0 5 10 15 2 0 5 10 15 %
T
0.018 : :
BN DP:B= mlnlx c—l
0.016 BN in Quasi-rev 0 = 0. 03766 ey
i BN in Filtering : a = 0.03 -
0.014
0.012
001
0.008 |
0.006 |
0.004
0.002 |
0 /,/'/‘{“ i . _
2 4 6 8 10 12 14 16 18
xr

Figure 3.6 — Numerical reconstruction of BN for each regularization method in the case € = 0.

Top left :g(z) = z. Top right : g(x) = z'/3. Down : g = z

1/2

We measure the reconstruction error thanks to the relation (3.40) for the given parameters

g(z) =1
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0-3 T T T T 0'14 T T T T
error for B = exp(—0.08(z - 12)3) nDP —e— error for B = min(1, :
eror f()r B - min(l’ Cf_o) in DP o ¢ v'::":::::::::::::r'.f== R EBED RO EEHD
error for B : Tray-function in D.P - ¢ ol ' ot f0r B ;. Lray-tunction in D.P o |
025 : d ' “

Figure 3.7 — Numerical errors for ¢ = 0 with different choices of B and ¢ in the direct problem.
Left : errors by Quasi-reversibility method (k = 2.34) . Right : errors by Filtering method.

3.4.2 Numerical reconstruction of BN in the noisy case ¢ # 0

For this case, we consider as input data the values of the solution N of the direct problem
in which we add a multiplicative random noise uniformely distributed in [, §] (see [65] for a
more precise statistical setting of noisy informations). The nonnegativity of the data is insured
by the choice

11
NE = max(N(l +l€),0), le [—57 5], €€ [0, 1]

Then with these noisy data we numerically obtain

1
e For the case k(z,y) = _H{x<y}
Yy
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Figure 3.8 — Numerical reconstruction of BN by the measured data N, for different values of
with the choice B(x) = exp(—0.08(x —12)?), ¢ = 0.015 and g(z) = z.

For various choice of the parameter £ we compute the relative error thanks to the relation

(3.40) and obtain the following representations
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0-7 T T T T 1 T T T T
error for e = 0.01 —— error for ¢ = 0.01 ——
] error for ¢ = (.03 ---e-— error for ¢ = .03 e~
06 f e error for & = 005 o — error for e = 0.05 -0

Q‘*Q error for e = (.07 o 8 omresd e y, ertor for e:= 0,075 0 1

Figure 3.9 — Numerical errors for different values of ¢ # 0 with B(z) = exp(—0.08(z — 12)?),
¢ = 0.015 and g(x) = z in the direct problem. Left : errors by Quasi-reversibility method
(k= 2.34) . Right : errors by Filtering method.

Remark 3.4.1. Let us note that for data with high noise values i.e. € > 0.075 the regularization
by Quasi-reversibility method gives numerically better results than the Filtering one which creates
big oscillations.

1
e For the choice k(z,y) = ;no(g) with kg N,/\/’(%7 %)

Discussion

As shown by the numerical illustrations above, and after that we tried many different shapes of
regularization (trying for instance a wide variety of k and p, with +a, in the quasi-reversibility
method), our simulations still present some delicate points. Indeed, even if the regularization
methods prove to give better result than the naive “brute force” method as shown by Figure
3.9, the gain remains relatively small, and the regularizing parameter « has also to remain small
to avoid wrong reconstructions. Due to this small regularization, as shown by Figures 3.8, 3.10,
the noise is filtered but not as much as we hoped first - especially for smaller x, that are farer
from the departing point of the algorithm. Finally, the parameter a needs to stay in a confidence
interval, selected, for a given growth rate g(x), from a range of simulations carried out for various
plausible birth rates (see for instance Figures 3.5, 3.7, 3.9).
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Figure 3.10 — Numerical reconstruction of BN by the measured data N, for different values of

e # 0 with the choice B = min(1, %), c¢=1and g(z) = /2.

3.5 Conclusion
We have addressed here the problem of recovering a birth rate B of a size-structured popula-
tion from measurements of the time-asymptotic profile of its density, in the general case when a
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Figure 3.11 — Numerical errors for different values of € # 0 with B = min(1, %), ¢ =1 and
g(x) = z'/2 in the direct problem. Left : errors by Quasi-reversibility method (k = 2.34) . Right :
errors by Filtering method.

given individual can give birth to two daughters of inequal sizes. Compared to the work carried
out in [158, 67, 97| this last assumption has raised new difficulties, the principal one being that
we have no other choice than considering the equation from the “viewpoint” of the daughter cell -
what implies to take into account the nonlocal integral term. We established theoretical estimates
and built numerical methods to solve it. As shown above by our numerical illustrations however,
some issues still remain to be solved, especially the behavior of the algorithm for smaller x and
the cancellations of oscillations (also present in [67, 97]).
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Chapitre 4

Modeéle spécifique de polymérisation
avec coalescence pour le Prion

Ce travail est le fruit d’une collaboration avec Pierre Gabriel dans le cadre du projet PRION
étudié durant le Cemracs’09 sur la modélisation mathématique en médecine. Le but du pro-
jet est d’établir un schéma numérique d’ordre élevé et préservant la masse pour des modéles
d’agrégation-fragmentation avec coagulation. En s’inspirant des travaux de F. Filbet et P. Lau-
rengot [82], nous écrivons les termes intégraux de coagulation et de fragmentation sous forme
conservative ce qui permet d’utiliser un schéma de transport qui préserve la masse. Nous choi-
sissons une discrétisation WENO d’ordre 5 pour ses proriétés a la fois d’ordre élevé et trés peu
dissipative puis nous présentons des simulations numériques obtenues & partir de données expé-
rimentales.

Ce travail a fait I’'objet d’une publication dans ESAIM-Proceedings sous le titre High-order
WENO scheme for polymerization-type equations [86].

4.1 Introduction

The central mechanism of amyloid diseases is the polymerization of proteins : PrP in Prion
diseases, APP in Alzheimer, Htt in Huntington. The abnormal form of these proteins is patho-
genic and has the ability to polymerize into fibrils. In order to well understand this process,
investigation of the size repartition of polymers is a crucial point. To this end, we discuss in this
paper the mathematical modeling of these polymerization processes and we propose numerical
methods to investigate the mathematical features of the models.

Mathematical models are already widely used to study the polymerization mechanism of
Prion diseases [31, 64, 75, 95, 96, 120, 1, 106, 122, 160|, Alzheimer [52, 18, 141] or Huntington
[19]. Such models are also used for other biological polymerization processes [11, 21| and even
for cell division [17, 62, 156] or in neurosciences [152].

Another field where we find aggregation-fragmentation equations is the physics of aggregates
(aerosol and raindrop formation, smoke, sprays...). Among these models (see [115] for a review),
one can mention the Smoluchowsky coagulation equation [78, 83, 82, 119, 139] with fragmentation
[76, 77, 79, 114, 118, 117] and the Lifshitz-Slyosov system [35, 47, 49, 81, 146, 147, 148, 149]. In
[46, 103] a Smoluchowsky coagulation term is added to the Lifshitz-Slyosov equation.
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In this paper we are interested in a model including polymerization, coagulation and frag-
mentation phenomena. We consider a medium where there are monomers (normal proteins for
instance) characterized by the concentration V' (¢) at time ¢ and polymers (aggregates of abnormal
proteins) of size x with the concentration w(t,z). The dynamics of the density function wu(t, ) is
driven by the system

%V(t) = — /OOOT(V(t),a:)u(t,a:) dx,
2u(z: z) = —2<T(V(t) x)ult x)) + Q(u)(t, x) (4.1)
ot 7 oz ’ ’ T

u(t,0) =0, u(0,z) =wug(x) >0 and V(0)=1V>0.

The monomers are attached by polymers of size z with the polymerization rate kon(z). Depoly-
merization occurs when monomers detach from polymers with a rate kog(z). Hence the transport
term writes

T(V,z) = Vikon(x) — kog(). (4.2)

The two functions ko, and kog are piecewise derivable but can be discontinuous. They are positive
except that ko, can vanish at zero. In this case, or more generally when 7 (V (¢),0) < 0, the
boundary condition on u(t,0) is not necessary since the characteristic curves outgo from the
domain. The choice of the boundary condition u(t,0) = 0 is justified later.

The coalescence of two polymers and the fragmentation of a polymer into two smaller ones are
taken into account by the operator Q. More precisely, denoting by A, an aggregate of size x we

have
kc(fE7y) .
Ay + Ay —— Apqy coagulation
k
Apty k=), A + Ay fragmentation.

Thus the coagulation-fragmentation operator is Q = Q. — Qf with

Qulu)(e) = [ helyr —p)ulv)ule ~ )y —u(o) [ hlmpudy @43
Qu(u)(w) = qute) [ Hulww — )y~ [ ki) ule + 9)dy (14

The coalescence of two polymers of size x and y occurs with the symmetric rate ke (z, y) = ke(y, x).
This rate is a nonnegative function as the fragmentation symmetric rate k¢(x,y) = k¢(y, ) with
which a polymer of size x + y produces two fragments of size x and y.

There is a difference between V' (¢) and u(t, 2 = 0). In biochemical polymerization processes,
small polymers are very unstable and thus do not exist. When they appear by detachment from
a longer polymer, they are immediately degraded into monomers. Thus, the quantity of small po-
lymers vanishes while the quantity of monomers is very high. To reflect this in the mathematical
model, a quantity V(¢) of monomers is introduced, which is different from the quantity of small
polymers u(t,z = 0). The evolution of the first one is given by an ODE while the second one
is forced to be equal to zero through the boundary condition u(¢,0) = 0. A consequence of this
distinction is that starting from wup(z) = 0 and V{ > 0 there is no evolution : the concentration
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4.2. Mass Conservation

of monomers is constant in time, V(t) = Vj, and the concentration of polymers remains null,
u(t,x) = 0. This is a very intuitive and natural behaviour which is important to preserve for
biological applications.

In the modeling, the distinction between V' and u(z = 0) induces a separation of the polymerization-
depolymerization process from the coagulation-fragmentation. Indeed the aggregation of a mo-
nomer to a polymer can be seen as a coagulation but the resulting polymer has same size x than
the initial one, since a monomer is very small compared to the typical size of a polymer. So a
transport term is more accurate to model this phenomenon than an integral term (see [64]).
There is also the fact that when a small polymer is degraded into monomers, it increases the
quantity of monomers. In a discrete model, this term appears in the equation on V' (see ng in
[106]). In the continuous model (4.1) this term can be neglected since the quantity of mono-
mers produced by degradation of small polymers is very small compared to the total quantity of
monomers.

4.2 Mass Conservation

The mechanism of polymerization is nothing but a rearrangement of the proteins, there is no
creation and no disparition. So the total quantity of proteins has to be constant in time and this
is the case in model (4.1). We define the total mass of the system as

Pt)=V(t)+ /000 zu(t, x) dz, (4.5)

since a polymer of size z “contains z monomers”. Integrating the equation on w(t, ) multiplied
by x and adding the equation on V' we obtain

P
vt > 0, Cil_t(t) =0, (4.6)

so the total mass is conserved along time. This is a very important property that we want to
keep in the numerical scheme and for this we rewrite equation (4.1) under a conservative form.

4.2.1 Comnservative formulation

The classical discretization methods for transport equations are mass preserving. So the
idea is to write the coagulation-fragmentation operator Q, which preserves the mass, under a
conservative form in order to use a transport scheme. For this we follow the paper [80] where
such a transformation is made :

2Qu(u)(w) =~ (o),
rQi(u)(e) = ~ 22 ),

where the operator C(u) is given by

Clu)(z) = /0 ' / " Yke(y, 2)u(y)u(z) dzdy, (4.7)
T—y
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and F(u) is
F(u)(x) := /0 / yke(y, 2)u(y + 2) dzdy. (4.8)
z—y

Under this form, the mass conservation is clearer and the use of conservative schemes possible.
A useful consequence of the property (4.6) for the numerical scheme is that the ODE on V/
can be replaced by a mass conservation equation (see [103])

vt > 0, V() =W+ /000 x(ug(z) — u(t,z)) dx. (4.9)

Numerically, this equation is much easier to compute than the ODE to be solved. Moreover (4.9)
provides an explicit expression for V as a function of u. So we set

6(w)(e) = (Vo [ ylua(s) = u(s)]dy Yhon(i) = k() (4.10)
and we obtain a new equation equivalent to (4.1)
x%u(t,x) + W(t,‘f) + 8%(;) (t,x) — 8‘2—72(:)(75,3:) = G(u)u(t, x), (4.11)

u(t,0) =0, u(0,z) = ug(x).

In this equation (4.11), we have written the transport term as

9[G(u)u] _ 9[G(u)au]
:ET(t,a:) = T(t,x) — G(u)u(t, x). (4.12)
This formulation enhances the relation
d [ > d
i ), au(t, z) dx :/0 G(u)u(t,z)dr = —a‘/(t) (4.13)

and allows to preserve this property numerically when using conservative transport schemes.

4.2.2 Domain truncation

Numerically, equation (4.11) is solved on a truncated domain [0, R] so the integration bounds
have to be changed in order to keep the mass preservation. For the coagulation term, we introduce
as in [80]

T R—y
RUIE = c\Y,2)Uu u\z)az
) = [ [kt utyute) ddy

= /0 ' /z ’ yke(y, 2 — y)u(y)u(z — y) dzdy,

and for the fragmentation
r rR—y
Fiu@) = [ [ bty + 2 dsdy
0 Jx—y

= /Ox /xR yke(y, 2 — y)u(z) dzdy.
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With this truncation, we have C(u)(0) = C®(u)(R) = FR(u)(0) = FE(u)(R) = 0. So the total
mass does neither increase nor decrease with respect to time if we consider the coagulation and
fragmentation processes. If we look at the effects of this truncation on the original coagulation
and fragmentation operators we have

R—zx

QR0)(w) = ~10.C"w(a) = 5 [ hely — e ~ ) dy —u(e) [ kel y)uty) dy

and

T R
Qf(w)(e) == 0. )(w) = gute) [ btz =)y [ kiCey — 2)uty) dy

In the coagulation term, the truncation corresponds to the assumption that a polymer of size z
cannot coagulate with a polymer of size greater than R — x. Concerning the fragmentation term,
it is nothing but the assumption that polymers of size greater than R cannot split. Biologically
they are the natural assumptions to avoid the loss of mass.

Concerning the transport term, the only way to avoid the loss of mass is to set

G"(w)(R,t) = 0. (4.14)

The meaning we give to this relation in the numerical scheme is exposed in Section 4.3.2. It is
useless to do such a truncation for x = 0 since zu(¢, ) vanishes when = = 0.
Finally we obtain a conservative truncated equation for x € (0, R)

0 0[G"(ur)zur]
wauR(t, x) + T or

ugr(t,0) =0, ur(0,x) = up(z).

E?CR(uR) " _ Z?J:R(uR)

Oz ( 7x) Oz (tvx) = g(uR)uR(t7x)7

(t,z) +

(4.15)

When there is no transport term, convergence of the solution of Equation (4.15) to the solution
of Equation (4.1) when R — oo is proved in |70, 115, 114, 117, 131] under growth conditions on
k. and ky.

4.3 A High Order WENO Scheme

In order to obtain a mass preserving scheme, we consider equation (4.11) as a transport
equation and for high order accuracy we choose a fifth-order WENO (Weighted Essentially Non
Oscillatory) reconstruction for . This high order scheme is comonly used [58, 165] since it is not
more complicated to implement than a third order WENO one for instance.

4.3.1 Numerical fluxes

Before using the WENO reconstruction we have to know if the fluxes are positive or negative
in order to appropriately upwind the scheme. Concerning the coagulation and the fragmentation
terms, we consider a positive upwinding as suggested in [80]. For the transport term 9, [g (u)xu]
we have to make a flux splitting because G has no sign. A natural splitting here is to put the
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terms of G that are preceded by a plus sign in the positive part and the terms preceded by a
minus sign in the negative part, namely G = gf + G, where

G (w)(@) = (Vo + J5* yuo(y)dy ) hon ).

B - (4.16)
g7 (w)(@) = — (5~ yu(y)dy ) Fon(x) — kot ().
An other decomposition is the polymerization-depolymerization one
G (w)(@) = (Vo + J5~ y[uoy) — u(®)]dy ) kon(2). i

9o (u)(x) = —kos()-

The term G; is necessarily positive because Vy + foooy[uo(y) — u(t,y)]dy = V(t) > 0. With
these two flux splittings, we built others by convex combination. For any A € [0,1] we set
Gy = AG1 + (1 — X\)Gy which gives

G (w)(@) = (Vo + J5™ y[uo(y) — u)]dy + A 5 yu(y)dy ) kon (),

- oo (4.18)
G, (u)(z) = —)\(fo yu(y)dy) kon(z) — ko ().
We also consider the Lax-Friedrichs scheme which corresponds to
G (u) = 3(G(u) +m),
(4.19)
Giw(u) = 5(G(u) —m),

with m = max,;>0|G(u)|. This term has to be computed at each time step because G(u) depends
on time.

Finally, the WENO reconstruction is done with

Ht(u) = G%(u)zu + C(u) — F(u),
(4.20)
H™ (u) = G (u)zu,

and the choice among the different flux splittings is discussed in Section 4.4.2.

4.3.2 WENO reconstruction

The point of view adopted here is the finite difference one, as recommanded in [43], because it
is better than the finite volume in terms of operation counts. We assume the spatial domain [0, R]
is divided into NN uniform cells and we denote z; = tAz for 0 < ¢ < N with Az = % We use the
WENO formulation of Jiang and Peng [108] which consists in applying WENO to approach the
spacial derivative directly on the nodes of the grid. The spatial derivative 0,(H ™ (v) + H™ (v))
is approximated at the point x; by

1

Tt - g+ _ g

Ax HH-% t Hi—i—% Hi—% Hi—%]

where the fifth order accurate numerical flux HZ':_ ; is given by the WENO reconstruction. For
2

each node x; we denote by H;" the numerical approximation of H*(v(x;)). The stencil choice for
each flux is specified in Figure 4.1, and H:t ; are expressed as convex combination of the H ,;t of
2

the stencil. Let us detail how we proceed :
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- for Hz_—% we set Wl:Hk_7 WQ:Hk_+17 WgZHk__ﬂ, W4:Hk__1, W5:Hk__2,
- for H;% weset Wy =H, |, Wo=H ,, Ws=H, 5, Wa=H,, Ws =H_|,
- for H,—i_l we set Wl:Hlj—iS’ WQZHI:__2, WgZHlj__l, W4:H]j_7 W5:H+

_ k+1°
1
2
+ _ gt _ g+ _ gt _ gt _ gt
- for Hi+% we set Wy =H," ,, Wo=H,_ |, Wsg=H,", Wa=H," |, Ws =H__,.
Hi_,i —
P e N HH—%
1 1
il ! ] M il il M ! M
[ O - - [
i-3 1i-2 [ i-1 i i+1  i+21 i+3
b e e e e e = === )
+
Hifj It
—————————————— . 1
.’ —
I o | | | N B |
1 ] [} ] [} [} 1 [} \_1
113 | -2 il i i+1, i+2] i+3

Figure 4.1 — stencil choice

For the regularity coefficients we define for each previous flux

13 1
Sio= LW —2Wr+ W3)? + Z (W= AW + 3Ws)2,

13 1

Sy = E(WQ —2W3 + VV4)2 + §(W2 — W4)2,
13 9 1 9
S3 = E(W —2W4+W5) +Z(3W3_4W4+W5) .
Then we take the weights
r . r 1
wr:3a7, with ar:di, dlzi, dgzg, ds = — r=1,23

ijl a; (e+S,)? 10 10 10

where ¢ is introduced to prevent the denominator from vanishing. Finally we take the different
flux parts given by

Wz TWy  11W- -Wy 5Wp W, Wi SWy W,
Hi;1:w1<—3——2+ 1>+w2< 2+—1+—4>—|—w3<—1—|——4——5>,
2

3 6 6 6 6 3 3 6 6

Wy Wy 11W4 —Wy  5W5 Wy Ws  5Wy Ws
HT = R - I R AT A
1 w1<3 e T g >+w2< e T 3>—|—w3<3 +— 6)

Concerning the boundaries x = 0 and * = R, we compute using the WENO reconstruction

with ghost points x_3, x_2, z_1, and nt+1, TN+2, TN+3- In the first three points we use that
for all time t > 0,

xu(t,x)| B =Clu)(x =0,t) = Fi(u)(z =0,t) =0

to set H f3 =H fz =H fl = 0. For the last three ones we use the truncation
Giu)(z =R, t)=Clx=R,t) = FRz=R,t) =0

+ + +
toput Hyq =Hy,p=Hy,3=0.
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4.3.3 Integration method

For the integral terms, we use a fifth order composite rule introduced in [165]. If f; denotes
an approximation of f(xy), the method can be written as

jAz J
/ﬁ fl@)de~Ax) " fi
v k=i

Ax
where
J
251 299 211 739
Z fk - 720f2 + 240f2+1 + 240fz+2 + 720fz+3

—4
739 211 299 251 J
togfims T o lie T g fin t 5 fi t k;r4fk

if 5 — 4 > 6. This method is based on polynomial interpolations of the function f.
On the first interval, we integrate without using the boundary value fy = 0 because the

solution can be discontinuous at = 0. So we use the fifth accurate approximation

1
55 59 37 9

, P — [ — —_— [ —

g:o fr= 24fl 24f2+24f3 24f4-

Finally for the intervals at the boundaries we have

2
re 8, 5, 4, 1
Zo: fr = 3fl 3f2+3f3 3f47

3

21 9 15 3
/ e — _— —_— —_—
Eo fe = 8f1 8f2+ 8f3 8f4’

4
21 7 29 1 1
/ P —_— [ — [ —
Eo fre = 8f1 6f2+12f3+6f4 24f5,

5

21 7 19 17 1 1
/ _ = _ - - - o
Eo fe = 8f1 6f2+ 8f3+24f4+2f5 24f6,

6

21 7 19 2 25 1 1
/ _ = _ - = = - o
Eo fe = 8f1 6f2+ 8f3+3f4+24f5+2f6 24f7,

7
21 7 19 2 25 1 1
/ e — P — J— p— R p— —_—
203 fo=gh-gh+gftifitfi+fotsfi—gifs
N
9 19 5 1
/ _ ¢ I _ Y -
> hk= N o1 g vt o s,
N-1
N
1 4 1
> fe=gInt v+ o fna,
3 3 3
N2
132

http://doc.univ-lille1.fr

© 2012 Tous droits réservés.



Thése de Léon Matar S. Tine, Lille 1, 2011

4.3. A High Order WENO Scheme

N

1 31 7 13 1
/ — —_— — —_— [ —
NE_?) fr = 3fN + 24fN—1 + 8fN—2 + 24fN—3 24f]\/—4,

N

1 31 5 13 1 1
, _— [ — [ — —_—
N§_4 fr = 3fN + 24fN—l + 6fN—2 + 12fN—3 + 2fN—4 24fN—57

N
1 31 5 25 25 1 1
/ _ _ e = = = - .
N§_5 fre = 3fN + 24fN_1 + 6fN—2 + 24fN—3 + 24fN—4 + 2fN—5 24fN—6a

N
1 31 5 25 25 1 1
, P — _ pa— _ _ pa— —_
NE_:G Jr= 3fN + 24fN—l + 6fN—2 + 24fN—3 + fN-at 24fN—5 + 2fN—6 24fN—?-
We use this quadrature method to discretize the operators C* and F with
i N
cl — FR = (Ax)? Z ! Z ! xl(kil_jujul_j — k‘;l_jul) (4.21)

j=0 I=i+1

as suggested in [80]. Grouping the two terms in an unique summation is lighter regarding to
operation counts.

4.3.4 Time discretization

The time step is denoted by At and changes along time because of the CFL stability condition
that is time dependent. For the time discretization we choose a third order Runge-Kutta method.
To approach the time evolution of an equation dyu = L(u), we compute at time nAt

ut = u + At L(u") and  u® = zu" + iu(l) + iAt L(uM),

where u" is an approximation of u(nAt). Then the approximation of v at time (n+ 1)At is given
by

1 2 2
n+l _ -, n “.(2) AL (2) )
utt = gu + U + 3 L(u'?)

This method is an explicit one, so to ensure the stability we compute the time step At at each
iteration thanks to the CFL condition

At <min{(G+C+ F)~ '} (4.22)
where
) N 1 i—1
— - _ c _ f
G—Msgp(gf—gi ) C—Slilp{jz::l/ki,juj} and F—S‘Z%P{ijz::llkj,i—j}'

For instance the Lax-Friedrichs decomposition leads to Gpr = m/Ax.
Since we combine a fifth order WENO reconstruction and a third order time discretization,
we predict that our scheme is convergent of third order. To validate it numerically, we compute

the solution for different discretization grids with regular parameters and initial data. Comparing
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these solutions at time 7" = 20 in the L space norm (see Table 4.1 for the results), we obtain
the numerical order 2.95 which validates the prediction.

Ax 5/40 5/80 5/160
error || 81.84 1244 1.37

Table 4.1 — Error between different discrete solutions and the reference computed with Az =

5/320.

4.4 Numerical Simulations

4.4.1 Parameters

Numerical values for the polymerization and fragmentation rates can be found in the biologi-
cal literature (see |1, 4, 110] for instance). It is of importance to note that the models considered
in these papers are discrete ones, so some computations are necessary to deduce adimensio-
nal numerical values for the continuous model (4.1). Another point is that the parameters of
these models do not depend on the size of polymers, so we can only obtain mean values for the
size-dependent parameters.

We choose to use the values of the recent paper [110] to do numerical simulations. The mean
length of polymers for the initial distribution is estimated to be 1380. With the continuous model
we reduce this value to 0.2 by considering an initial profile equal to a positive constant on [0, 0.4]
and null for > 0.4 (see the first plot of Figure 4.5). Thus we define a parameter £ = 0.2/1380 ~
1,4 x 10~* which allows to go from a discrete model to a continuous one (see [64] for more
details). The values we find are for instance 2.9 x 1072uM ~'s~! for the polymerization rate and
2.1x 1079571 for the fragmentation (where M represents the concentration in mol and s the time
in second). The polymerization rate appears in a derivative term, so the value of the discrete
model has to be multiplied by € to obtain the continuous accurate value 4 x 10~ SuM~1s1
Conversely, the fragmentation rate which appears in an integral term has to be divided by e and
we find 1.5 x 107°s~!. Concerning the depolymerization and coagulation, they are neglected in
the models of [1, 4, 110]. So we consider numerical values that seem to be reasonable compared
to the previous ones.

In the present study, the parameters are assumed to be size dependent as suggested in [30, 31|
and their choice is now presented and motivated. Concerning the numerical coefficients, they are
chosen in order to have mean values of the same order than the values previously obtained from
[110].

For the polymerization we assume that small polymers have a different behavior compared to
the big ones. We consider a critical size x. = 0.5 such that polymers of size x < x. convert
monomers with the rate

ED(z) = (4 +0.2) x 107 SpuM s,

and for z > x. with a constant rate

K2 (z)=4x 10 5uM s

on

For the fragmentation kernel, we use the classical assumption that the fragmentation probability
depends only on the size x + y of the polymer and we set

kel y) = 80(z + y)

= %1075 L
10 + (z +y)
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The depolymerization is assumed to be constant and of the same order as the fragmentation. We
discuss the dependence on this parameter by considering different intensities

kog(z) =1 x 107571 with2<n<8. (4.23)

Concerning the coagulation kernel, we do not use a classical one. Even if there is no space in
model (4.1), we use a kernel which reflect some space effects. Indeed we consider that small
polymers are very mobile and that the big ones, plaques, are very attractant. So the coagulation
occurs preferentially between big and small aggregates. The kernel we choose is of the form

4z -yl

= x 107 upm—1s~ 1
11 (z+y) a

ke(z,y)

This kernel satisfies the growth assumption that we can find in [70] to ensure the convergence of
the solution when R — oo if we consider the only coagulation-fragmentation process.

coagulation (in puM~th=1) fragmentation (in A1)

0.03
0.025
0.02
0.015
0.01

O0O0O0 RRRRE
oNvRrODRNEDON

0.005

Figure 4.2 — Profiles of the coagulation and fragmentation kernels.

R
In [110] we also find numerical values for the initial data Vj = 98 uM and zup(x) dr =

0
0.21pM. This last value and the fact that the initial distribution of polymers is assumed to be
under the form ug = cst x I g 4 lead to

2.6 if 0<z<04
uo(z) = { 0 if z>04. (424)

For the following simulations, the discretization is made on a domain [0, 5] with a number of
nodes N = 200, so the mesh size is Az = 0.025.

4.4.2 Choice among the different flux splittings

First we deal with the CFL condition. Thanks to the triangular inequality, we obtain that
Grr < Go. Moreover, there is an explicit expression for G

N N
1
GR = 1 sup { (VO +Az Y wud+ (2A - 1Az Y ':Eju?)k‘fn + kff}
? j=1 j=1
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which shows that G increases with A\. Soif 0 < A < A <1 then at each time step we have G, <
Gy < G'{. Notice also that, with the numerical values we have chosen, the quantity of polymers

Ax Z —1 x] " increases with n. Indeed we can see in Figure 4.8 that the quantity of monomers

Vo~ V(nAt) defined by the mass conservation V" + Az ZJ [ zul = Vo + Az ijl :Eju?
decreases. The consequence on the CFL condition is that G increases with n if A > %, decreases
if A< % and is time independent when \ = % Thus, regarding to the numerical computation, the
fastest scheme is the Lax-Friedrichs one and then the computation time increases significantly

with A.

Let us now turn to the effects of the flux splitting on the size distribution. First we consider
a depolymerization corresponding to n = 8 in (4.23) and investigate the differences between the
solutions associated to the decompositions Gy, Go and G;. We can see in Figure 4.3 that the
solutions for Gy and G; are close together for small times and then the behavior of Gy becomes
closer to the Lax-Friedrichs one. The less oscillating scheme for ¢ = 6h is the the Lax-Friedrichs
one, but it is also the most oscillating at time ¢t = 12h. Finally the solutions associated to the
three flux decompositions are quite similar and they all present oscillations at some times, so we
do not find with this simulation any reason to discard one of them.

40 || B

I' 1 1 1 1 1 1 1

0 005 01 015 02 025 03 035 04
T X

Figure 4.3 — Comparison between the flux splittings Gy, Go and G; for n = 8 x 1076571,

~1 we remark that the

If we change the depolymerization rate by considering kog = 6 x 10705
Lax-Friedrichs scheme is unstable (see Figure 4.4) while G is stable. If we continue to decrease
7, we find with kg = 2 X 107951 that the Gy-scheme becomes unstable while Gy o is stable.
Thus the Lax-Friedrichs scheme and the G,-schemes with A small has to be avoided to ensure

stability when small depolymerization values are considered.

Knowing that, we compare different stable schemes, namely G, with 0.2 < A < 1. We can
see in Figure 4.5 that for large times (¢ = 20h), the three flux decompositions provide a good
behavior where there are strong variations of the solution. These locations are x = 0 because of
the boundary condition which enforces u(t,0) to vanish, and = 0.5 because the transport term
kon is discontinuous at z = 0.5. If we look at smaller times (¢ = 6h for instance) we can see that
the larger A is, the less oscillating the curves are. But, as we already remarked, the quantity G
is higher for A close to 1 and it increases with time when A > 5. Thus it is penahzmg for the
computation time to use high values of A\. A good compromise could be to choose A = 2 since G 1

does not depend on time. The other solution is to adapt the A when we change the parameters.
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n=6, t=20 n=2 t=18
140 T T T T 140 T T T T
120 | AR 120 | 88.2 g
/ / \
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Figure 4.4 — Unstability of some schemes when 7 decreases. Left : G becomes unstable for
n = 6. Right : Gy becomes unstable for n = 2.
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Figure 4.5 — Comparison of the behavior of the solution for different A with n = 5.

4.4.3 Interpretation of the numerical results

We have considered that the mean size of the polymers at the initial time ¢ = 0 was 1380. This
size can be multiplied by 5 along the polymerization process (see Figure 4.6 keeping in mind that
the mean size is represented by 0.2 in this continuous model). So if we want to solve the discrete
model, we have to consider a system of dimension close to 5000, and the computations are very
heavy. If we limit this value to 200 keeping the discrete model, then we lose a lot of precision.
It is the same for the continuous model if it is discretized with a first order scheme. That is
why we use a high order discretization, and we can see the difference in Figures 4.6 and 4.7 :
the high order scheme is able to capture strong variations of amplitude while the first order
flattens them. We also remark that the size repartition converges to a bimodal distribution, as
observed by [40]. This asymptotic profile is independent of the initial data (see the time t = 20
in Figures 4.6 and 4.7) and can be seen as an eigenvector of the operator Q@ — 9,7 (see [134, 63]).

The evolution of the quantity of monomers V'(t) is plotted in Figure 4.8 for different values
of the depolymerization rate k.. This quantity decreases since the monomers aggregate to po-
lymers. Thus the mass of polymers increases and the speed of this evolution is similar to those
observed by [110]. Concerning the dependence on ko, the difference between the three curves
is more significant when the time increases. For small times, when V() is close to Vp = 98uM,
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Figure 4.6 — Comparison between the WENO scheme and a first order scheme for the initial size
distribution (4.24), with the depolymerization value kog = 8 x 1076571 and the flux splitting
parameter A = 0.5

the depolymerization can be neglected since kog is small compared to the product V(¢)kon(z).
Conversely, the equilibrium is reached when %V(t) = 0, so when ko >~ Vkop (see Equation (4.1)).
That is why variations of 1 influence essentially the ratio between the quantity of monomers and
the mass of polymers at the equilibrium as we can see in Figure 4.8.

4.5 Conclusion and future work

We have written a high order conservative scheme for a polymerization-type equation. The
choice of the flux splitting for the transport term has been discussed but the accurate decompo-
sition remains unclear. It seems that unstabilities can be avoided by adapting the value of A but
the oscillations remain present for any choice of the flux decomposition, even for a regular initial
size distribution. A possible explanation for these phenomena can be that the integration method
is not “positive” for the intervals at the boundaries. These points remain to be investigated for a
better understanding and improvement.

As we have remarked in Section 4.4.3, the size distribution converges toward an equilibrium
which corresponds to an eigenvector. The high-order WENO scheme presented in this paper
could be used to numerically compute such eigenvectors. Another application of the code is to
solve inverse problems (see [67, 158]) in order to determine the size dependence of the different
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Figure 4.7 — Comparison between the WENO scheme and a first order scheme for a regular
initial size distribution, with the depolymerization value kog = 8 x 107%s~! and the flux splitting
parameter A = 0.5
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Chapitre 5

Un modéle d’écoulement particulaires
avec coagulation et fragmentation

Ce dernier chapitre du présent mémoire de thése concerne ’analyse d’un modéle d’inter-
action fluide-particules avec prise en compte des phénoménes de coagulation et fragmentation
entre particules. Cet interaction micro-macroscopique fait interagir des équations de type Euler
compressibles pour le fluide et des équations de type Vlasov-Fokker-Planck pour le mouvement
microscopique des particules. On s’intéresse a la dérivation d’arguments asymptotiques permet-
tant de comprendre les processus de relaxation du modéle d’interaction. Ainsi en faisant un
“rescaling” du modéle on établit une relation de dissipation d’entropie générale liée a l'inter-
action et aux phénoménes de coagulation-fragmentation. Grace a cette relation de dissipation
d’entropie on a définit deux régimes hydrodynamiques pour I’écoulement suivant un paramétre
mesurant le rapport entre le temps de Stockes et le temps d’observation.

Cette étude a été faite en collaboration avec Thierry Goudon et Mamadou Sy.

5.1 Introduction

We are interested in models describing a large set of particles interacting with a fluid. The study
of such two—phase flows (where particles represent the disperse phase evolving in a dense fluid)
is motivated by applications like dispersion of dusts, smokes or pollutants [85, 54, 170, 173], the
modeling of biomedical sprays [14, 140]|, optimization of combustion processes [73], the formation
of powder-snow avalanches [29]... On the mathematical viewpoint the modeling leads to non
standard systems of PDEs. The disperse phase is described through a distribution function in
phase space, f(t,z,v,r) where t > 0 stands for the time variable, z € R? the space variable,
v € R3 the velocity of the particles and r > 0 is related to their size. The dense phase is
described, as usual in fluid mechanics, by macroscopic quantities (say mass density, velocity and
temperature) depending only on the time and space variables. Hence the unknowns do not depend
on the same set of variables, which makes part of the difficulty for mathematical analysis, together
with the fact that we consider systems coupled through highly nonlinear terms. Furthermore,
in view of numerical experiments, the kinetic framework leads to high computational cost, both
in terms of size and time. This remark motivates to seek reduced models, which are of purely
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hydrodynamic type, by means of asymptotic arguments that take advantage of some relaxation
processes embodied into the model. Anticipating on the detailed presentation of the model,
the evolution of the particle distribution function is driven by the combination of the following
phenomena :

— the drag force exerted by the surrounding fluid on the particles,

— the influence of an external potential z — ®(x) (gravity, electrostatic force, centrifugal

force...),

— the Brownian motion of the particles,

— coagulation and break-up which modify the size of the particles.
It leads to a Vlasov—Fokker—Planck equation, which furthermore involves a non linear “colli-
sion” operator describing the size variations. The fluid quantities obey Euler or Navier-Stokes
equations, depending on the physical context. We refer to [176] for introduction to such coupled
models in combustion theory ; recent developments can be found in [12, 128]. Investigating exis-
tence, uniqueness and regularity issues highly depends on the nature of the coupling and the
complexity of the equations used for describing the fluid. We refer for instance to [15] (strong
solutions locally in time), [98, 23, 132] (weak solution for viscous flows), [94] (solutions close to
equilibrium). Asymptotic analysis is detailed in [89, 88, 133, 36]. Numerical aspects are devised
in [6, 37, 154, 153, 125, 90, 93]|. Most of these references do not address the question of the
influence of the size variations. This is the aim of the present work : we discuss several aspects
of the role of a Smoluchowski operator in the stability and dissipation properties of the system,
and we study hydrodynamic regimes.

5.2 A fluid-particle model with coagulation and break-up

Here and below, we adopt a discrete modeling of the size variable. Let i € N\ {0}. We refer to
“a particle of size i’ as to be a assembly of ¢ monomers. Therefore, denoting by a > 0 the radius
of a monomer and pp its mass density

— the volume of a i—mer is %ﬂa?’i,

— the radius is r; = ai'/3,

— the mass is m; = %ﬂa3ipp.
Let fi(t,z,v) stand for the density of i-mers in phase space : f;(¢,z,v) dv dx represents the
number of particles with size ¢ having at time ¢ > 0 their position and velocity in the infinitesimal
domain centered at (z,v) with volume dz dv. Particles are subject to a drag force, which is
proportional to the relative velocity with the fluid. The Stokes law defines the proportionality
factor as 6mpail/? = 6w ur;, with p the dynamic viscosity of the fluid. Brownian motion produces

velocity fluctuation, described by a diffusion operator with coefficient (Einstein formula)
k06T pail/? kO 9
(%wa3ipp)2 -~ omy 2ppr?

where k is the Boltzmann constant and 6 > 0 the temperature of the fluid. Therefore, f; satisfies
the following equation

I ko

Oifi+v-Vaofi =V @ -V, f; = va : <(’U —u)fi + Evvfz) + %Qi(f)' (5.1)

)

In the right hand side the so—called Smoluchowski operator () describes coagulation and break-up
and T, is the characteristic time scale of the coagulation and break-up phenomena. The operator
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is defined by
1 i—1 (e} 00 1 i—1
Qi(f) =3 > kiicififici = Y kigfifi+ Y Bimiifi — 3 > Bii-ifi
j=1 j=1 j=it1 j=1
according to the formation of (i + j)—mers from i-mers and j—mers
Xi+ Xj — Xiyj
which occurs with a rate x;; and the break-up of i—mers into smaller pieces with, assuming
j<i,size jand i —j :
XZ' — Xi_j + Xj.

As a specific case, the Becker-Doring operator restricts to the case where, for i > 2, the coefficients
vanish but for j = 1 : only monomers can be added to or removed from ¢{— mers. Monomers are
involved in all reactions so that the collision term Q1 has a different expression. More precisely,
the Becker-Doring [16] cast as follows

Ji(f) = kifif1 — @iv1fiv1s
Qi(f)=Jic1—Ji for i > 2,

Qi(f) =21 =) _J;
=2

In this expression, k; is the rate of the coagulation reaction X; + X; — X;11 and ¢;41 is the
rate of the break-up X;11 — X; + X;. For a thorough presentation of the Smoluchowski and
Becker-Déring operators, we refer to [45, 151]. The effect of coagulation and break-up is to reduce
the total number of particles but to maintain the total mass since

dQif) <0, D iQi(f) =0. (5.2)
=1 =1

As a consequence of (5.2), we obtain the following local mass conservation law

0 (Soin) +ova(Soin) v v (i)

i=1 - i=1 i=1
9 . ko _
:Z M2VU- (v—wu)ifi + —Vyifi|.
im1 2,0p7‘2- m;
Note that )
g M 20p1 _ 23 -
6mur; Iu

has the homogeneity of a time : this is the Stokes setting time, typical of the effect of the drag
force on the i—particle.

The fluid is described by its density n(¢, ) and velocity u(t, ) which obey
on+Vy-(nu)=0

proi(nu) + ppDivy(nu @ u) + pranV,® + V,p — pA,u = 6mp Z/ (v —u) fir; dv, (5.3)
i—1 JR?
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where pr is a typical mass density for the fluid. The coefficient o € R takes into account the fact
that external force can act differently on the two phases, both in amplitude and direction. The
momentum equation takes into account the drag force exerted on the fluid, at a given position
x, by the particles. For the pressure, various options can be considered :
— incompressible model in which case p is the Lagrange multiplier associated to the divergence-
free constraint V, -u =0
— compressible model which needs an equation of state. We can restrict our discussion to
situations where the temperature is assumed to remain constant, at least as seen from the
particles. We disregard the energy equation and assume in such a case a simple relation
p = p(n), the isothermal case corresponding to p(n) = n. More complete models incorporate
energy exchanges, as discussed in [22, 90]. We set p = Rpf, with R the perfect gas constant,

and F = “72 + %, the total energy, with v > 1 the adiabatic constant. Then, we have

pp(0i(nE)+ V- (nE+p)u) +anu-V,®) = Z/RS riEVv- (v—u)fi+Vyfi)dv (5.4)
i=1

Note that it can make sense, according to scaling considerations, to neglect the viscous term in
(5.3). The following observation is also worthwhile. The right hand side of (5.3) can be recast as

i=1 210Prz' R3 m;
N (O ko, |
= ;mz X <2pp7’i2 /Rg vV, - <(U — U)fz + EVJ}) dv + /RS Qz(f) dq))

owing to (5.2). A similar remark applies to the energy equation (5.4).

5.3 Dimensionless equations

Following [36], we write the equations in dimensionless form. To this end, we need time and length
scales L and T respectively, which defines the velocity unit U = L/T. Velocity fluctuations are
measured by means of the thermal velocity

k6
Vih =4 —
mi

with my = %F&gpp, and 6 > 0 a reference temperature. Denoting -/ dimensionless quantities, we
set

o t=Tt ;2 =Lx";v="Vyut
o n(TtLa')y =n'(t',2'); w(Tt, La") = Uu' (¢, 2')
4
o p(Tt, L'y =Pp'(t',2'); fl(t',a',0) = gwa?’ Vi (T, Lo, Vo),
where P stands for a suitable pressure unit. If the temperature is not assumed constant, we set
similarly 6(Tt', Lz") = 66'(t', x"). For the external potential, we set

0L

1

O(La') = ' (')
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where ¥4 has the homogeneity of a velocity (for gravity driven flows, it is nothing but the Stokes
settling velocity). We arrive at

1 / ‘/;fh / 193 /

L U7'1 th k0 1
th Te

Ti

with Q/(f') = QZ( Svg ). This is coupled to
3™ th

1 U
T’ + 7V - (W) = 0,
s
%@' (n'u") + %Divmr(n'u' ®@u') + a—ln'V o ® + %V p'
= g / (Vipt! — U fli 1/3 s
TlPF R3 PFL

(A similar work can be done considering the energy equation if necessary.) The system is governed
by the following set of dimensionless parameters

T Vin 1 T
IV, =2h - _
/8 L th U7 c T17
9T P P
Vin1’ XZ ppLU ~ ppU?

together with the density ratio pp/pp. Finally, we obtain (dropping the fancy symbols)
11 1 0 1
atfi"i’ﬁv'vmfz nV ¢V fz—_wvv' (U__u)fz+_vvfz +_Qz(f)7
€42 ﬁ 1 Te
om+Vy - (nu) =0, (5.5)

Oi(nu) + Divy(nu®@u) + afnnV,® + xVep = Lr. Z / (Bv — u) fii'/? dv + pAgu.
EPF 3

Here, p and 7. stand for the rescaled and dimensionless version of the fluid Viscosity and coagu-
lation relaxation (that are, with the notation in physical units, p—g and L respectively).

Note that in many applications it is relevant to get rid of the dlffusmn term in the momen-
tum equation (5.5) because the rescaled viscosity p is very small, hence dealing with the Euler
equations instead of the Navier-Stokes system. In what follows the problem is considered on a
domain €2 where

— either Q = R3, in which case the analysis will rely on suitable confining assumption on the

potential ®,

— or  is a smooth bounded subset in R®. In such a case the problem is completed by boundary

conditions, for instance specular reflection for the particles and the no-slip condition ugq =
0 for the fluid (or w - v = 0 on 02, with v(z) the unit outward normal at x € 992 when
working with the Euler equations). More intricate boundary conditions for the particles
can be dealt with, see [36].
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The initial condition are denoted as follows
filt =0,2,v) = finit,i(x,v), n(t =0,x) = ninit(x), uw(t =0,2) = Uinit(2).

For further purposes, let us set

Mp = // if; dvdex, MF:/nda:
ZZ:; Q JR3 Q

which are thus conserved quantities.

5.4 Equilibria, dissipation and relative entropies

In this section we wish to exhibit some conservation and dissipation properties satisfied by the
model. These dissipation properties will induce the existence of equilibrium solutions and their
stability, they also provide the basic estimates needed for the analysis of the system.

5.4.1 Detailed balance equilibria ; dissipation properties of the coagulation /break-
up operator

First of all, we are interested in sequences {.#,.#5,...} which make the coagulation/break-up
operator vanish. The condition Q;(.#) = 0 is equivalent to impose

K}Z’J%eﬁj = ﬂideﬂﬂ_]’ for any Z,j > 1. (56)

A solution of (5.6), if it exists, is referred to as a “detailed balance equilibrium”. Given a detailed

balance equilibrium, we set
f(f):Zf,-(ln(/f/;)—l). (5.7)
i=1 !

When dealing with the free coagulation-break up problem (e. g. without coupling inducing space
dependence of the solution) £ plays the role of a Lyapounov functional for the underlying infinite
system of ODEs. We refer to [9, 32, 33, 45, 105, 118, 167] for thorough details on the role of the
detailed balance assumption and the functional (5.7) in the analysis of coagulation-fragmentation
phenomena and of the large time behavior of the solutions.

Using (5.6) with j = 1 leads to a recursion formula for defining the equilibria. In turn, detailed
balance equilibria can be parametrized by the monomers concentration .#; as follows :

My = 2; (M),
where

i—1
Kj1 .
2, =1, 2; = L2 for i > 1.
' jljlﬁﬂ

In the sequel, we assume the existence of detailed balance equilibria. In order to define equilibria
with finite mass, it is natural to further request

o
the radius of convergence Z, of the series z — Z i92,2" is > 0.

i=1
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Note that Z, may be finite or not, which strongly influences the large time asymptotics, see
[9, 32, 33, 45, 105, 118, 167]|. The saturation density is defined by

Ox = ZZQZZi € (0, 00].

i=1

Observe that, given 0 < p < g, there exists a unique detailed balance equilibrium, characterized
by 0 < .#1 < Z, and the relation

1=1

Finally, the key observation which makes (5.7) a relevant functional for studying the coagulation /break-
up dynamics, is simply that

0 n (L
2 () <o

and this entropy dissipation term vanishes iff f; = ;.

5.4.2 Detailed balance and stationary solutions

Let us now adapt the discussion to concentrations depending on the phase space variables (x,v).
We search for stationary solutions ng(x), us = 0, #;(z,v) of (5.5) where all terms are turned
off. Making the coagulation/break-up term vanish still leads to (5.6), while we have additionally

V- Nyplly — Ny ® Ny M; =0

and

V- (U//ZZ + gvv///}) =V, <exp(—iv2/29).vv<W)).

We thus arrive at

Mi(x,v) = 2 (//Zl(a:,v))i, M (x,v) = wexp ( _ <I>(g;)> (5.8)

It can be convenient to rewrite

2

M (w,v) = M exp —is —z‘q’(f))

where .#; = 2;w" is an equilibrium for the homogeneous equation.

In order to guaranty the finiteness of the mass and energy of the equilibrium, we need to
assume the following confinement conditions

(HCO0) The potential ® is bounded from below on €2 : there exists C' € R such that ®(x) > C hold
for a. e. z € Q.

(HC1) z — e %@ ¢ L1(Q).
(HC2) 1+ ®(x)e~ @) ¢ LY(Q).
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The total mass of such an equilibrium is now defined as

Z// z///a:v dvdx = 2719
]R3

where we denote from now on
n:/amwmﬂ
Q

By (HCO) and (HC1), the I';’s are finite. Therefore, we introduce w, > 0 as to be the radius

of convergence of the series > 7, ‘QTF 2" and we set

> 9T,
Mp, = (210)3/? =t Wt e (0,00
- 32 e 0
Clearly, for any 0 < Mp < Mp,, there exists a unique w such that the equilibrium parametrized
by w has total mass Mp. Observe that, for a given set of kinetic coefficients, w, # p, (for instance
when the T';’s are bounded, we have w, > py). Similarly, the total energy of an equilibrium is
defined as the sum of the kinetic and potential energies, that is

(z) (27)3/2 5/2 = Qifi i
Z//Rs 20" )“fldd ;0 22'3/2”

with I'; = [, i®(z)e™"®@) dz.

We turn briefly to the stationary solution ng, recalling the material from [36]. For the sake of
concreteness, we detail the computations for a compressible model, assuming that the pressure
is define by a simple law p : n +— p(n). The function p is required to satisfy :

(HP1) p: R, — R, is continuous, of class C? on |0, o[, it is increasing and verifies p(0) = 0.
(HP2) We set h(n) = /nl@ds (enthalpy function) for n €]0,00[. Then, we assume h €
Ioo.0cD
Owing to (HP1)-(HP2), it makes sense to introduce

HnE[Ooon—>/ s)ds e R

which can be interpreted as an internal energy. We have II'(n) = h(n) and nIl”(n) = p'(n)
for any n € Ry, while II(0) = II'(1) = 0. For instance, in the isothermal case, p(n) = n and

II(n) = nln(n) — n, and in the isentropic case p(n) = n? for some v > 1, and II(n) = mﬁf__'yl")
At equilibrium, the fluid equation degenerates to
apn &
IT'(ns(x)) = h(ng(z)) = Z - —~ 2@

where Z is a normalizing constant. Let us introduce the generalized inverse of h
0 for s<h(0+),
c:R—[0,00], o(s)=<{ h7l(s) for h(0+) < s < h(c0),

oo for h(oo) <s.
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and set

nﬂx)za(Z——g§Q®@ﬁ)

The constant Z is defined by the following mass condition

MF:/ninitdx:/nsda:.
Q Q

Again, the definition makes sense provided some requirements on the potential and the pressure
law are fulfilled :
(HC3) & ¢ WH1(Q) if Q is bounded, or ® € Wlléi(ﬂ) otherwise.
(HC4) a® is bounded from below on € : there exists C' € R such that a®(z) > C a.e.
x €
(HC5) a® is coercive on € : for any A € R the set {z € Q|a®(x) < A} is bounded.
(HC6) Consider the family of functions

nﬂ@:J<Z—%?®@O,

parametrized by Z € R. We suppose the existence of some Z € R such that ny € L#(Q)
Hence, we define ¢, = sup{Z € Rjny € L*(Q)}.

(HC7) For Z € (—00,(,), we denote TM(Z) = [, nz(x)dz. Clearly Z — TM(Z) is strictly
increasing. We denote Mp, = limyz_.¢, TM(Z). Hence, for any Mg € (0, Mp,), there exists
a unique normalization constant Zjy,. such that the associated equilibrium ng is well defined
and has mass M.

(HC8) To a non negative integrable function n we associate the quantity, that belongs to

RU {OO},

X (5.9)

oo otherwise.

The equilibrium ng is required to have finite free energy. Thus, we further assume :
Er(nz) < oo and 11~ (nz) € LY(Q) for any Z € (—o0, ().

Remark 1. In order to clarify this set of assumption, let us discuss relevant examples :
~ If h(0") > —o0 and h(co) = oo, which is the case if p(n) = nY, v > 1, then hypo-
theses (HC5)-(HCT) are trivially satisfied with Mp, = oo. Note also that for p(n) =n7,

we have
-1 +\ /(=1
J(S)—([ S s+1] ) .
~ Ifh(0%) = —co and h(oo) = oo, which is the case if p(n) = n, then Mp,=o00. When p(n)=
n, hypotheses (HC5)-(HCT) are equivalent to hypotheses (HC1)-(HC2) and o(s) = e®.
— When Q is bounded and ® is bounded the conditions (HC3)-(HCT) are trivially satisfied.

The equilibrium ng can be interpreted has a minimizer of the functional Ep, under the
constraint of prescribed mass. In this direction, the following result is proven in [38, Proposition
5, Lemma 6] :
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Proposition 5.4.1. Assuming the conditions (HP1)-(HP2) on the pressure and the conditions
(HCO0)-(HCS8) on the potential, then the functional Er(n) has a unique minimizer given by

ns(z) = o (ZMF _ QT&?q)(x)) , (5.10)
in the set of non negative integrable functions with total fluid mass M. Moreover :
Ep(n) — Ep(ng) > / [II(n) — I(ng) — I'(ng) (n — ng)] (z) dz (5.11)
Q

with equality if and only if

QT&]<1>(3:) + h(ng(x)) = Zmy, for almost all x € QL.

5.4.3 Dissipation and stability properties of the fluid—particles system

We are now in position to derive the crucial dissipation estimate satisfied by the system (5.5).
We restrict to the case where (5.5) is closed by the pressure law p = p(n), the temperature 6 > 0
in the Fokker—Planck term being fixed ; we assume without loss of generality that the units are
such that 8 = 1.

Theorem 5.4.2. We assume that the conditions (HP1)-(HP2) on the pressure and the condi-
tions (HCO)-(HCS8) are fulfilled. We suppose that

pp 1

L =5, 5.12

pyial R B (5.12)
holds. Let .#; be a detailed balance equilibrium of the coagulation/break up operator. We define
the following free energy functionals, associated respectively to the particles and to the fluid

Fr(f) zz/ﬂ/ﬂv<f<ln</f//) 1) +i%2fi—|—z’<1>fi> dv dz,

Jul?

Fr(n,u) = /Q <n7 +XII(n) + afn n<I>> dz.

Then, the total free energy F(f,n,u) = Fp(f)+Fr(n,u) is dissipated : solutions of (5.5) satisfy
— - i [3f 1
dt}“(f,n,u)—i-u/ﬂlvxu\ dx+EiE:1/Q/RS (v ﬂu)\/z f,+z,5/6 T,

_ %z/ﬂ 3 Qi(f)ln(%) dvdz < 0.

Remark that Fr can be rewritten by means of the functional Er

2
dvdzx

(5.13)

Ju?

Fr(n(t),u(t)) = /Q U e 4 X (B, () ~ Bi(ns) + XBr(ns).

However, we notice that the right-hand side of (5.11) is positive and equal to zero iff n = ng, so
that we can set
Jul?

REr(n,)](ns.us)) = [ n5-da+x (Be(n) — Br(ns)
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and consider it as a relative entropy, that is a functional that controls the distance from the
pair (n(t),u(t)) to the equilibrium solution (ng,us = 0). Similarly, when the total mass Mp
is subcritical the free energy Fp can be interpreted as a relative entropy with respect to the
equilibrium having the same mass. In turn, we can establish a non linear stability statement.

Corollary 5.4.3. We assume that 0 < Mp < Mp, and we denote
~ . 1)2
Mi(x,v) = w'2; exp < - Zﬁ - Z<I>(x)>

the equilibrium with total mass Mp. Therefore, we set

REP( f|/// Z// len f’ fl—l—///)dvdzn—]:p (2) 3/22 W

Z3/2

Let ng be the equilibrium state defined by (5.10) with mass M. Then, for any § > 0, there exits
k > 0 such that if initially

REp(fuit| #) + REp((Ninit, tinit)| (ns,0)) < K
holds, then, for any t > 0, the solution satisfies

’ 2

Z// | fi(t, x,v) — M(2,0)|dvdx < 6, /\ntaz—ng( ) dz <6, /anx<5

Q

Corollary 5.4.3 follows exactly as in [36], once the entropy dissipation has been established ;
the crucial step is the identification of the relative entropies REp and RFEp, which are the
appropriate tool to evaluate how far the solution is from the equilibrium. These arguments go
back to [27, 61, 162] to which we refer for further details.

Remark 2. Similar conclusions hold for incompressible models or models including the energy
equation. We restrict the discussion to the free space problem, but it applies to problems set on a
domain with suitable boundary conditions, say no-slip boundary condition for the velocity u, and
specular reflection of the particles. More intricate reflection operator can be considered as well,

see [36].
Remark 3. The condition (5.12) might look a bit arbitrary and artificial; it is adopted for

notational convenience only in order not to keep track of complicated coefficients in the energy
balance.

Proof of Theorem 5.4.2. Let us start by computing
ii// f~(1n(ﬁ>—1)+i”—2f- dv dz
dt i—1 Q JR3 ! % 2 ’

:__Z//RS< u)fi+ = Vﬂ) (Z.Z%V;Zf + 413 >dvdx
—//WZI f’ Qf;) dvdx—nZ// iVe® - vf; dvde.
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Next the potential energy of the particles satisfies

d > / / . Y .
— 1@ f;dvdr =0 // iV ® - vf;dvdx.

We turn to the kinetic energy of the fluid and we obtain

d u? Lop 1/3 /
a/ﬂ{?’n? B €pFZ//RS w)fit " - udvde — /Rsu-p(n)vxndx

—anf nu-qu)dw—u/ Vul? da.
R3 Q

The evolution of entropy associated to the fluid is driven by

i/ (n)der = —x [ Vi -(nuwll'(n)dzx
dt Jps R3

= X/ 0" (n)Ven - (nu) dx:/p/(n)vxn-udw.
R3 Q

Finally, the potential energy for the fluid satisfies

i/ n<I>d:E:/ nu-V,®dz.
dt R3 R3

We sum all these contributions, using (5.12) and the fact that fRS u - Vyfidv = 0 holds. We
obtain

iJ”-“fnu —i—u/]V u\2dx

d
t :——Z//RS fZ Ugdvdx——Z// Z;‘?dvdw

2! /M/g'v e L3 Lo (e

The first three terms in the right hand side can be combined into

S

This observation ends the proof.

(v —u/B)\/ i3 fi +

C2
Voli ‘ dvdz.
7]

5.5 Hydrodynamic regimes
We are interested in regimes where 0 < € < 1. As we shall see this regime leads to relaxation

effects, which tend to prescribe how the particles concentration depends on the velocity variable
v. In turn, we obtain models of purely hydrodynamic nature, where the unknowns depend only
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on the time and space variables. Indeed, as € go to 0, the concentrations f; tend to make the
Fokker—Planck operator vanish. Looking at the dissipation term in (5.13), we guess that

Jv = ult.z)/ 5P

filtzw) = LD o (il

(27T/z')3/2 ) as € — 0.

Then the behavior of the particulate flows can be described through the macroscopic concentra-
tion p;(t,x), the velocity u(¢,x) and the density n(¢, x). Identifying the limit system satisfied by
these quantities is the object of the present section. Of course, the asymptotic analysis depends
on the prescribed behavior with respect to ¢ of the other scaling parameters. According to [36],
we identify two regimes of interest : the so—called flowing and bubbling regimes.

Before detailing the asymptotic analysis, let us set up a few notation and discuss remarkable
estimates, which can be seen as a preliminary step towards a complete justification. We associate
to fi(t,z,v) the following macroscopic quantities

i(t, ) /fztxv

Ji(t,x) = z'/vaZ(t:Ev)dv

P;(t,x) = z/ v fi(t,z,v)dv.
R3
Integrating with respect to v the PDE satisfied by f; we obtain
1
z’(‘)tpi + Vx . JZ = —/ ZQZ(f) d?}, (5.14)
Te JR3
and L1
528tj + Div,P; +ip; V@ = R en (Ji —ipiu) - /]R3 wQ;(f) dv. (5.15)
As a matter of fact, we remark that the system (5.5) conserves the total momentum since we
have

8t<nu—|—ﬂzzJ>+D1Vx<nu®u—|—Z]P’>+Xpr+<aﬁnn+Zzpl)V ® = pAyu. (5.16)
i=1 i=1

Let us start by deducing from Theorem 5.4.2 the following a priori estimate.

Proposition 5.5.1. Assume that (5.12) holds and that the conditions (HP1)-(HP2) on the
pressure and the conditions (HCO)-(HCS8) on the potential are satisfied. Moreover, we assume
(HC9) (1+ ®)exp(—3®(z)) € LI(Q).
(HP3) If h(0+) = —oo we assume there exists 0 < s; < 1 such that

II
sup ﬂ,o <n< s < 4oo.
nh(n)

We consider an equilibrium #; = 2w where 0 < w < wy is such that

Z </ / (1 + z% + iq)(w))e_’(”2/4+¢(x)/2) dv dac) M; = K < 0.
< \Ja Jrs
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We suppose that the initial data (finit i, Minit, Winit) Satisfies finiti > 0, ninie > 0 and that the
quantities

i/ 5 finit’i(l—i-i—k‘ln(fj/i;i’i)‘—kig—i-i]@(x)\) dvda
i=1

2
.
L/u(nnnt+-nnnt|1§t| + [T(ninit) | + inie Bn|a®]) da
0

are finite and bounded uniformly with respect to all the parameters €, 3,n,a, pp/pr. Then, we
have :
(i) The quantity

Z/ﬁ/ fi 1+Z+‘ln< )‘H_H@( )dedx

is bounded uniformly for t > 0,
(ii) n, [TI(n)| and Bnla®|n are bounded in L>°(RT; L1(1)).
(iii) /1 u is bounded in L>°(R*; L?(Q)).
(iv) /AVgu is bounded in L*(RT x Q),
(v) Denoting

Di(t,z,v) = (v — B u(t, )\ /i3 f;(t,z,v) + 2V 1 /i3 fi(t, x,v),

the quantity

[

i=1 3 \/7

In this statement “bounded” means “bounded uniformly with respect to all the parameters e, 3,1, a
pp/pr’.

The proof is a consequence of the dissipation estimate in Theorem 5.4.2, combined to the following
elementary claim, which allows to control the negative part on fIn(f/.#), see [36, 61]. (We apply
this result with X = N x Q x R?, endowed with the measure .#; di dvdz, where di stands for
the counting measure on N, U = %(v?/2 + ®(2)), v = 1/2 and g = f;(t,z,v)/A4;.)

Lemma 5.5.2. Let X be a subset of RP, possibly RP itself. Let U : X — R such that (1 +
U)e vV € LY(X) for some 0 <v < 1. Let g: X — RT. Then, we have

0§/ gln_(g)dygy/ Ugdy—l—/(l—l—uU)e_”Udy.
X X X

With these properties, we already have estimates on the macroscopic quantities, but we can go
a step further, identifying leading terms owing to the dissipation term D. To this end, we need
an estimate on a higher moment with respect to the size variable, namely, we suppose that

2
dvdxdt

Z/ / i2 (14 v?) f;dvdz  is bounded uniformly on [0, T] (5.17)
R3

(uniformly with respect to the scaling parameters) for any 0 < 7' < oo. This condition, the
physical interpretation of which is not direct, is however somehow classical when dealing with
coagulation-fragmentation problem. It is likely that it can be satisfied under appropriate hypo-
thesis on the initial data and the kinetic coefficients, see [9].
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Lemma 5.5.3. Let the assumptions of Proposition 5.5.1 be fulfilled together with (5.17). Then,
we have

Ji = ipiu+ B\eEK;,

P; = pil + 72J; @ u+ 2K;

where the remainders K and K are bounded in L?(0,T; L'(Q x N)).

Proof. We rewrite
1
Ji =ipiu+ ﬁl/ <(’U — ﬁ_lu)fi + _.Vyfi) dv = ipju + ﬁ/ D; Z'5/3f2, dv.
R3 (3 R3

The last term, that is denoted Kj;, can be dominated by using the Cauchy-Schwarz inequality

g/Q|Ki|d$§ﬁ\/g (g/ﬁ/n@ 2dvdx>1/2 (g/g/ﬂ{gf’/gfidvdzn)l

We proceed similarly with

/2

D;
NG

P, = ﬁ_2Ji Qu+ p;l + / D;®wv ’i5/3fi dv.
R3
O

5.5.1 Flowing regime

For this regime we suppose that both pp/pr = 372 and = 3 are fixed, as well as «; we only
let € go to 0. According to the discussion above, we expect that

Ji >~ ipu, P; ~ p;I + ﬁ_zz’piu & u.
Plugging this ansatz into (5.14) and (5.16), we are led to the system
1
0epi + Va - (piu) = —Qilp),

on+ Vg - (nu) =0, ‘
O ((n+ B72v)u) 4+ Divy((n+ B2 )u @ u+ (xp + v)I) + (afnn + v)V,® = pA,u.

where we have set

o

V= Z 104-

i=1

As a matter of fact, we observe that
O + Vg - (vu) = 0.

This is a multiphase flow system where particles concentrations are subject to exchanges through
coagulation and break-up and advection with the fluid velocity u. The motion of the fluid can
be interpreted as a Navier-Stokes (or Euler if y = 0) system for the composite density n + 8~ 2v

and the velocity u, involving a complex pressure law.
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Chapitre 5. Un modéle d’écoulement particulaires avec coagulation et fragmentation

5.5.2 Bubbling regime
For this regime, the scaling assumptions cast as follows

1 pp
B=—7= — =

- ) 67
N PF
while we set a = sgn(av)e. We guess that, at leading order, the f;’s look like centered Maxwellians
i ~ pi(tv‘r) —iv? /2
filt,z,v) ~ 2 i) e .

Accordingly
L pilt, ) i
]P’Z_z/Rva@v(zﬂ/i)g/Qe dv = p;I.

The relation (5.15) allows to obtain the limiting particles current : letting e = 372 go to 0 in
(5.15) we get
Ji ~ipiu; — i5/3inw<I> — z'2/3vmpi.

Coming back to (5.14) and the fluid equations, we arrive at

iOipi + V4 - (pi(u — 23V, ®@)) = i3 App; + Tin(P),
on+ Vg - (nu) =0, ‘

O¢(nu) + Divy(nu @ u) + V, (xp + Z pi> + (sgn(a)n + v)Vy® = pAgu,
i=1

still with the notation v = Y2, ip;. Now particles concentrations are driven by a convection—
diffusion equation, with a size-dependent diffusion coefficient (proportional to the surface of the
grain, actually). The particles influence weakly the fluid through the pressure term (which can be
incorporated in a common Lagrange multiplier for incompressible flows) and the external force.
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