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M. Franck PETIT, Université Pierre et Marie Curie Paris 6 (LIP6), Rapporteur
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Algorithmes à vagues . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3 Tolérance aux fautes . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Types de pannes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Techniques de tolérance aux pannes . . . . . . . . . . . . . . . . . . 16

Pannes masquées . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Pannes non masquées . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Algorithmes de consensus . . . . . . . . . . . . . . . . . . . . . . . 17
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Règles définies pour les instances de type LA . . . . . . . . . . . . . 49
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Le modèle de Pannes . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Propriétés d’auto-stabilisation . . . . . . . . . . . . . . . . . . . . . 53
Preuve d’auto-stabilisation . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Simulations 57
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des tops qu’il a fallu pour que le déploiement retrouve un état stable. Cal-
culer le ratio entre cette moyenne et X. La courbe représente le ratio en
fonction de X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Suppression d’un pourcentage X (abscisse) d’instances (des SeDs) d’un
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Introduction

Les progrès dans la miniaturisation des composants électroniques, au niveau des réseaux
informatiques, ont largement contribué à l’apparition de plusieurs systèmes distribués qui
sont maintenant omniprésents (internet). Un système distribué est une collection d’entités
de calcul, autonomes, interconnectées [1]. De tels systèmes permettent d’échanger des
données (grâce aux réseaux WAN1), de partager des ressources (une imprimante dans un
réseau LAN2), d’augmenter des performances et d’améliorer notre capacité de calcul, en
distribuant les tâches entre plusieurs processus, etc.

Cependant, ils sont difficiles à concevoir, à contrôler, à maintenir car constitués d’une
variété de composants (logiciels et physiques) complexes qui sont susceptibles de tomber
en panne ou de subir des variations de leurs paramètres.

La nature des entités de calcul et la manière de les interconnecter laissent la place à
une large gamme de matériels et de réseaux.

Les différents éléments d’un système distribué coopèrent pour atteindre un objectif. La
manière d’établir cette coopération soulèvent des problèmes fondamentaux qui constituent
aussi le champ d’étude de ce domaine.

Ces systèmes sont donc caractérisés par l’hétérogénéité des éléments qui les composent,
une capacité de passage à l’échelle que ce soit par augmentation du nombre d’éléments, par
répartition sur de vastes étendues géographiques. Ils se présentent sous diverses formes
et certains sont très dynamiques quant au nombre d’éléments qui les composent (des
éléments peuvent rejoindre ou quitter). Parmi les types de systèmes, les grilles [2] et les
clouds [3]. Ces infrastructures offrent des services à la demande aux utilisateurs.

Pour supporter l’hétérogénéité du matériel et des réseaux tout en offrant une vue
unique aux utilisateurs, ces systèmes sont généralement organisés au moyen d’une couche
logicielle, appelée intergiciel (middleware) [4], qui est logiquement placée entre une couche
de haut niveau (utilisateurs et applications) et une couche de bas niveau (systèmes
d’exploitation, gestionnaires de ressources et autres protocoles de communication).

Ces intergiciels sont de différents types et rendent différents services [5–10]. Ils ne
sont pas des blocs monolithiques mais se présentent sous la forme d’une intégration de
collections hétérogènes de composants logiciels [11–13]. Un composant logiciel est défini
dans [11] comme une unité de composition, qui implémente des fonctionnalités et qui a,
par contrat, spécifié ses interfaces et ses dépendances de contexte. Il est caractérisé par
les propriétés suivantes :

❼ c’est une unité de déploiement indépendant;

1Wide Area Network
2Local Area Network
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❼ c’est une unité de composition par des tierces entités;

❼ il n’a pas d’état persistant.

Il existe différents modèles de composants logiciels [14] comme le modèle de composant
CORBA (CCM)3, FRACTAL [15], etc.

Un composant logiciel doit être instancié pendant la phase d’exécution. Ainsi, pen-
dant son exécution, une application à base de composants est constituée d’un ensemble
d’instances des composants qui la définissent, instances connectées selon les contrats et
interfaces définis.

L’intergiciel DIET [16], sur lequel nous avons appliqué les travaux décrits dans la suite
de ce manuscrit, est implémenté en CORBA. Son architecture est décrite au chapitre 1,
section 1.1.1.

Avant de pouvoir bénéficier des services d’un intergiciel, il doit d’abord être déployé
sur une infrastructure matérielle.

Déploiement de logiciel

Le déploiement de logiciel [17–20] est définit comme“un processus qui organise et orchestre
un ensemble d’activités ayant pour but de rendre le logiciel disponible à l’utilisation et
de le maintenir à jour et opérationnel” [20]. Il désigne l’ensemble des tâches à exécuter
pour rendre un système logiciel fonctionnel. C’est une tâche complexe, surtout sur une
infrastructure distribuée. Selon les auteurs, le processus peut être divisé en plusieurs sous-
tâches. Pour [17, 19], le processus commence depuis la dernière phase de développement
du logiciel, et regroupe les tâches suivantes :

❼ le dépôt : cette étape est une phase intermédiaire entre le développement du logiciel
et le processus de déploiement. Elle couvre les activités qui rendent le logiciel prêt
à être installé;

❼ l’installation : cette étape couvre les activités permettant de transférer les don-
nées vers les ressources cibles ainsi que les opérations de configuration nécessaires à
l’activation du logiciel;

❼ l’activation : c’est le démarrage des composants exécutables du logiciel;

❼ la désactivation : c’est l’arrêt de composants en exécution;

❼ la mise à jour : lorsqu’une nouvelle version est disponible. Cette étape peut né-
cessiter l’arrêt du système en cours, sa mise à jour et sa réactivation. Cependant
certains systèmes permettent la mise à jour d’une version sans arrêt du système en
cours d’exécution. C’est le cas des logiciels développés avec le langage Erlang [21]
que nous avons utilisé pour créer le simulateur décrit au chapitre 5;

❼ l’adaptation : cette étape couvre les activités qui ont cours pendant que le système
est en cours d’exécution. Cela comprend la réaction de l’application déployée aux
événements de son environnement;

3OMG : CORBA Component Model,v4.0 http://www.omg.org/spec/CCM/4.0/ 2016
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❼ la désinstallation : la suppression de certains fichiers et composants préalablement
installés, et éventuellement la reconfiguration d’autres composants affectés par cette
suppression;

❼ le retrait : lorsque le logiciel est obsolète, il est retiré.

Dans la spécification pour le déploiement d’applications distribuées à base de com-
posants [18], le processus de déploiement commence seulement après que le logiciel a été
développé, assemblé et publié (rendu disponible par exemple sur un entrepôt accessible
par internet ou à travers des disques de sauvegarde). A partir de ce moment, les différentes
étapes suivantes sont considérées :

❼ l’installation : la définition d’installation est différente avec le cas précédent. Il s’agit
de la mise à disposition des fichiers constituant le logiciel dans un entrepôt sous le
contrôle de l’entité chargée de réaliser le déploiement (une personne si le déploiement
sera manuel et/ou des outils spécialisés pour les déploiement automatiques [22–
25]). L’endroit où les données sont stockées ne cöıncide pas nécessairement avec les
ressources sur lesquelles les instances vont s’exécuter;

❼ la configuration : il s’agit ici de la possibilité de prévoir des configurations par
défaut; par exemple de fixer la couleur de l’arrière plan d’une fenêtre selon que l’on
soit dans une situation ou une autre;

❼ le plan de déploiement : il s’agit de trouver comment et où les composants du
logiciels devront être déployés, parmi les ressources de l’environnement cible. Il
nécessite de prendre en compte les exigences des composants et les possibilités des
ressources. Cette étape produit un plan de déploiement;

❼ la préparation : recouvre les tâches à accomplir sur les ressources (physiques, logi-
cielles) de l’environnement cible afin que le logiciel soit prêt à s’exécuter. Il s’agit
de transférer des fichiers exécutables et les données nécessaires sur les machines sur
lesquelles les composants du logiciel vont effectivement s’exécuter;

❼ le lancement : couvre les tâches, après celles liées à la préparation, à la suite
desquelles, le logiciel est dans un état “en exécution”, et donc disponible pour être
utilisé.

Se basant sur les subdivisions précédentes, [20] propose les étapes suivantes : le dépôt,
l’installation, l’activation, la désactivation, la désinstallation, le retrait, la mise à jour,
l’adaptation, la reconfiguration et la redistribution.

De ces différentes listes des étapes du processus de déploiement de logiciel, nous pou-
vons constater que globalement certaines étapes sont prises en compte par toutes les
classifications et que les quelques différences interviennent dans la prise en compte ou non
des étapes liées au dépôt (dernière étape de la phase de développement ou production) et
au suivi du logiciel une fois disponible (adaptation, mise à jour).

Nous pouvons regrouper les différentes étapes en trois classes :

❼ une qui regroupe les actions qui ont lieu avant que le logiciel ne soit en cours
d’exécution. Par exemple le transfert des fichiers sur les machines cibles, la con-
figuration, l’activation. Nous appellerons cette étape phase de préparation;
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❼ une qui regroupe les actions qui peuvent avoir lieu pendant que le logiciel est en
cours d’exécution. Nous appellerons les événements qui ont lieu pendant cette phase
adaptation. Cette adaptation peut se réaliser sous forme de modification de la
structure du logiciel par modifications des liens entre les instances des composants
pour diverses raisons (l’arrêt accidentel d’une instance, la migration d’une instance
vers une autre ressource). Les actions effectuées dans la phase d’adaptation peuvent
faire appel à des actions définies dans les étapes précédentes. Par exemple, un
changement de topologie peut s’accompagner de la création d’une nouvelle instance,
sur une ressource de l’infrastructure cible, création pendant laquelle il peut être fait
appel aux opérations de transferts de fichiers, de configuration et toutes les autres
opérations nécessaires pour activer la nouvelle instance. On peut même faire appel
aux opérations de désinstallation sur la ressource où l’instance déplacée s’exécutait
avant. Nous appellerons cette étape phase d’adaptation;

❼ une qui regroupe les actions pour mettre le logiciel à l’arrêt, désinstaller ce qui a été
installé au début. Nous appellerons cette étape phase d’arrêt.

Ainsi, pour nous, le processus de déploiement se déroule en trois phases :
D’abord une phase de préparation qui regroupe les actions à la fin desquelles le logiciel

est en cours d’exécution. Cette phase consiste entre autres activités à réaliser un plan de
déploiement. Pour faire un plan de déploiement, il faut prendre en compte les caractéris-
tiques et exigences du logiciel, celles de l’infrastructure cible et le résultat sera un plan de
déploiement. Nous avons dans le chapitre 3, proposé un modèle pour décrire l’architecture
d’un intergiciel hiérarchique, un modèle pour décrire une infrastructure matérielle, cible
éventuelle d’un déploiement, et un modèle pour décrire un plan de déploiement et/ou un
appariement (mapping) entre les instances de l’intergiciel hiérarchique et les ressources
physiques sur lesquelles elles s’exécutent.

Ensuite une phase d’adaptation (éventuelle) qui regroupe les actions qui ont lieu pen-
dant que le logiciel est en cours d’exécution et réagit aux événements de son environnement
afin de continuer à fournir le service correspondant à sa spécification. L’algorithme auto-
adaptatif décrit dans le chapitre 4 s’inscrit dans cadre. Il décrit des actions d’adaptation
selon les événements détectés pendant que l’intergiciel est déployé et en cours d’exécution.
Et c’est cet algorithme qui est ensuite simulé comme décrit dans le chapitre 5.

Enfin, la phase d’arrêt qui regroupe les actions qui, appliquées à un logiciel en exécution
le mettent à l’arrêt.

Notre travail de thèse s’inscrit surtout dans les étapes préparation et adaptation.
Un déploiement qui, une fois réalisé, ne peut pas réagir aux variations de son environ-

nement (logiciel et/ou matériel) d’exécution est dit statique. Un déploiement qui peut,
de manière autonome (totalement ou en partie), réagir ou s’adapter aux variations de son
environnement d’exécution, sera dit auto-adaptatif.

Les variations de l’environnement d’exécution sont très probables, surtout sur des
plates-formes élastiques.

Plate-forme élastique

La notion de plate-forme élastique fait référence à la possibilité d’ajout ou de retrait
de nœuds physiques à l’infrastructure physique au cours du temps, et pendant que les
applications s’exécutent dessus [26, 27]. L’élasticité est une caractéristique importante
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de beaucoup d’infrastructures distribuées modernes. C’est le cas dans les clouds, où en
fonction des besoins, le nombre de machines virtuelles dédiées à une application peut être
augmenté ou diminué.

Lorsque, dans une application distribuée, les processus peuvent disparâıtre et que
de nouveaux processus peuvent rejoindre, cette application est qualifiée de dynamique.
Lorsque le nombre de processus est fixe, on parle d’application statique.

L’élasticité d’une plate-forme peut être la cause de la disparition de processus car
lorsqu’un nœud physique quitte la plate-forme (panne, rupture du lien de connexion), les
processus qui s’exécutaient dessus peuvent se terminer ou bien ils se trouvent isolés et ne
participent plus à l’algorithme distribué. Mais une application peut être dynamique, même
avec une plate-forme avec un nombre fixe de nœuds. Ainsi, l’élasticité d’une plate-forme
peut rendre une application dynamique, mais une application peut être intrinsèquement
dynamique même sur une plate-forme non élastique.

Dans ce travail, nous avons considéré une application dynamique sur une plate-forme
élastique. L’application est la simulation d’un intergiciel distribué. La plate-forme sur
laquelle l’application est déployée est simulée comme une plate-forme élastique que les
nœuds peuvent joindre ou quitter.

L’application est dynamique dans la mesure où, elle doit réagir aux conséquences de
l’élasticité de la plate-forme (disparition de nœuds et donc de processus, ajout de nœuds
donc possibilité de création de nouveaux processus, en cas de besoin). L’application est
aussi dynamique pour des raisons autres que l’élasticité de la plate-forme. En effet, des
processus peuvent disparâıtre ou être crées dans une recherche d’une qualité de service.

Un déploiement statique d’une application, qui ne peut prendre en compte les varia-
tions de l’infrastructure sur laquelle l’application s’exécute, n’est pas une bonne solution
car lorsque l’application, pour une raison liée aux ressources matérielles, aux liens réseaux,
aux processus, ne parvient plus à assurer le service ou bien l’assure de manière dégradée,
l’unique solution est de reprendre tout le processus de déploiement, une opération qui est
coûteuse.

Une meilleure solution serait d’avoir des systèmes logiciels qui soient capables, de
manière totalement ou partiellement autonome, de s’auto-adapter.

Informatique autonome

L’informatique autonome [28, 29] est un paradigme pour la conception de systèmes logi-
ciels auto-adaptatifs [30, 31]. De tels systèmes ont la capacité de s’auto-adapter, en cours
d’exécution, pour maintenir une qualité de service, une topologie ou, de manière générale,
optimiser une fonction objective [32]. L’architecture de tels systèmes est en général basée
sur un modèle de boucle de contrôle fermée, inspirée de l’automatique. Cette architec-
ture, présentée dans [29], connue sous le nom de MAPE-K repose sur un module de
surveillance (Monitoring) du système à gérer, un module d’analyse (Analyze) des infor-
mations collectées, un module de planification (Plan) des actions à exécuter après la phase
d’analyse et d’un module pour exécuter (Execute) les décisions prises. Tous ces modules
partagent un ensemble de connaissances (Knowledge) qui peuvent être liées au système
logiciel à gérer et aussi aux ressources sur lesquelles le système s’exécute.

Les systèmes auto-adaptatifs offrent un ensemble de capacités d’auto-gestion, parmi
lesquels l’auto-réparation [33–35] en cas de défaillance. L’auto-réparation, qui est aussi
un moyen d’assurer une tolérance aux pannes (ou fautes), peut être obtenue par des
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algorithmes auto-stabilisants [36], dont l’exécution permettra au système de retrouver un
état correct, dans un temps fini. C’est dans ce sillage que s’inscrit l’essentiel de cette
thèse.

Problématique

Notre objectif est d’ajouter des capacités d’auto-adaptation à un intergiciel existant (qui
n’a pas été conçu dans une perspective d’informatique autonome) afin que son déploiement
soit auto-adaptatif. Le déploiement auto-adaptatif est constitué globalement de plusieurs
aspects comme le résume la Figure 1.

Figure 1: Vue générale d’un déploiement auto-adaptatif

L’un des aspects concerne le déploiement initial, ensemble de tâches (description
des ressources, de l’application, algorithmes de planification, transfert des fichiers, config-
urer des machines, installer des librairies,...), qui utilise plusieurs informations d’entrée et
outils de déploiement, et qui, en fin de compte, permet de déployer l’application sur une
infrastructure physique, rendant ainsi l’application disponible aux utilisateurs.

L’autre aspect concerne l’auto-adaptation. Pour ce dernier aspect (l’essentiel de
cette thèse a été consacré à cet aspect), une fois que l’intergiciel est déployé et en cours
d’utilisation, il faut savoir détecter les situations qui nécessitent une adaptation, ensuite il
faut écrire des algorithmes dont l’exécution (une réaction à la variation du contexte) aura
pour effet une adaptation. Si les événements qui déclenchent les adaptations sont liés à
une qualité de service, une idée serait de chercher à prédire ces événements et à agir de
manière proactive et éviter ainsi d’être dans une position défensive, réactive. Par contre,
si les événements, à la détection desquels le système doit réagir sont imprévisibles (cas
réaliste car une panne survient en général de manière non prévue), le système sera amené
à réagir.

Nous serons donc amené à définir ce qu’est un déploiement “stable” qui correspond
à une situation dans laquelle l’intergiciel déployé peut fournir le service pour lequel il
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est déployé. Cette situation de déploiement stable à lieu lorsqu’un certain nombre de
conditions sont toutes vraies. Par conséquent, on sera dans une situation “instable” à
chaque fois qu’une au moins des conditions de stabilité est fausse.

A chaque fois que le déploiement sera instable, cet état sera détecté et les mécanismes
d’auto-adaptation devront s’activer pour qu’en fin de compte le déploiement retrouve un
état stable.

Le mécanisme d’auto-adaptation (algorithme d’auto-adaptation), peut être centralisé
ou distribué.

Si l’algorithme est centralisé, un processus qui a une vision globale du déploiement
utilise les informations issues de la surveillance du système déployé pour évaluer l’état du
déploiement. Si cet état est instable, le processus exécute l’algorithme centralisé visant à
faire retrouver au déploiement un état stable.

Si l’algorithme est distribué (notre cas), chaque processus se basent sur les informations
conservées dans son état interne (ces informations provenant totalement où en partie de
la surveillance du système déployé) pour évaluer l’état du déploiement. Si cet état est
instable, le processus exécute l’algorithme distribué (chaque processus exécute le code de
l’algorithme) visant à faire retrouver au déploiement un état stable.

Contributions

Les principales contributions de cette thèse peuvent être regroupées en trois points :

La proposition d’un algorithme distribué d’auto-adaptation, permettant à un dé-
ploiement dont l’état est instable, de réagir pour retrouver un état stable. Cet algorithme
est auto-stabilisant, ce qui fait qu’un déploiement instable, exécutant cet algorithme,
retrouvera un état stable, dans un temps fini. Une preuve du caractère auto-stabilisant
de l’algorithme est donnée.

Une autre contribution de cette thèse est la conception et la programmation d’un
simulateur pour valider l’algorithme.

La thèse s’intéresse aussi au déploiement initial, dans la proposition de formalismes/de-
scriptions de certaines des entrées nécessaires pour le déploiement initial, à savoir l’infrastructure
cible sur laquelle une application est susceptible d’être déployée ainsi que l’application
elle-même.

Plan

La suite de ce manuscrit est organisée comme suit :

Le Chapitre 1 est consacré aux généralités sur les systèmes distribués. Certains
concepts de base relatifs aux systèmes distribués et qui sont utilisés dans le reste du
manuscrit y sont expliqués.L’intergiciel DIET sur lequel nous avons appliqué nos travaux
y est aussi décrit.

Le Chapitre 2 est consacré à l’état de l’art sur les domaines de recherche en lien avec
notre travail.
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Dans le Chapitre 3, nous décrivons l’architecture proposée, qui met en perspective
nos contributions avec les travaux antérieurs sur l’intergicielDIET. Nous y décrivons aussi
nos contributions pour le déploiement initial; à savoir, les descriptions de certaines entrées
nécessaires pour le déploiement initial. Il s’agit de la description d’une infrastructure
physique sur laquelle on peut déployer une application et de la description d’un intergiciel
hiérarchique de type DIET.

Dans le Chapitre 4, nous avons décrit un algorithme distribué dont le but est de
ramener (après chaque perturbation) le déploiement à un état stable.

Le Chapitre 5 est consacré à la description du simulateur que nous avons conçu
pour valider l’algorithme décrit dans le chapitre 4. Les simulations effectuées y sont aussi
décrites.

Ce dernier chapitre est suivi par la conclusion et les perspectives.
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CHAPITRE 1

Systèmes Distribués

Sommaire
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1.2.1 Systèmes distribués . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Modèle de communication . . . . . . . . . . . . . . . . . . . . . 19

1.2.3 Modèle d’exécution . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.4 Auto-stabilisation . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1 Généralités

Un système distribué est défini par Tanenbaum et al. [37] comme une collection d’ordinateurs
indépendants qui apparâıt à ses utilisateurs comme un système unique et cohérent. Cepen-
dant, un système distribué n’est pas toujours qu’une collection d’ordinateurs mais peut
aussi être une collection de processus, de processeurs, et plus généralement d’entités au-
tonomes. Ces entités autonomes et interconnectées coopèrent pour la réalisation d’un ob-
jectif. Si les entités autonomes sont, par exemple, des processus, l’objectif est l’exécution
d’un algorithme distribué dont chaque processus exécute le code.

Les entités qui composent ces systèmes partagent un certain nombre de caractéristiques
de base [38] :

❼ elles sont autonomes et sont ainsi en mesure d’exécuter des tâches de manière in-
dépendante;
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❼ elles sont interconnectées : directement où indirectement, ces entités doivent pouvoir
communiquer, selon un modèle de communication;

❼ elles disposent d’un mécanisme de coordination leur permettant de coopérer pour
atteindre un objectif.

Ces entités peuvent être homogènes (dans ce cas, elles sont identiques) ou hétérogènes.
Elles sont réparties géographiquement, sont concurrentes et asynchrones (il n’existe pas
un temps global pour tout le système et chaque entité à son horloge locale).

Un des avantages majeurs des systèmes distribués est le partage de ressources (matérielles
et/ou logicielles). Ceci permet aux utilisateurs d’accéder à des ressources distantes, d’avoir
accès à des services qu’une seule entité ne pourrait offrir (augmentation de performance
par une parallélisation par exemple). Contrairement à un système centralisé, caractérisé
par un élément central qui rend le système indisponible en cas de panne, et qui constitue
un goulet d’étranglement, un système distribué n’a pas un élément central et peut être
tolérant aux pannes (continuer à fonctionner après la défaillance d’une partie des entités),
en répliquant par exemple les ressources et les calculs sur différents sites, augmentant ainsi
la fiabilité du système.

Cependant, ces systèmes présentent plusieurs points de défaillance possibles (puisque
chaque entité est autonome et peut tomber en panne indépendamment des autres) et sont
difficiles à gérer. De même, leur sécurité est plus complexe à assurer puisque les entités
peuvent être réparties géographiquement.

Les systèmes informatiques sont passés d’une époque où ils étaient chers, centralisés,
larges, isolés (1945-1985) à une autre époque (1985+) marquée par deux avancées ma-
jeures que sont le développement de puissants microprocesseurs et l’avènement de réseaux
informatiques de plus en plus performants. L’arrivée de ces microprocesseurs qui avaient
la puissance des gros systèmes a réduit la taille et les coûts de ces matériels. Quant
aux réseaux, ils ont permis d’interconnecter des machines proches (LAN) ou lointaines
(WAN) afin qu’elles puissent s’échanger des informations. Contrairement aux précédents,
ces systèmes n’étaient plus centralisés mais distribués.

1.1.1 Exemples de systèmes distribués contemporains

Différents types de plates-formes distribuées sont apparues au début des années 2000 grâce
à l’exploitation des travaux antérieurs et aux avancées technologiques. Parmi ces plates-
formes, on peut citer les grilles (grid), les clouds, les réseaux Ad hoc. Les réseaux Ad hoc
sont des réseaux sans infrastructure [39], dans lesquels il n’existe pas une entité centrale qui
coordonne les communications comme c’est le cas dans les réseaux avec infrastructure. Ils
sont constitués d’un ensemble de nœuds, dotés de capacités de communication sans fil, qui
participent eux mêmes au routage des messages en transmettant ceux qui ne leur sont pas
destinés pour qu’ils atteignent leur destination. Les entités qui les constituent peuvent être
mobiles (se déplacer de manière indépendante le cas échéant) avec pour conséquence une
topologie du réseau qui change continuellement. Chaque entité peut communiquer avec
celles qui sont dans sa portée radio. Si tous les nœuds sont mobiles on les appelle MANET
(Mobile Ad hoc NETwork). Les nœuds peuvent être des téléphones, des ordinateurs
portables, tablettes, des véhicules, etc. Les réseaux de capteurs sans fil [40] sont un
cas particulier des réseaux ad hoc. Les nœuds sont des capteurs, disposant d’interfaces
de communication sans fil. Les données obtenues par les capteurs sont transmises à un
élément central en les faisant transiter éventuellement par d’autres nœuds.
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Les grilles informatiques

Une grille informatique (grid computing) est un type de plate-forme distribuée introduit
à la fin des années 90 par Ian Foster et Carl Kesselman [41, 42] qui le définissaient comme
une “infrastructure matérielle et logicielle qui fournit un accès sûr (fiable), accessible et
bon marché à de grandes capacités de calcul”. La grille signifiait alors une infrastructure
de calcul distribué pour la science de pointe avec des applications très gourmandes en
puissance de calcul (simulations de physique nucléaire, prédictions météorologiques,...).
Le terme de grille a été choisi par analogie avec le réseau électrique (appelé power grid).
Cela signifie que la fourniture des services informatiques devrait avoir des caractéristiques
semblables à la distribution de l’électricité : disponible partout, simple et facile d’accès
à travers une interface standard (prise électrique normalisée), utilisation à la demande
et en fonction des moyens de l’utilisateur (pas forcément informaticien) sans avoir à se
préoccuper des aspects techniques de production (types de machines, moyens de transport,
provenance, etc.). Le concept a été popularisé au début des années 2000 même si plusieurs
travaux antérieurs permettant sa mise en production existaient bien avant sans porter le
nom de grille [43].

Les grilles sont organisées dans une architecture en couche : entre la couche physique
(ou fabrique) et la couche application se trouve une couche intermédiaire appelé intergiciel
(middleware) qui offre divers services aux applications et aux utilisateurs (découverte et
allocation de ressources par exemple). Parmi ces intergiciels on peut citer Globus [2, 44],
Unicore [45], DIET [16].

Les grilles ont évolué en trois phases : les premières grilles étaient axées d’abord sur
le partage de la puissance de calcul entre centres informatiques, le partage des données
a suivi. Elles utilisaient des solutions sur mesure, pour des besoins spécifiques (première
version de Globus). La deuxième génération se caractérise par l’utilisation des intergiciels
permettant d’intégrer des technologies de grille différentes. La troisième génération cor-
respond à l’intégration des technologies web dans les intergiciels, qui avec les techniques
de virtualisation rendent la complexité de l’infrastructure presque invisible. Ils ont été
ensuite enrichis par ajout d’une couche de sémantique, les rendant plus “intelligents” et
autonomes. Cependant, ces grilles ne prenaient pas en compte les nouveaux paramètres
comme la généralisation des appareils mobiles, les réseaux sans fil, etc. De nouveaux pro-
jets de grille ont émergés en mettant l’accent dès leur conception sur des problèmes liés à
des notions comme l’ubiquité (“pervasiveness”) et l’auto-gestion (“self-management”). Les
grilles jusqu’à la troisième génération sont qualifiées de grilles traditionnelles et les autres
de grilles émergentes [46].

Des infrastructures de grilles sont aujourd’hui en production à travers le monde comme
grid’5000 [47], EGI [48], OSG1, etc.

L’OGF (Open Grid Forum)2 coordonne les efforts de standardisation dans le domaine.

Les Clouds

Le Cloud [3, 49] est une évolution du concept de grille. Il désigne un ensemble de tech-
nologies et systèmes permettant de fournir divers types de ressources (calcul, stockage,
logiciels, etc.) à la demande, à travers internet et généralement payant en fonction de
l’utilisation. Les ressources sont fournies de manière dynamique et peuvent ainsi s’adapter
à la charge de l’utilisateur. Cela permet au fournisseur d’exploiter son infrastructure de

1http://www.opensciencegrid.org/
2www.ogf.org
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manière optimale. Le cloud est en général la propriété d’une seule organisation, peut être
privé, public, hybride, communautaire. Une caractéristique du cloud est l’élasticité, per-
mettant au fournisseur d’être en mesure d’augmenter ou de réduire les ressources offertes
en fonction de la variation des besoins des utilisateurs.

Plusieurs types de solutions de cloud sont disponibles [50, 51] comme : OpenStack3,
OpenNebula4, Eucalyptus5.

L’intergiciel de grille et cloud DIET

L’intergiciel DIET [16] nous sert de cas d’utilisation, et les travaux décrits dans ce
manuscrit lui sont appliqués.

Figure 1.1: Hierarchie multi-MA de DIET.

DIET est un intergiciel GridRPC [52]. Un des objectifs de l’API GridRPC [53] est
de définir clairement une syntaxe et une sémantique pour les GridRPC qui sont une
extension des Remote Procedure Call (RPC) [54] appliquée au domaine des grilles de
calcul. Le modèle de programmation RPC est l’un des premiers modèles permettant
d’exécuter des applications sur un environnement distribué. Les applications client et
serveur des utilisateurs finaux doivent être décrites dans le modèle de programmation
fourni. L’architecture par composant de DIET est structurée de manière hiérarchique
pour améliorer le passage à l’échelle comme illustrée à la Fig. 1.1 . La boite à outils DIET

est implémentée en Corba [55]. Il bénéficie par conséquent des mises à jour des services
standardisés et stables d’implémentation à haute performance et librement disponibles
de Corba. DIET est constitué de plusieurs types de composants. Un Client est une
application qui utilise l’infrastructure DIET pour résoudre un problème en utilisant une
approche GridRPC. Un SeD (Server Daemon) joue le rôle de fournisseur de services.
Il exporte ses fonctionnalités via une interface de service de calcul standardisée. Un

3www.openstack.org
4http://opennebula.org/
5https://github.com/eucalyptus/eucalyptus/wiki
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1.1. Généralités

seul SeD peut offrir plusieurs services de calcul. Le troisième composant de DIET, les
agents, facilitent la localisation et l’invocation des services et donc l’interaction entre
les clients et les SeDs. La hiérarchie des agents fournit des services de haut niveaux
comme l’ordonnancement et la gestion des données. Ces services permettent un passage
à l’échelle grâce à leur distribution dans la hiérarchie des agents composés d’un agent
mâıtre (Master Agent ou MA) et de plusieurs agents locaux (Local Agents ou LA).
Plusieurs hiérarchies peuvent être inter-connectées pour former une plateforme multi-MA.

Une inter-action typique de DIET se déroule selon le scénario suivant :

(1) D’abord un Client se connecte à la hiérarchie et envoie un message de découverte
en fonction du type de service qu’il souhaite utilisé. Le message est envoyé au MA
auquel le client est connecté;

(2) ensuite, le message est propagé dans la hiérarchie du MA vers les SeDs à travers les
LA;

(3) Les SeDs qui ont reçu le message répondent avec un vecteur d’estimation : un
ensemble de valeurs qui décrit la disposition du SeD à traiter la requête. En fonc-
tion de l’implémentation du service, le vecteur d’estimation peut contenir des
informations comme le puissance de calcul, la quantité de RAM, le temps estimé
pour exécuter la requête, le nombre de requête en file d’attente, etc.;

(4) À chaque niveau de la hiérarchie des agents, les vecteurs d’estimation sont agrégés
de sorte que le MA ne va recevoir qu’un nombre réduit de vecteurs;

(5) Enfin, un ou plusieurs vecteurs sont retournés au Client qui avait lancé la requête.
Ce dernier choisit le SeD qui lui convient;

(6) La requête et les données nécessaires pour résoudre le problème sont envoyées par le
Client au SeD choisi.

1.1.2 Tâches classiques

Bien que les systèmes distribués se présentent sous différentes facettes, un certain nombre
de problèmes fondamentaux leur sont communs et servent de base au domaine. Un con-
cepteur d’une application distribuée peut être amené à trouver une solution ou à utiliser
les algorithmes existants concernant un ou plusieurs de ces problèmes. En plus de la
tolérance aux pannes, un certain nombre de ces problèmes sont décrits ci-dessous.

Élection de leader

Plusieurs applications distribuées reposent sur l’existence d’un processus leader. L’élection
d’un leader [56] consiste à distinguer un seul processus qui sera appelé leader avec un statut
particulier à partir de tous les processus (ou d’un groupe de processus) candidats. Les
autres processus sont dans un autre état différent de celui du leader. Lorsque le leader
meurt ou devient injoignable, un autre processus est élu parmi les processus qui sont dans
un état correct. Lorsque le graphe des processus n’est pas connexe, un leader est élu pour
chaque composante connexe, et lorsque le graphe redevient connexe, un seul leader reste.
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Exclusion mutuelle

Dans un système distribué, les processus s’exécutent ensemble de manière simultanée et
coopèrent pour atteindre un objectif. Ils peuvent donc chercher à avoir accès à une même
ressource partagée. L’objectif des algorithmes d’exclusion mutuelle [57] est de garantir
qu’au plus, un seul processus peut entrer en section critique d’une ressource partagée
à un moment donné. Lorsqu’un processus entre en section critique, les autres requêtes
devront attendre sa sortie pour qu’un autre processus puisse avoir l’accès à la ressource.
Certaines ressources ne peuvent être utilisées que par un seul processus à la fois (exemple
de l’imprimante) à un moment donné.

L’exclusion mutuelle de groupe [58, 59] est une généralisation de l’exclusion mutuelle
dans laquelle plusieurs ressources sont partagées entre les processus et plusieurs proces-
sus appartenant au même groupe peuvent accéder simultanément à la même ressource
partagée. Cependant, des processus de groupes différents doivent accéder aux ressources
partagées de manière exclusive.

Détection de propriété globale

L’état global d’un système distribué (ou une configuration du système) est constitué de
l’ensemble des états des processus du système à un moment donné. Il est parfois nécessaire
de déterminer si cet état global satisfait à un ou plusieurs critères (“stabilité”, terminai-
son, ...).

La détection de la terminaison [60] d’un calcul distribué est un problème dans lequel
on cherche à déterminer si tous les processus du système ont terminé un calcul. Cette
détection de la terminaison peut être effectuée par une entité centrale qui a une vue
globale du système. Si par contre, chaque processus doit détecter lui même la terminaison
du calcul global, on dit que c’est une détection distribuée de la terminaison, qui est un
problème fondamental dans les systèmes distribués. Depuis son introduction au début des
années 80 [61, 62], la détection distribuée de la terminaison d’un algorithme a été bien
étudiée [63–68].

Algorithmes à vagues

Les algorithmes à vagues [69–73] sont un type d’algorithme distribué classique. Ils sont
utilisés, entre autres cas, pour diffuser une information dans un réseau, collecter des
valeurs, synchroniser, etc. Un algorithme à vagues peut être constitué d’une ou de
plusieurs vagues successives. Dans un algorithme à vagues, un nœud initie une vague
en diffusant une information (jeton, requête,...) qui est propagée dans le réseau, ensuite
les réponses sont remontées vers l’initiateur qui prend une “décision” et peut lancer une
autre vague si nécessaire.

Les algorithmes d’écho [69], de collecte et d’agrégation de données dans un réseau [74]
sont des types d’algorithmes à vagues.

Les algorithmes d’écho [69], utilisent une technique de diffusion permettant à un nœud
de transmettre une information à un autre nœud. L’information est transmise par chaque
nœud à ses voisins jusqu’à ce qu’elle atteigne le destinataire. L’inconvénient de cette
méthode est le coût élevé en nombre de messages qu’elle induit. Ses avantages sont sa
simplicité et sa facilité de mise en œuvre.

Les algorithmes distribués d’agrégation de données [74] sont des algorithmes à vagues,
qui permettent de diffuser une requête dans un réseau et de collecter et d’agréger les
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réponses vers le nœud source qui avait émis la requête.

Ce type d’algorithme agit en deux phases : une phase durant laquelle un nœud source
diffuse une requête qui est propagée par chaque nœud à ses voisins jusqu’à ce que la requête
atteigne les feuilles; et une deuxième phase durant laquelle chaque nœud, en commençant
par les feuilles, renvoie sa réponse à son parent et ces réponses sont agrégées au fur et à
mesure que l’information remonte vers le nœud source qui avait émis la requête.

Les algorithmes à vagues se divisent en deux familles : celle des algorithmes qui
utilisent une circulation d’un jeton et celle des algorithmes qui utilisent une propagation
d’information avec retour ou PIF (Propagation of Information with Feedback).

Un déploiement de DIET fonctionne sous la forme d’un PIF. Lorsqu’un client se
connecte sur un master, ce dernier diffuse une requête dans le réseau pour trouver le
meilleur SeD (les SeDs sont au niveau des feuilles) pour satisfaire le client. Les réponses
des SeDs sont agrégées au fur et à mesure qu’elles remontent vers le master qui avait
émis la requête.

1.1.3 Tolérance aux fautes

La tolérance aux pannes vise à masquer les effets d’une défaillance ou à restaurer un
comportement conforme à sa spécification pour un système qui a dévié de sa spécification
à cause d’une faute [73].

Plus généralement, l’objectif est de gérer les pannes qui peuvent survenir pendant une
exécution comme l’arrêt brutal (crash) d’un processus, une rupture d’un lien de commu-
nication entre deux nœuds. Un système distribué peut être complexe, impliquant divers
types de ressources autonomes (pouvant défaillir localement et de manière indépendante),
géographiquement réparties, raison pour laquelle les fautes et les défaillances sont plus
courantes que dans les systèmes centralisés. Une panne peut être locale et affecter le
comportement d’une partie des autres nœuds du système sans affecter une autre partie.

En plus de la possibilité de pouvoir partager des ressources, avoir des systèmes en
mesure de continuer à fonctionner (même si ce n ’est pas de manière optimale) même
lorsque des défaillances touchent une partie des éléments qui le composent est un objec-
tif majeur dans la conception des systèmes distribués que l’on cherche à rendre fiable,
disponible, sûr et maintenable [37].

Un système distribué est en panne lorsqu’il ne se comporte plus conformément à sa
fonction (ce pour quoi il a été prévu) [75]. Une erreur est une partie de l’état du système
qui peut causé une panne. Une faute est ce qui cause une erreur. Être capable de détecter
les fautes est donc d’une grande importance.

Ainsi, un système est tolérant aux pannes s’il peut continuer à fournir le service pour
lequel il est prévu, et ceci même en présence de fautes.

Types de pannes

Différents modèles de fautes sont considérés dans les systèmes distribués. Lorsqu’on a une
vue du système distribué de niveau processus, on peut distinguer les différents types de
fautes au niveau processus [37, 73, 75].

❼ les arrêts : un processus à l’arrêt cesse d’exécuter ses actions (interne, de com-
munication, de lecture et d’écriture). L’arrêt peut être définitif (“crash stop”) ou
temporaire (“crash recovery”);
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❼ les omissions : elles modélisent les fautes qui peuvent conduire à la perte de mes-
sages. Ce type de faute peut affecter les canaux de communication et se manifester
sous la forme d’une rupture du lien (du à une problème au niveau du réseau physique
sous-jacent par exemple) rendant certaines communications impossibles. Les fautes
au niveau des canaux peuvent aussi provoquer la perte, la duplication, la transmis-
sion hors délais des messages. Un canal qui peut perdre des messages peut être
modélisé en considérant qu’un des processus au bout du canal échoue à transmettre
ou à recevoir certains messages qu’il devait envoyer ou recevoir. Un autre moyen de
modéliser les pertes de messages dans un système synchrone avec passage de mes-
sages est de permettre la perte d’au plus un certain nombre de messages à chaque
round, mais les canaux sur lesquels ces pertes apparaissent peuvent changer d’un
round en un autre;

❼ les pannes temporelles : elles sont dues à un délai non respecté, par exemple dans
un système temps réel où on exige que les actions soient terminées dans un intervalle
de temps donné.

Les différents types de pannes peuvent être classés dans des catégories de plus haut
niveau :

❼ les pannes transitoires : une panne transitoire peut perturber l’état d’un processus
d’une manière arbitraire. Elles capturent les effets de l’environnement, dont la durée
est limitée. L’élément responsable de la panne peut n’être actif que pendant un
temps limité, mais l’effet produit sur l’état global du système reste. Les omissions
sont un cas de panne transitoire, lorsque l’état d’un canal est perturbé;

❼ les pannes byzantines : elles modélisent un comportement arbitraire des processus.
Ce dernier modèle est utile pour simuler des attaques et situations dans lesquelles
les fautes sont difficiles à caractériser. Un algorithme dans le modèle avec fautes
byzantines doit donc fonctionner correctement (atteindre son but) quel que soit le
comportement des processus.

Techniques de tolérance aux pannes

Pour assurer une gestion des pannes qui peuvent éventuellement survenir dans un système
distribué, il faut d’abord être en mesure de détecter ces événements, c’est-à-dire, être
en mesure de détecter que le système ne se comporte plus de manière conforme à sa
fonction. La détection d’une panne n’est pas toujours possible (par exemple dans un
système asynchrone où le temps d’exécution des actions n’est pas borné). Mais lorsque la
détection est possible, elle peut se faire lorsqu’on détecte un signal ou message d’erreur.
Une erreur latente est une erreur présente mais non détectée. Une fois la faute détectée,
il faut la gérer. Les techniques utilisées pour assurer la tolérance aux pannes peuvent être
regroupées en deux catégories selon que les pannes sont masquées ou non masquées.

Pannes masquées

Lorsqu’une panne est masquée, son occurrence n’a pas d’impact sur le système. Cette
catégorie de techniques adoptent une vision pessimiste de la tolérance aux pannes. Ces
algorithmes tolèrent des dysfonctionnements continus touchant le système. Ces techniques
sont nécessaires dans les systèmes critiques (mettant en général la vie des personnes en
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danger en cas de défaillance total : un avion doit pouvoir continuer à voler même si un
de ses appareils ne fonctionne pas parfaitement). Elles sont cependant difficiles à mettre
en œuvre et ne tolèrent qu’un nombre restreint de dysfonctionnements. Les techniques de
réplication utilisées pour assurer la tolérance aux pannes font partie de cette catégorie.

Dans les techniques de réplication, les données et/ou les programmes sont répliqués
ce qui permet au système de pouvoir continuer à fonctionner même en présence de
pannes [76].

Pannes non masquées

Dans cette catégorie, les pannes peuvent affecter temporairement le comportement du sys-
tème, moment pendant lequel il ne se comporte plus exactement comme spécifié. Cepen-
dant, une restauration du comportement conforme à la spécification aura lieu. Parmi les
techniques utilisées pour assurer la restauration d’un comportement correct on retrouve
la reprise sur panne [77–79], et les algorithmes auto-stabilisants [36].

La reprise sur panne repose sur un historique, un enregistrement périodique des états
des processus au cours de leur exécution, sauvegardé dans une mémoire stable. Lorsqu’une
panne est détectée, le système est restauré à partir des derniers états sauvegardés. L’état
retrouvé n’est pas forcément l’état avant la panne, mais un état correct.

Algorithmes de consensus

Il existe des situations dans lesquelles des processus distribués doivent trouver un accord,
prendre la même décision,... C’est le cas, par exemple, dans un système de transaction où
tous les processus qui participent doivent tomber d’accord sur l’opération à exécuter et
l’appliquer : soit sauvegarder les résultats de la transaction, soit les annuler. Dans tous
les cas, la décision prise doit être la même pour tous les processus qui participent. Ils vont
donc appliquer la même opération. Ce problème, connu sous le nom de consensus [73,
80, 81], implique un ensemble de processus distribués, dont certains peuvent ne pas être
fiables. Chaque processus choisit une valeur initiale, à partir d’un ensemble commun à tous
les processus. Le problème consiste, pour les processus fiables, à trouver un consensus,
c’est à dire choisir, de manière irrévocable, la même valeur finale, parmi celles proposées;
en respectant les conditions suivantes :

❼ tout processus fiable finira par décider, c’est à dire choisir une valeur finale (termi-
naison);

❼ la valeur finale choisie doit être identique pour tous les processus fiables (accord);

❼ la valeur finale choisie doit avoir été proposée (validité). Ainsi, si tous les processus
fiables avaient choisi la valeur initiale v, alors la valeur finale doit être v.

Il existe des variantes du problème dans lesquelles, on exige plus que tous les processus
choisissent la même valeur, mais que le cardinal de l’ensemble des valeurs choisies soit au
plus égal à un entier k (“k-set consensus”). Dans ce cas, le consensus devient un cas
particulier lorsque k = 1 [82].

Dans un système où le réseau et les processus sont complètement fiables, le problème
peut trouver une solution triviale. Par exemple, les processus peuvent s’échanger les
valeurs et choisir une valeur finale de manière déterministe en appliquant la même fonction
(le maximum/minimum par exemple) à l’ensemble (des valeurs initiales) reçu. Le même
ensemble sera reçu par tous puisqu’il n’y a pas de pannes.
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Cependant, les systèmes réels sont en général sujets à des pannes, soit des liens de
communication, soit des processus qui peuvent se terminer ou se comporter de manière
arbitraire.

Le protocole de consensus décrit dans [81, 83] se base sur un modèle de faute de
type “crash recovery”, dans lequel un processus peut se terminer à tout instant mais peut
également redémarrer.

La recherche d’un algorithme de consensus peut se révéler plus difficile, voire impossi-
ble, en fonction des hypothèses et modèles considérés. Ficher et al. ont montré [84] que :
même en excluant les pannes byzantines, et en considérant comme type de panne que le
“crash” (terminaison permanente du processus) et en supposant un environnement dans
lequel l’envoi et la réception des messages sont fiables (un message envoyé arrive à sa des-
tination et n’est pas dupliqué), aucun protocole de consensus, complètement asynchrone,
ne peut tolérer le crash, ne serait ce que d’un seul des processus. Il faut souligner que dans
le modèle asynchrone, le “crash d’un processus” ne peut pas être détecté de manière fiable
car il est difficile de faire la distinction entre un processus très lent dans l’exécution des
instructions et un processus qui s’est terminé. Ce résultat (connu sous le nom de FLP) a
suscité un grand nombre de travaux qui l’ont étendu en utilisant d’autres hypothèses ou
modèles [85–87].

La recherche d’un consensus, dans un modèle de fautes byzantines, est connue sous le
nom de “problème des généraux byzantins” [88].

1.2 Modèles

Les systèmes distribués sont implémentés de diverses manières. Lorsqu’on les étudie, on
se base généralement sur des modèles [1, 89] permettant de décrire leurs caractéristiques
et de faire abstraction des détails sur le réseau physique sous-jacent par exemple. Un
modèle peut capturer les caractéristiques essentielles d’une grande variétés de systèmes
réels. L’avantage d’une telle démarche est de pouvoir réfléchir à partir des modèles et
non des systèmes réels. Plusieurs modèles ont été proposés pour les systèmes distribués.
L’existence de ces différents modèles a suscité des réflexions sur les relations entre les
différents modèles, la nature des problèmes qui peuvent être résolus (ou qui ne peuvent
pas l’être) dans un modèle donné, le modèle qui permet de résoudre le plus de problèmes,...

Les systèmes distribués sont modélisés de manière générale sous la forme d’un graphe.
Les communications entre les processus formant le système distribué sont décrites selon
un modèle à mémoire partagée ou à passage de messages.

Un algorithme distribué est décrit par un ensemble de règles avec des gardes. chaque
processus exécute un programme séquentiel constitué d’un certain nombre de règles.
L’exécution d’un algorithme distribué est généralement décrit par un modèle de tran-
sition.

1.2.1 Systèmes distribués

Un système distribué peut être modélisé par un graphe G = (V, E) où V représente
l’ensemble des sommets (appelés aussi nœuds) du graphe et E l’ensemble des arêtes.
Chaque v ∈ V représente une des entités constituant le système et chaque arête e ∈ E (e
est un couple (u, v) avec u ∈ V, v ∈ V ) représente une relation (généralement un lien de
communication) entre les deux entités u et v. Un graphe peut être orienté ou non orienté.
Pour un graphe orienté, toute arête e = (u, v) est orientée de u vers v, est sortante pour
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u et entrante pour v. La paire (u, v) est ordonnée, u est appelé prédécesseur de v et v est
appelé successeur de u.

Dans la suite, nous considérons uniquement les graphes non orientés et donnons la
définition des quelques concepts sur les graphes [90].

Si e = (u, v) ∈ E, on dit que le nœud u est adjacents à v, que les nœuds u et v sont
voisins. On définit et note le voisinage (l’ensemble des voisins) d’un nœud u par Nu =
{v ∈ V, (u, v) ou (v, u) ∈ E}.

Le degré d’un nœud u est défini et noté par D(v) =|Nu|.

Un nœud u est dit isolé lorsque D(u) = 0, c’est à dire un nœud sans voisin.

Deux arêtes e1, e2 ∈ E sont dites adjacentes lorsque e1 6=2 et e1

⋂
2 6= ∅ (les deux

arêtes sont distinctes et ont un sommet en commun).

Un chemin entre v1 et vk est une séquence d’arêtes adjacentes (v1, v2), (v2, v3),...,
(vk−1, vk) plus simplement noté (v1, v2, ..., vk−1, vk) dans lequel tous les vi sont distincts à
l’exception éventuellement de v1 et vk qui peuvent être égaux. Lorsque v1 = vk, le chemin
est appelé circuit ou cycle. Un graphe est dit acyclique s’il ne comporte pas de cycle.
Deux sommets sont dits connectés lorsqu’il existe un chemin entre eux.

Un sous graphe du graphe G = (V, E) est un graphe G1 = (V 1, E1) tel que V 1 ⊆ V
et E1 ⊆ E. On dit que le sous graphe G1 est induit par V 1 ⊆ V lorsque G1 est obtenu
en supprimant de G, l’ensemble des sommets dans V − V 1 et les arêtes qui leur sont
incidentes.

Soit la relation R sur l’ensemble V des sommets du graphe non orienté G tel : pour une
paire de sommets (u, v), uRv signifie que u et v sont connectés; autrement dit, qu’il existe
un chemin entre u et v. Cette relation R, “est connecté”, est une relation d’équivalence.
Chaque classe d’équivalence de sommets de V induit un sous-graphe, appelé composante
connexe.

Un graphe est dit connexe s’il est constitué d’une seule composante connexe; et non-
connexe dans le cas où il est constitué de plusieurs composantes connexes. Ainsi, dans
un graphe connexe, il existe un chemin entre chaque paire de sommets alors que dans un
graphe non connexe, il existe au moins une paire de sommets non connectés. Lorsqu’une
composante connexe est constituée d’un unique sommet, ce sommet est dit isolé.

Un graphe acyclique et non-connexe est appelé une forêt.

Un graphe G = (V, E) est dit complet si ∀v ∈ V,Nv = V −{v}, c’est à dire que chaque
sommet est connecté à tous les autres sommets. Dans ce cas, si |V |=n, |E|=n(n− 1)/2.

1.2.2 Modèle de communication

Les modèles de communication pour les systèmes distribués sont de deux types : le modèle
à mémoire partagée (dans lequel on retrouve le modèle à état et le modèle à registre) et
le modèle à passage de messages.

Dans le modèle à mémoire partagée, les nœuds communiquent en écrivant et lisant
des mémoires partagées. On retrouve dans cette classe, le modèle à état et le modèle à
registre.

Dans le modèle à état, si deux nœuds sont voisins, alors chacun peut modifier son état
(lui seul peut le faire) et lire l’état de son voisin.

Dans le modèle à registre, si deux nœud Ni et Nj sont voisins, alors il existe deux
registres Ri (pour Ni) et Rj (pour Nj) entre eux. Pour communiquer, Ni écrit dans Ri et
lit Rj tandis que Nj écrit dans Rj et lit Ri.
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La simulation d’un modèle A par un modèle B permet, lorsque cela est possible,
d’adapter tout algorithme conçu pour le modèle A en un algorithme pour le modèle
B [91, 92].

Nous détaillons dans la section suivante le modèle à passage de messages, modèle sur
lequel est basé le travail présenté dans ce manuscrit.

Modèle à passage de messages

Dans ce modèle, les nœuds (processus) communiquent uniquement par échange de mes-
sages qui transitent par des canaux de communication [1]. Chaque nœud dispose de son
propre espace d’adressage.

Les communications peuvent suivre un modèle synchrone ou asynchrone [72, 73].
Dans un modèle asynchrone, l’envoi et la réception d’un message sont des événements

indépendants. Ainsi, l’envoi d’un message i n’est pas conditionné par la réception d’un
message précédent (i− 1). Il n’y a pas de temps global et chaque nœud possède sa propre
horloge. Le temps que prend un message émis pour atteindre son destinataire est fini mais
non borné. Ce délai peut donc être arbitrairement long.

Dans un modèle synchrone, l’envoi et la réception d’un message sont coordonnés pour
former un seul événement. Ainsi, un message n’est envoyé que lorsque son destinataire est
prêt pour le recevoir. Les horloges des différents nœuds sont synchronisées et marquent le
même temps, ou bien le décalage est borné. Les nœuds exécutent leurs actions par cycle
(ou round). Pour chaque cycle, chaque nœud exécute un ensemble prédéfini d’actions, et
aucun nœud ne débute le cycle i que lorsque tous les processus ont terminé le cycle (i−1).

Dans un modèle à passage de messages, des hypothèses sont faites sur les propriétés
des canaux de communications par où transitent les messages.

Ainsi, les canaux peuvent être fiables ou non fiables, avec des capacités (tailles) finies
(bornées ou non bornées) ou infinies. Dans un canal fiable, les pertes de messages sont
inexistantes contrairement à un canal non fiable où cette possibilité est prise en compte.

Lorsque la taille d’un canal est bornée, et lorsque la file d’attente est pleine, le processus
qui transmet est bloqué, où une erreur est générée ou un message est supprimé de la file.
L’ordre dans lequel les messages sont transmis et reçus peut être modélisé par des files de
type FIFO (les messages échangés entre deux processus sont reçus dans l’ordre où ils sont
été envoyés) ou non.

1.2.3 Modèle d’exécution

Dans la suite, on s’intéresse aux systèmes distribués avec un modèle de communication
par passage de messages.

Dans un algorithme centralisé, les processus ont une vision globale du système (topolo-
gie, les autres processus, etc.) et peuvent prendre une décision optimale.

Un algorithme distribué est exécuté par un ensemble de processus formant un système
distribué qui coopèrent pour atteindre un objectif. Lorsque tous les processus exécutent
le même programme, on dit que le système est uniforme. Sinon, l’algorithme est dit non-
uniforme. Dans un algorithme distribué, les processus ont une vision réduite du système
(en général, ils ont connaissance d’une partie ou de l’ensemble de leurs voisins, mais
ils n’ont pas de connaissance globale de la topologie du réseau ou du nombre total de
processus).

Dans un modèle à passage de messages, l’exécution d’un algorithme distribué et
son évolution dans le temps sont modélisés par un système de transition [1, 38, 72].
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L’algorithme est exécuté par un ensemble de processus séquentiels, qui communiquent
entre eux par échange de messages pour atteindre un objectif commun. Un processus
séquentiel exécute un ensemble d’instructions de manière séquentielle.

Définition 1 (Algorithme distribué). Un algorithme distribué A peut être modélisé par
un ensemble de règles A :: R1 | R2 |.....| Rn où chaque Ri est une règle de la forme :

si Guardi alors Actioni

Où

Guardi est un prédicat booléen, fonction des variables locales du nœud (toutes ou
une partie) et éventuellement d’information externe au nœud (provenant d’oracle, d’un
serveur, des voisins);

Actioni est un ensemble d’instructions exécutées par le nœud et qui peuvent modifier
les valeurs de ses variables locales. Ces instructions ne sont exécutées que lorsque Guardi

est vrai, et dans ce cas on dit que le nœud est activable ou déclenchable (“enabled”).

L’ensemble des actions que peut exécuter un processus peuvent être regroupées dans
les catégories suivantes :

❼ action interne : toute exécution dans l’espace d’adressage du processus produisant la
modification de la valeur d’une ou de plusieurs de ses variables locales (état interne);

❼ action de communication : tout envoi ou réception d’un message à destination ou
en provenance d’un autre processus du système (ensemble des processus formant le
système distribué);

❼ action de lecture : toute lecture de données en provenance d’un élément externe
au système. Les données lues peuvent avoir une influence sur l’état interne du
processus;

❼ action de d’écriture : toute écriture de données vers un élément extérieur au système.

Chaque processus a un état ei.

Définition 2 (État d’un nœud). L’état d’un nœud est défini à partir de ses variables
locales (toutes ou une partie).

On note E l’ensemble des états possibles d’un processus. Un processus peut changer
d’état à la suite d’une action interne.

Définition 3 (État d’un canal de communication). L’état d’un canal de communication
est défini par l’ensemble des messages qui y circulent au moment considéré. L’état d’un
canal est donc soit vide soit non vide.

Définition 4 (État global ou configuration). Un état global d’un algorithme distribué,
appelé aussi une configuration (notons le c) est un vecteur des états de chaque processus,
de la forme c=[e1, e2, ..., en] où ei est l’état courant du processus i. Dans le cas d’un
système asynchrone, il faut en plus du vecteur des états, prendre en compte le vecteur
constitué de l’état de chaque canal de communication.
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La configuration d’un algorithme distribué évolue à la suite d’une action interne à
un processus. L’évolution de l’état global, appelée transition, se fait donc de manière
discrète.

Définition 5 (Système de transition). Un système de transition est un triplet T =(C,→
, I) où :

❼ C est l’ensemble de toutes les configurations possibles;

❼ → est une relation binaire dans C;

❼ I ⊆ C est l’ensemble des configurations initiales.

Une transition ti est donc un couple (ci, ci+1) ∈ C × C tel que ci → ci+1.

Puisque plusieurs nœuds peuvent être simultanément activables, et afin de modéliser le
comportement d’un nœud activable, on utilise un ordonnanceur, appelé démon (deamon)
ou adversaire [93]. A chaque pas de calcul (transition), il choisit les nœuds qui vont
exécuter leurs actions parmi les nœuds activables. Un démon est dit :

❼ central ou séquentiel s’il n’active qu’un seul nœud activable;

❼ distribué s’il peut activer un sous ensemble de nœuds (de cardinal au moins égal
à deux) parmi les nœuds activables. Les nœuds activés exécutent leurs actions de
manière synchrone;

❼ synchrone ou parallèle s’il doit activer tous les nœuds activables. Les nœuds activés
exécutent leurs actions de manière asynchrone.

Pour modéliser les choix du démon, la notion d’équité (“fairness”) est utilisée. Le
démon est dit [94] :

❼ faiblement équitable (“unfair”) s’il doit ultimement activer tout nœud continûment
et infiniment activable;

❼ fortement équitable (“fair”) s’il doit ultimement activer tout nœud infiniment ac-
tivable;

❼ inéquitable s’il n’est pas équitable (ni fortement, ni faiblement).

Définition 6 (Configuration terminale). Une configuration ct est dite terminale s’il n’existe
aucune autre configuration c ∈ C telle que (ct, c) soit une transition.

Dans un système de transition, l’évolution au cours du temps de l’état global est une
suite de transitions causées par des événements internes au processus. Cette évolution est
capturée par la notion d’exécution.

Définition 7 (Exécution). Une exécution E est une séquence (c0, c1, c2, ...) de configura-
tions telle que c0 ∈ I, et ci → ci+1 pour tout i ≥ 0. Une exécution est finie si elle se
termine par une configuration terminale, sinon elle est infinie.
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1.2.4 Auto-stabilisation

L’apparition de pannes dans un système distribué, constitué d’un grand nombre de proces-
sus et de liens de communication, est un événement courant et pas exceptionnel. Certains
de ces systèmes sont dynamiques, permettant ainsi l’ajout et le retrait de processus en
cours d’exécution. Ils sont confrontés à des changements de topologies, et à diverses autres
perturbations.

Il est donc nécessaire de proposer des moyens de gérer ces pannes. Cependant, vue
la taille et la complexité de ces systèmes, une gestion manuelle des pannes serait ineffi-
cace, voire impossible. Les techniques de tolérance aux pannes permettent une gestion
automatisée des pannes.

Ces techniques se divisent en deux classes : celle dans laquelle on masque les pannes
(les effets des pannes sont invisibles à l’application) et celle dans laquelle les pannes ne
sont pas masquées. L’auto-stabilisation fait partie de cette dernière classe.

Le concept d’auto-stabilisation dans les systèmes distribués a été introduit en 1974
par E. W. Dijkstra [36].

Un système auto-stabilisant doit tolérer les pannes transitoires (des processus et des
liens). Une panne transitoire peut corrompre les données en mémoire des processus (vari-
ables, pointeur de programme), les canaux de communication, mais sans corrompre le
code qui est exécuté. L’exécution du code de l’algorithme auto-stabilisant devra permet-
tre de retrouver un état correct, à partir de n’importe quel état, atteint à cause des pannes
transitoires ou de valeurs initiales arbitraires.

Définition 8 (Algorithme auto-stabilisant). Un algorithme est dit auto-stabilisant si quel
que soit son état initial, il atteindra un état correct (légitime), après un nombre fini
d’étapes.

Intuitivement, un algorithme est auto-stabilisant s’il est capable de retrouver un com-
portement correct à partir d’un état global initial arbitraire [93]. L’état initial arbitraire
permet de prendre en compte l’effet des fautes sur le système.

Les algorithmes auto-stabilisants sont utilisés comme un moyen d’assurer une tolérance
aux pannes parce qu’après une perturbation imprévue, ils offrent la garanti de retrouver
un état correct sans intervention extérieure.

Pour valider le caractère auto-stabilisant d’un algorithme, il faut montrer que les pro-
priétés de convergence et de clôture [95] sont vérifiées.

Définition 9 (Convergence). La propriété de convergence stipule que quelque soit l’état
initial, un système exécutant un algorithme auto-stabilisant va atteindre un état légal au
bout d’un nombre fini de transitions.

On doit souligner ici que la convergence commence après que la dernière action de ce
qui constitue la panne a été appliquée. Si le système est perpétuellement perturbé, sa
convergence ne pourra pas être prouvée. Donc, il faut au moins qu’ un délai suffisamment
long pour permettre une convergence existe entre deux pannes. En d’autres termes, le
temps moyen entre les pannes doit être plus grand que le temps de réparation (c’est à dire
d’exécution de l’algorithme auto-stabilisant).

Définition 10 (Clôture). La propriété de clôture stipule qu’une fois un système auto-
stabilisant a atteint un état légal, et en l’absence de fautes, les transitions le laisseront
dans un état légal.
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La capacité d’un système à pouvoir se réajuster ou retrouver un état correct, après
des perturbations, et sans intervention externe, est une propriété utile dans les systèmes
distribués. C’est la raison pour laquelle, l’auto-stabilisation, en tant qu’une des techniques
de tolérance aux pannes à suscité beaucoup d’intérêt.
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Le déploiement de logiciel [17–20] est défini dans [19] comme le processus, constitué
d’un ensemble d’activités liées, entre l’acquisition et l’exécution du logiciel. Ce processus
a pour objectif de rendre opérationnel une application, qui peut ainsi être utilisée par
les utilisateurs. Une fois l’application déployée, le processus de déploiement continue
par les mécanismes d’adaptation du logiciel afin de chercher à atteindre une qualité de
service. En effet, les infrastructures modernes sur lesquelles on déploie des applications
sont caractérisées par de fréquentes variations de leur environnement.

Cependant, l’objectif d’un déploiement de logiciel, en plus de ceux déjà notés dans ces
définitions, peut être de maintenir une qualité de service autre que la seule disponibilité,
et que la non-atteinte de cette qualité, provoque une stratégie de redéploiement. Cette
qualité de service peut être qualitative (par exemple maintenir une topologie particulière)
ou bien quantitative (par exemple le logiciel devra être capable de réaliser certaines tâches
dans un temps inférieur à une valeur donnée).

Ainsi, s’appuyant sur les définitions précédentes, on peut définir le déploiement de
logiciel comme un processus consistant en un ensemble d’activités reliées et ayant pour
but de rendre le logiciel disponible à l’utilisation, à jour et en état d’assurer une qualité
de service prédéfinie.

Le processus de déploiement suppose au moins l’existence d’un logiciel qu’on veut
déployer, d’une infrastructure cible, constituée de ressources informatiques (ordinateurs,
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clusters, téléphones,...) interconnectées, sur laquelle le logiciel sera déployé, et, éventuelle-
ment, d’outils permettant d’automatiser le déploiement (sinon l’opération sera effectuée
manuellement).

2.1 Outils et frameworks de déploiement

Des standards et spécifications du domaine, on peut citer la spécification de l’OMG (Ob-
ject Management Group) pour le déploiement d’applications distribuées à base de com-
posants [18], l’OSGi (Open Services Gateway initiative) [96].

OSGi fournit un environnement d’exécution, basé sur la technologie Java. Le processus
de déploiement inclut les activités suivantes : l’installation, la mise à jour, la désinstal-
lation. Il fournit un cadre qui permet le déploiement d’applications Java, extensibles et
téléchargeables (appelées “bundle”). Un “bundle” est constitué de classes Java et d’autres
ressources (librairies, fichiers, etc.), l’ensemble pouvant fournir un ou plusieurs services
aux utilisateurs. Ils sont déployés sous la forme d’archives JAR (Java ARchive). Les
“bundles” sont les seules entités utilisées pour le déploiement d’applications. Les appareils
OSGi compatibles peuvent télécharger, installer, supprimer les “bundles”. L’installation
et la mise à jour se font de manière dynamique, en gérant les dépendances entre les “bun-
dles” et les services. Les limitations de ce modèle sont liées au fait qu’il est spécifique à
l’environnement Java et à des applications non distribuées.

Quant à la spécification de l’OMG, elle a pour objectif de fournir un modèle de données
et d’exécution permettant de gérer le développement, le packaging, le déploiement et la
configuration d’applications à base de composants. La spécification est décrite à travers
une entité appelée “Platform-Independent Model” (PIM), composée d’un ensemble de
modèles UML1 et de règles sémantiques associées. Le PIM est indépendant de tout modèle
de composant particulier. Pour utiliser cette spécification avec un modèle particulier de
composant, il faut créer une entité appelée “Platform-Specific Mapping” (PSM). Le PSM
est un ensemble de règles qui transforme les modèles UML du PIM en données et modèles
d’exécution, dans un format approprié pour le déploiement du modèle de composant
cible. La spécification n’a pour l’instant standardisée que le PSM pour le modèle de
composant corba2, dans lequel les modèles de données et d’exécution sont transformés
en deux formats : XML schema pour le stockage sur disque et l’échange entre outils, et
IDL (Interface Definition Language) pour la représentation du modèle d’exécution et des
communications entre les entités du déploiement.

Des outils de déploiement [22, 23, 97–99] et de gestion de configuration comme Chef [24],
Puppet [25], Ansible [100], TakTuk [98] permettent un certain niveau d’automatisation
du processus de déploiement. Les outils de configuration récents offrent la possibilité de
“programmer” la manière dont les ressources seront configurées. Une description de l’état
désiré des ressources considérées est donnée (un modèle, au format YAML pour Ansible
par exemple), et ces outils transforment le modèle en un ensemble de commandes dont
l’exécution permettra d’avoir l’état désiré.

Une étude des outils et techniques de déploiement d’applications a été faite dans [101]
en se basant sur une division du processus de déploiement en dix (10) étapes basées en
partie sur les étapes discutées dans [17, 19].

Parmi les différentes approches de déploiement citées, le déploiement dirigé par la

1Unified Modeling Language
2OMG : CORBA Component Model, v4.0 http://www.omg.org/spec/CCM/4.0/ 2016
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qualité de service, dans lequel une application est déployée et éventuellement redéployée
pour atteindre une certaine qualité de service comme la tolérance aux pannes. Une autre
des approches de déploiement utilisée pour l’étude est le “déploiement à chaud” (hot
deployment) concernant les techniques permettant à une application en cours d’exécution
de s’adapter. Cependant, les exemples cités sont des cadres pour concevoir des applications
capables de s’adapter en cours d’exécution et pas des applications existantes.

Une étude plus récente [102] se base sur les critères suivants : l’unité de déploiement,
le domaine de déploiement, l’expression des propriétés, l’expertise du concepteur du dé-
ploiement, les activités de déploiement, le contrôle du déploiement et la nature du boot-
strap. Le bootstrap signifiant ici un programme d’amorce qui doit être opérationnel sur
les appareils cibles avant le déploiement.

Nous avons supposé l’existence de tels outils (l’intergiciel DIET dispose d’un outil de
ce genre, GoDIET [22]) et dans cette thèse nous n’avons pas cherché à réaliser des outils de
déploiement. Dans la partie dans laquelle nous simulons l’algorithme distribué que nous
avons proposé, le déploiement est simulé par la création de hiérarchie des processus (une
hiérarchieDIET) sur un ensemble de machines virtuelles interconnectées. Cette opération
aurait nécessité un outil de déploiement dans un environnement réel. On s’intéresse à la
phase où l’application est déjà déployée (on suppose avec des outils d’automatisation exis-
tants), et à comment gérer la détection d’un état de l’application qui n’est plus conforme
à sa spécification?

TUNe [103], une évolution de Jade [104], propose un cadre (framework) pour encap-
suler des logiciels patrimoniaux (développés dans/avec un paradigme autre que celui dans
lequel on cherche à les utiliser) dans un modèle de composant FRACTAL [15], afin de leur
assurer une gestion autonome. Le cadre propose un langage de description d’architecture
permettant de décrire l’application à déployer, la possibilité d’implanter des politiques de
reconfiguration de l’application à base de composant obtenue.

Ce type d’approche, pour rendre autonome l’administration de logiciels, est aussi pro-
posé par Rainbow [105], un des premiers cadres destinés à la conception d’applications
autonomes basées sur le modèle de système autonome introduit par IBM (MAPE-K) [29].
Rainbow utilise un modèle pour surveiller les propriétés d’un système en exécution,
évalue le modèle pour détecter des violations de contraintes et si nécessaire applique des
actions d’adaptation sur le système en exécution. Rainbow doit être utilisé pendant
la phase de conception et développement de l’application et n’est donc pas destiné aux
applications patrimoniales.

CASA (Contract-based Adaptive Software Architecture) [106] est un cadre qui permet
l’adaptation dynamique des applications. Il inclut différents mécanismes d’adaptation
dont la recomposition dynamique des composants d’une application.

Ils existent d’autres cadres basés sur d’autres approches telles que Model@run.time [107].
C’est une approche de génie logiciel dont l’objectif est de proposer des outils et méthodolo-
gies adaptés à la conception de logiciels complexes, en se basant sur des modèles. Ces
modèles permettent de décrire les fonctionnalités avec un haut niveau d’abstraction et
d’utiliser des outils de transformation de modèles pour obtenir des implémentations (en
partie ou entièrement) des logiciels dans des langages spécifiques. L’utilisation de cette ap-
proche pour le développement de systèmes auto-adaptatifs [108–110] considère les modèles
comme les éléments de base à partir desquels les applications seront modifiées en temps
réel. Dans cette approche, le système en exécution est représenté sous forme d’un mod-
èle (une réification du système réel) et des actions peuvent être appliquées au niveau du
modèle (pour créer des adaptations par exemple), ce qui va se répercuter sur le système
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réel car il y’a une relation causale entre le système réel et le modèle. Cette connexion crée
une synchronisation entre le modèle et le système en exécution [111].

ACTRESS [112] est un cadre basé sur l’ingénierie des modèles et qui fournit des
outils pour concevoir et intégrer des mécanismes d’adaptation dans une application, sous
la forme de boucle de contrôle.

EUREMA (ExecUtable RuntimE MegAmodels) [113] est aussi une approche basée
sur l’ingénierie des modèles. EUREMA propose un langage de modélisation et un en-
vironnement permettant la spécification et l’exécution de mécanismes d’adaptation con-
stitués d’une ou de plusieurs boucles de contrôle. L’approche repose sur une architecture
en couches, dans laquelle le système auto-adaptatif est séparé logiquement en deux par-
ties : la couche métier qui fournit les fonctionnalités, et au dessus, la couche qui gère le
mécanisme d’adaptation (de la couche métier), sous la forme de boucles de contrôle.

Tous ces cadres sont destinés au développement, à la conception de systèmes auto-
adaptatifs.

Le système que nous simulons repose sur un modèle de composant CORBA [55] et est
patrimonial. Cependant notre approche a des points communs avec ce qui est proposé
dans TUNe : nous avons proposé un formalisme pour décrire un intergiciel hiérarchique
à base de composants en ne faisant pas d’hypothèses sur le modèle de composant. De la
même manière, nous avons défini des politiques de reconfiguration qui sont spécifiques à
l’intergiciel cible.

De même, pour simuler les politiques d’auto-adaptation que nous avons proposées,
on utilise une solution proche des Model@run.time car le système réel en exécution (les
processus) est abstrait sous la forme d’une structure de donnée (un graphe), et il y’ a un
lien causal entre cette structure de donnée, qu’on utilise pour raisonner et prendre des
décisions, et le système réel.

L’approche décrite dans [114] utilise une structure de graphe pour modéliser de manière
formelle différentes entités qui interviennent dans le processus de déploiement comme
l’application à base de composant qui doit être déployée, l’infrastructure cible sur lequel
l’application sera déployée, la recherche d’un plan de déploiement dirigée par une qualité
de service. Les algorithmes présentés sont assez général et peuvent être adaptés à d’autres
types de qualité de service. Des étapes du déploiement sont ramenés, après la formalisa-
tion, à des problèmes de la théorie des graphes (comme la recherche d’un arbre couvrant
minimum). L’ aspect adaptation n’a cependant pas été pris en compte, mais plutôt la
préparation d’un déploiement initial. Nous avons aussi utilisé une structure de graphe
pour représenter une partie des entités du déploiement de manière moins formelle mais
plus focalisée sur l’aspect adaptation.

Disnix [8] est un outil de déploiement automatique avec une approche qui partage
des points communs avec notre travail. C’est le cas dans l’utilisation d’une description
de l’infrastructure cible, de l’application à déployer. Cependant, Disnix reste l’outil qui
fait le déploiement et non une application à déployer. Or, dans notre travail, l’outil de
déploiement est important car c’est lui qui lance le déploiement, qui participe aux tâches
de ré-déploiement, mais l’accent est surtout mis sur l’application déployée et sa manière
de réagir aux événements de son environnement d’exécution.

SHMF (Scalable Hierarchical Management Framework) [6] est une approche hiérar-
chique de gestion d’une hiérarchie de type arbre, dans laquelle des contraintes sont fixées,
comme une limite pour le nombre de fils d’un nœud par exemple. Le point commun avec
notre travail est qu’ici, c’est l’application en exécution qui gère l’auto-adaptation comme
c’est le cas pour nous où se sont les instances formant la hiérarchie elles mêmes qui gèrent
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l’adaptation.

ADAGE [115] permet de déployer des applications décrites en utilisant un formalisme
générique (GADe) sur une grille. Le formalisme est indépendant des technologies de
composant. Le déploiement réalisé est statique, dans la mesure où une fois réalisé, de
futures modifications ne sont plus possibles. Cependant, utilisé avec CoRDAGe [116], il
permet un déploiement dynamique.

LE-DAnCE (Locality-Enabled Deployment and Configuration Engine) [117] est un
outil de déploiement pour applications distribuées et hétérogènes. L’outil lui même
s’adapte face aux variations de l’environnement sur lequel il déploie des applications, et
aussi en fonction des contraintes de l’application qui est déployée. En plus, il implémente
la spécification D&C de l’OMG [18].

L’approche présentée dans [97] est comparable avec ce que nous avons simulé à la
différence que notre objectif n’est pas quantitatif mais qualitatif. L’architecture en trois
couches : une couche décrit les processus et le matériel sur lequel ils s’exécutent, avec
des sondes qui surveillent des paramètres et reportent les données à une couche au dessus
qui crée une image du système en exécution. Cette couche correspond dans notre cas au
serveur de déploiement, c’est une couche de réification du systèmes réel. Une troisième
couche de haut niveau pour décrire les préférences des utilisateurs, ce qui correspond dans
notre cas à l’obtention d’un déploiement stable.

2.2 Description d’architecture logicielle

Comment décrire la structure d’une application à base de composant, les interactions et les
dépendances entre ses composants. Des langages de description d’architecture permettent
de saisir ces relations. Nous avons proposé une grammaire, sous forme d’un schéma XML,
qui permet de décrire l’architecture d’un intergiciel hiérarchique du type de DIET [5].

OVF (Open Virtual Format) [118] est une spécification permettant de décrire la struc-
ture d’un déploiement de machines virtuelles.

DADL (Distributed Application Description Language) [119] est un moyen de décrire
des applications distribuées. Son infrastructure cible est le cloud.

Fractal Deployment Framework (FDF) [99] intègre un langage de description de dé-
ploiement qui permet de décrire les relations entre composants constituant une application
répartie. Certains parmi les outils cités dans la section 2.1 disposent de ce moyen de décrire
la structure et des contraintes sur les applications qu’ils vont déployer : TUNe [103], Dis-
nix [8], ADAGE [115] en disposent chacun.

DELADAS (DEclarative LAnguage for Describing Autonomic Systems) [120], MuS-
cADeL [20], j-ASD [121] permettent aussi de décrire la structure des différentes entités
qui forment un système logiciel.

2.3 Description d’infrastructure distribuée

Nous avons proposé une description d’une infrastructure distribuée comme grid’50003 ou
un cloud ou bien juste un cluster sur lequel on peut déployer une application. Parmi les
travaux de ce sous domaine, hwloc [122], qui en plus de la description de la structure

3https://www.grid5000.fr/
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jusqu’à des niveaux de détails très fins (cache, mémoire, core), fournit une API pour faire
des requêtes sur les données de la ressource.

ADAGE [115] et Disnix [8] proposent des moyens de décrire l’infrastructure sur
laquelle les applications doivent être déployées. En général, cette description est utilisée
pour calculer un plan de déploiement initial.

2.4 Algorithmes auto-stabilisants

Nous avons proposé un algorithme auto-stabilisant dont l’objectif est qualitatif, à savoir
: assurer l’existence d’un déploiement “toujours vivant” (cf. chapitre 4) et maintenir le
déploiement existant dans un état stable. A chaque instant, un déploiement existe (sauf
le cas extrême où on tuerait tous les processus simultanément), soit dans un état stable
ou instable. Et si le déploiement est dans un état instable, il retrouvera un état stable
après un nombre fini d’étapes, suite à l’exécution de l’algorithme.

Pour atteindre cet objectif, l’algorithme réagit à la détection d’un état instable (dû
aux pannes transitoires) pour retrouver un état correct, état dans lequel le déploiement
peut exécuter les tâches correspondant à sa spécification. Pour cela, l’algorithme cherche
à maintenir une topologie de graphe correspondant à un état correct du déploiement.
L’algorithme est basé sur un modèle de passage de messages, asynchrone, non-uniforme
(les nœuds de même type exécutent le même code, mais il y a plusieurs types de nœuds).

L’auto-stabilisation est une propriété de certains algorithmes qui leur assure une
tolérance à des pannes transitoires. Depuis son introduction par E. W. Dijkstra [36] en
1974, un grand nombre de travaux ont été réalisés, dans divers contextes et avec diverses
hypothèses [123–134].

Les systèmes sur lesquels on utilise des algorithmes auto-stabilisants sont généralement
dynamiques. Ces systèmes sont sujets à des pannes transitoires. Ces pannes sont liées,
entre autres, aux fréquents changements de la topologie, qui sont une conséquence de
la possibilité qu’ont les processus de quitter ou de rejoindre de tels systèmes. Dans
cette situation on cherche à créer ou maintenir une topologie pour assurer au système
certaines propriétés. Dans notre cas, on cherche à maintenir une topologie de type graphe
qui est une condition nécessaire (mais pas suffisante) de la stabilité du système. Ainsi,
dans certains travaux, on cherche à construire et/ou à maintenir une topologie de type
arbre [123], de type graphe [124, 125, 132]. Une revue de la littérature sur les algorithmes
auto-stabilisants de construction d’un arbre couvrant est disponible dans [94, 135, 136].

Des algorithmes auto-stabilisants sont aussi proposés pour le partitionnement en clus-
ters [128–130, 133].

2.4.1 Algorithmes auto-stabilisants à vagues

Des algorithmes auto-stabilisants, à vagues, de type propagation d’information avec re-
tour ou PIF (Propagation of Information with Feedback) ont été proposés. Une version
instantanément stabilisante du PIF est proposée dans [137].

Certains travaux supposent la construction ou l’existence d’un arbre couvrant pour ré-
soudre des problèmes du type synchronisation [138], élection de leader [139], ré-initialisation
après faute [140]. L’algorithme décrit dans [141] est aussi de type PIF mais pour des
réseaux quelconques et sans l’hypothèse d’un arbre couvrant. Un algorithme auto-stabilisant,
à vagues, avec circulation de jeton est décrit dans [131].
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CHAPITRE 3

Déploiement initial
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3.1 Introduction

Nous avons présenté l’architecture de l’intergiciel DIET (cf. Chapitre 1, Section 1.1.1)
sur lequel on a appliqué notre travail. Cet intergiciel, qui fournit des services de calcul
haute-performance, doit d’abord être déployé sur une infrastructure cible. En plus, une
fois déployé, on souhaite qu’il puisse réagir de manière autonome, lorsqu’il se trouve
dans un état instable (un déploiement dans cet état est considéré comme non efficace),
pour retrouver un état stable (état défini au Chapitre 4, Section 4.3). On a donc deux
problématiques :

❼ réaliser un déploiement initial;

❼ gérer l’adaptation du déploiement obtenu.

Nous allons, dans la suite de ce chapitre, présenté l’architecture générale proposée.
Ensuite, nous présenterons nos contributions pour la première problématique, à savoir
la réalisation d’un déploiement initial. Les contributions pour la deuxième probléma-
tique (l’adaptation d’un déploiement en cours) seront présentées dans les deux chapitres
suivants.
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3.2 Architecture proposée

Dans cette section, nous décrivons l’architecture proposée pour le déploiement auto-
adaptatif d’une application à base de composants (en l’occurrence l’intergiciel DIET).
Cette architecture est une adaptation du modèle de boucle de contrôle MAPE-K défini
dans [29]. Nous commentons les différents modules qui sont numérotés, comme indiqué
sur la Figure 3.1.

Figure 3.1: Architecture pour le déploiement auto-adaptatif d’intergiciel

Algorithmes de planification (2) : la fonction d’un algorithme de planification
consiste à répartir les composants de l’intergiciel sur les ressources de la plate-forme qui
satisfont leurs besoins (si possible) et de sorte que les objectifs prédéfinis par l’utilisateur
soient atteints. Pour ce faire, les algorithmes ont besoin de connâıtre :

❼ les paramètres de l’utilisateur (1) qui expriment les préférences de l’utilisateur
(contraintes sur le déploiement, qualité de service,...);

❼ une description de l’intergiciel (6) qui doit être déployé;
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❼ une description de l’infrastructure (7) sur laquelle l’intergiciel sera déployé.
La description concerne les ressources et leurs relations.

La sortie des Algorithmes de planification (2) est un plan de déploiement (3),
exprimé dans un format donné (en XML par exemple). Il précise pour chaque instance
(d’un composant de base de l’intergiciel) qui sera déployée, les ressources qui lui sont
allouées.

Le convertisseur (4) : ce module convertit le fichier de déploiement (exprimé dans
un format générique) en un fichier au format compris par l’outil de déploiement particulier
utilisé (5). Il faut prendre de (3) les informations pertinentes et créer l’entrée de l’outil de
déploiement (5) qui exécute les opérations de bas niveau du processus de déploiement [17,
18] comme le transfert de fichiers, la configuration des ressources ciblées, l’activation des
processus, etc. Après les actions de (5), nous obtenons une hiérarchie d’instances de
composants de l’intergiciel , en cours d’exécution sur les ressources de l’infrastructure
physique qui leur ont été allouées par les algorithmes de planification.

À partir de ce moment, nous avons un déploiement initial, avec un intergiciel qui est
disponible à l’utilisation.

Informations de surveillance (8) : elles sont recueillies à travers des sondes et
concernent aussi bien l’état des processus que des ressources physiques sur lesquelles
s’exécutent les processus.

À partir des informations recueillies (8), on peut analyser l’état du déploiement, créer
une image du déploiement courant (représentation formelle du déploiement courant sous
la forme d’un graphe par exemple) (10), connâıtre l’état des ressources physiques (11),
leurs charges (12).

Ces informations, déduites des données issues du monitoring du système déployé, per-
mettent d’évaluer si le déploiement est stable ou instable. Si le déploiement est instable,
l’algorithme d’auto-adaptation (13), dont l’objectif est d’amener un déploiement in-
stable vers un état stable, s’exécute. Cette exécution peut comporter des actions qui
fassent appel aux outils de déploiement et d’autres actions exécutées directement par les
processus.

L’algorithme d’auto-adaptation peut utiliser (ou non) la totalité ou une partie des
algorithmes de planification (2). La sortie l’algorithme d’auto-adaptation est constituée
des actions de re-déploiement (14). Certaines de ces actions, pour être exécutées, peuvent
nécessiter un appel aux outils de déploiement. Elles sont fournies dans le format d’un
fichier de déploiement générique et peuvent avoir besoin d’être traduites par un convertis-
seur pour un outil de déploiement particulier. Les actions qui n’ont pas besoin d’un outil
particulier seront exécutées directement.

Cette phase d’analyse de l’état du déploiement et d’exécution de l’algorithme d’auto-
adaptation est effectuée par une entité centralisée qui a une vision globale du déploiement
dans le cadre d’un algorithme centralisé. Dans le cadre d’un algorithme distribué, cette
phase est effectuée par chaque instance de composant déployée (un processus), en fonction
de son état interne qui est mis à jour grâce aux informations de surveillance et des échanges
de messages avec les autres instances (ses voisins dans la hiérarchie déployée).

Dans la suite de ce chapitre, nous allons décrire les modules (6) et (7). La partie
auto-adaptation sera décrite en détails dans les chapitres 4 et 5.
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3.2.1 Travaux antérieurs

Plusieurs travaux liés à l’intergiciel DIET ont été réalisés. Parmi eux, nous résumons
ceux qui ont un lien avec l’architecture proposée.

Des algorithmes de planning ont été proposés dans [142] pour trouver un déploiement
optimal de DIET sur un environnement homogène (les nœuds de calcul et les liens ont
les mêmes caractéristiques : puissance de calcul et bande passante); ou bien pour trouver
la meilleure hiérarchie dans un environnement hétérogène (le problème du planning étant
NP-complet dans ce cas [143]).

Des heuristiques sont proposées dans [144], qui permettent de déterminer, de manière
automatique, un plan de déploiement de DIET satisfaisant à un critère fixé (maximiser le
nombre de tâches exécutées par unité de temps, lorsque plusieurs applications s’exécutent
simultanément par l’intermédiaire de l’intergiciel). Ces heuristiques sont proposées en
fonction des hypothèses faites sur la nature des infrastructures cibles, qui peuvent être
homogènes ou hétérogènes.

Ces travaux proposent ainsi des moyens d’obtenir un plan de déploiement initial pour
l’intergiciel DIET.

GoDIET [22] est un outil de déploiement spécifique à DIET. Il prend en entrée un
fichier XML décrivant le déploiement (mise en correspondance entre les composants de
l’intergiciel et les ressources sur lesquelles ils seront instanciés). Cependant, d’autres outils
de déploiement non spécifiques à DIET comme ADAGE [115] et TUNe [103] peuvent être
utilisés (et ont été utilisés [144]) pour le déployer.

3.3 Contribution pour le déploiement initial

Figure 3.2: Déploiement initial de DIET

Les besoins pour un déploiement initial de DIET, de manière générale, sont résumés
par la Figure 3.2. Les algorithmes de planification utilisent comme entrées les descriptions
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de l’intergiciel et de l’infrastructure cible et éventuellement, des paramètres de l’utilisateur.
Ils fournissent en sortie un plan de déploiement dans un format donné. Nous avons
proposé une formalisme que nous voulons générique pour décrire l’intergiciel DIET et les
infrastructures sur lesquelles il est susceptible d’être déployé.

Ces description sont nécessaires pour réaliser un déploiement initial; et correspon-
dent aux modules (6) et (7) de l’architecture proposée. Nous présentons les descriptions
proposées sous forme de diagrammes de classes UML modélisant les différentes entités.

3.3.1 Description de l’infrastructure

La description de l’infrastructure sur laquelle l’application sera déployée est une entrée
des algorithmes de planification (Figure 3.3).

Figure 3.3: Description de l’infrastructure comme entrée pour créer un déploiement initial

Le type d’infrastructure visé est un système distribué tel qu’une grille, une fédération
de clusters ou de Clouds. Notre but est de fournir un modèle qui puisse représenter ces
différents types de systèmes où l’intergiciel peut être déployé, avec un accent sur une
fédération de sites hébergeant des clusters (Figure 3.4) comme le cas de Grid’50001.

La Figure 3.5 représente le diagramme des classes modélisant une infrastructure. Il se
compose de plusieurs éléments :
Plateform : cet élément représente la plate-forme (infrastructure). La plate-forme est
composée d’un ensemble de ressources et de liens. Elle a un nom et une propriété “vari-
ation” (“dynamicity”), définie par les administrateurs de la plate-forme et dont le but
est de capturer à quel point les paramètres considérés de la plate-forme sont variables
(peu fréquente, fréquente, très fréquente). Cette valeur peut être calculée (ou estimée)
en prenant en compte la “variation” de chaque ressource composant la plate-forme ou
en analysant l’historique de la plate-forme (combien de fois une machine est tombée
en panne dans un intervalle de temps donné par exemple). Dans le cas des stratégies
auto-adaptatives de redéploiement, il est utile de pouvoir quantifier les variations de la
plate-forme. En effet, certaines stratégies de redéploiement peuvent être efficaces avec
une plate-forme très dynamique et l’être moins avec une plate-forme peu dynamique.

1https://www.grid5000.fr/
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Figure 3.4: Exemple d’infrastructure

Ressource : les ressources peuvent être de différents types : Cluster, Nœud de
Calcul (Node) et Site. Une ressource a un identifiant et dispose de zéro ou plusieurs
localisations (élément Location). Chaque localisation est une pair (clef, valeur) qui
spécifie un groupe auquel appartient la ressource. Chaque pair capture la notation
d’appartenance/localisation d’une ressource. Par exemple, une ressource appartient à
un site (site, nomSite), à un réseau local (reseauLocal, adresse IP) et à une ville (ville,
nomVille). Certaines localisations peuvent être géographiques et d’autres liées au réseau.
La localisation et l’appartenance d’une ressources à des groupes sont nécessaires pour
certaines décisions de redéploiement, quand il est nécessaire de déplacer un composant ou
des données mais aussi pour des raisons de sécurité. Une ressource est aussi décrite par
un ensemble de liens (Link).

Link : cet élément décrit les liens de communications entre les ressources (nœud,
cluster, site). Il est rattachée à deux ressources (endpoint1 et endpoint2). L’attribut
linklevel spécifie la nature et le niveau dans la hiérarchie du lien. linklevel peut avoir
les valeurs suivantes : “intraCluster”, “intraSite”, “interSite”, “interCluster”et“interNode”.
Le lien est aussi composé d’un ensemble de Capacité comme la bande passante et la
latence.

Capacity : une capacité est décrite par un nom (CPU, diskSpace, numberOfCore,
etc.), une capacityUnit qui spécifie dans quelle unité la valeur de la capacité est exprimée,
une capacityFlavor qui définit si la valeur de la capacité est représenté comme une valeur
simple, un intervalle ou une liste et capacityValue qui contient la ou les valeurs.

Node : un nœud est défini comme un ensemble d’éléments Capacity. Il a un identi-
fiant qui est unique au sein du cluster auquel il appartient.

Cluster : un Cluster est un ensemble de nœuds dont un (appelé frontEnd) a une fonc-
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Platform

+name: String

+dynamicity: Integer

<<abstract>>

Resource
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Figure 3.5: Modèle d’infrastructure

tion spéciale. Un cluster virtuel tournant dans un Cloud est représenté comme un cluster
avec un ensemble de machines virtuelles (décrites comme des nœuds) et un ensemble de
liens de communications. Si un cluster appartient à un ou plusieurs sites, un ou plusieurs
éléments Location sont utilisés.

3.3.2 Description de l’intergiciel

Nous avons séparé la description de l’intergiciel en deux parties complémentaires : la
description fonctionnelle qui capture les caractéristiques de l’intergiciel (les composants de
base) qui sont fixées durant la phase de développement et la description d’une hiérarchie
DIET qui capture les relations et les exigences entre les instances des composants de
base. Certaines de ces relations et exigences sont fixes et d’autres peuvent varier d’un
déploiement à un autre.

Description fonctionnelle de l’intergiciel

La Figure 3.8 représente la description fonctionnelle d’un intergiciel comme DIET, con-
stitué d’un ensemble fini de composants de base, dont les fonctions et les possibilités de
communication entre les instances de ces composants de base sont fixées à la conception.
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Figure 3.6: Description de l’intergiciel comme entrée pour créer un déploiement initial

Figure 3.7: Description fonctionnelle de l’intergiciel comme entrée pour créer un déploiement
initial

Cette description est composée de plusieurs éléments :
Middleware : il représente l’intergiciel et dispose d’attributs comme un nom et une

version. Il est constitué d’un ensemble fini de composants de base. Ce sont des in-
stances des composants de base qui s’exécutent effectivement sur les machines physiques
ou virtuelles.

MiddBaseComponent : un composant de base de l’intergiciel contient un identifiant
et contient les sections suivantes :

❼ SoftwareInfo : cet élément décrit les informations logicielles du composant qui
sont fixées durant la conception comme les binaires;

❼ CommunicationInfo : décrit pour un composant de base, les autres composants
avec qui les instances peuvent communiquer et comment est faite cette communica-
tion. La communication est décrite comme un ensemble d’exigences. Une exigence
est exprimée comme une capacité (ce qu’elle exige doit faire partie des capacités
d’une ressource). Un attribut spécifie si cette exigence est stricte (doit forcément
être satisfaite) ou non (politique de “best effort”);
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❼ SoftwareRequirement : il représente les exigences logicielles d’un composant sur
une ressource sur laquelle il peut être exécuté. Par exemple, un composant peut ex-
iger un système d’exploitation spécifique. Il est composé d’un ensemble de capacités
exigées;

❼ HardwareRequirement : comme pour le SoftwareRequirement, cette section ex-
prime un ensemble de capacités exigées mais celles-ci sont matérielles. Par exemple,
le composant peut exiger un type particulier d’architecture processeur ou une quan-
tité minimum d’espace disque;

❼ LocalityRequirement : cette section décrit les exigences liées à la localisation du
composant. Certains composant peuvent souhaiter partager la même localisation
pour différentes raisons comme la rapidité des communications;

❼ SecurityRequirement : cette section définit le niveau de sécurité qu’exige le com-
posant. Cette valeur (basse, moyenne, haute) est interprétée par l’algorithme de
déploiement. Elle est spécifique à chaque intergiciel.

Middleware

+middlName: String

+middlversion: String

MiddBaseComponent

+baseCompId: BaseCompIdType

1..*

SoftwareInfo

SoftwareRequirement

 1

CommunicationInfo

HardwareRequirement

LocalityRequirement

SecurityRequirement

0..1

Figure 3.8: Modèle de middleware

Description d’une hiérarchie

Nous cherchons à capturer à travers cette description une hiérarchie d’instances des com-
posants de base de l’intergiciel en exécution sur des ressources physiques. En d’autres
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termes, on cherche à capturer la correspondance (mapping) entre les instances des com-
posants de l’intergiciel et les ressources physiques (Cluster, Nœud,...) sur lesquelles elles
sont en train de s’exécuter ou bien sur lesquelles elles pourraient être instanciées plus tard.
Cette description peut capturer aussi une hiérarchie sans précision des ressources qui leur
sont affectées.

Figure 3.9: Description de la hiérarchie de l’intergiciel comme entrée optionnelle pour créer un
déploiement initial

Cette description est optionnelle comme entrée pour les algorithmes de planification
(dans ce cas, il y’aura uniquement la description fonctionnelle de l’intergiciel). Cette de-
scription peut être utilisée de plusieurs manières. En effet, un utilisateur peut fixer sa
propre hiérarchie qu’il veut déployer en précisant les ressources sur lesquelles les instances
seront déployées ou en ne les précisant pas. Dans le cas où les ressources matérielles sont
précisées (cela suppose que l’utilisateur a une connaissance approfondie de son infrastruc-
ture physique), l’outil de déploiement ne cherchera pas un plan de déploiement (avec des
algorithmes de planification), mais utilisera ses fonctionnalités et outils (de transfert de
fichiers, de configuration,...) pour transformer la hiérarchie en déploiement en exécution
(instancier les composants sur des ressources matérielles) telle que c’est décrit. Lorsqu’on
connâıt la hiérarchie à déployer et aussi les ressources sur lesquelles les instances seront
déployées, le déploiement peut être fait de manière manuelle aussi, puisqu’on dispose de
toutes les informations nécessaires; même si la manière automatisée est préférable (moins
d’erreur dans l’exécution des commandes). Dans le cas où les ressources matérielles ne
sont pas précisées, l’outil de déploiement (ses algorithmes de planification) devra trouver,
si possible, les ressources permettant de déployer la hiérarchie décrite et ensuite réaliser
le déploiement effectif (ses outils de transferts de fichiers, de configuration,...)

Cette description peut aussi servir à décrire un plan de déploiement (hiérarchie avec
précision des ressources matérielles sur lesquelles les instances seront déployées). Cepen-
dant, tous les outils de déploiement n’utilisent pas le même formalisme/description pour
les plans de déploiement; ce qui fait que la description proposée ici est assez spécifique à
l’environnement de DIET.

La Figure 3.10 représente le modèle d’une hiérarchie de DIET. Il est décrit par les
éléments suivants :

Hierarchy : la hiérarchie est un ensemble d’instances (DeployedInstance) de com-
posants de base et de leurs liens de communication. Chaque instance contient les in-
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formations et exigences nécessaires pour l’algorithme de planification et pour l’outil de
déploiement.

DeployInstanceInfo : cet élément contient les informations relatives à l’instance. Il
contient un ensemble d’exigences présentées ci-dessous :

❼ LocalityRequirement : il spécifie qu’une instance doit appartenir à une localisa-
tion (réseau ou géographique). Cette exigence peut être stricte ou flexible;

❼ ColocationRequirement : il spécifie si l’instance doit avoir la même localisation
que d’autres instances (par exemple même site, même cluster, même Nœud, même
réseau local, ...);

❼ SecurityRequirement : cet élément est utilisé pour spécifier l’exigence de sécurité
de l’instance du composant;

❼ LinkRequirement : chaque instance déployée a un ensemble d’éléments LinkTo
qui spécifient les exigences de communication. L’élément LinkTo décrit les connex-
ions entre deux instances. Dans le cas d’un intergiciel hiérarchique, une instance
est au moins connecté à une autre. Cet élément peut aussi contenir un ensemble
d’exigences sur le lien de communication qui guidera l’algorithme de planification.

Figure 3.10: Modèle de déploiement
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3.4 Conclusion

Notre objectif est de réaliser un déploiement auto-adaptatif d’un intergiciel. Pour cela, il
faut d’abord un déploiement initial de l’intergiciel. Une fois un déploiement initial obtenu,
les mécanismes d’auto-adaptation interviennent pour permettre au système déployé de
réagir aux événements.

Pour réaliser un déploiement initial de l’intergiciel, des algorithmes de planning utilisent
comme entrées, les descriptions de l’intergiciel à déployer, de l’infrastructure sur laque-
lle l’intergiciel sera déployé et éventuellement des paramètres de l’utilisateur. Ces de-
scriptions peuvent aussi être utilisées par les mécanismes d’auto-adaptation, en plus
d’informations issues de la surveillance du système déployé et de l’infrastructure, lorsqu’ils
définissent les stratégies d’adaptation.

Dans ce chapitre, nous avons présenté les descriptions que nous proposons pour l’intergiciel
et l’infrastructure, et qui peuvent servir comme information d’entrée à des algorithmes de
planning, en vue de produire un plan de déploiement initial.
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CHAPITRE 4

Algorithmes
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4.1 Résumé du chapitre

Ce chapitre décrit un travail dont l’objectif est d’ajouter des capacités d’auto-adaptation à
un intergiciel existant; lesquelles capacités devront permettre au déploiement de l’intergiciel
de s’auto-adapter lorsque certains événements sont détectés. Le chapitre inclut la descrip-
tion d’un algorithme auto-adaptatif, de la preuve de son caractère auto-stabilisant.

4.2 Motivation

Les systèmes distribués améliorent notre capacité de calcul et à échanger des informations.
Cependant, ils sont difficiles à concevoir, à contrôler, à maintenir car constitués d’une
variété de composants (logiciels et physiques) complexes qui sont susceptibles de tomber
en pannes ou de subir des variations de leur paramètres.

Dans certains cas, comme celui des Clouds, l’élasticité du nombre de ressources est
une caractéristique majeure du système. L’accès aux ressources de ces systèmes se fait
généralement à travers un intergiciel, et ce dernier doit d’abord être déployé.
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Comme l’environnement évolue, que se passe t-il par exemple si une partie des proces-
sus qui constituent l’intergiciel cesse de fonctionner pour une raison quelconque ?

Si le déploiement est statique, alors le seul moyen de réagir aux événements dont les
effets peuvent dégrader la qualité du service fourni est de refaire tout le processus de
déploiement. Cette opération est cependant assez coûteuse.

Une meilleure solution consisterait à faire de sorte que le déploiement puisse s’auto-
adapter et éviter autant que possible de reprendre tout le processus de déploiement.
Il s’agit donc de concevoir un système auto-adaptatif [29, 31]. De tels systèmes ont la
capacité de modifier en temps réel leurs comportements de manière autonome (totalement
ou en partie) pour s’adapter aux variations de leurs environnements.

L’algorithme décrit dans ce chapitre a pour objectif, de permettre à un déploiement de
l’intergiciel DIET, de retrouver un état légitime ou stable dans un nombre fini d’étapes,
à chaque fois qu’un état instable est détecté.

4.3 Définitions et Notations

Avant de décrire l’algorithme, nous allons fournir un ensemble de définitions qui clarifient
ce que signifie dans notre cas un nœud stable et un déploiement stable. Rappelons que
ces définitions sont liées à l’intergiciel DIET (cf. chapitre 1, section 1.1.1) qui nous sert
de cas d’utilisation.

Définition 11 (Nœud stable). Un nœud est stable si son état est légitime (correct). La
signification exacte de ce qui est jugé légitime ou pas dépend de la nature du problème à
résoudre (du code qui est exécuté). Dans la suite du document, un état stable ou légitime
ou correct pour un nœud correspond à la situation où le nœud exécute autre chose qu’une
des règles de l’algorithme; puisque l’exécution des actions associées à une règle a lieu à
la suite de la détection d’un événement qui rend le nœud instable, donc le déploiement.

Définition 12 (Déploiement stable). Un déploiement est une hiérarchie de nœuds inter-
connectés qui a une structure arborescente.

Un déploiement (ou état) stable de l’intergiciel est un déploiement efficace qui a les
caractéristiques suivantes :

❼ il respecte les règles de hiérarchie des composants de l’intergiciel. Ces règles de
hiérarchie imposent qu’un MA peut être le père d’un MA, d’un LA, d’un SeD; q’un
LA peut être le père d’un LA, d’un SeD; qu’un SeD ne peut avoir de fils (c’est une
feuille dans la structure arborescente de la hiérarchie); qu’un Client se connecte à
un MA ou SeD;

❼ tous les éléments sont connectés entre eux (le déploiement a une structure de graphe
et il y’a une seule composante connexe, pour un déploiement efficace);

❼ il n’y a pas de châıne d’agents (pour des raisons d’efficacité);

❼ aucun agent n’est en surcharge (pour des raisons d’efficacité également). La sur-
charge est mesurée par rapport au nombre d’enfants de l’agent concerné (un seuil
est fixé).

Lorsqu’un déploiement satisfait à ces critères, alors chacun de ses nœuds est stable et
l’état global du déploiement est aussi stable.
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4.3.1 Modèle d’un déploiement

L’intergiciel, une fois déployé, peut être modélisé par un graphe non orienté G = (V, E)
où V désigne l’ensemble des processus et E l’ensemble des liens entre processus. Une arête
(u, v) ∈ E si et seulement si il existe un lien entre u et v. Dans ce modèle, l’existence d’un
lien entre deux processus signifie que les deux processus sont voisins. Ce lien implique
aussi que, si l’un des deux processus se termine (terminaison normale ou anormale), l’autre
processus détectera cet événement. Les processus communiquent uniquement par échange
de messages. Un processus peut envoyer un message à un autre s’il connâıt son adresse.
Chaque processus a un identifiant unique et conserve une liste des adresses de ses voisins
qu’il met à jour en fonction des messages reçus et des tests effectués.

Les processus sont indépendants dans l’exécution des actions dès lors que les gardes
sont vraies (démon synchrone). Autrement dit, l’exécution des actions au niveau d’un
processus ne dépend pas d’un autre processus. Les règles sont définies pour chaque type
de composant. L’algorithme n’est pas uniforme car tous les processus n’exécutent pas le
même code.

4.4 Algorithme auto-adaptatif

Une fois qu’un intergiciel est déployé, des événements susceptibles de modifier les critères
attendus peuvent survenir. Ces événements peuvent provenir de l’intergiciel lui même
(arrêt d’un processus) ou de l’infrastructure sur laquelle l’intergiciel est déployé (panne
d’une ressource physique, problème de réseau).

L’objectif de cet algorithme est de permettre à un intergiciel déployé de pouvoir s’auto-
adapter lorsque certains événements sont détectés. Ce processus d’adaptation se fait par
exécution de règles incorporées dans les composants. C’est cet ensemble de règles qui
constituent l’algorithme.

Le type d’événements susceptibles de modifier le fonctionnement de l’intergiciel cou-
vre un large spectre. Nous avons donc considéré uniquement un ensemble restreint
d’événements auxquels les composants qui constituent l’intergiciel devront réagir. Ces
événements sont essentiellement liés à l’intergiciel et correspondent à des situations dans
lesquelles le déploiement n’est pas stable (Définition 12). Pour chaque type de composant
de DIET, les événements gérés correspondent à la partie condition des règles qui sont
définies pour ce composant.

Intuitivement, cet algorithme a pour objectif de maintenir un déploiement “toujours
vivant” et stable.

4.4.1 Spécification de l’algorithme

L’algorithme est constitué des règles suivantes, regroupées en fonction du type de com-
posant. Toutes les instances d’un composant exécutent le même programme (les règles
définies pour ce type de composant). Chaque règle est constituée d’une partie condition
qui exprime la détection d’un événement, et d’une partie action correspondant aux in-
structions d’auto-adaptation à exécuter lorsque l’événement est détecté. Dans certains
cas, une instance a besoin, en plus de son état interne (ses variables locales) d’une infor-
mation externe. Nous supposons donc l’existence d’un oracle capable de fournir ce type
d’information et qui joue le rôle d’un service de découverte de ressources. On suppose
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4.4. Algorithme auto-adaptatif

donc que la fonction découverte de ressources est assuré par un autre système extérieur à
l’algorithme mais que ce dernier peut interroger.

Règles définies pour les instances de type Client

3 règles sont définies pour le composant client :

La règle R1 définit comment un client réagit lorsqu’il détecte la perte d’une connexion
avec un MA et que le client a l’information qu’il existe au moins un autre MA dans le
déploiement. Dans ce cas, le client se connecte à un autre MA, sélectionné de manière
aléatoire, parmi ceux dont il a connaissance.

Client règle 1: R1

1 if Client ∧ (MA lost == V rai) ∧ (#MA > 0) then
2 sélectionner un MA et se connecter;
3 end

La règle R2 définit comment un client réagit lorsqu’il détecte la perte d’une connexion
avec un MA et que le client a l’information qu’il n’existe plus de MA dans le déploiement.
Dans ce cas, le client crée un fils MA.

Client règle 2: R2

1 if Client ∧ (MA lost == V rai) ∧ (#MA == 0) then
2 créer un fils MA ;
3 end

La règle R3 définit comment un client réagit lorsqu’il détecte la perte d’une connexion
avec un SeD. Dans ce cas, il soumet sa requête de nouveau.

Client règle 3: R3

1 if Client ∧ (SeD lost == V rai) then
2 soumettre de nouveau la requête ;
3 end

Règles définies pour les instances de type MA

5 règles sont définies pour le MA :

La règle R4 définit comment réagit un MA lorsqu’il détecte qu’il n’a pas de fils et
qu’il a l’information qu’il existe au moins un autre MA que lui même dans le déploiement.
Dans ce cas, il se suicide.
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MA règle 4: R4

1 if MA ∧ (#MA children == 0) ∧ (#MA > 1) then
2 #MA = #MA− 1;
3 end

MA règle 5: R5

1 if MA ∧ (#MA children == 0) ∧ (#MA == 1) then
2 créer un fils de type SeD;
3 end

La règle R5 définit comment réagit un MA lorsqu’il détecte qu’il n’a pas de fils et qu’il
a l’information qu’il est l’unique MA du déploiement. Dans ce cas, il crée un fils de type
SeD.

La règle R6 définit comment réagit un MA réagit lorsqu’il détecte qu’il a un fils
unique de type MA ou LA (une châıne d’agents). Dans ce cas, il exécute la fonction
Fusionner(MA, MA child). La fonction Fusionner(x, y) (ligne 2, R6) connecte les fils
de y comme fils de x et supprime y.

MA règle 6: R6

1 if MA ∧ (#MA children == 1) ∧ (MA child type == (MA ∨ LA)) then
2 Fusionner(MA, MA child) ;
3 end

La figure 4.1 montre un exemple d’application de la règle MA R6.

ma1

la1

sed1 sed2 sed3

ma1

sed1 sed2 sed3
règle MA R6

Figure 4.1: Exemple d’application de la règle MA R6 lorsque l’unique fils du MA est de type
LA. Cela aurait été pareil si l’unique fils était un MA. En rouge, l’instance instable qui a détecté
et exécuté la règle. En vert, les instances stables.

La règle R7 définit comment réagit un MA réagit lorsqu’il détecte qu’il est la racine
d’un sous arbre du déploiement (cela signifie qu’il n’a pas de père de type MA même si un
client peut être connecté sur lui ou pas) et qu’il a l’information qu’il existe au moins un
autre sous-arbre qui a une racine de type MA et que les deux sous-arbres sont déconnectés.
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Dans ce cas, le MA qui a détecté l’événement se connecte en tant que fils à l’un des MA,
racine d’un des autres sous-arbres. Ainsi le nombre de sous-arbres sera réduit de un (1).

MA règle 7: R7

1 if MA ∧ ({#père / TypeDuP ère = MA} ==
0) ∧ ({#sous− arbre / TypeRacine = MA} > 1) then

2 sélectionner une des racines de type MA comme père;
3 end

La règle R8 définit comment réagit un MA lorsqu’il détecte qu’il est surchargé.

MA règle 8: R8

1 if MA ∧ (MA charge ≥ MA seuil charge) then
2 Partitionner l’ensemble de ses fils en deux sous-ensembles A et B tels que : ;
3 | card(A)− card(B) | ≤ 3 ;
4 créer un agent comme père de tous les éléments pour chaque sous-ensemble ;
5 les racines (2 agents) des sous arbres nouvellement créés deviennent les fils du

MA ;

6 end

La surcharge est simulée en fixant un seuil pour le nombre de fils que peut avoir une
instance. On a surcharge lorsque le seuil est dépassé. Dans ce cas, le MA surchargé réduit
sa charge (donc le nombre de ses fils) en créant deux agents qui deviendront ses deux
seuls fils et en distribuant l’ancienne charge (ses anciens fils) entre ses deux nouveaux
fils. Ainsi, après l’opération, ses anciens fils qui étaient à l’origine de la surcharge, se
retrouvent comme ses petits fils et le MA n’a plus que deux (nouveaux) fils. Dans les
détails, la réduction de la surcharge se fait de la manière suivante : rappelons nous que
Le MA ne peut avoir que des fils des trois types suivants : MA, LA, SeD. Soient Fma,
Fla, Fsed, les trois ensembles qui désignent respectivement les fils du MA qui sont de type
MA, ceux de type LA et enfin ceux de type SeD. Chacun de ses ensembles peut être vide.

Chacun de ses ensembles est divisé en deux sous ensembles qui ont le même cardinal
(si le cardinal de l’ensemble divisé est pair) ou bien dont la différence des cardinaux est
égal à un (1) (si le cardinal de l’ensemble divisé est impair) :
Fma = F1ma

⋃
F2ma avec | card(F1ma)− card(F2ma) | ≤ 1.

Fla = F1la

⋃
F2la avec | card(F1la)− card(F2la) | ≤ 1.

Fsed = F1sed

⋃
F2sed avec | card(F1sed)− card(F2sed) | ≤ 1.

Le MA partitionne l’ensemble de ses fils en deux ensembles A et B obtenus de la
manière suivante :
A = F1ma

⋃
F1la

⋃
F1sed

B = F2ma

⋃
F2la

⋃
F2sed

Ainsi les deux ensembles sont tels que : | card(A) − card(B) | ≤ 3. Une fois ces
deux ensembles créés, le MA surchargé va procéder comme suit : Il crée un agent comme
père de tous les éléments de l’ensemble A (ses anciens fils) et fait la même chose pour les
éléments de B.
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Les deux agents nouvellement créés deviennent les deux fils du MA et ses anciens fils
deviennent ses petit-fils. L’ agent nouvellement créé comme père des éléments dans A est
de type LA s’il n’existe pas de MA dans A (un LA ne pouvant pas être père d’un MA),
et de type MA sinon. Cette dernière remarque est valable aussi pour le type de l’agent
créé pour les éléments dans B.

En fin de compte, si tout le processus s’est bien déroulé, le MA qui était surchargé se
retrouve avec uniquement deux fils. Ces deux fils (de type agent) peuvent être surchargés
juste après leur création, et dans ce cas, ils exécuteront la même règle (si ce sont des MA)
sinon la règle correspondante pour un LA.

Règles définies pour les instances de type LA

Six (6) règles sont définies pour le LA. Les règles définies pour le LA sont presque les
mêmes que celles définies pour le MA puisque tous les deux sont des agents et jouent
presque le même rôle. Le LA a six (6) règles au lieu de cinq comme pour le MA. Cette
règle supplémentaire, R13, gère le cas où un LA détecte qu’il n’a pas de père et qu’il
a l’information qu’il n’existe aucun MA dans le déploiement. Les autres règles du LA,
à savoir, R9, R10, R11, R12, R14 peuvent être respectivement interprétées de la même
manière que les règles suivantes du MA, R4, R5, R6, R7, R8 en remplaçant MA par LA
et agent (qui peut être un MA ou un LA) par LA.

La règle R9 (similaire à MA R4) définit comment réagit un LA lorsqu’il détecte qu’il
n’a pas de fils et qu’il a l’information qu’il existe au moins un autre LA que lui même
dans le déploiement. Dans ce cas, il se suicide.

LA règle 9: R9

1 if LA ∧ (#LA children == 0) ∧ (#LA > 1) then
2 #LA = #LA− 1 ;
3 end

La règle R10 (similaire à MA R5) définit comment réagit un LA lorsqu’il détecte qu’il
n’a pas de fils et qu’il a l’information qu’il est l’unique LA du déploiement. Dans ce cas,
il crée un fils de type SeD.

LA règle 10: R10

1 if LA ∧ (#LA children == 0) ∧ (#LA == 1) then
2 créer un fils de type SeD;
3 end

La règle R11 (similaire à MA R6) définit comment réagit un LA lorsqu’il détecte
qu’il a un fils unique de type LA (une châıne de LA). Dans ce cas, il exécute la fonction
Fusionner(LA, LA child). La fonction Fusionner(x, y) (ligne 2, R11) connecte les fils
de y comme fils de x et supprime y.

La règle R12 (similaire à MA R7) définit comment réagit un LA lorsqu’il détecte qu’il
est la racine d’un sous arbre du déploiement (ce qui signifie qu’il n’a pas de père) et qu’il

49



4.4. Algorithme auto-adaptatif

LA règle 11: R11

1 if LA ∧ (#LA children == 1) ∧ (LA child type == LA) then
2 Fusionner(LA, LA child) ;
3 end

a l’information qu’il existe au moins un autre sous-arbre qui a une racine de type MA
ou LA et que les deux sous-arbres sont déconnectés. Dans ce cas, le LA qui a détecté
l’événement se connecte en tant que fils à l’un des agents (MA ou LA), racine d’un des
autres sous-arbres. Ainsi le nombre de sous-arbres sera réduit de un (1).

LA règle 12: R12

1 if LA ∧ (#père == 0) ∧ (#{sous− arbre : TypeRacine = (LA ∨ MA)} > 1)
then

2 sélectionner une des racines (de type MA ou LA) comme père;
3 end

La règle R13 définit comment réagit un LA lorsqu’il détecte qu’il n’a pas de père et
qu’il a l’information qu’il est l’unique agent dans le déploiement. Dans ce cas, il crée un
MA comme père.

Cette règle est spécifique au LA, car la même situation pour un MA est normale et
signifie juste qu’il n y a pas de client connecté. En d’autres termes, un MA peut ne pas
avoir de père car pouvant être la racine d’une hiérarchie stable alors qu’un LA doit avoir
un père car il ne peut être la racine d’une hiérarchie stable.

LA règle 13: R13

1 if
LA ∧ (#père == 0) ∧ (#{sous− arbre : TypeRacine = (LA ∨ MA)} == 1)
then

2 créer un MA comme père ;
3 end

La règle R14 (similaire à MA R8) définit comment réagit un LA lorsqu’il détecte qu’il
est surchargé. La surcharge est simulée en fixant un seuil pour le nombre de fils que
peut avoir une instance. On a surcharge lorsque le seuil est dépassé. Dans ce cas, le LA
surchargé réduit le nombre de ses fils de la manière décrite au niveau de la règle MA R8 en
prenant en compte le fait qu’un LA ne peut avoir que des fils de deux types : LA et SeD,
contrairement au MA qui peut en avoir de trois types. En plus, les agents nouvellement
créés sont tous de type LA alors que pour le MA ils pouvaient être de type LA ou MA.

En fin de compte, si le processus s’est bien déroulé, le LA qui était surchargé se retrouve
avec deux fils de type LA et ses anciens fils deviennent ses petits-fils.
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LA règle 14: R14

1 if LA ∧ (LA seuil ≥ LA seuil charge) then
2 Partitionner l’ensemble de ses fils en deux sous-ensembles A et B tels que : ;
3 | card(A)− card(B) | ≤ 3 ;
4 créer un LA comme père de tous les éléments pour chaque sous-ensemble ;
5 les racines (2 LA) des sous arbres nouvellement créés deviennent les fils du LA ;

6 end

Règles définies pour les instances de type SeD

Trois règles sont définies pour le SeD:

La règle R15 illustre la réaction d’un SeD qui n’est pas en train d’exécuter une tâche
(job), qui n’a pas de père et qui a l’information qu’il n’ y a pas d’agent dans le déploiement.
Dans ce cas, il crée un MA comme père.

SeD règle 15: R15

1 if SeD ∧ (#père == 0) ∧ (exécute tâche == Faux) ∧ (#{MA, LA} == 0)
then

2 créer un MA comme père ;
3 end

La règle R16 illustre la réaction d’un SeD qui n’est pas en train d’exécuter une tâche
(job), qui n’a pas de père et qui a l’information qu’il existe au moins un agent dans le
déploiement. Dans ce cas, il sélectionne un des agents comme père.

SeD règle 16: R16

1 if SeD ∧ (#père == 0) ∧ (exécute tâche == Faux) ∧ (#{MA, LA} > 0)
then

2 sélectionner un des agents (MA ou LA) comme père ;
3 end

La règle R17 illustre la réaction d’un SeD qui est en train d’exécuter une tâche et qui
n’a pas de père. Dans ce cas, il continue l’exécution pendant au maximum un temps fini
T, fixé par l’utilisateur. T peut représenter le temps estimé pour exécuter une tâche.

Résumé des effets des règles

Les effets de chacune des règles sont résumés dans le Tableau 4.1.

51



4.4. Algorithme auto-adaptatif

SeD règle 17: R17

1 if SeD ∧ (#père == 0) ∧ (exécute tâche == V rai) then
2 continuer l’exécution pour un temps maximum de T unités de temps ;
3 après quoi, l’exécution de la tâche courante est supposée être terminée ;

/* T est un paramètre définit par l’utilisateur. */

/* L’exécution d’une tâche est supposée être finie au maximum dans

un temps T. Il n’y a donc pas de calcul infini */

4 end

Tableau 4.1: Effets des règles

Élément Id règle Effet de la règle
Client R1 #sous-arbre - 1

R2 #MA + 1
R3 re-soumettre requête

MA R4 #MA - 1
R5 #SeD + 1
R6 #Agent - 1
R7 #sous-arbre - 1
R8 #Agent + 2

LA R9 #LA - 1
R10 #SeD + 1
R11 #LA - 1
R12 #sous-arbre - 1
R13 #MA + 1
R14 #LA + 2

SeD R15 #MA + 1
R16 #sous-arbre - 1
R17 exécution pendant T unités de temps au maximum

4.4.2 Preuve d’auto-stabilisation de l’algorithme

Le modèle de Pannes

Un système auto-stabilisant doit tolérer les pannes transitoires (des processus et des liens).
Une panne transitoire peut corrompre les données en mémoire des processus (variables,
pointeur de programme), les canaux de communication, mais sans corrompre le code qui
est exécuté. Les pannes considérées sont celles qui peuvent induire une modification de
la topologie du réseau (nouveaux nœuds qui rejoignent le réseau ou bien disparition de
nœuds), une corruption des variables des processus (par exemple la liste des voisins).
Pour rendre le réseau instable, nous n’allons ajouter que des nœuds isolés, c’est à dire
sans voisin. Or ce type de nœud est toujours instable et rend le réseau instable car le
graphe correspondant au réseau obtenu n’est plus connexe. Or, la connexité du graphe est
une condition nécessaire pour que le déploiement soit stable (voir définition 12). Ainsi
le nœud isolé cherchera à se stabiliser par l’exécution des règles (qui dépendent de son
type). La disparition provoquée d’un ou plusieurs nœuds peut aussi rendre le réseau
instable avec une différence par rapport à l’ajout de nœuds isolés : la disparition d’un ou
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plusieurs nœuds ne mènent pas forcément à un réseau instable, tout dépend de leur type,
de leur position dans la hiérarchie, etc.

Chaque processus teste régulièrement ses liens avec ses voisins. Lorsque le test échoue,
cela est aussi considéré comme une modification de la topologie (disparition d’une arête
du graphe modélisant un déploiement). Dans ce cas, le processus met à jour ses variables
internes en supprimant de la liste de ses voisins l’identifiant du processus avec qui le test
a échoué.

L’ajout des nouveaux nœuds (processus) isolés, la suppression de nœuds existants,
et le test des liens avec ses voisins constituent les différentes actions qui modifient la
topologie d’un déploiement, et ces actions peuvent rendre actives toutes les règles qui ont
été définies.

Nous considérons qu’une panne est constituée d’une opération unique (par exemple le
fait de tuer une instance en un seule opération) ou de plusieurs opérations uniques (par
exemple tuer 100 instances en répétant 100 fois l’opération tuer une instance).

Nous considérons qu’il n’y a plus d’événements externes après l’exécution de la dernière
opération de la panne (qui est considérée comme un événement externe). En d’autres
termes, après l’exécution de la dernière opération de la panne, les seuls événements qui
ont cours sont ceux prévus par le programme exécuté par les instances, notamment les
règles d’auto-adaptation. Si un déploiement est perturbé avec une fréquence qui ne laisse
pas à l’algorithme auto-adaptatif le temps de s’exécuter, le système sera constamment
instable et la convergence de l’algorithme ne pourra pas être vérifiée.

Propriétés d’auto-stabilisation

Considérant l’algorithme distribué, spécifié sous la formes des règles définies à la Sec-
tion 4.4.1, nous allons fournir une esquisse de preuve (sketch of proof), montrant que
l’algorithme est auto-stabilisant (Définition 8); ce qui signifie dans ce contexte qu’un dé-
ploiement de DIET, dont les instances exécutent les règles définies précédemment, soumis
à des pannes transitoires, retrouvera un état stable après un temps fini.

Pour cela, nous allons montrer les deux propriétés de convergence (Définition 9) et
de clôture (Définition 10) de l’algorithme.

Preuve d’auto-stabilisation

Preuve de la propriété de convergence

Pour prouver qu’un déploiement sujet à des pannes transitoires va retrouver un état
stable dans un temps fini, il suffit de prouver les propriétés suivantes :

❼ P1 : le nombre de sous-arbres diminue;

❼ P2 : la création de nouvelles instances se termine;

❼ P3 : la suppression d’instances se termine;

❼ P4 : l’exécution d’une tâche se termine.

preuve de P1 :

❼ on peut constater qu’aucune des règles (cf. Tableau 4.1) n’a pour effet d’augmenter
le nombre de sous-arbres;
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❼ au même moment, les règles suivantes ont pour effet de diminuer le nombre de
sous-arbres : Client R1, MA R7, LA R12, SeD R16;

❼ ainsi, le nombre de sous-arbres est constant (dans ce cas il est égal à 1) ou diminue.
.

preuve de P2 :

❼ l’exécution de chacune de ces règles conduit à la création d’une ou de deux instances
: Client R2, MA [R5, R8], LA [R10, R13, R14] et SeD R15;

❼ aucune de ces règles ne peut créer un sous-arbre déconnecté de celui qui contient
l’instance exécutant la règle; elles peuvent juste ajouter une ou deux instances à un
sous arbre existant;

❼ lorsqu’un agent (MA ou LA) n’a pas de fils, il crée un fils de type SeD. De ce fait,
une fois que MA R5 ou LA R10 est exécutée, la situation qui nécessite son exécution
disparâıt. L’exécution de ces règles ne créent pas de châıne d’agents/ LA ni d’agents
sans fils;

❼ lorsqu’un client perd la connexion avec un MA, il crée un MA en exécutant la règle
Client R2 une fois. Le MA créé par cette règle va exécuter la règle MA R5 une fois;

❼ lorsqu’un agent est surchargé, il crée deux nouveaux agents en exécutant une fois
soit la règle MA R8 (si c’est un MA), soit la règle LA R14 (si c’est un LA). Chacun
des agents nouvellement créés a un père et au moins un fils. Par conséquent, si un
agent nouvellement créé (par une des règles ci-dessus) n’est pas surchargé, il ne va
exécuter aucune règle qui a pour effet une création d’instance. Si par contre un
agent nouvellement créé est surchargé, il va exécuter lui aussi les règles ci-dessus et
ne sera plus surchargé. Ainsi, de manière générale, après un nombre fini d’étapes,
on aura des agents nouvellement créés par une des règles MA R8 ou LA R14 qui ne
seront pas surchargés;

❼ lorsqu’un SeD est isolé et qu’il n’y a pas d’agent dans le déploiement, il exécute la
règle SeD R15. Après cette opération, #{Agent} ≥ 1 et cette règle ne s’exécutera
plus parce qu’il y a au moins un agent;

❼ On peut donc dire que la création de nouvelles instances se termine car à chaque fois,
l’exécution d’une règle qui a pour effet une création d’instances élimine la situation
qui avait nécessité cette exécution. .

preuve de P3 :

❼ l’exécution de chacune des règles suivantes a pour effet la suppression d’une instance
: MA R4, MA R6, LA R9, LA R11, LA R12;

❼ un agent sans fils est supprimé (MA R4, LA R9) sauf s’il est l’unique agent du
déploiement (MA R5, LA R10);

❼ chaque agent créé par MA R8 ou LA R13 ou LA R14 a au moins un fils. Par
conséquent, pour chacun de ces agents, les règles MA R4 ou LA R9 ne seront pas
exécutées;
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❼ un MA créé par Client R2 ne sera pas supprimé mais va exécuter MA R5;

❼ toute châıne d’agents est supprimé (MA R6, LA R11). Le nombre d’agents dans un
déploiement est fini, et donc la suppression des châınes se termine en un temps fini;

❼ ainsi, on peut dire que la suppression d’instances se termine. .

preuve de P4 :

❼ la règle SeD R17 montre que tout calcul par un SeD se termine au bout d’un temps
fini. .

À partir de P1,P2,P3,P4, nous pouvons dire qu’une configuration correcte sera atteint
par le déploiement quelque soit la configuration initiale. En effet, P1,P2,P3 montrent qu’il
arrivera un moment où le graphe qui modélise un déploiement sera constitué d’une seule
composante connexe (P1), qu’il n’y a plus de création de nouvelles instances (P2), ni de
suppression d’instances (P3). Cela signifie que le nombre d’instances devient constant.
À partir de ce moment, les seules règles dont les gardes peuvent être vraies sont celles
qui n’ont ni d’effet de création ni de suppression, à savoir les deux règles : Client R3 et
SeD R17. Or, P4 montre que l’exécution de SeD R17 se termine au bout d’un temps
fini. Quant à la règle Client R3, elle est exécutée une fois et l’instance qui l’exécute
(re-soumettre une requête à un MA) recevra une réponse positive (adresse d’un SeD) ou
négative (si aucun SeD ne peut exécuter sa requête).

Ainsi, au bout d’un temps fini, toutes les instances seront stables, le déploiement
aussi. En conclusion, on peut dire qu’un déploiement de l’intergiciel, sujet à des pannes
transitoires, retrouvera une configuration stable au bout d’un temps fini.

Preuve de la propriété de clôture

Pour rappel, la propriété de clôture dispose qu’un déploiement stable reste stable en
l’absence de fautes transitoires.

Dans notre cas, un déploiement est stable lorsque toutes les instances sont stables.
Une instance est stable lorsqu’il n’est pas en train d’exécuter une règle. Lorsqu’une
instance est stable (ses voisins aussi sont stables), les seuls événements qui peuvent le
rendre instable sont les fautes transitoires comme la perte d’un voisin (ce qui n’arrivera
pas puisque les voisins sont stables), l’ajout de nouvelles instances (ce qui n’arrivera pas
car lorsque le déploiement est stable, le nombre d’instances est constant et il n’y a pas
de nouvelles créations), la perte de connexion avec un voisin, etc. Donc, en l’absence de
fautes transitoires, une instance stable reste stable, et par conséquent le déploiement reste
stable.

4.5 Conclusion

Dans ce chapitre, nous avons présenté un algorithme dont l’objectif est de rendre le dé-
ploiement d’un intergiciel auto-adaptatif. Nous avons prouvé que l’algorithme proposé
est auto-stabilisant. Ainsi, à partir d’un déploiement initial arbitraire, un déploiement
stable sera atteint au bout d’un temps fini. Nous n’avons cependant pas une idée claire
du temps de stabilisation. Pour cela, nous allons effectuer des simulations pour faire une
évaluation expérimentale du comportement de l’algorithme. Ces résultats sont présentés
dans le Chapitre 5.
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5.1. Résumé du chapitre

5.1 Résumé du chapitre

Dans ce chapitre, nous décrivons le simulateur conçu pour faire une évaluation de cer-
taines propriétés de l’algorithme décrit dans le chapitre précédent (comme le temps de
stabilisation). Il inclut aussi les simulations réalisées et les résultats des simulations.

5.2 Introduction

Nous avons décidé de simuler l’algorithme proposé afin d’avoir une appréciation de son
comportement. Les simulations d’un algorithme ne permettent pas de prouver son car-
actère auto-stabilisant (preuve apportée au Chapitre 4) puisqu’on a pas ici une borne
supérieure pour le temps de stabilisation (la définition garantit l’atteinte d’un état global
correct dans un temps fini, mais ne précise pas en combien d’étapes). Cependant les sim-
ulations pourront révéler des cas de convergence. L’objectif des simulations est d’étudier
de manière expérimentale certains aspects de l’algorithme.

On n’a pas aussi des topologies régulières (la topologie d’un déploiement est un graphe
dans le cadre général et un arbre dans des cas particulier, voire une châıne). Avec des
topologies régulières, on pourrait chercher des bornes supérieures (complexité temporelle)
pour le temps de stabilisation.

Pour ce faire, nous avons conçu un simulateur Ad hoc permettant de simuler l’algorithme
décrit dans le Chapitre 4. Nous voulons tester la convergence quand le réseau est à nou-
veau stable. Nous supposons donc que dans tous les cas, le réseau sous-jacent est con-
necté et pas partitionné parce que comme l’algorithme est basé sur une communication
entre les processus, si une déconnexion du réseau rend cette communication impossible,
l’algorithme que nous voulons évaluer ne pourra pas s’exécuter correctement.

Nous décrivons dans la suite de ce chapitre l’implémentation du simulateur, les simu-
lations réalisées et leurs résultats.

5.3 Simulateur

Le simulateur a été conçu pour nous permettre de valider l’aspect auto-adaptatif de
l’algorithme. Il a été programmé avec le langage Erlang [21, 145].

Dans un système programmé avec Erlang, le “travail” est réalisé par les processus.
Le processus est l’élément de base, qui exécute les tâches et qui utilise des fonctions
regroupées dans des modules. Les processus communiquent entre eux par échange de
messages. L’échange de messages peut se faire de manière synchrone ou asynchrone. Un
processus reçoit les messages qui lui sont envoyés (on suppose que le réseau fonctionne
correctement). Un processus peut fixer les types de messages qu’il est prêt à recevoir et
les actions à exécuter lorsque ce type de message est reçu. Les messages sont rangés dans
une file et consommés les uns après les autres (selon leur ordre d’arrivée ou bien selon des
priorités).

Un processus peut superviser l’existence (l’état vivant) d’autres processus en établis-
sant un lien avec eux (ce lien est symétrique). Lorsqu’un processus se termine, il envoie un
signal EXIT à tous les processus avec qui il existe un lien. Le comportement par défaut
d’un processus qui reçoit le signal EXIT est de se terminer lui aussi en propageant le
signal aux processus avec lesquels il est lié. Un processus peut changer ce comportement
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par défaut. Dans ce cas, la réception du signal est traité de la même manière que les
autres types de messages, afin de prévoir les actions à exécuter lorsqu’on le reçoit.

5.4 Fonctionnalités du simulateur

Le simulateur peut réaliser plusieurs actions. Les plus importantes, et celles que nous
avons utilisées le plus sont les suivantes : créer un déploiement (prédéfini ou aléatoire),
créer un événement de simulation pour rendre instable un déploiement stable ou afficher
l’état global du déploiement (stable ou instable).

5.4.1 Créer un déploiement

On peut créer un déploiement prédéfini ou un déploiement aléatoire.

Déploiement prédéfini

Pour créer un déploiement prédéfini, il faut décrire la hiérarchie souhaitée dans un fichier.
La hiérarchie est décrite comme une liste (représentée par une paire de crochets [...])
d’éléments de la forme :

1 [ {{ type , id , l1 , l2 , l3 , l4 , l5 , l 6 } , i n i t | adapt } ,
2 { { . . . . . . . . . . . . . . . . . . . . . . . . . } , i n i t | adapt } ,
3 { { . . . . . . . . . . . . . . . . . . . . . . . . . } , i n i t | adapt } ,
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 { { . . . . . . . . . . . . . . . . . . . . . . . . . } , i n i t | adapt}
6

7 ] .

Listing 5.1: Description d’un déploiement prédéfini

La structure {{type, id, l1, l2, l3, l4, l5, l6}, init|adapt} décrit chaque élément de cette
liste. Les données qu’elle contient ont les significations suivantes :

❼ type : le type du composant de base à savoir Client ou MA ou LA ou SeD;

❼ id : identifiant pour distinguer des éléments de même type. Cette information est
utilisée surtout, avec d’autres éléments, lors de la création du processus, pour créer
des identifiants uniques et globaux (avec une fonction de hachage) pour les processus
crées;

❼ l1, l2, l3 : l1 (successivement l2 et l3) désigne la liste contenant l’ancêtre de type
Client (successivement de type MA et de type LA). Nous rappelons qu’un élément
de DIET ne peut avoir un type d’ancêtre différent de ces trois possibilités. Toutes
ces listes peuvent être vides, dans le cadre d’un élément à qui on a pas fixé un
ancêtre, ou bien pour un élément de type Client. Cependant, lorsqu’elles ne sont
pas toutes vides, une seule d’entre elles contient des valeurs, les deux autres étant
vides car un élément de la hiérarchie ne peut avoir qu’un ancêtre;
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❼ l4, l5, l6 : l4 (successivement l5 et l6) désigne la liste contenant les fils de type
MA (successivement de type LA et de type SeD). Nous rappelons qu’un élément
de DIET ne peut avoir un type de fils différent de ces trois possibilités. Toutes
ces listes peuvent être vides, dans le cadre d’un élément qui n’a aucun fils, ou bien
pour un élément de type SeD. Certains éléments peuvent avoir des fils de différents
types, et dans ce cas, chaque type de liste contient les informations correspondant
aux fils de même type;

❼ init ou adapt : Le paramètre init permet de distinguer les processus qui ont été
créés avant la création des événements de simulation (événements perturbateurs)
des processus créés pendant les phases d’auto-adaptation (après un événement per-
turbateur); pour ces derniers le paramètre est adapt. Ces deux informations servent
à l’exploitation des données de la simulation.

Ce fichier sera lu et chaque élément sera transformé en processus (simulant une instance
du composant de base, s’exécutant sur une machine choisie de manière aléatoire parmi les
machines du réseau) qui établira les liens avec ses voisins (ancêtre et fils). Un exemple de
tel fichier pour définir un déploiement prédéfini est proposé dans le Listing 5.2.

1 [
2 {{ma,ma1 , [ ] , [ ] , [ ] , [ ] , [ ] , [ { sed , sed1 , n i l } ,{ sed , sed2 , n i l } ,
3 { sed , sed3 , n i l } ,{ sed , sed4 , n i l } ,{ sed , sed5 , n i l } ]} , i n i t } ,
4

5 {{ sed , sed1 , [ ] , [ {ma,ma1 , n i l } ] , [ ] , [ ] , [ ] , [ ] } , i n i t } ,
6 {{ sed , sed2 , [ ] , [ {ma,ma1 , n i l } ] , [ ] , [ ] , [ ] , [ ] } , i n i t } ,
7 {{ sed , sed3 , [ ] , [ {ma,ma1 , n i l } ] , [ ] , [ ] , [ ] , [ ] } , i n i t } ,
8 {{ sed , sed4 , [ ] , [ {ma,ma1 , n i l } ] , [ ] , [ ] , [ ] , [ ] } , i n i t } ,
9 {{ sed , sed5 , [ ] , [ {ma,ma1 , n i l } ] , [ ] , [ ] , [ ] , [ ] } , i n i t }

10 ] .

Listing 5.2: Exemple de description d’un déploiement prédéfini

Il s’agit ici de décrire une hiérarchie qui sera composée d’un élément racine (ma1 )
(cas particulier où la hiérarchie est un arbre) de type MA, qui a cinq fils tous de type
SeD (sed1 à sed5 ). Le paramètre nil sert à initialiser. Il précise qu’il faudra créer une
référence lors de la création du processus. Cette référence sera combinée avec le paramètre
id pour créer un nom global pour chaque processus. Ces deux informations (id, référence)
permettront aussi, à tout processus qui les connâıt de pouvoir retrouver l’adresse du
processus correspondant pour lui envoyer un message.

L’élément ma1 (décrit lignes 2 et 3), qui n’a pas de père ici (les listes pour ancêtres
sont vides) est suivi des listes des fils (comme il n’a ni fils de type MA, ni fils de type LA,
les listes prévues pour ses éléments sont vides) de type SeD (seule liste de fils non vide).

Pour chacun des SeD, seul la liste prévue pour les ancêtres de type MA contient leurs
ancêtres (ici ma1 ) et comme le SeD ne peut avoir de fils, les listes pour fils sont vides.

Le déploiement créé à partir de ce fichier ressemblera à la structure de la Figure 5.1.
Les instances seront créées sur des machines choisies de manière aléatoire parmi celles
constituant le réseau de nœuds Erlang (des machines virtuelles sur lesquelles s’exécutent
les processus).
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ma1

sed1 sed2 sed3 sed4 sed5

Figure 5.1: Un déploiement de 1 MA + 5 SeDs

Déploiement aléatoire

Pour un déploiement aléatoire, il suffit de lancer un nombre quelconque d’instances isolées
(de même type ou de type différent), les laisser s’auto-adapter, et au bout d’un nombre
fini de transitions, on obtient un déploiement aléatoire stable.

5.4.2 Créer un événement de simulation

Le simulateur permet de générer des événements qui peuvent rendre un déploiement insta-
ble et activer l’exécution de l’algorithme auto-adaptatif. En d’autres termes, ces événe-
ments peuvent rendre vraies les gardes des règles composant l’algorithme et permettre
l’exécution des actions associées. Ces événements simulent des pannes transitoires. Les
principaux événements générés sont l’ajout (création) d’un ensemble d’instances isolées
(de même type ou de type différent) qui vont rejoindre un déploiement existant ou bien
tuer un certain nombre d’instances (en les choisissant de manière aléatoire ou connaissant
leurs identifiants) existant dans un déploiement. L’action qui consiste à tuer un nombre
d’instances d’un déploiement existant se déroule de la façon suivante : à partir du dé-
ploiement de départ sur lequel on veut appliquer l’événement de simulation, et connaissant
le nombre n d’instances qu’on veut tuer (n donné ou calculé si c’est un pourcentage), on
exécute n fois l’action suivante : choisir de manière aléatoire une instance répondant aux
critères (type d’instance par exemple) et lui envoyer un signal (message) pour qu’elle se
termine.

5.4.3 Afficher l’état global d’un déploiement

On peut afficher l’état global du déploiement de manière périodique (la période peut
être fixée par la personne qui conduit les simulations), c’est-à-dire si le déploiement est
stable ou instable, avec le nombre d’instances stables, le nombre d’instances instables et
le nombre total d’instances du déploiement. Cet affichage nous permet par la suite de
compter le nombre d’unité de temps (appelé aussi hop) que prend un déploiement pour
redevenir stable après un événement de simulation.

5.5 Description du simulateur

Le simulateur se compose de trois parties principales :

Un serveur de déploiement

Cet élément centralisé a une vue globale du déploiement. C’est l’élément qui joue le
rôle d’oracle et qui répond aux requêtes relatives à la découverte de ressources. En effet,
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la découverte de ressources n’a pas été intégrée dans le simulateur. Elle est donc simulée
par cet élément.

Son état interne est représenté par une structure de donnée dynamique (graphe), qui
représente une image temps réel du déploiement. Chaque sommet du graphe représente
un processus simulant une instance de l’intergiciel. Chaque arête représente un lien en-
tre un processus et un de ses voisins. Cette structure de donnée est mise à jour après
chaque création d’une nouvelle instance, après chaque création ou suppression d’un lien,
par chaque instance qui se termine. Ce serveur doit être déployé avant toute création
d’instance.

Un serveur de détection de la stabilité du déploiement

Il sert à détecter l’état global d’un déploiement. En effet, pour les besoins des sim-
ulations, nous voulons pouvoir détecter si l’algorithme (qui doit permettre au système
perturbé de retrouver un état correct et qui se déclenche lorsque l’état du système est
instable) est en cours d’exécution ou s’il s’est terminé. Si l’algorithme (les règles) est
en cours d’exécution, cela signifie que le déploiement est instable. Si l’algorithme ne
“s’exécute plus”, c’est qu’aucune règle n’est active, et donc que le déploiement est sta-
ble. Le fait que l’algorithme d’auto-stabilisation ne soit pas en train de s’exécuter, ne
signifie pas qu’aucun autre algorithme n’est en train d’être exécuté. Cela signifie, ici,
que le système est stable et qu’il est en train d’exécuter son algorithme de base, c’est à
dire, qu’il est en train de fournir les fonctionnalités attendues. Dans la simulation, nous
n’avons pas pris en compte ce que fait le système une fois qu’il est stable. Son algorithme
n’a pas été programmé, les processus se contentent lorsqu’ils sont stables, de tester de
manière périodique leurs états et leurs liens avec leurs voisins. Ce qui a été programmé,
c’est l’algorithme qui permet au système de retrouver un état stable une fois qu’il a été
perturbé.

Ce serveur nous sert donc à traiter les informations relatives à l’état global du dé-
ploiement et à afficher ses informations. Son état interne est constitué de deux variables
entières positives ou nulles. Une des variables contient le nombre d’instances stables,
l’autre le nombre d’instances instables. La somme des deux représente le nombre to-
tal d’instances d’un déploiement. La manière dont ces variables sont mises à jour est
décrite à la Section 5.5.4. C’est une version centralisée de détection de la terminaison
d’un algorithme [61, 62, 67, 68]. Ce serveur doit aussi être déployé avant toute création
d’instance.

Un déploiement

Un déploiement est une hiérarchie d’instances qui a une structure de graphe. Chaque
instance se comporte comme un automate à états finis. Les instances ne peuvent commu-
niquer entre elles que par passage de messages.

5.5.1 Représentation des composants de l’intergiciel

Comme décrit dans la Section 1.1.1, l’intergiciel DIET est composé de quatre types de
composant de base, dont les instances constituent un déploiement. Ces composants de
base sont : Client, MA, LA, SeD.

Nous avons utilisé un Automate à États Finis (AEF dans la suite du document) [146]
pour modéliser chacun de ces composants.

Un AEF est une machine abstraite qui permet de modéliser la dynamique d’une entité.
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Il dispose d’un nombre fini d’états et réalise des transitions entre ses états en fonction des
données en entrée. Ils sont utilisés pour modéliser divers phénomènes dans divers domaines
comme l’apprentissage de la programmation par des étudiants [147], l’architecture [148],
la biologie [149], les protocoles de communication [150], etc.

Définition 13 (Automate à états finis déterministe). Un automate à états finis déter-
ministe est un quintuplet (E, Σ, δ, e0, F ) où

E désigne un ensemble fini d’états.
Σ représente un alphabet, un ensemble fini de symboles.
δ désigne une fonction de transitions entre états. δ : E × Σ→ E
e0 désigne un état initial.
F est un sous-ensemble de E, appelé ensemble des états finaux (ou terminaux).

Pour un AEF déterministe, card(δ(e, m)) = 1, c’est-à-dire que l’entrée m lorsque
l’automate est à l’état e produit la même cible.

Définition 14 (Automate à états finis Non déterministe). Un automate à états finis non
déterministe est un quintuplet (E, Σ, δ, I, F ) où

E désigne un ensemble fini d’états.
Σ représente un alphabet, un ensemble fini de symboles.
δ désigne une fonction de transitions entre états. δ : E × Σ ⊆ E
I représente un sous-ensemble de E, appelé ensemble des états initiaux.
F est un sous-ensemble de E, appelé ensemble des états finals (ou terminaux).

Un AEF peut être non déterministe de trois manières :

❼ card(I) > 1 : plusieurs états initiaux;

❼ δ(e,−) 6= ∅ : transition arbitraire sans se préoccuper de l’entrée;

❼ card(δ(e, m)) > 1 : plusieurs cibles pour la même entrée.

Nous utiliserons indifféremment les termes automate, AEF, instance, processus, nœud
pour désigner un processus, qui simule un composant de base de l’intergiciel et qui agit
comme un automate à états finis. Cela signifie que le processus a un nombre fini d’états
et effectue des transitions entre les états. Il peut être de type Client, MA, LA, SeD.

Dans notre cas, pour chaque élément ∈ {Client, MA, LA,SeD}, l’automate qui le
modélise est non déterministe dans le sens où il peut exister plusieurs cibles pour la même
entrée, mais sans transitions arbitraires et avec un seul état initial. En plus, l’automate
est tel que son nombre d’états, card(E) = card(R) + 1 avec R qui désigne l’ensemble des
règles définies pour ce type de composant, et l’état supplémentaire représente l’état stable.
Ainsi pour le composant Client, card(E) = 3 + 1 puisque trois règles ont été définies pour
lui. Pour le MA, on a card(E) = 5 + 1, pour le LA on a card(E) = 6 + 1 et pour le SeD

on a card(E) = 3 + 1.
Aussi, Σ représente dans notre cas spécifique, l’ensemble des messages et événements

dont la réception ou la détection peut changer l’état d’un AEF. Il contient un élément
spécial (un message) qu’on appellera calcul état. À la réception de ce message (dont
l’envoi par l’automate à lui même peut être provoqué par divers événements), l’automate
recalcule son état, et peut éventuellement faire une transition vers un autre état ou rester
dans le même état qu’auparavant. L’automate peut recevoir divers autres messages, dont
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le traitement peut provoquer l’envoi du message calcul état. La réception d’un message
autre que calcul état ne peut pas directement générer une transition.

I est réduit à un seul état (l’état initial). Les processus partent de cet état juste après
leur initialisation (cet état est pris une seule fois dans le cycle de vie d’un processus), et
les transitions possibles se font entre les autres états.

La fonction de transition, δ, peut être caractérisée de la manière suivante :

∀e ∈ E,∀mi ∈ Σ tel que mi 6= calcul état : δ(e, mi) = e

∀e ∈ E : δ(e, calcul état) ⊆ E \ I, ce qui signifie que l’ensemble des transitions est
constitué d’éléments de la forme

(ei, calcul état, ej) avec ei ∈ E et ej ∈ E \ I.

F est vide car il n’existe pas d’état terminal. Cela signifie qu’une fois l’état initial
dépassé, quelque soit l’état dans lequel se trouve l’automate, les événements détectés
et/ou les messages reçus et les traitements qu’ils provoquent, peuvent créer une transition
vers un autre état. Il n’y a pas un état à partir duquel aucune transition n’est plus
possible, tout dépend des événements détectés et des messages reçus.

Chaque AEF est à la fois un serveur et un client. Il est un serveur dans la mesure où
il peut recevoir des requêtes (messages) auxquelles il répond mais aussi client car pouvant
envoyer une requête à un autre AEF.

5.5.2 Gestion des états d’un AEF

Définition de l’état interne d’un AEF

L’état interne d’un AEF est constitué de l’ensemble de ses variables locales (leurs valeurs).
La même structure de données (un enregistrement) est utilisée pour décrire cet état in-
terne. Un sous-ensemble des champs de cette structure sert à conserver des données pour
identifier l’élément, et un autre sous-ensemble des champs sert à conserver les identifiants
des voisins (père et fils). Comme un élément ne peut avoir au plus que trois types de
père et trois types de fils, six listes ont été prévues pour conserver ces informations sur
les voisins. Cet état est mis à jour en fonction des messages reçus, des timeout, de la
rupture de lien avec un voisin, etc. Mais seul l’instance propriétaire peut modifier son
état interne.

Identification

Le sous-ensemble des variables locales qui conserve les données d’identification de l’élément
est utilisé par une fonction de hachage qui crée, à partir de ces informations un nom unique
(par rapport au cluster de machines virtuelles Erlang ). Ce nom unique peut servir
d’adresse au processus et on peut lui envoyer un message en donnant ce nom comme
adresse. En plus, on peut retrouver l’identifiant du processus (PID) à partir de ce nom.

L’avantage de ce nom est la possibilité de l’utiliser pour personnaliser les informations
sur les processus (en perspective du traitement des données à faire plus tard après la
simulation). Par exemple on peut concaténer le type (ma, la, ...) du processus avec ce
nom et on aura encore des noms uniques avec l’avantage d’avoir une information sur le
type du processus. Par contre le PID offre moins de flexibilité car il ne permet pas de
distinguer les types. Mais son avantage est que les communications sont plus rapides car
il n’est pas nécessaire de faire des calculs pour trouver l’adresse, alors que cette étape est
un préalable (fonction hachage) si on veut utiliser le nom unique de hachage. Dans le cas
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de l’implémentation de l’intergiciel DIET, ce problème est résolu au travers des IOR de
CORBA et du service de nommage (Naming Services).

Introspection

Un AEF à une capacité d’introspection, c’est-à-dire, qu’il a la capacité de lire son état
interne (valeurs courantes des variables locales) à chaque fois que cela s’avère nécessaire
et peut l’utiliser dans diverses opérations.

Calcul de l’état

L’état d’un AEF ne dépend que de son état interne. Dans son fonctionnement, un AEF
peut envoyer et recevoir des messages, peut détecter certains événements de son environ-
nement, peut exécuter des opérations périodiques.

À la suite de chacun de ces événements, un ensemble d’opérations prévues est exécuté
en fonction du type du message, de l’événement détecté, du test effectué. Et à chaque
fois que l’exécution de cet ensemble d’opérations est susceptible de modifier l’état interne
de l’AEF, ce dernier calcule de nouveau son état pour le mettre à jour. Ainsi, le traite-
ment associé à chaque événement pouvant modifier l’état interne, comporte une dernière
opération qui demande de calculer à nouveau l’état et de le mettre à jour. Cette demande
se fait par l’envoi d’un message particulier, calcul état (cf. Section 5.5.1).

La réception de ce message spécial par un AEF provoque le calcul et la mise à jour de
son état en fonction des valeurs courantes de ses variables locales. Ce message, ne peut
être envoyé à un AEF que par lui même. Le résultat du calcul peut être une transition
vers un autre état ou un statu quo.

Chaque instance vérifie de manière périodique ses liens avec ses voisins. Si après un
certain nombre de tentatives, la vérification échoue, l’instance met à jour ses variables
locales en supprimant de la liste des voisins l’instance avec qui la vérification a échoué, et
recalcule son état.

De même, chaque instance lance de manière périodique, une opération de mise à jour
de son état même si aucun message n’est reçu et traité, ni aucun événement détecté.

5.5.3 Définition d’un déploiement stable pour le simulateur

Un déploiement correspond à une hiérarchie d’instances, modélisées sous forme d’AEF.
Chaque instance est déployée sur une machine virtuelle Erlang. Les instances ne peuvent
communiquer que par envoi de messages.

Nous allons affiner la définition d’un déploiement stable. On l’a déjà défini dans le
cadre général (Définition 12), on le redéfinit en tenant compte des particularités de la
simulation.

Définition 15 (Un déploiement stable pendant une simulation). Pendant les simulations,
un déploiement sera dit stable si :

❼ Chaque instance est dans son état stable (c’est-à-dire qu’elle n’est pas en train
d’exécuter une règle). Si toutes les instances sont dans leur état stable, on a :

#{instances instables} = 0

65



5.5. Description du simulateur

#{instances stables} = #{instances du déploiement};

❼ Il y a au moins deux instances dans le déploiement (un déploiement avec une seule
instance est toujours instable);

❼ Et le déploiement est stable (et le reste par la suite) pendant un nombre n d’unités
de temps, et durant ces n unités de temps (et après), le nombre total d’instances
reste constant en l’absence d’événements externes.

L’idée derrière ce nombre n est qu’au bout de n unités de temps, tout message en tran-
sit devrait atteindre sa destination, et aussi qu’une instance nouvellement créée devrait
terminer sa phase d’initialisation et se faire enregistrer.

Transition des états

Pour chaque type de composant x ∈ {Client, MA, LA, SeD} nous notons par :
s : l’état d’une instance de type x.
ss : l’état stable d’une instance de type x.
usx

i : l’état instable i d’une instance de type x.
USx = {usx

1 , ..., usx
k} l’ensemble des états instables d’une instance de type x. k dépend

de x et est tel que k = card(R), avec R qui représente l’ensemble des règles définies pour
le type de composant x.
ASx : l’ensemble des états possibles d’une instance de type x :

ASx = {ss, usx
1 , ..., usx

k} = {ss}
⋃
USx

La Figure 5.2 illustre le comportement générique d’un AEF et les types de transitions
qu’il peut effectuer.

création du
processus

état initial

état instable 1
état instable 2
.................

état instable k

état stable

terminaison
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calcul état
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Figure 5.2: Transitions entre les états d’un AEF
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Après la création du processus, l’AEF exécute des instructions d’initialisation et se
met automatiquement dans l’état initial, qu’il occupera cette unique fois. Il s’auto-envoie
un message pour calculer son état.

A un instant donné, l’état s d’un AEF “vivant”(déjà initialisé) de type x est tel :

s ∈ ASx = {ss, usx
1 , ..., usx

k}; donc stable ou instable.

Si l’AEF est stable (s = ss), il exécute le code pour lequel il est spécifié. Il effectue aussi
des vérifications périodiques et peut recevoir et gérer les messages qui lui sont envoyés.
Après le traitement des événements, il calcule de nouveau son état et le met à jour. Le
résultat de cette mise à jour est soit le statu quo (de stable à stable), soit une transition
vers un des états instables usx

i ∈ US
x, 1 ≤ i ≤ card(USx).

Si l’AEF est instable (s ∈ USx = {usx
1 , ..., usx

k}), il peut faire une transition de son
état instable courant vers le même état instable, ou bien vers un autre des états instables,
ou bien vers l’état stable.

5.5.4 Détection d’un déploiement stable

Lorsqu’un déploiement est soumis à des pannes transitoires et devient instable, l’algorithme
auto-adaptatif s’exécute pour que le système retrouve un état stable. Pour les besoins
de la simulation, nous avons besoin de savoir, à un moment donné, si le déploiement
est stable (l’algorithme auto-adaptatif ne s’exécute pas) ou instable (l’algorithme est en
train de s’exécuter). Nous avons donc besoin de pouvoir déterminer l’état global d’un dé-
ploiement, et cela passe par la possibilité de détecter la terminaison (ou non) de l’exécution
de l’algorithme auto-adaptatif.

L’état global d’un déploiement est constitué de l’état de chacun de ses nœuds et de
l’état des canaux de communication (Définition 4). Détecter l’état global d’un système
distribué où il n’existe pas de mémoire partagée, ni un temps global et où les délais des
messages sont arbitraires n’est pas trivial. La détection d’un état global du déploiement
peut être comprise comme un algorithme de détection de la terminaison [66], qui détermine
si un algorithme distribué est terminé. La détection de la terminaison est un problème
fondamental pour la programmation distribuée. S’inspirant des définitions dans [66], nous
pouvons formuler notre problème (détecter si le déploiement est stable ou instable) comme
un problème de détection de la terminaison d’un algorithme distribué.

Une partie des calculs et des messages envoyés et reçus constituent l’algorithme auto-
adaptatif dont l’exécution a pour but de rendre le déploiement stable. C’est l’ensemble
des règles définies pour les différents types de composant. Ces calculs sont appelés calculs
de base et les messages produits dans ce cadre, des messages de base. Une partie supplé-
mentaire est ajoutée et comprend les calculs et messages produits dans le but de détecter
la terminaison. On les appelle calculs et messages de contrôle. Cette partie est indépen-
dante de l’algorithme auto-adaptatif mais a été ajoutée pour détecter l’état global du
déploiement, pour les besoins de la simulation. Ainsi, la partie contrôle est implémentée
pour détecter la terminaison de l’algorithme de base.

Les messages de contrôle correspondent à ceux utilisés dans le Listing 5.3, ils sont
envoyés par une instance à un observateur externe (serveur de détection de la stabilité du
déploiement).

La terminaison peut être détectée de l’extérieur par un observateur externe (version
centralisée que nous avons adoptée). Mais si ce sont les processus eux mêmes qui doivent
détecter la terminaison, dans ce cas on a la détection distribuée de terminaison.

Une instance d’un déploiement est soit en exécution (“vivante”), soit elle est terminée.
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Une instance en exécution est soit dans un état stable (actif), soit dans un état instable
(passif). Lorsqu’une instance est dans un état instable (un des états de l’ensemble fini des
états instables possibles pour ce type d’instance), elle exécute l’algorithme auto-adaptatif.
Cela signifie qu’au moins une règle a une garde qui est vraie et les actions correspondantes
sont en train d’être exécutées. Si l’état de l’instance n’est pas instable, alors il est stable.

Une instance terminée cesse d’exister et ne peut plus ni recevoir, ni envoyer de mes-
sages, ni exécuter aucune autre action. Une instance se termine à la réception d’un
message particulier (message exit par exemple). Une instance se termine à la suite d’un
ordre (message) de terminaison qu’il s’auto-envoie ou qui lui est envoyé par une autre
instance.

Juste avant de cesser d’exister définitivement, une instance peut exécuter une dernière
fonction (fonction terminer). Une instance peut utiliser cette fonction pour “avertir”
les autres instances de son choix (notamment ses voisins) de sa terminaison. En plus,
un message avertissant de la terminaison d’une instance est envoyé automatiquement à
toutes les autres instances avec qui elle avait un lien. Donc, chaque fois qu’une instance se
termine, ses voisins le sauront d’une manière ou d’une autre, même si c’est une terminaison
brutale causée par une panne du matériel. Soit les voisins recevront un message les
avertissant de la terminaison ou bien ils tenteront de vérifier le lien (ce qui se fait de
manière périodique) et ce sera un échec. Dans ces différents cas, les voisins mettront à
jour leurs données internes en supprimant l’instance terminée ou inaccessible de la liste
de leurs voisins.

Un calcul distribué est considéré comme terminé lorsque tous ses processus en exécu-
tion sont dans l’état passive et qu’aucun message de base n’est en transit (tous les canaux
de communication sont vides). Ceci est appelé la condition de terminaison distribuée [66].

Dans notre cas, cette condition correspond à la Définition 15. Les instructions et
messages de contrôle pour détecter la terminaison de l’algorithme de base constituent
l’algorithme de détection de la terminaison.

Détecter un déploiement stable est donc comparable à la détection d’une terminaison
distribuée mais avec des hypothèses moins strictes. En effet, nous supposons que lorsque
le déploiement est stable et reste stable pour un nombre fixé d’unités de temps, c’est
qu’il n’y a pas de messages en transit, donc que les canaux sont vides. Les messages
en transit incluent ceux qui sont en attente d’être consommés. Théoriquement, lorsque
les communications sont asynchrones, les messages peuvent prendre un temps arbitraire
mais fini. Notre hypothèse est de borner ce temps dans la mesure où nous effectuons
les simulations dans un environnement stable où les messages sont transmis de manière
spontanée.

Nous avons utilisé une méthode Ad hoc et centralisée pour détecter la terminaison. Les
instances surveillent des variations particulières de leurs états et envoient des messages à
un observateur extérieur qui se charge de détecter l’état global du déploiement. C’est le
serveur de détection de la stabilité du déploiement (Section 5.5).

L’état interne de ce serveur est constitué de deux variables entières et positives :

StableSem pour compter le nombre courant d’instances stables et UnstableSem
pour compter le nombre courant d’instances instables d’un déploiement. Ces deux vari-
ables sont initialisées à zéro lorsque le serveur est lancé (avant toute création d’instance)
et sont mises à jour selon la méthode décrite dans le Listing 5.3.

Une instance qui vient d’être créée, après une phase d’initialisation se met dans l’état
initial, qu’elle prend cette unique fois. Ensuite, au prochain calcul de son état, le résultat
sera entre l’état stable ou un des états instables du type de l’instance. C’est à partir de
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ce moment qu’elle peut s’enregistrer au niveau du serveur. Donc une instance qui n’est
pas encore dans un état stable ou instable est inconnue de ce serveur.

Une instance connue du serveur (déjà enregistrée) est donc soit stable ou instable et
peut se terminer à partir de cet état. Une instance qui a entamé une phase de terminaison
ne peut plus changer d’état et son état est le dernier qu’elle a eu avant d’entamer la phase
de terminaison (exécution de la fonction terminer).

À chaque fois qu’une instance veut calculer son état, elle sauvegarde son état précédent
et le compare avec le nouvel état. Si certaines variations sont notées (une transition d’un
état ei à un état ej tel ei 6= ej), l’instance envoie un message au serveur pour qu’il
incrémente ou décrémente ses deux variables.

Ainsi une transition d’un état initial à un état stable incrémente StableSem et une
transition d’un état initial à un état instable incrémente UnstableSem.

Une transition d’un état stable à un état instable incrémente UnstableSem et décré-
mente StableSem et une transition d’un état instable à un état stable incrémente Sta-
bleSem et décrémente UnstableSem.

Lorsqu’une instance meurt (lorsque l’instance exécute la fonction terminer), elle envoie
un message au serveur qui décrémente une des variables en fonction du dernier état de
l’instance qui meurt.

1 case {EtatPrecedent , EtatCourant} o f /✯ case t r a n s i t i o n ✯/
2

3 /✯ t r a n s i t i o n de l ’ é t a t i n i t i a l v e r s un des é t a t s
4 i n s t a b l e s . Premier c a l c u l de son é t a t apr è s i n i t i a l i s a t i o n ✯/
5 { e t a t i n i t i a l , i n s t a b l e } : UnstableSem++;
6

7 /✯ t r a n s i t i o n de l ’ é t a t i n i t i a l v e r s l ’ é t a t s t a b l e .
8 Premier c a l c u l de son é t a t apr è s i n i t i a l i s a t i o n ✯/
9 { e t a t i n i t i a l , s t a b l e } : StableSem++;

10

11 /✯ t r a n s i t i o n de l ’ é t a t s t a b l e ve r s un des é t a t s i n s t a b l e s ✯/
12 { s tab l e , i n s t a b l e } : UnstableSem++;
13 StableSem−−;
14

15 /✯ t r a n s i t i o n d ’un des é t a t s i n s t a b l e s ve r s l ’ é t a t s t a b l e ✯/
16 { i n s t ab l e , s t a b l e } : StableSem++;
17 UnstableSem−−;
18

19 /✯ i n s t ance i n s t a b l e qu i meurt ( in s tance ex é cu tan t l a
20 f onc t i on terminer ) ✯/
21 { i n s t ab l e , i n s t anc e qui se termine } : UnstableSem−−;
22

23 /✯ i n s t ance s t a b l e qu i meurt ( in s tance ex é cu tan t l a
24 f onc t i on terminer ) ✯/
25 { s tab l e , i n s t anc e qui se termine } : StableSem−−;
26

27 end ;

Listing 5.3: Méthode de détection d’un déploiement stable
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5.6. Configuration matérielle et logicielle

5.6 Configuration matérielle et logicielle

Toutes les simulations ont été réalisées sur une machine ayant les caractéristiques matérielles
suivantes : Processeur Intel(R) Xeon(R) X5570 @ 2.93GHz avec 16 coeurs et 33 GB de
RAM, avec le système d’exploitation Debian GNU/Linux 7 (wheezy), et la version Erlang
R15B01 (erts-5.9.1).

5.7 Simulations et résultats
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Figure 5.3: Un exemple de configuration de simulation

Pour toutes les simulations effectuées, nous avons utilisé cinq machines virtuelles Er-
lang (que nous appelons aussi nœuds erlang) déployées sur la même machine physique
(Figure 5.3). Les nœuds erlang sont connectés entre eux sous la forme d’un graphe com-
plet, formant ainsi une sorte de cluster. Ainsi, tout processus déployé sur un des nœuds
peut communiquer avec un autre processus déployé sur le même nœud ou sur un autre
nœud s’il connâıt son adresse. De même, un processus peut exécuter une fonction sur un
nœud autre que celui sur lequel il est déployé par un mécanisme d’appel de procédure à
distance. Cette topologie n’est pas obligatoire mais elle est simple à mettre en œuvre.
Deux nœuds sont utilisés pour le déploiement de la hiérarchie, un nœud pour le serveur
de déploiement (contient une image du déploiement courant sous la forme d’une structure
de données graphe), un œud pour le serveur de détection de la stabilité (affichage péri-
odique du nombre d’instances stables, du nombre d’instances instables, du nombre total
d’instances et de l’état global du déploiement), et un nœud pour lancer des événements
de simulation (ajout de nouvelles instances, suppression d’instances).

Les instances de la hiérarchie sont déployées de manière aléatoire entre les deux nœuds
prévus pour les recevoir.

Nous avons effectué quatre simulations que nous allons décrire dans la partie qui suit.
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Figure 5.4: Ajout d’un nombre X (abscisse) de nouvelles instances (des SeDs isolés) à un
déploiement stable. Pour chaque X, calculer la moyenne (sur cinq valeurs) des tops qu’il a fallu
pour que le déploiement retrouve un état stable. Calculer le ratio entre cette moyenne et X. La
courbe représente le ratio en fonction de X.

5.7.1 Effet d’un changement de topologie par ajout de nouvelles
instances

L’idée de la première simulation est la suivante : créer un déploiement stable et simuler
l’effet d’un changement de topologie dû à l’ajout de nouvelles instances. Pour réaliser
cette simulation, nous partons d’un déploiement stable et simple constitué d’un (1) MA
et de cinq SeDs, fils du MA. Et pour chaque X ∈ {5, 10, 50, 100, 200, 500, 600, 700},
nous ajoutons X nouveaux SeDs isolés (éléments instables) au déploiement de base et
comptons le nombre de périodes de temps (500ms) que nous appelons tops que va prendre
le déploiement pour redevenir stable. Pour chaque X, l’expérience est répétée cinq fois et
on calcule la moyenne des tops pour les cinq expériences.

La Figure 5.4 montre le ratio entre la valeur moyenne des tops et le X correspondant.

5.7.2 Effet du changement de topologie par suppression d’instances

L’idée de ces simulations est d’étudier l’effet d’un changement de topologie dû à la sup-
pression d’un certain nombre d’instances ou d’un pourcentage des instances.

Suppression d’un nombre d’instances

Pour cette simulation, nous créons un déploiement de départ stable avec un nombre assez
important de SeDs. Pour ce faire, nous ajoutons 500 SeDs isolés à un déploiement de
base constitué d’un MA et cinq SeDs et obtenons à la fin un déploiement stable avec un
nombre important de SeDs.
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Figure 5.5: Suppression d’un nombre X (abscisse) d’instances (des SeDs) d’un déploiement
stable. Pour chaque X, déterminer le nombre total d’instances de tout type (Client, MA, LA,
SeD) avant et après la suppression, ainsi que la différence entre ces deux valeurs. La courbe
représente ces trois valeurs en fonction de X.

Il est possible de faire autrement en créant directement un déploiement par ajout de
500 SeDs isolés et laisser faire le processus de stabilisation. Mais nous avons constaté
que la première méthode prenait “moins de temps” que la seconde méthode pour que le
déploiement se stabilise . Nous avons donc préféré la première méthode pour cette raison.

Les déploiements stables obtenus ne sont pas toujours les mêmes (ni en terme de
structure ni en terme de nombre d’instances) même s’ils sont tous obtenus par les mêmes
opérations. Cela est dû au fait que les décisions prises par les instances ne sont pas déter-
ministes (nous rappelons que les processus sont modélisés par des AEF non déterministes).

Une fois ce déploiement stable obtenu avec un nombre assez important de SeDs, pour
chaque X ∈ {5, 10, 50, 100, 200, 500}, on répète cinq fois les actions suivantes : X SeDs
sont tués (choisis de manière aléatoire), on compte le nombre de tops d’horloge que le
système prend pour redevenir stable, on sauvegarde le nombre total d’instances (AEF)
avant l’événement de simulation (“tuer X SeDs”) et aussi le nombre total d’instances
(AEF) lorsque le déploiement redevient stable. Pour chaque X, on calcule les valeurs
moyennes de ces paramètres (cinq valeurs pour chaque paramètre). Les Figures 5.5, 5.6
montrent les résultats de ces simulations.

La Figure 5.5 montre pour chaque X (nombre de SeDs tués) le nombre moyen d’AEF
avant la simulation, le nombre moyen d’AEF après la simulation et la différence entre ces
deux valeurs. La Figure 5.6, obtenue à partir des données du tableau 5.1, représente, pour
chaque X, le ratio entre la moyenne des tops d’horloge (pour que le déploiement retrouve
un état stable) et X. Pour cette expérience lorsqu’on tue 5 ou 10 ou 50 SeDs, le temps de
stabilisation est presque instantané avec une moyenne du nombre de tops d’horloge pour
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Figure 5.6: Suppression d’un nombre X (abscisse) d’instances (des SeDs) d’un déploiement
stable. Pour chaque X, calculer la moyenne (sur cinq valeurs) des tops qu’il a fallu pour que
le déploiement retrouve un état stable. Calculer le ratio entre cette moyenne et X. La courbe
représente le ratio en fonction de X.

se stabiliser qui est égale respectivement à : 0, 4; 1, 4 et 0, 2. Cette moyenne passe à une
valeur comprise entre 6 et 10, 4 lorsqu’on tue un nombre de SeDs compris 100 et 500.
On peut dire que lorsqu’on tue un “petit” nombre de SeDs, l’effet sur le système est vite
résorbé, si il n’est pas simplement négligeable. Ceci semble logique dans la mesure où, le
fait de tuer un SeD, voire un ensemble de SeDs ne conduit pas forcément à un système
instable.

Tableau 5.1: Données de la Figure 5.6

#SeDs tués moyenne tops d’horloge (moyenne tops horloge) /́ (#SeDs)
5 0,4 0,08
10 1,4 0,14
50 0,2 0,004
100 6 0,06
200 6,8 0,034
300 8 0,026
400 9,2 0,023
500 10,4 0,0208
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Figure 5.7: Suppression d’un pourcentage X (abscisse) d’instances (des SeDs) d’un déploiement
stable. Pour chaque X, déterminer le nombre total d’instances de tout type (Client, MA, LA,
SeD) avant et après la suppression, ainsi que la différence entre ces deux valeurs. La courbe
représente ces trois valeurs en fonction de X.

Suppression d’un pourcentage des instances

Cette simulation est comparable à la simulation précédente à la différence qu’au lieu de
tuer X SeDs, ce sont X% des SeDs qui sont tués et X ∈ {5, 20, 25, 35, 40, 50, 65, 75, 80, 100}.

Ainsi donc, après avoir crée un déploiement stable avec un nombre “assez important”
de SeDs, pour chaque X ∈ {5, 20, 25, 35, 40, 50, 65, 75, 80, 100}, X% des SeDs (choisis de
manière aléatoire) et la simulation est répétée cinq fois et pour chaque fois les valeurs des
paramètres suivants sont enregistrées:

❼ Le nombre de tops d’horloge que prend le système pour retrouver un état stable;

❼ Le nombre total d’instances (AEF) avant l’événement de simulation (“tuer X% des
SeDs”);

❼ Le nombre total d’instances (AEF) lorsque le déploiement redevient stable après
application de l’événement de simulation (“tuer X% des SeDs”).

❼ Le nombre total de SeDs avant l’événement de simulation (“tuer X% des SeDs”);

❼ Le nombre total de SeDs lorsque le déploiement redevient stable après application
de l’événement de simulation (“tuer X% des SeDs”).

Pour chaque X, on calcule les valeurs moyennes de ces paramètres (cinq valeurs pour
chaque paramètre).
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Figure 5.8: Suppression d’un pourcentage X (abscisse) d’instances (des SeDs) d’un déploiement
stable. Pour chaque X, déterminer le nombre total d’instances de type SeD avant et après la
suppression, ainsi que la différence entre ces deux valeurs. La courbe représente ces trois valeurs
en fonction de X.
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Figure 5.9: Suppression d’un pourcentage X (abscisse) d’instances (des SeDs) d’un déploiement
stable. Pour chaque X, calculer la moyenne (sur cinq valeurs) des tops qu’il a fallu pour que
le déploiement retrouve un état stable. Calculer le ratio entre cette moyenne et X. La courbe
représente le ratio en fonction de X.
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Les figures 5.7, 5.8, 5.9 montrent les résultats de cette simulation.

Les courbes sur la Figure 5.7 représente pour chaque X (le % de SeDs tués) le nombre
moyen d’AEF avant l’événement de simulation (début simulation), après l’événement de
simulation lorsque le déploiement est redevenu stable (fin simulation) et la différence entre
ces deux valeurs moyennes.

Le nombre moyen d’AEF avant la simulation est indépendant de l’événement de simu-
lation. Il varie entre 844 et 982 instances et est le résultat obtenu en créant un déploiement
en ajoutant 500 SeDs isolés à un déploiement stable constitué d’un MA et cinq SeDs.

Le nombre moyen d’AEF à la fin de la simulation décrôıt lorsque le pourcentage de
SeDs tués augmente.

La différence entre le nombre moyen d’AEF au début et à la fin de la simulation
peut être intuitivement compris comme le nombre de SeDs tués. Cependant, le nombre
totales d’instances tuées peut être supérieur ou inférieur au nombre de SeDs tués par
l’événement de simulation car des instances peuvent être créées ou tuées durant la phase
d’auto-adaptation après que l’événement de simulation a été déjà appliqué.

Les courbes sur la Figure 5.8 représentent pour chaque X (% de SeDs tués) le nombre
moyen de SeDs au début de la simulation, à la fin de la simulation, et la différence entre
ces deux valeurs. Comme dans le cas précédent, les valeurs moyennes avant le début de
la simulation sont indépendantes de l’événement de simulation. Cette valeur est presque
constant et varie entre 504 et 505 instances.

Le nombre moyen de SeDs à la fin de la simulation décrôıt lorsque le pourcentage de
SeDs tués augmente mais est toujours supérieur ou égal à zéro même lorsque 100% des
SeDs sont tués. En effet, des SeDs sont aussi créés quand c’est nécessaire par l’algorithme
auto-adaptatif.

La différence entre les deux valeurs moyennes (au debut et à la fin) peut être intu-
itivement compris comme le nombre moyen de SeDs qui se sont finalement terminés.

La Figure 5.9 montre le ratio entre le nombre moyen de tops d’horloge pour que le
déploiement recouvre un état stable (lorsque X% des SeDs sont tués) et X.

5.7.3 Effet du changement de topologie par alternance d’ajout
et de suppression d’instances

L’idée de cette simulation est de partir d’un déploiement stable et d’alterner les ajouts
de nouvelles instances aux suppressions d’instances. À chaque fois qu’un de ces événe-
ments est appliqué, on attend que le déploiement retrouve un état stable et on applique
l’événement suivant.

Pour cela, nous créons d’abord un déploiement stable avec 408 instances, obtenu par
ajout de 250 SeDs isolés à un déploiement stable constitué d’un (1) MA et de cinq SeDs.

A partir de ce déploiement stable de 408 instances, on tue 100 SeDs choisis de manière
aléatoire, et on attend que le système retrouve un état stable. Une fois que le système
est redevenu stable, on ajoute 100 SeDs et on attend encore que l’état stable soit atteint
pour alterner ces deux opérations. Durant toute la simulation, le nombre total d’AEF
stables et le nombre total d’AEF instables sont enregistrés de manière périodique. Pour
dessiner les courbes, on a réduit les plages pendant lesquelles le système est stable. Donc,
avant l’application de tout événement “ajout de 100 SeDs ” ou “suppression de 100 SeDs
”, le système a été stable pendant suffisamment longtemps, période qu’on a réduite pour
mettre en exergue les moments pendant lesquels le système retrouve un état correct.

76



5.7. Simulations et résultats

 0

 100

 200

 300

 400

 500

 600

 700

T A T A T A T A T A

N
o

m
b

re
 d

’in
s
ta

n
c
e

s

T = Tuer 100 SEDs   A = Ajouter 100 SEDs

Instances instables
Instances stables

Total 

Figure 5.10: Alternance des événements “tuer 100 SeDs (T)” et “ajouter 100 SeDs (A)”. Après
l’application d’un événement, attendre que le déploiement retrouve un état stable et appliquer
l’événement suivant.

Les courbes sur les Figures 5.10 et 5.11 montrent les variations des valeurs enregistrées
au cours de la simulation.

On peut faire quelques observations sur la courbe de la Figure 5.11. La première est
qu’après l’application de chaque événement de simulation qui modifie la topologie (ajout
ou suppression), le déploiement retrouve un état stable (nombre d’instances instables égal
à zéro) au bout d’un certain temps.

On peut aussi observer que l’effet de l’événement de suppression d’instances est plus
spontané que celui de l’ajout. Ceci peut s’expliquer par le fait qu’après une action d’ajout,
les instances nouvellement créées ont besoin de s’initialiser avant que le processus d’auto-
adaptatif ne commence. Or, pendant cette phase d’initialisation (le temps que cela prend
peut varier d’une instance à une autre, en fonction de leur type et des données initiales,
mais dans tous les cas, ce temps est non nul), les instances ne sont pas encore enregistrées
au niveau du serveur qui détecte la stabilité même si l’instance est connue par le serveur de
déploiement. C’est après la phase d’initialisation et une première mise à jour de son état
que l’instance (maintenant dans un état stable ou instable) peut exécuter les instructions
d’adaptation.

L’effet de l’action de suppression est plus spontané parce qu’une instance qui se termine
exécute moins d’opérations en général qu’une instance qui s’initialise. Une instance qui
se termine envoie des messages exit à ses voisins (avec qui elle a un lien) et un message
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Figure 5.11: Alternance des événements“tuer 100 SeDs (T)”et“ajouter 100 SeDs (A)”. variation
du nombre d’instances instables.

de mise à jour des variables au serveur de détection de la stabilité.
Dans certains cas, l’effet de l’action de suppression n’est pas très perceptible parce

que supprimer des SeDs d’un déploiement stable ne rend pas forcément le déploiement
instable, mais c’est uniquement le nombre d’instances qui diminue dans ce cas.

5.8 Conclusion

Dans ce chapitre, nous avons décrit le simulateur que nous avons conçu pour évaluer
l’algorithme auto-adaptatif décrit dans le Chapitre 4. Les processus sont modélisés par
un automate à états finis non déterministe. Nous avons décrit les simulations effectuées
et présenter les résultats.
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Conclusion

Dans cette thèse, nous avons étudié les moyens de rendre auto-adaptatif le déploiement
d’un intergiciel hiérarchique. L’auto-adaptation a lieu lorsque l’intergiciel détecte certains
événements liés à la plate-forme sur laquelle il est déployé ou bien aux processus de
l’intergiciel en cours d’exécution. Ces événements peuvent être la variation du nombre de
ressources de la plate-forme et/ou l’arrêt accidentel de certains processus de l’intergiciel,
et qui rendent l’état du déploiement instable.

Pour ce faire, nous avons proposé des modèles pour décrire les entités qui interviennent
dans ce processus, à savoir la plate-forme distribuée et élastique sur laquelle l’intergiciel
est susceptibles d’être déployé, l’architecture de l’intergiciel ainsi qu’un déploiement en
cours d’exécution.

Nous avons ensuite proposé un algorithme distribué permettant à l’intergiciel d’être
tolérant à certains types de pannes, mais aussi de chercher à atteindre un objectif qualitatif
qui a été traduit par la définition d’un déploiement stable. Nous avons prouvé que cet
algorithme est auto-stabilisant.

Nous avons conçu un simulateur permettant d’exécuter un algorithme auto-adaptatif
et d’étudier son comportement. Nous avons simulé l’algorithme proposé, pour étudier son
comportement face à certaines modifications du contexte. Les résultats des simulations
montrent que l’algorithme est auto-adaptatif. Les simulations montrent également que le
temps de stabilisation (des simulations) est arbitraire mais fini.

Perspectives

Pour de futurs travaux, il serait intéressant de réfléchir sur les pistes ci-dessous :

❼ Intégrer les modèles définis au Chapitre 3 (dans le simulateur) pour les futurs
simulations. En effet, la prise en compte des caractéristiques des ressources de
l’infrastructure (mémoire, CPU, réseaux, etc.), des contraintes de haut niveau de
l’intergiciel (préférence d’exécution sur les ressources d’un site A au lieu du site B)
améliorent le réalisme des simulations. À l’heure actuelle, le choix des ressources
sur lesquelles on déploie les processus est fait de manière aléatoire et les ressources
sont considérées comme identiques;

❼ Il faudra une campagne de simulations avec des actions qui ne se limiteront plus aux
SeD mais aussi aux autres types de composant de DIET pour comparer les effets;

❼ Il faudra aussi s’intéresser à d’autres modèles de pannes que celles transitoires;
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Conclusion

❼ Une question intéressante est celle de savoir si l’algorithme est robuste ? Dans
notre cas, cela signifie que l’algorithme est en mesure de fournir un service (même
dégradé) pendant la phase même de stabilisation. Nous avons supposé dans ce
travail que dès que le système est instable, il n’y a pas d’assurance qu’il puisse
assurer sa spécification. Par principe de précaution, on suppose qu’il ne l’assure
que lorsqu’il est stable et ne l’assure pas dans le cas contraire. Il serait intéressant
d’étudier le comportement du déploiement pendant la phase même de stabilisation :
est ce qu’il existe des “portions” (sous-arbres) de système stables pour exécuter des
tâches même si le système global est instable ? Et si oui, de quel type, forme sont
elles ? Le déploiement a une structure de graphe connexe lorsqu’il est stable. Mais
il peut être une forêt pendant certaines phases de stabilisation avec plusieurs sous
arbres non connectées. La question est de savoir si parmi ces sous-arbres, certains ne
sont pas stables lorsqu’ils sont pris de manière isolée même si le déploiement global
(ensemble de tous les sous-arbres) est instable;

❼ Nous avons utilisé des éléments centraux pour les besoins des simulations. Il serait
intéressant de se passer des éléments centraux (serveur de déploiement qui joue le
rôle d’oracle ou de service de découverte de ressources) en implémentant un mécan-
isme de découverte de ressources non centralisé pour que les nœuds ne se basent
qu’exclusivement sur des informations locales. Une piste pourrait être l’utilisation
d’algorithmes de type “gossip”;

❼ Il serait intéressant aussi de réfléchir à l’adaptation du simulateur pour l’étendre à
d’autres types d’intergiciels hiérarchiques ou non.
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Algorithme exécuté par toutes les instances de type

Client

Algorithme 18: Client: MA lost event

1 if CLIENT.lostMa == TRUE then
2 SetOfMa← get the set of MA from the Oracle;

3 if Card(SetOfMa) > 0 then
4 selectOneMa();
5 connectToMa();

6 else
7 createOneMa();
8 connectToMa();

9 end

10 end

Algorithme 19: Client: SeD lost event

1 if CLIENT.lostSed == TRUE then
2 submitTheRequestAgain() ;
3 end
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Algorithme exécuté par toutes les instances de type

MA

Algorithme 20: MA: no child event

1 if MA.numberOfChildren == 0 then
2 SetOfMa← get the set of MA from the Oracle;

3 if Card(SetOfMa) == 1 then
4 createSedAsChildWithBAsicService();
5 else
6 maSuicide();
7 end

8 end

Algorithme 21: MA: chain of Agent event

1 if (MA.numberOfChildren == 1) AND (MA.childType == MA OR LA) then
2 mergeMaAndChild() ;
3 end

Algorithme 22: MA: no MA father event

1 if MA did not have an father of type MA then
2 SetOfMaInOtherHierarchy ← get from the Oracle the set of MA in

others hierarchy than the one which contains the MA executing this
algorithm;

3 if Card(SetOfMaInOtherHierarchy) > 0 then
4 selectOneMAasFather();
5 connectToSelectedMa() ;

6 else
7 no forest;
8 end

9 end

Algorithme 23: MA: overloaded event

1 if MA.load ≥MA.loadThreshold then
2 divideMaChildrenInTwoSet() ;
3 createOneAgentAsFatherForEachGroup() ;
4 theTwoNewlyCreatedAgentAsMaChildren() ;

5 end
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Algorithme exécuté par toutes les instances de type

LA

Algorithme 24: LA: no child event

1 if LA.numberOfChildren == 0 then
2 SetOfLa← get the set of LA from the Oracle;

3 if Card(SetOfLa) == 1 then
4 createSedAsChildWithBAsicService();
5 else
6 laSuicide();
7 end

8 end

Algorithme 25: LA: chain of LA event

1 if (LA.numberOfChildren == 1) AND (LA.childType == LA) then
2 mergeLaAndChild() ;
3 end

Algorithme 26: LA: no father event

1 if LA.father == NULL then
2 SetOfAgentInOtherHierarchy ← get from the Oracle the set of Agent

in others hierarchy than the one which contains the LA executing
this algorithm;

3 if Card(SetOfAgentInOtherHierarchy) > 0 then
4 selectOneAgentAsFather() ;
5 connectToSelectedAgent() ;

6 else
7 createMa() ;
8 connectToMa() ;

9 end

10 end

Algorithme 27: LA: overloaded event

1 if LA.load ≥ LA.loadThreshold then
2 divideLaChildrenInTwoSet() ;
3 createOneLaAsFatherForEachGroup() ;
4 theTwoNewlyCreatedLaAsLaChildren() ;

5 end
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Algorithme exécuté par toutes les instances de type

SeD

Algorithme 28: SeD: no father event

1 if SED.father == NULL then
2 if SED.is currently computing == TRUE then
3 continue computing For T units of time.
4 T is supposed to be the Mean time a SeD took
5 to compute a job. After T units of time
6 the job is supposed to be finished ;

7 else
8 SetOfAgent← get the set of Agents from the Oracle;

9 if Card(SetOfAgent) > 0 then
10 selectOneAgent();
11 connectToAgent();

12 else
13 createOneMa();
14 connectToMa();

15 end

16 end

17 end
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