archives-ouvertes

Déploiement auto-adaptatif d’intergiciel sur plate-forme
élastique
Maurice-Djibril Faye

» To cite this version:

Maurice-Djibril Faye. Déploiement auto-adaptatif d’intergiciel sur plate-forme élastique. Calcul par-
allele, distribué et partagé [cs.DC]. Ecole normale supérieure de lyon - ENS LYON, 2015. Francais.
<NNT: 2015ENSL1036>. <tel-01280722>

HAL Id: tel-01280722
https://tel.archives-ouvertes.fr/tel-01280722
Submitted on 1 Mar 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://tel.archives-ouvertes.fr/tel-01280722
https://hal.archives-ouvertes.fr

THESE
en vue de 'obtention du grade de

Docteur de I’Université de Lyon, délivré par ’Ecole Normale Supérieure de
Lyon

En cotutelle avec I’Université Gaston Berger de St-Louis (Sénégal)

Discipline : Informatique
Laboratoire de 'Informatique du Parallélisme (LIP)
Ecole Doctorale INFORMATIQUE ET MATHEMATIQUES DE LYON
présentée et soutenue publiquement le 10 Novembre 2015

par Monsieur Maurice Djibril FAYE

Déploiement auto-adaptatif d’intergiciel
sur plate-forme élastique

Devant le jury composé de :
M. Eddy CARON, ENS de Lyon (LIP), Directeur de these

M. Noel DE PALMA, Université Joseph Fourier a Grenoble, Examinateur

M. Olivier FLAUZAC, Université de Reims Champagne-Ardenne, Rapporteur

M. Franck PETIT, Université Pierre et Marie Curie Paris 6 (LIP6), Rapporteur

M. Ousmane THIARE, Université Gaston Berger de St-Louis (LANI), Co-tuteur de these
M

. Cédric TEDESCHI, Université de Rennes (IRISA), Examinateur

Remerciements

Je tiens a remercier tres sincerement mes directeurs de these, Eddy CARON et Ousmane
THIARE, qui m’ont fait confiance en acceptant d’encadrer la these, pour les conseils, les
suggestions, les critiques, la recherche de financement, mais aussi et surtout pour avoir été
a la fois patients et exigeants, malgré ces longues années et les difficultés de toutes sortes,
finalement surmontées. Je vous remercie aussi pour les encouragements a l’autonomie
dans le travail de recherche, tout en étant capable d’intégrer les critiques.

Je remercie tous les membres du jury pour 'honneur qu’ils m’ont fait en acceptant
d’en faire partie. Des remerciements spéciaux a M. Olivier FLAUZAC et M. Franck
PETIT pour avoir accepté d’étre les rapporteurs de la these. En plus, vos commentaires
et remarques m’ont permis d’améliorer le manuscrit.

Mes remerciements a ’'UFR SAT de ’'UGB, sa section informatique, la région Rhone-
Alpes (a travers le CMIRA), 'ENS-Lyon pour avoir participé au financement de certains
séjours a Lyon et d’autres activités.

Les agents du secrétariat du LIP et du service mobilité internationale de I'ENS-Lyon
pour leur professionnalisme. Mention spéciale a Evelyne BLESLE.

Les membres du LIP, en particulier ceux de I’équipe Avalon (doctorants, post-doctorants,
ingénieurs et permanents), tres accessibles, pour leurs efforts pour m’intégrer.

Remerciements a Waly Diouf, grace a qui mes séjours a Lyon et Paris se sont bien
passés.

Remerciements spéciaux a la famille (pensées a ceux et celles qui continuent leurs vies
dans une autre vie), pour son soutien multiforme, indéfectible, constant et désintéressé
ainsi que pour les encouragements lorsque la motivation n’était pas au mieux. Merci aussi
pour les prieres. Que ce travail serve de motivation aux plus jeunes, qu’il aiguise votre
curiosité et suscite des vocations dans la recherche du savoir. C’est un défi que je vous
lance et je suis sur que vous le releverez avec brio et que vous allez faire beaucoup mieux.

Je dédie ce travail a toutes les personnes qui ont payé de leurs vies, pour la liberté de 1’étre
humain, pour la lumiere de la raison, pour avoir combattu I’obscurantisme et I'intolérance.

il

Table des matieres

Introduction

1 Systemes Distribués

1.1

1.2

2 Etat de art

2.1
2.2
2.3
24

Généralités L
1.1.1 Exemples de systemes distribués contemporains
Les grilles informatiques oL
Les Clouds
L’intergiciel de grille et cloud DIET
1.1.2 Taches classiqueso
Election de leader o
Exclusion mutuelle
Détection de propriété globale
Algorithmes & vagues
1.1.3 Tolérance aux fautes
Types de pannes
Techniques de tolérance aux pannes
Pannes masquées
Pannes non masquées
Algorithmes de consensus,
Modeles
1.2.1 Systemes distribués oo
1.2.2 Modele de communication,
Modele a passage de messages
1.2.3 Modele d’exécution
1.2.4 Auto-stabilisation
Outils et frameworks de déploiement
Description d’architecture logicielle
Description d’infrastructure distribuée
Algorithmes auto-stabilisants
2.4.1 Algorithmes auto-stabilisants a vagues

10
11
11
12
13
13
14
14
14
15
15
16
16
17
17
18
18
19
20
20
23

TABLE DES MATIERES

3 Déploiement initial

vi

3.1 Introduction

3.2 Architecture proposée

3.2.1 Travaux antérieurso

3.3 Contribution pour le déploiement initial

3.3.1 Description de l'infrastructure

3.3.2 Description de l'intergiciel 0L

Description fonctionnelle de l'intergiciel

Description d'une hiérarchie

3.4 Conclusion e
Algorithmes

4.1 Résumé du chapitre

4.2 Motivation L

4.3 Définitions et Notations Lo

4.3.1 Modele d'un déploiement

4.4 Algorithme auto-adaptatif 0L

4.4.1 Spécification de I'algorithme

Regles définies pour les instances de type Client

Regles définies pour les instances de type MA

Regles définies pour les instances de type LA

Regles définies pour les instances de type SED

Résumé des effets des regles

4.4.2 Preuve d’auto-stabilisation de I'algorithme

Le modele de Pannes L.

Propriétés d’auto-stabilisation

Preuve d’auto-stabilisation

4.5 Conclusion
Simulations

5.1 Résumé du chapitre

5.2 Introduction

5.3 Simulateur

5.4 Fonctionnalités du simulateuro

54.1 Créer un déploiement L.

Déploiement prédéfini

Déploiement aléatoireo oL

5.4.2 Créer un événement de simulation

5.4.3 Afficher I'état global d'un déploiement

5.5 Description du simulateur L

5.5.1 Représentation des composants de l'intergiciel

5.5.2 Gestion des états d'un AEF

Définition de I’état interne d'un AEF

Identificationo

Introspection

Calcul de I'état

5.5.3 Définition d'un déploiement stable pour le simulateur

Transition des états Lo

5.5.4 Détection d'un déploiement stable

31
31
32
34
34
35
37
37
39
42

43
43
43
44
45
45
45
46
46
49
51
o1
52
o2
23
23
55

TABLE DES MATIERES

5.6 Configuration matérielle et logicielle 70
5.7 Simulations et résultats 70
5.7.1 Effet d'un changement de topologie par ajout de nouvelles instances 71
5.7.2 Effet du changement de topologie par suppression d’instances . . . 71
Suppression d'un nombre d’instances 71
Suppression d'un pourcentage des instances 74

5.7.3 Effet du changement de topologie par alternance d’ajout et de sup-
pression d'instances 76
5.8 Conclusion 78
Conclusion 79
Annexes 81

Bibliographie 85

vii

Liste des figures

1.1

3.1
3.2
3.3

3.4
3.5
3.6
3.7

3.8
3.9

3.10

4.1

5.1
5.2
5.3
5.4

2.9

Vue générale d'un déploiement auto-adaptatif
Hierarchie multi-MA de DIET.

Architecture pour le déploiement auto-adaptatif d’intergiciel
Déploiement initial de DIET oo
Description de l'infrastructure comme entrée pour créer un déploiement
initial L
Exemple d’infrastructureo
Modele d'infrastructureo
Description de l'intergiciel comme entrée pour créer un déploiement initial
Description fonctionnelle de l'intergiciel comme entrée pour créer un dé-
ploiement initialo
Modele de middlewareo oL
Description de la hiérarchie de I'intergiciel comme entrée optionnelle pour
créer un déploiement initialo
Modele de déploiement

Exemple d’application de la regle MA R6 lorsque 'unique fils du MA est
de type LA. Cela aurait été pareil si 'unique fils était un MA. En rouge,
I'instance instable qui a détecté et exécuté la regle. En vert, les instances
stables. . . L L

Un déploiement de 1 MA +5SEDs
Transitions entre les états d'un AEF
Un exemple de configuration de simulation
Ajout d’un nombre X (abscisse) de nouvelles instances (des SEDs isolés)
a un déploiement stable. Pour chaque X, calculer la moyenne (sur cing
valeurs) des tops qu’il a fallu pour que le déploiement retrouve un état
stable. Calculer le ratio entre cette moyenne et X. La courbe représente le
ratio en fonction de X.
Suppression d'un nombre X (abscisse) d’instances (des SEDs) d'un dé-
ploiement stable. Pour chaque X, déterminer le nombre total d’'instances
de tout type (Client, MA, LA, SED) avant et apres la suppression, ainsi que
la différence entre ces deux valeurs. La courbe représente ces trois valeurs
en fonction de X.

X

38

LISTE DES FIGURES

2.6

2.7

2.8

2.9

5.10

5.11

Suppression d'un nombre X (abscisse) d’instances (des SEDs) d'un dé-
ploiement stable. Pour chaque X, calculer la moyenne (sur cing valeurs)
des tops qu’il a fallu pour que le déploiement retrouve un état stable. Cal-
culer le ratio entre cette moyenne et X. La courbe représente le ratio en

fonction de X. . . . L

Suppression d’un pourcentage X (abscisse) d’instances (des SEDs) d'un
déploiement stable. Pour chaque X, déterminer le nombre total d’instances
de tout type (Client, MA, LA, SED) avant et apres la suppression, ainsi que
la différence entre ces deux valeurs. La courbe représente ces trois valeurs

en fonction de X. Lo

Suppression d’un pourcentage X (abscisse) d’instances (des SEDs) d'un
déploiement stable. Pour chaque X, déterminer le nombre total d’instances
de type SED avant et apres la suppression, ainsi que la différence entre ces
deux valeurs. La courbe représente ces trois valeurs en fonction de X.

Suppression d'un pourcentage X (abscisse) d’instances (des SEDs) d'un dé-
ploiement stable. Pour chaque X, calculer la moyenne (sur cing valeurs) des
tops qu’il a fallu pour que le déploiement retrouve un état stable. Calculer
le ratio entre cette moyenne et X. La courbe représente le ratio en fonction

de X

Alternance des événements “tuer 100 SEDs (T)” et “ajouter 100 SEDs (A)”.
Apres I'application d'un événement, attendre que le déploiement retrouve

un état stable et appliquer I’événement suivant.

Alternance des événements “tuer 100 SEDs (T)” et “ajouter 100 SEDs (A)”.

variation du nombre d’instances instables. L.

75

Liste des tableaux

4.1 Effets des regles

5.1 Données de la Figure 5.6

x1

Introduction

Les progres dans la miniaturisation des composants électroniques, au niveau des réseaux
informatiques, ont largement contribué a ’apparition de plusieurs systemes distribués qui
sont maintenant omniprésents (internet). Un systeme distribué est une collection d’entités
de calcul, autonomes, interconnectées [1]. De tels systemes permettent d’échanger des
données (grace aux réseaux WAN'), de partager des ressources (une imprimante dans un
réseau LAN?), d’augmenter des performances et d’améliorer notre capacité de calcul, en
distribuant les taches entre plusieurs processus, etc.

Cependant, ils sont difficiles a concevoir, a controler, a maintenir car constitués d'une
variété de composants (logiciels et physiques) complexes qui sont susceptibles de tomber
en panne ou de subir des variations de leurs parametres.

La nature des entités de calcul et la maniere de les interconnecter laissent la place a
une large gamme de matériels et de réseaux.

Les différents éléments d’un systeme distribué cooperent pour atteindre un objectif. La
maniere d’établir cette coopération soulevent des problemes fondamentaux qui constituent
aussi le champ d’étude de ce domaine.

Ces systemes sont donc caractérisés par I'hétérogénéité des éléments qui les composent,
une capacité de passage a 1’échelle que ce soit par augmentation du nombre d’éléments, par
répartition sur de vastes étendues géographiques. Ils se présentent sous diverses formes
et certains sont tres dynamiques quant au nombre d’éléments qui les composent (des
éléments peuvent rejoindre ou quitter). Parmi les types de systemes, les grilles [2] et les
clouds [3]. Ces infrastructures offrent des services a la demande aux utilisateurs.

Pour supporter I'hétérogénéité du matériel et des réseaux tout en offrant une vue
unique aux utilisateurs, ces systemes sont généralement organisés au moyen d’une couche
logicielle, appelée intergiciel (middleware) [4], qui est logiquement placée entre une couche
de haut niveau (utilisateurs et applications) et une couche de bas niveau (systeémes
d’exploitation, gestionnaires de ressources et autres protocoles de communication).

Ces intergiciels sont de différents types et rendent différents services [5-10]. Ils ne
sont pas des blocs monolithiques mais se présentent sous la forme d’'une intégration de
collections hétérogenes de composants logiciels [11-13]. Un composant logiciel est défini
dans [11] comme une unité de composition, qui implémente des fonctionnalités et qui a,
par contrat, spécifié ses interfaces et ses dépendances de contexte. Il est caractérisé par
les propriétés suivantes :

e c’est une unité de déploiement indépendant;

1Wide Area Network
2Local Area Network

Introduction

e c’est une unité de composition par des tierces entités;
:))4 :
e il n’a pas d’état persistant.

Il existe différents modeles de composants logiciels [14] comme le modele de composant
CORBA (CCM)?, FRACTAL [15], etc.

Un composant logiciel doit étre instancié pendant la phase d’exécution. Ainsi, pen-
dant son exécution, une application a base de composants est constituée d’un ensemble
d’instances des composants qui la définissent, instances connectées selon les contrats et
interfaces définis.

L’intergiciel DIET [16], sur lequel nous avons appliqué les travaux décrits dans la suite
de ce manuscrit, est implémenté en CORBA. Son architecture est décrite au chapitre 1,
section 1.1.1.

Avant de pouvoir bénéficier des services d’'un intergiciel, il doit d’abord étre déployé
sur une infrastructure matérielle.

Déploiement de logiciel

Le déploiement de logiciel [17-20] est définit comme “un processus qui organise et orchestre
un ensemble d’activités ayant pour but de rendre le logiciel disponible a 1'utilisation et
de le maintenir & jour et opérationnel” [20]. Il désigne 'ensemble des taches a exécuter
pour rendre un systeme logiciel fonctionnel. C’est une tache complexe, surtout sur une
infrastructure distribuée. Selon les auteurs, le processus peut étre divisé en plusieurs sous-
taches. Pour [17, 19], le processus commence depuis la derniere phase de développement
du logiciel, et regroupe les taches suivantes :

e le dépot : cette étape est une phase intermédiaire entre le développement du logiciel
et le processus de déploiement. Elle couvre les activités qui rendent le logiciel prét
a étre installé;

e l'installation : cette étape couvre les activités permettant de transférer les don-
nées vers les ressources cibles ainsi que les opérations de configuration nécessaires a
I’activation du logiciel;

e l'activation : c’est le démarrage des composants exécutables du logiciel;
e la désactivation : c’est 'arrét de composants en exécution;

e la mise a jour : lorsqu’une nouvelle version est disponible. Cette étape peut né-
cessiter 'arrét du systeme en cours, sa mise a jour et sa réactivation. Cependant
certains systemes permettent la mise a jour d’une version sans arrét du systeme en
cours d’exécution. C’est le cas des logiciels développés avec le langage Erlang [21]
que nous avons utilisé pour créer le simulateur décrit au chapitre 5;

e 'adaptation : cette étape couvre les activités qui ont cours pendant que le systeme
est en cours d’exécution. Cela comprend la réaction de ’application déployée aux
événements de son environnement;

30MG : CORBA Component Model,v4.0 http://www.omg.org/spec/CCM/4.0/ 2016

Introduction

e la désinstallation : la suppression de certains fichiers et composants préalablement
installés, et éventuellement la reconfiguration d’autres composants affectés par cette
suppression;

e le retrait : lorsque le logiciel est obsolete, il est retiré.

Dans la spécification pour le déploiement d’applications distribuées a base de com-
posants [18], le processus de déploiement commence seulement apres que le logiciel a été
développé, assemblé et publié (rendu disponible par exemple sur un entrepot accessible
par internet ou a travers des disques de sauvegarde). A partir de ce moment, les différentes
étapes suivantes sont considérées :

e l'installation : la définition d’installation est différente avec le cas précédent. Il s’agit
de la mise a disposition des fichiers constituant le logiciel dans un entrepot sous le
controle de 'entité chargée de réaliser le déploiement (une personne si le déploiement
sera manuel et/ou des outils spécialisés pour les déploiement automatiques [22—
25]). L’endroit ou les données sont stockées ne coincide pas nécessairement avec les
ressources sur lesquelles les instances vont s’exécuter;

e la configuration : il s’agit ici de la possibilité de prévoir des configurations par
défaut; par exemple de fixer la couleur de I'arriere plan d’une fenétre selon que l'on
soit dans une situation ou une autre;

e le plan de déploiement : il s’agit de trouver comment et ou les composants du
logiciels devront étre déployés, parmi les ressources de ’environnement cible. 1l
nécessite de prendre en compte les exigences des composants et les possibilités des
ressources. Cette étape produit un plan de déploiement;

e la préparation : recouvre les taches a accomplir sur les ressources (physiques, logi-
cielles) de I'environnement cible afin que le logiciel soit prét a s’exécuter. Il s’agit
de transférer des fichiers exécutables et les données nécessaires sur les machines sur
lesquelles les composants du logiciel vont effectivement s’exécuter;

e le lancement : couvre les taches, apres celles liées a la préparation, a la suite
desquelles, le logiciel est dans un état “en exécution”, et donc disponible pour étre
utilisé.

Se basant sur les subdivisions précédentes, [20] propose les étapes suivantes : le dépot,
I'installation, ’activation, la désactivation, la désinstallation, le retrait, la mise a jour,
I’adaptation, la reconfiguration et la redistribution.

De ces différentes listes des étapes du processus de déploiement de logiciel, nous pou-
vons constater que globalement certaines étapes sont prises en compte par toutes les
classifications et que les quelques différences interviennent dans la prise en compte ou non
des étapes liées au dépot (derniere étape de la phase de développement ou production) et
au suivi du logiciel une fois disponible (adaptation, mise & jour).

Nous pouvons regrouper les différentes étapes en trois classes :

e une qui regroupe les actions qui ont lieu avant que le logiciel ne soit en cours
d’exécution. Par exemple le transfert des fichiers sur les machines cibles, la con-
figuration, I’activation. Nous appellerons cette étape phase de préparation;

Introduction

e une qui regroupe les actions qui peuvent avoir lieu pendant que le logiciel est en
cours d’exécution. Nous appellerons les événements qui ont lieu pendant cette phase
adaptation. Cette adaptation peut se réaliser sous forme de modification de la
structure du logiciel par modifications des liens entre les instances des composants
pour diverses raisons (l’arrét accidentel d’une instance, la migration d’une instance
vers une autre ressource). Les actions effectuées dans la phase d’adaptation peuvent
faire appel a des actions définies dans les étapes précédentes. Par exemple, un
changement de topologie peut s’accompagner de la création d’une nouvelle instance,
sur une ressource de l'infrastructure cible, création pendant laquelle il peut étre fait
appel aux opérations de transferts de fichiers, de configuration et toutes les autres
opérations nécessaires pour activer la nouvelle instance. On peut méme faire appel
aux opérations de désinstallation sur la ressource ou l'instance déplacée s’exécutait
avant. Nous appellerons cette étape phase d’adaptation;

e une qui regroupe les actions pour mettre le logiciel a ’arrét, désinstaller ce qui a été
installé au début. Nous appellerons cette étape phase d’arrét.

Ainsi, pour nous, le processus de déploiement se déroule en trois phases :

D’abord une phase de préparation qui regroupe les actions a la fin desquelles le logiciel
est en cours d’exécution. Cette phase consiste entre autres activités a réaliser un plan de
déploiement. Pour faire un plan de déploiement, il faut prendre en compte les caractéris-
tiques et exigences du logiciel, celles de l'infrastructure cible et le résultat sera un plan de
déploiement. Nous avons dans le chapitre 3, proposé un modele pour décrire I'architecture
d’un intergiciel hiérarchique, un modele pour décrire une infrastructure matérielle, cible
éventuelle d'un déploiement, et un modele pour décrire un plan de déploiement et/ou un
appariement (mapping) entre les instances de l'intergiciel hiérarchique et les ressources
physiques sur lesquelles elles s’exécutent.

Ensuite une phase d’adaptation (éventuelle) qui regroupe les actions qui ont lieu pen-
dant que le logiciel est en cours d’exécution et réagit aux événements de son environnement
afin de continuer a fournir le service correspondant a sa spécification. L’algorithme auto-
adaptatif décrit dans le chapitre 4 s’inscrit dans cadre. Il décrit des actions d’adaptation
selon les événements détectés pendant que l'intergiciel est déployé et en cours d’exécution.
Et c’est cet algorithme qui est ensuite simulé comme décrit dans le chapitre 5.

Enfin, la phase d’arrét qui regroupe les actions qui, appliquées a un logiciel en exécution
le mettent a ’arrét.

Notre travail de these s’inscrit surtout dans les étapes préparation et adaptation.

Un déploiement qui, une fois réalisé, ne peut pas réagir aux variations de son environ-
nement (logiciel et/ou matériel) d’exécution est dit statique. Un déploiement qui peut,
de manieére autonome (totalement ou en partie), réagir ou s’adapter aux variations de son
environnement d’exécution, sera dit auto-adaptatif.

Les variations de l’environnement d’exécution sont tres probables, surtout sur des
plates-formes élastiques.

Plate-forme élastique

La notion de plate-forme élastique fait référence a la possibilité d’ajout ou de retrait
de nceuds physiques a l'infrastructure physique au cours du temps, et pendant que les
applications s’exécutent dessus [26, 27]. L’élasticité est une caractéristique importante

Introduction

de beaucoup d’infrastructures distribuées modernes. C’est le cas dans les clouds, ou en
fonction des besoins, le nombre de machines virtuelles dédiées a une application peut étre
augmenté ou diminué.

Lorsque, dans une application distribuée, les processus peuvent disparaitre et que
de nouveaux processus peuvent rejoindre, cette application est qualifiée de dynamique.
Lorsque le nombre de processus est fixe, on parle d’application statique.

L’élasticité d'une plate-forme peut étre la cause de la disparition de processus car
lorsqu’un neeud physique quitte la plate-forme (panne, rupture du lien de connexion), les
processus qui s’exécutaient dessus peuvent se terminer ou bien ils se trouvent isolés et ne
participent plus a I’algorithme distribué. Mais une application peut étre dynamique, méme
avec une plate-forme avec un nombre fixe de nceuds. Ainsi, I’élasticité d’une plate-forme
peut rendre une application dynamique, mais une application peut étre intrinsequement
dynamique méme sur une plate-forme non élastique.

Dans ce travail, nous avons considéré une application dynamique sur une plate-forme
élastique. L’application est la simulation d’un intergiciel distribué. La plate-forme sur
laquelle 'application est déployée est simulée comme une plate-forme élastique que les
neeuds peuvent joindre ou quitter.

L’application est dynamique dans la mesure ou, elle doit réagir aux conséquences de
Iélasticité de la plate-forme (disparition de nceuds et donc de processus, ajout de noeuds
donc possibilité de création de nouveaux processus, en cas de besoin). L’application est
aussi dynamique pour des raisons autres que ’élasticité de la plate-forme. En effet, des
processus peuvent disparaitre ou étre crées dans une recherche d’une qualité de service.

Un déploiement statique d’'une application, qui ne peut prendre en compte les varia-
tions de l'infrastructure sur laquelle I'application s’exécute, n’est pas une bonne solution
car lorsque l'application, pour une raison liée aux ressources matérielles, aux liens réseaux,
aux processus, ne parvient plus a assurer le service ou bien I’assure de maniere dégradée,
I'unique solution est de reprendre tout le processus de déploiement, une opération qui est
coliteuse.

Une meilleure solution serait d’avoir des systemes logiciels qui soient capables, de
maniere totalement ou partiellement autonome, de s’auto-adapter.

Informatique autonome

L’informatique autonome [28, 29] est un paradigme pour la conception de systémes logi-
ciels auto-adaptatifs [30, 31]. De tels systémes ont la capacité de s’auto-adapter, en cours
d’exécution, pour maintenir une qualité de service, une topologie ou, de maniere générale,
optimiser une fonction objective [32]. L’architecture de tels systémes est en général basée
sur un modele de boucle de controle fermée, inspirée de I'automatique. Cette architec-
ture, présentée dans [29], connue sous le nom de MAPE-K repose sur un module de
surveillance (Monitoring) du systéme a gérer, un module d’analyse (Analyze) des infor-
mations collectées, un module de planification (Plan) des actions a exécuter apres la phase
d’analyse et d’'un module pour exécuter (Execute) les décisions prises. Tous ces modules
partagent un ensemble de connaissances (Knowledge) qui peuvent étre liées au systeme
logiciel a gérer et aussi aux ressources sur lesquelles le systeme s’exécute.

Les systemes auto-adaptatifs offrent un ensemble de capacités d’auto-gestion, parmi
lesquels I'auto-réparation [33-35] en cas de défaillance. L’auto-réparation, qui est aussi
un moyen d’assurer une tolérance aux pannes (ou fautes), peut étre obtenue par des

Introduction

algorithmes auto-stabilisants [36], dont 'exécution permettra au systeme de retrouver un

état correct, dans un temps fini. C’est dans ce sillage que s’inscrit ’essentiel de cette
these.

Problématique

Notre objectif est d’ajouter des capacités d’auto-adaptation a un intergiciel existant (qui
n’a pas été congu dans une perspective d’informatique autonome) afin que son déploiement
soit auto-adaptatif. Le déploiement auto-adaptatif est constitué globalement de plusieurs
aspects comme le résume la Figure 1.

Déploiement initial

Intergiciel déployé sur une
infrastructure physique

Auto-adaptation
NNV Application des
Actions actions
d'adaptation

Détection d'un
état instable Informations

monitoring

Figure 1: Vue générale d’'un déploiement auto-adaptatif

L’un des aspects concerne le déploiement initial, ensemble de taches (description
des ressources, de 'application, algorithmes de planification, transfert des fichiers, config-
urer des machines, installer des librairies,...), qui utilise plusieurs informations d’entrée et
outils de déploiement, et qui, en fin de compte, permet de déployer ’application sur une
infrastructure physique, rendant ainsi 'application disponible aux utilisateurs.

L’autre aspect concerne I'auto-adaptation. Pour ce dernier aspect (I’essentiel de
cette these a été consacré a cet aspect), une fois que Uintergiciel est déployé et en cours
d’utilisation, il faut savoir détecter les situations qui nécessitent une adaptation, ensuite il
faut écrire des algorithmes dont ’exécution (une réaction a la variation du contexte) aura
pour effet une adaptation. Si les événements qui déclenchent les adaptations sont liés a
une qualité de service, une idée serait de chercher a prédire ces événements et a agir de
maniere proactive et éviter ainsi d’étre dans une position défensive, réactive. Par contre,
si les événements, a la détection desquels le systeme doit réagir sont imprévisibles (cas
réaliste car une panne survient en général de maniére non prévue), le systéme sera amené
a réagir.

Nous serons donc amené a définir ce qu’est un déploiement “stable” qui correspond
a une situation dans laquelle I'intergiciel déployé peut fournir le service pour lequel il

Introduction

est déployé. Cette situation de déploiement stable a lieu lorsqu’un certain nombre de
conditions sont toutes vraies. Par conséquent, on sera dans une situation “instable” a
chaque fois qu'une au moins des conditions de stabilité est fausse.

A chaque fois que le déploiement sera instable, cet état sera détecté et les mécanismes
d’auto-adaptation devront s’activer pour qu’en fin de compte le déploiement retrouve un
état stable.

Le mécanisme d’auto-adaptation (algorithme d’auto-adaptation), peut étre centralisé
ou distribué.

Si I'algorithme est centralisé, un processus qui a une vision globale du déploiement
utilise les informations issues de la surveillance du systeme déployé pour évaluer 1’état du
déploiement. Si cet état est instable, le processus exécute ’algorithme centralisé visant a
faire retrouver au déploiement un état stable.

Si I’algorithme est distribué (notre cas), chaque processus se basent sur les informations
conservées dans son état interne (ces informations provenant totalement ol en partie de
la surveillance du systeme déployé) pour évaluer I’état du déploiement. Si cet état est
instable, le processus exécute I'algorithme distribué (chaque processus exécute le code de
I'algorithme) visant a faire retrouver au déploiement un état stable.

Contributions
Les principales contributions de cette these peuvent étre regroupées en trois points :

La proposition d'un algorithme distribué d’auto-adaptation, permettant a un dé-
ploiement dont ’état est instable, de réagir pour retrouver un état stable. Cet algorithme
est auto-stabilisant, ce qui fait qu'un déploiement instable, exécutant cet algorithme,
retrouvera un état stable, dans un temps fini. Une preuve du caractere auto-stabilisant
de l'algorithme est donnée.

Une autre contribution de cette these est la conception et la programmation d’un
simulateur pour valider ’algorithme.

La these s’intéresse aussi au déploiement initial, dans la proposition de formalismes/de-
scriptions de certaines des entrées nécessaires pour le déploiement initial, & savoir I'infrastructure
cible sur laquelle une application est susceptible d’étre déployée ainsi que 'application
elle-méme.

Plan

La suite de ce manuscrit est organisée comme suit :

Le Chapitre 1 est consacré aux généralités sur les systemes distribués. Certains
concepts de base relatifs aux systemes distribués et qui sont utilisés dans le reste du
manuscrit y sont expliqués.L’intergiciel DIET sur lequel nous avons appliqué nos travaux
y est aussi décrit.

Le Chapitre 2 est consacré a I'état de I’art sur les domaines de recherche en lien avec
notre travail.

Introduction

Dans le Chapitre 3, nous décrivons 'architecture proposée, qui met en perspective
nos contributions avec les travaux antérieurs sur l'intergiciel DIET. Nous y décrivons aussi
nos contributions pour le déploiement initial; a savoir, les descriptions de certaines entrées
nécessaires pour le déploiement initial. Il s’agit de la description d’une infrastructure
physique sur laquelle on peut déployer une application et de la description d'un intergiciel
hiérarchique de type DIET.

Dans le Chapitre 4, nous avons décrit un algorithme distribué dont le but est de
ramener (apres chaque perturbation) le déploiement a un état stable.

Le Chapitre 5 est consacré a la description du simulateur que nous avons congu
pour valider I'algorithme décrit dans le chapitre 4. Les simulations effectuées y sont aussi

décrites.

Ce dernier chapitre est suivi par la conclusion et les perspectives.

CHAPITRE 1

Systemes Distribués

Sommaire
1.1 Généralités o o i i i i e e e e 9
1.1.1 Exemples de systemes distribués contemporains 10
1.1.2 Téaches classiques Lo Lo 13
1.1.3 Tolérance aux fautes L. 15
1.2 Modeéles v i it e e e e e e e e e 18
1.2.1 Systemes distribués 0oL 18
1.2.2 Modele de communication 19
1.2.3 Modele d’exécutiono 20
1.2.4 Auto-stabilisation oL 23

1.1 Généralités

Un systeme distribué est défini par Tanenbaum et al. [37] comme une collection d’ordinateurs
indépendants qui apparait a ses utilisateurs comme un systeme unique et cohérent. Cepen-
dant, un systeme distribué n’est pas toujours qu'une collection d’ordinateurs mais peut
aussi étre une collection de processus, de processeurs, et plus généralement d’entités au-
tonomes. Ces entités autonomes et interconnectées cooperent pour la réalisation d’un ob-
jectif. Si les entités autonomes sont, par exemple, des processus, ’objectif est ’exécution
d’un algorithme distribué dont chaque processus exécute le code.

Les entités qui composent ces systemes partagent un certain nombre de caractéristiques

de base [38] :

e clles sont autonomes et sont ainsi en mesure d’exécuter des taches de maniere in-
dépendante;

1.1. Généralités

e clles sont interconnectées : directement ot indirectement, ces entités doivent pouvoir
communiquer, selon un modele de communication;

e clles disposent d'un mécanisme de coordination leur permettant de coopérer pour
atteindre un objectif.

Ces entités peuvent étre homogenes (dans ce cas, elles sont identiques) ou hétérogenes.
Elles sont réparties géographiquement, sont concurrentes et asynchrones (il n’existe pas
un temps global pour tout le systéme et chaque entité a son horloge locale).

Un des avantages majeurs des systéemes distribués est le partage de ressources (matérielles
et/ou logicielles). Ceci permet aux utilisateurs d’accéder a des ressources distantes, d’avoir
acces a des services qu'une seule entité ne pourrait offrir (augmentation de performance
par une parallélisation par exemple). Contrairement & un systéme centralisé, caractérisé
par un élément central qui rend le systeme indisponible en cas de panne, et qui constitue
un goulet d’étranglement, un systeme distribué n’a pas un élément central et peut étre
tolérant aux pannes (continuer a fonctionner apres la défaillance d’une partie des entités),
en répliquant par exemple les ressources et les calculs sur différents sites, augmentant ainsi
la fiabilité du systeme.

Cependant, ces systémes présentent plusieurs points de défaillance possibles (puisque
chaque entité est autonome et peut tomber en panne indépendamment des autres) et sont
difficiles a gérer. De méme, leur sécurité est plus complexe a assurer puisque les entités
peuvent étre réparties géographiquement.

Les systemes informatiques sont passés d’une époque ou ils étaient chers, centralisés,
larges, isolés (1945-1985) a une autre époque (1985+) marquée par deux avancées ma-
jeures que sont le développement de puissants microprocesseurs et I’avenement de réseaux
informatiques de plus en plus performants. L’arrivée de ces microprocesseurs qui avaient
la puissance des gros systemes a réduit la taille et les cotits de ces matériels. Quant
aux réseaux, ils ont permis d’interconnecter des machines proches (LAN) ou lointaines
(WAN) afin qu’elles puissent s’échanger des informations. Contrairement aux précédents,
ces systemes n’étaient plus centralisés mais distribués.

1.1.1 Exemples de systemes distribués contemporains

Différents types de plates-formes distribuées sont apparues au début des années 2000 grace
a l'exploitation des travaux antérieurs et aux avancées technologiques. Parmi ces plates-
formes, on peut citer les grilles (grid), les clouds, les réseaux Ad hoc. Les réseaux Ad hoc
sont des réseaux sans infrastructure [39], dans lesquels il n’existe pas une entité centrale qui
coordonne les communications comme c’est le cas dans les réseaux avec infrastructure. Ils
sont constitués d’un ensemble de nceuds, dotés de capacités de communication sans fil, qui
participent eux mémes au routage des messages en transmettant ceux qui ne leur sont pas
destinés pour qu’ils atteignent leur destination. Les entités qui les constituent peuvent étre
mobiles (se déplacer de manieére indépendante le cas échéant) avec pour conséquence une
topologie du réseau qui change continuellement. Chaque entité peut communiquer avec
celles qui sont dans sa portée radio. Si tous les nceuds sont mobiles on les appelle MANET
(Mobile Ad hoc NETwork). Les nceuds peuvent étre des téléphones, des ordinateurs
portables, tablettes, des véhicules, etc. Les réseaux de capteurs sans fil [40] sont un
cas particulier des réseaux ad hoc. Les nceuds sont des capteurs, disposant d’interfaces
de communication sans fil. Les données obtenues par les capteurs sont transmises a un
élément central en les faisant transiter éventuellement par d’autres nceuds.

10

1.1. Généralités

Les grilles informatiques

Une grille informatique (grid computing) est un type de plate-forme distribuée introduit
a la fin des années 90 par Ian Foster et Carl Kesselman [41, 42] qui le définissaient comme
une “infrastructure matérielle et logicielle qui fournit un acces str (fiable), accessible et
bon marché a de grandes capacités de calcul”. La grille signifiait alors une infrastructure
de calcul distribué pour la science de pointe avec des applications tres gourmandes en
puissance de calcul (simulations de physique nucléaire, prédictions météorologiques,...).
Le terme de grille a été choisi par analogie avec le réseau électrique (appelé power grid).
Cela signifie que la fourniture des services informatiques devrait avoir des caractéristiques
semblables a la distribution de 1’électricité : disponible partout, simple et facile d’acces
a travers une interface standard (prise électrique normalisée), utilisation a la demande
et en fonction des moyens de l'utilisateur (pas forcément informaticien) sans avoir a se
préoccuper des aspects techniques de production (types de machines, moyens de transport,
provenance, etc.). Le concept a été popularisé au début des années 2000 méme si plusieurs
travaux antérieurs permettant sa mise en production existaient bien avant sans porter le
nom de grille [43].

Les grilles sont organisées dans une architecture en couche : entre la couche physique
(ou fabrique) et la couche application se trouve une couche intermédiaire appelé intergiciel
(middleware) qui offre divers services aux applications et aux utilisateurs (découverte et
allocation de ressources par exemple). Parmi ces intergiciels on peut citer Globus [2, 44],
Unicore [45], DIET [16].

Les grilles ont évolué en trois phases : les premieres grilles étaient axées d’abord sur
le partage de la puissance de calcul entre centres informatiques, le partage des données
a suivi. Elles utilisaient des solutions sur mesure, pour des besoins spécifiques (premiere
version de Globus). La deuxieme génération se caractérise par l'utilisation des intergiciels
permettant d’intégrer des technologies de grille différentes. La troisieme génération cor-
respond a l'intégration des technologies web dans les intergiciels, qui avec les techniques
de virtualisation rendent la complexité de l'infrastructure presque invisible. Ils ont été
ensuite enrichis par ajout d’une couche de sémantique, les rendant plus “intelligents” et
autonomes. Cependant, ces grilles ne prenaient pas en compte les nouveaux parametres
comme la généralisation des appareils mobiles, les réseaux sans fil, etc. De nouveaux pro-
jets de grille ont émergés en mettant ’accent des leur conception sur des problemes liés a
des notions comme "ubiquité (“pervasiveness”) et 'auto-gestion (“self-management”). Les
grilles jusqu’a la troisieme génération sont qualifiées de grilles traditionnelles et les autres
de grilles émergentes [46].

Des infrastructures de grilles sont aujourd’hui en production a travers le monde comme
grid’5000 [47], EGI [48], OSG!, etc.

L’OGF (Open Grid Forum)? coordonne les efforts de standardisation dans le domaine.

Les Clouds

Le Cloud [3, 49] est une évolution du concept de grille. Il désigne un ensemble de tech-
nologies et systemes permettant de fournir divers types de ressources (calcul, stockage,
logiciels, etc.) a la demande, a travers internet et généralement payant en fonction de
I'utilisation. Les ressources sont fournies de maniere dynamique et peuvent ainsi s’adapter
a la charge de l'utilisateur. Cela permet au fournisseur d’exploiter son infrastructure de

http://www.opensciencegrid.org/
2www.ogf.org

11

http://www.opensciencegrid.org/
www.ogf.org

1.1. Généralités

maniere optimale. Le cloud est en général la propriété d’une seule organisation, peut étre
privé, public, hybride, communautaire. Une caractéristique du cloud est 1’élasticité, per-
mettant au fournisseur d’etre en mesure d’augmenter ou de réduire les ressources offertes
en fonction de la variation des besoins des utilisateurs.

Plusieurs types de solutions de cloud sont disponibles [50, 51] comme : OpenStack?,
OpenNebula?, Eucalyptus®.

L’intergiciel de grille et cloud DIET

L’intergiciel DIET [16] nous sert de cas d’utilisation, et les travaux décrits dans ce
manuscrit lui sont appliqués.

u SeD
SeD
SeD SeD B wmA : Master Agent
SeD @@ LA :local Agent
SeD :ServerDeamon

SeD

Figure 1.1: Hierarchie multi-MA de DIET.

DIET est un intergiciel GridRPC [52]. Un des objectifs de 'API GridRPC [53] est
de définir clairement une syntaxe et une sémantique pour les GridRPC qui sont une
extension des Remote Procedure Call (RPC) [54] appliquée au domaine des grilles de
calcul. Le modele de programmation RPC est I'un des premiers modeéles permettant
d’exécuter des applications sur un environnement distribué. Les applications client et
serveur des utilisateurs finaux doivent étre décrites dans le modele de programmation
fourni. L’architecture par composant de DIET est structurée de maniere hiérarchique
pour améliorer le passage a I’échelle comme illustrée a la Fig. 1.1 . La boite a outils DIET
est implémentée en CORBA [55]. Il bénéficie par conséquent des mises a jour des services
standardisés et stables d’implémentation a haute performance et librement disponibles
de CORBA. DIET est constitué de plusieurs types de composants. Un Client est une
application qui utilise I'infrastructure DIET pour résoudre un probleme en utilisant une
approche GridRPC. Un SED (Server Daemon) joue le role de fournisseur de services.
Il exporte ses fonctionnalités via une interface de service de calcul standardisée. Un

3www.openstack.org

“http://opennebula.org/
Shttps://github.com/eucalyptus/eucalyptus/wiki

12

www.openstack.org
http://opennebula.org/
https://github.com/eucalyptus/eucalyptus/wiki

1.1. Généralités

seul SED peut offrir plusieurs services de calcul. Le troisieme composant de DIET, les
agents, facilitent la localisation et 'invocation des services et donc l'interaction entre
les clients et les SeDs. La hiérarchie des agents fournit des services de haut niveaux
comme ’ordonnancement et la gestion des données. Ces services permettent un passage
a l'échelle grace a leur distribution dans la hiérarchie des agents composés d'un agent
maitre (Master Agent ou MA) et de plusieurs agents locaux (Local Agents ou LA).
Plusieurs hiérarchies peuvent étre inter-connectées pour former une plateforme multi-MA.
Une inter-action typique de DIET se déroule selon le scénario suivant :

(1) D’abord un Client se connecte a la hiérarchie et envoie un message de découverte
en fonction du type de service qu’il souhaite utilisé. Le message est envoyé au MA
auquel le client est connecté;

(2) ensuite, le message est propagé dans la hiérarchie du MA vers les SEDs a travers les
LA;

(3) Les SEDs qui ont recu le message répondent avec un vecteur d’estimation : un
ensemble de valeurs qui décrit la disposition du SED a traiter la requéte. En fonc-
tion de l'implémentation du service, le vecteur d’estimation peut contenir des
informations comme le puissance de calcul, la quantité de RAM, le temps estimé
pour exécuter la requéte, le nombre de requéte en file d’attente, etc.;

(4) A chaque niveau de la hiérarchie des agents, les vecteurs d’estimation sont agrégés
de sorte que le MA ne va recevoir qu'un nombre réduit de vecteurs;

(5) Enfin, un ou plusieurs vecteurs sont retournés au Client qui avait lancé la requéte.
Ce dernier choisit le SED qui lui convient;

(6) La requéte et les données nécessaires pour résoudre le probleme sont envoyées par le
Client au SED choisi.

1.1.2 Taches classiques

Bien que les systemes distribués se présentent sous différentes facettes, un certain nombre
de problemes fondamentaux leur sont communs et servent de base au domaine. Un con-
cepteur d’une application distribuée peut étre amené a trouver une solution ou a utiliser
les algorithmes existants concernant un ou plusieurs de ces problemes. En plus de la
tolérance aux pannes, un certain nombre de ces problemes sont décrits ci-dessous.

Election de leader

Plusieurs applications distribuées reposent sur ’existence d’un processus leader. L’élection
d’un leader [56] consiste a distinguer un seul processus qui sera appelé leader avec un statut
particulier & partir de tous les processus (ou d’'un groupe de processus) candidats. Les
autres processus sont dans un autre état différent de celui du leader. Lorsque le leader
meurt ou devient injoignable, un autre processus est élu parmi les processus qui sont dans
un état correct. Lorsque le graphe des processus n’est pas connexe, un leader est élu pour
chaque composante connexe, et lorsque le graphe redevient connexe, un seul leader reste.

13

1.1. Généralités

Exclusion mutuelle

Dans un systeme distribué, les processus s’exécutent ensemble de maniere simultanée et
cooperent pour atteindre un objectif. Ils peuvent donc chercher a avoir acces a une méme
ressource partagée. L’objectif des algorithmes d’exclusion mutuelle [57] est de garantir
qu’au plus, un seul processus peut entrer en section critique dune ressource partagée
a un moment donné. Lorsqu'un processus entre en section critique, les autres requétes
devront attendre sa sortie pour qu’un autre processus puisse avoir ’acces a la ressource.
Certaines ressources ne peuvent étre utilisées que par un seul processus a la fois (exemple
de 'imprimante) & un moment donné.

L’exclusion mutuelle de groupe [58, 59] est une généralisation de 1'exclusion mutuelle
dans laquelle plusieurs ressources sont partagées entre les processus et plusieurs proces-
sus appartenant au méme groupe peuvent accéder simultanément a la méme ressource
partagée. Cependant, des processus de groupes différents doivent accéder aux ressources
partagées de maniere exclusive.

Détection de propriété globale

L’état global d’un systéme distribué (ou une configuration du systéme) est constitué de
I’ensemble des états des processus du systeme a un moment donné. Il est parfois nécessaire
de déterminer si cet état global satisfait & un ou plusieurs critéres (“stabilité”; terminai-
son, ...).

La détection de la terminaison [60] d'un calcul distribué est un probleme dans lequel
on cherche a déterminer si tous les processus du systeme ont terminé un calcul. Cette
détection de la terminaison peut étre effectuée par une entité centrale qui a une vue
globale du systeme. Si par contre, chaque processus doit détecter lui méme la terminaison
du calcul global, on dit que c’est une détection distribuée de la terminaison, qui est un
probleme fondamental dans les systemes distribués. Depuis son introduction au début des
années 80 [61, 62], la détection distribuée de la terminaison d’un algorithme a été bien
étudiée [63-68].

Algorithmes a vagues

Les algorithmes a vagues [69-73] sont un type d’algorithme distribué classique. Ils sont
utilisés, entre autres cas, pour diffuser une information dans un réseau, collecter des
valeurs, synchroniser, etc. Un algorithme a vagues peut étre constitué d’une ou de
plusieurs vagues successives. Dans un algorithme a vagues, un nceud initie une vague
en diffusant une information (jeton, requéte,...) qui est propagée dans le réseau, ensuite
les réponses sont remontées vers l'initiateur qui prend une “décision” et peut lancer une
autre vague si nécessaire.

Les algorithmes d’écho [69], de collecte et d’agrégation de données dans un réseau [74]
sont des types d’algorithmes a vagues.

Les algorithmes d’écho [69], utilisent une technique de diffusion permettant & un nceud
de transmettre une information a un autre nceud. L’information est transmise par chaque
neeud a ses voisins jusqu’a ce qu’elle atteigne le destinataire. L’inconvénient de cette
méthode est le cout élevé en nombre de messages qu’elle induit. Ses avantages sont sa
simplicité et sa facilité de mise en ceuvre.

Les algorithmes distribués d’agrégation de données [74] sont des algorithmes a vagues,
qui permettent de diffuser une requéte dans un réseau et de collecter et d’agréger les

14

1.1. Généralités

réponses vers le noeud source qui avait émis la requéte.

Ce type d’algorithme agit en deux phases : une phase durant laquelle un noeud source
diffuse une requéte qui est propagée par chaque nceud a ses voisins jusqu’a ce que la requéte
atteigne les feuilles; et une deuxieme phase durant laquelle chaque noeud, en commencant
par les feuilles, renvoie sa réponse a son parent et ces réponses sont agrégées au fur et a
mesure que 'information remonte vers le noeud source qui avait émis la requéte.

Les algorithmes a vagues se divisent en deux familles : celle des algorithmes qui
utilisent une circulation d’un jeton et celle des algorithmes qui utilisent une propagation
d’information avec retour ou PIF (Propagation of Information with Feedback).

Un déploiement de DIET fonctionne sous la forme d’un PIF. Lorsqu’'un client se
connecte sur un master, ce dernier diffuse une requéte dans le réseau pour trouver le
meilleur SED (les SEDs sont au niveau des feuilles) pour satisfaire le client. Les réponses
des SEDs sont agrégées au fur et a mesure qu’elles remontent vers le master qui avait
émis la requéte.

1.1.3 Tolérance aux fautes

La tolérance aux pannes vise a masquer les effets d’une défaillance ou a restaurer un
comportement conforme a sa spécification pour un systeme qui a dévié de sa spécification
a cause d’une faute [73].

Plus généralement, I’'objectif est de gérer les pannes qui peuvent survenir pendant une
exécution comme 'arrét brutal (crash) d’un processus, une rupture d’un lien de commu-
nication entre deux nocuds. Un systeme distribué peut étre complexe, impliquant divers
types de ressources autonomes (pouvant défaillir localement et de maniére indépendante),
géographiquement réparties, raison pour laquelle les fautes et les défaillances sont plus
courantes que dans les systemes centralisés. Une panne peut étre locale et affecter le
comportement d’une partie des autres nceuds du systeme sans affecter une autre partie.

En plus de la possibilité de pouvoir partager des ressources, avoir des systemes en
mesure de continuer & fonctionner (méme si ce n ’est pas de maniere optimale) méme
lorsque des défaillances touchent une partie des éléments qui le composent est un objec-
tif majeur dans la conception des systemes distribués que ’on cherche a rendre fiable,
disponible, stir et maintenable [37].

Un systeme distribué est en panne lorsqu’il ne se comporte plus conformément a sa
fonction (ce pour quoi il a été prévu) [75]. Une erreur est une partie de I’état du systeme
qui peut causé une panne. Une faute est ce qui cause une erreur. Etre capable de détecter
les fautes est donc d'une grande importance.

Ainsi, un systeme est tolérant aux pannes s’il peut continuer a fournir le service pour
lequel il est prévu, et ceci méme en présence de fautes.

Types de pannes

Différents modeles de fautes sont considérés dans les systemes distribués. Lorsqu’on a une
vue du systeme distribué de niveau processus, on peut distinguer les différents types de
fautes au niveau processus [37, 73, 75].

e les arréts : un processus a l'arrét cesse d’exécuter ses actions (interne, de com-

munication, de lecture et d’écriture). L’arrét peut étre définitif (“crash stop”) ou
temporaire (“crash recovery”);

15

1.1. Généralités

e les omissions : elles modélisent les fautes qui peuvent conduire a la perte de mes-
sages. Ce type de faute peut affecter les canaux de communication et se manifester
sous la forme d’une rupture du lien (du & une probléme au niveau du réseau physique
sous-jacent par exemple) rendant certaines communications impossibles. Les fautes
au niveau des canaux peuvent aussi provoquer la perte, la duplication, la transmis-
sion hors délais des messages. Un canal qui peut perdre des messages peut étre
modélisé en considérant qu’un des processus au bout du canal échoue a transmettre
ou a recevoir certains messages qu’il devait envoyer ou recevoir. Un autre moyen de
modéliser les pertes de messages dans un systeme synchrone avec passage de mes-
sages est de permettre la perte d’au plus un certain nombre de messages a chaque
round, mais les canaux sur lesquels ces pertes apparaissent peuvent changer d'un
round en un autre;

e les pannes temporelles : elles sont dues a un délai non respecté, par exemple dans
un systeme temps réel ou on exige que les actions soient terminées dans un intervalle
de temps donné.

Les différents types de pannes peuvent étre classés dans des catégories de plus haut
niveau :

e les pannes transitoires : une panne transitoire peut perturber 1’état d’un processus
d’une maniere arbitraire. Elles capturent les effets de ’environnement, dont la durée
est limitée. L’élément responsable de la panne peut n’étre actif que pendant un
temps limité, mais 'effet produit sur I’état global du systeme reste. Les omissions
sont un cas de panne transitoire, lorsque ’état d’un canal est perturbé;

e les pannes byzantines : elles modélisent un comportement arbitraire des processus.
Ce dernier modele est utile pour simuler des attaques et situations dans lesquelles
les fautes sont difficiles a caractériser. Un algorithme dans le modele avec fautes
byzantines doit donc fonctionner correctement (atteindre son but) quel que soit le
comportement des processus.

Techniques de tolérance aux pannes

Pour assurer une gestion des pannes qui peuvent éventuellement survenir dans un systeme
distribué, il faut d’abord étre en mesure de détecter ces événements, c’est-a-dire, étre
en mesure de détecter que le systeme ne se comporte plus de maniere conforme a sa
fonction. La détection d’une panne n’est pas toujours possible (par exemple dans un
systeéme asynchrone ot le temps d’exécution des actions n’est pas borné). Mais lorsque la
détection est possible, elle peut se faire lorsqu’on détecte un signal ou message d’erreur.
Une erreur latente est une erreur présente mais non détectée. Une fois la faute détectée,
il faut la gérer. Les techniques utilisées pour assurer la tolérance aux pannes peuvent étre
regroupées en deux catégories selon que les pannes sont masquées ou non masquées.

Pannes masquées

Lorsqu’une panne est masquée, son occurrence n’a pas d’impact sur le systeme. Cette
catégorie de techniques adoptent une vision pessimiste de la tolérance aux pannes. Ces
algorithmes tolerent des dysfonctionnements continus touchant le systeme. Ces techniques
sont nécessaires dans les systemes critiques (mettant en général la vie des personnes en

16

1.1. Généralités

danger en cas de défaillance total : un avion doit pouvoir continuer a voler méme si un
de ses appareils ne fonctionne pas parfaitement). Elles sont cependant difficiles & mettre
en ceuvre et ne tolerent qu'un nombre restreint de dysfonctionnements. Les techniques de
réplication utilisées pour assurer la tolérance aux pannes font partie de cette catégorie.

Dans les techniques de réplication, les données et/ou les programmes sont répliqués
ce qui permet au systeme de pouvoir continuer a fonctionner méme en présence de
pannes [76].

Pannes non masquées

Dans cette catégorie, les pannes peuvent affecter temporairement le comportement du sys-
teme, moment pendant lequel il ne se comporte plus exactement comme spécifié. Cepen-
dant, une restauration du comportement conforme a la spécification aura lieu. Parmi les
techniques utilisées pour assurer la restauration d’'un comportement correct on retrouve
la reprise sur panne [77-79], et les algorithmes auto-stabilisants [36].

La reprise sur panne repose sur un historique, un enregistrement périodique des états
des processus au cours de leur exécution, sauvegardé dans une mémoire stable. Lorsqu'une
panne est détectée, le systeme est restauré a partir des derniers états sauvegardés. L’état
retrouvé n’est pas forcément ’état avant la panne, mais un état correct.

Algorithmes de consensus

Il existe des situations dans lesquelles des processus distribués doivent trouver un accord,
prendre la méme décision,... C’est le cas, par exemple, dans un systeme de transaction o
tous les processus qui participent doivent tomber d’accord sur l'opération a exécuter et
I'appliquer : soit sauvegarder les résultats de la transaction, soit les annuler. Dans tous
les cas, la décision prise doit étre la méme pour tous les processus qui participent. Ils vont
donc appliquer la méme opération. Ce probléme, connu sous le nom de consensus [73,
80, 81], implique un ensemble de processus distribués, dont certains peuvent ne pas étre
fiables. Chaque processus choisit une valeur initiale, a partir d’un ensemble commun a tous
les processus. Le probleme consiste, pour les processus fiables, a trouver un consensus,
c’est a dire choisir, de maniere irrévocable, la méme valeur finale, parmi celles proposées;
en respectant les conditions suivantes :

e tout processus fiable finira par décider, c’est a dire choisir une valeur finale (termi-
naison);

e la valeur finale choisie doit étre identique pour tous les processus fiables (accord);

e la valeur finale choisie doit avoir été proposée (validité). Ainsi, si tous les processus
fiables avaient choisi la valeur initiale v, alors la valeur finale doit étre v.

Il existe des variantes du probleme dans lesquelles, on exige plus que tous les processus
choisissent la méme valeur, mais que le cardinal de I’ensemble des valeurs choisies soit au
plus égal a un entier k (“k-set consensus”). Dans ce cas, le consensus devient un cas
particulier lorsque k& = 1 [82].

Dans un systeme ou le réseau et les processus sont completement fiables, le probleme
peut trouver une solution triviale. Par exemple, les processus peuvent s’échanger les
valeurs et choisir une valeur finale de maniere déterministe en appliquant la méme fonction
(le maximum/minimum par exemple) a l'ensemble (des valeurs initiales) requ. Le méme
ensemble sera regu par tous puisqu’il n’y a pas de pannes.

17

1.2. Modeles

Cependant, les systemes réels sont en général sujets a des pannes, soit des liens de
communication, soit des processus qui peuvent se terminer ou se comporter de maniere
arbitraire.

Le protocole de consensus décrit dans [81, 83] se base sur un modele de faute de
type “crash recovery”, dans lequel un processus peut se terminer a tout instant mais peut
également redémarrer.

La recherche d’un algorithme de consensus peut se révéler plus difficile, voire impossi-
ble, en fonction des hypotheses et modeles considérés. Ficher et al. ont montré [84] que :
méme en excluant les pannes byzantines, et en considérant comme type de panne que le
“crash” (terminaison permanente du processus) et en supposant un environnement dans
lequel I'envoi et la réception des messages sont fiables (un message envoyé arrive a sa des-
tination et n’est pas dupliqué), aucun protocole de consensus, completement asynchrone,
ne peut tolérer le crash, ne serait ce que d’un seul des processus. Il faut souligner que dans
le modele asynchrone, le “crash d’un processus” ne peut pas étre détecté de maniere fiable
car il est difficile de faire la distinction entre un processus tres lent dans 'exécution des
instructions et un processus qui s’est terminé. Ce résultat (connu sous le nom de FLP) a
suscité un grand nombre de travaux qui I'ont étendu en utilisant d’autres hypotheses ou
modeles [85-87].

La recherche d’un consensus, dans un modele de fautes byzantines, est connue sous le
nom de “probleme des généraux byzantins” [88].

1.2 Modeles

Les systemes distribués sont implémentés de diverses manieres. Lorsqu’on les étudie, on
se base généralement sur des modeles [1, 89] permettant de décrire leurs caractéristiques
et de faire abstraction des détails sur le réseau physique sous-jacent par exemple. Un
modele peut capturer les caractéristiques essentielles d'une grande variétés de systemes
réels. L’avantage d’une telle démarche est de pouvoir réfléchir a partir des modeles et
non des systemes réels. Plusieurs modeles ont été proposés pour les systemes distribués.
L’existence de ces différents modeles a suscité des réflexions sur les relations entre les
différents modeles, la nature des problémes qui peuvent étre résolus (ou qui ne peuvent
pas 'étre) dans un modele donné, le modele qui permet de résoudre le plus de problemes,...

Les systemes distribués sont modélisés de maniere générale sous la forme d’un graphe.
Les communications entre les processus formant le systeme distribué sont décrites selon
un modele a mémoire partagée ou a passage de messages.

Un algorithme distribué est décrit par un ensemble de regles avec des gardes. chaque
processus exécute un programme séquentiel constitué d’un certain nombre de regles.
L’exécution d'un algorithme distribué est généralement décrit par un modele de tran-
sition.

1.2.1 Systemes distribués

Un systeme distribué peut étre modélisé par un graphe G = (V, E) ou V représente
I'ensemble des sommets (appelés aussi noecuds) du graphe et E l'ensemble des arétes.
Chaque v € V représente une des entités constituant le systeme et chaque aréte e € F (e
est un couple (u,v) avec u € V,v € V) représente une relation (généralement un lien de
communication) entre les deux entités u et v. Un graphe peut étre orienté ou non orienté.
Pour un graphe orienté, toute aréte e = (u, v) est orientée de u vers v, est sortante pour

18

1.2. Modeles

u et entrante pour v. La paire (u,v) est ordonnée, u est appelé prédécesseur de v et v est
appelé successeur de u.

Dans la suite, nous considérons uniquement les graphes non orientés et donnons la
définition des quelques concepts sur les graphes [90].

Si e = (u,v) € E, on dit que le nceud u est adjacents a v, que les noeuds u et v sont
voisins. On définit et note le voisinage (I’ensemble des voisins) d’un neeud u par N, =
{veV (uv) ou (v,u) e E}.

Le degré d’un noeud u est défini et noté par D(v) =|N,|.

Un neeud u est dit isolé lorsque D(u) = 0, c’est a dire un neeud sans voisin.

Deux arétes e, e; € E sont dites adjacentes lorsque e; #5 et e; Ny # 0 (les deux
arétes sont distinctes et ont un sommet en commun).

Un chemin entre v; et v est une séquence d’arétes adjacentes (vy,vs), (vg,v3),...,
(vg—1, vg) plus simplement noté (vy,va, ..., vk_1,vx) dans lequel tous les v; sont distincts a
I'exception éventuellement de vy et v qui peuvent étre égaux. Lorsque v; = vy, le chemin
est appelé circuit ou cycle. Un graphe est dit acyclique s’il ne comporte pas de cycle.
Deux sommets sont dits connectés lorsqu’il existe un chemin entre eux.

Un sous graphe du graphe G = (V, E) est un graphe G1 = (V1, E1) tel que V1 CV
et 1 C E. On dit que le sous graphe G1 est induit par V1 C V lorsque G1 est obtenu
en supprimant de G, l'ensemble des sommets dans V' — V1 et les arétes qui leur sont
incidentes.

Soit la relation R sur I'ensemble V' des sommets du graphe non orienté G tel : pour une
paire de sommets (u,v), uRv signifie que u et v sont connectés; autrement dit, qu’il existe
un chemin entre u et v. Cette relation R, “est connecté”, est une relation d’équivalence.
Chaque classe d’équivalence de sommets de V' induit un sous-graphe, appelé composante
connexe.

Un graphe est dit connexe s’il est constitué d'une seule composante connexe; et non-
connexe dans le cas ou il est constitué de plusieurs composantes connexes. Ainsi, dans
un graphe connexe, il existe un chemin entre chaque paire de sommets alors que dans un
graphe non connexe, il existe au moins une paire de sommets non connectés. Lorsquune
composante connexe est constituée d’un unique sommet, ce sommet est dit isolé.

Un graphe acyclique et non-connexe est appelé une forét.

Un graphe G = (V, E) est dit complet si Vo € V, N, =V —{v}, c’est a dire que chaque
sommet est connecté a tous les autres sommets. Dans ce cas, si |V|=n, |E|=n(n —1)/2.

1.2.2 Modele de communication

Les modeles de communication pour les systemes distribués sont de deux types : le modele
a mémoire partagée (dans lequel on retrouve le modele a état et le modele a registre) et
le modele a passage de messages.

Dans le modele a mémoire partagée, les noeuds communiquent en écrivant et lisant
des mémoires partagées. On retrouve dans cette classe, le modele a état et le modele a
registre.

Dans le modele a état, si deux noeuds sont voisins, alors chacun peut modifier son état
(lui seul peut le faire) et lire I’état de son voisin.

Dans le modele a registre, si deux noeud N; et N; sont voisins, alors il existe deux
registres R; (pour N;) et R; (pour N;) entre eux. Pour communiquer, N; écrit dans R; et
lit R; tandis que N; écrit dans R; et lit R;.

19

1.2. Modeles

La simulation d’un modele A par un modele B permet, lorsque cela est possible,
d’adapter tout algorithme conc¢u pour le modele A en un algorithme pour le modele
B [91, 92].

Nous détaillons dans la section suivante le modele a passage de messages, modele sur
lequel est basé le travail présenté dans ce manuscrit.

Modele a passage de messages

Dans ce modele, les noeuds (processus) communiquent uniquement par échange de mes-
sages qui transitent par des canaux de communication [1]. Chaque nceud dispose de son
propre espace d’adressage.

Les communications peuvent suivre un modele synchrone ou asynchrone [72, 73].

Dans un modele asynchrone, ’envoi et la réception d’un message sont des événements
indépendants. Ainsi, 'envoi d’'un message 7 n’est pas conditionné par la réception d'un
message précédent (i —1). Il n’y a pas de temps global et chaque nceud possede sa propre
horloge. Le temps que prend un message émis pour atteindre son destinataire est fini mais
non borné. Ce délai peut donc étre arbitrairement long.

Dans un modele synchrone, I’envoi et la réception d’un message sont coordonnés pour
former un seul événement. Ainsi, un message n’est envoyé que lorsque son destinataire est
prét pour le recevoir. Les horloges des différents nceuds sont synchronisées et marquent le
méme temps, ou bien le décalage est borné. Les noeuds exécutent leurs actions par cycle
(ou round). Pour chaque cycle, chaque noeud exécute un ensemble prédéfini d’actions, et
aucun noeud ne débute le cycle i que lorsque tous les processus ont terminé le cycle (i —1).

Dans un modele a passage de messages, des hypotheses sont faites sur les propriétés
des canaux de communications par ou transitent les messages.

Ainsi, les canaux peuvent étre fiables ou non fiables, avec des capacités (tailles) finies
(bornées ou non bornées) ou infinies. Dans un canal fiable, les pertes de messages sont
inexistantes contrairement a un canal non fiable ou cette possibilité est prise en compte.

Lorsque la taille d’un canal est bornée, et lorsque la file d’attente est pleine, le processus
qui transmet est bloqué, ot une erreur est générée ou un message est supprimé de la file.
L’ordre dans lequel les messages sont transmis et recus peut étre modélisé par des files de
type FIFO (les messages échangés entre deux processus sont requs dans l'ordre ou ils sont
été envoyés) ou non.

1.2.3 Modele d’exécution

Dans la suite, on s’intéresse aux systemes distribués avec un modele de communication
par passage de messages.

Dans un algorithme centralisé, les processus ont une vision globale du systéme (topolo-
gie, les autres processus, etc.) et peuvent prendre une décision optimale.

Un algorithme distribué est exécuté par un ensemble de processus formant un systeme
distribué qui cooperent pour atteindre un objectif. Lorsque tous les processus exécutent
le méme programme, on dit que le systeme est uniforme. Sinon, I’algorithme est dit non-
uniforme. Dans un algorithme distribué, les processus ont une vision réduite du systeme
(en général, ils ont connaissance d’une partie ou de I'ensemble de leurs voisins, mais
ils n’ont pas de connaissance globale de la topologie du réseau ou du nombre total de
processus).

Dans un modele a passage de messages, l'exécution d’un algorithme distribué et
son évolution dans le temps sont modélisés par un systeme de transition [1, 38, 72].

20

1.2. Modeles

L’algorithme est exécuté par un ensemble de processus séquentiels, qui communiquent
entre eux par échange de messages pour atteindre un objectif commun. Un processus
séquentiel exécute un ensemble d’instructions de maniere séquentielle.

Définition 1 (Algorithme distribué). Un algorithme distribué A peut étre modélisé par
un ensemble de régles A :: Ry | Ry |.....| R, ot chaque R; est une régle de la forme :

st Guard; alors Action;
Ou

Guard; est un prédicat booléen, fonction des variables locales du neeud (toutes ou
une partie) et éventuellement d’information externe au neeud (provenant d’oracle, d’un
serveur, des voisins);

Action; est un ensemble d’instructions exécutées par le neud et qui peuvent modifier
les valeurs de ses variables locales. Ces instructions ne sont exécutées que lorsque Guard;
est vrai, et dans ce cas on dit que le neeud est activable ou déclenchable (“enabled”).

L’ensemble des actions que peut exécuter un processus peuvent étre regroupées dans
les catégories suivantes :

e action interne : toute exécution dans ’espace d’adressage du processus produisant la
modification de la valeur d’une ou de plusieurs de ses variables locales (état interne);

e action de communication : tout envoi ou réception d'un message a destination ou
en provenance d’un autre processus du systeme (ensemble des processus formant le
systeme distribué);

e action de lecture : toute lecture de données en provenance d’un élément externe
au systeme. Les données lues peuvent avoir une influence sur 1'état interne du
processus;

e action de d’écriture : toute écriture de données vers un élément extérieur au systeme.
Chaque processus a un état e;.

Définition 2 (Etat d'un neeud). L’état d’un neud est défini a partir de ses variables
locales (toutes ou une partie).

On note E l'ensemble des états possibles d’un processus. Un processus peut changer
d’état a la suite d’'une action interne.

Définition 3 (Etat d’'un canal de communication). L’état d’un canal de communication
est défini par l’ensemble des messages qui y circulent au moment considéré. L’état d’un
canal est donc soit vide soit non vide.

Définition 4 (Etat global ou configuration). Un état global d’un algorithme distribué,
appelé aussi une configuration (notons le c) est un vecteur des états de chaque processus,
de la forme c=ley,eq,...,e,] ot €; est I'état courant du processus i. Dans le cas d’un
systeme asynchrone, il faut en plus du vecteur des états, prendre en compte le vecteur
constitué de l’état de chaque canal de communication.

21

1.2. Modeles

La configuration d’'un algorithme distribué évolue a la suite d’une action interne a
un processus. L’évolution de 1'état global, appelée transition, se fait donc de maniere
discrete.

Définition 5 (Systeme de transition). Un systéme de transition est un triplet T =(C,—
L) ou :

e C est l'ensemble de toutes les configurations possibles;

e — est une relation binaire dans C;

e 7 C C est l’ensemble des configurations initiales.

Une transition ¢; est donc un couple (¢;, ¢;41) € C x C tel que ¢; — ¢;41.

Puisque plusieurs nceuds peuvent étre simultanément activables, et afin de modéliser le
comportement d'un noeud activable, on utilise un ordonnanceur, appelé démon (deamon)
ou adversaire [93]. A chaque pas de calcul (transition), il choisit les nceuds qui vont
exécuter leurs actions parmi les noeuds activables. Un démon est dit :

e central ou séquentiel s’il n’active qu'un seul noeud activable;

e distribué s'il peut activer un sous ensemble de nceuds (de cardinal au moins égal
a deux) parmi les nceuds activables. Les nceuds activés exécutent leurs actions de
maniere synchrone;

e synchrone ou parallele s’il doit activer tous les noeuds activables. Les noeuds activés
exécutent leurs actions de maniere asynchrone.

Pour modéliser les choix du démon, la notion d’équité (“fairness”) est utilisée. Le
démon est dit [94] :

e faiblement équitable (“unfair”) 8’1l doit ultimement activer tout noeud contintiment
et infiniment activable;

e fortement équitable (“fair”) ’il doit ultimement activer tout nceud infiniment ac-
tivable;

e inéquitable s’il n’est pas équitable (ni fortement, ni faiblement).

Définition 6 (Configuration terminale). Une configuration c, est dite terminale s’il n’eziste
aucune autre configuration c € C telle que (¢y, c) soit une transition.

Dans un systeme de transition, I’évolution au cours du temps de 1’état global est une
suite de transitions causées par des événements internes au processus. Cette évolution est
capturée par la notion d’exécution.

Définition 7 (Exécution). Une exécution € est une séquence (co, ¢y, ¢, ...) de configura-
tions telle que co € I, et ¢; — c;pq1 pour tout © > 0. Une exécution est finie si elle se
termine par une configuration terminale, sinon elle est infinie.

22

1.2. Modeles

1.2.4 Auto-stabilisation

L’apparition de pannes dans un systeme distribué, constitué d’un grand nombre de proces-
sus et de liens de communication, est un événement courant et pas exceptionnel. Certains
de ces systemes sont dynamiques, permettant ainsi ’ajout et le retrait de processus en
cours d’exécution. Ils sont confrontés a des changements de topologies, et a diverses autres
perturbations.

Il est donc nécessaire de proposer des moyens de gérer ces pannes. Cependant, vue
la taille et la complexité de ces systemes, une gestion manuelle des pannes serait ineffi-
cace, voire impossible. Les techniques de tolérance aux pannes permettent une gestion
automatisée des pannes.

Ces techniques se divisent en deux classes : celle dans laquelle on masque les pannes
(les effets des pannes sont invisibles a 'application) et celle dans laquelle les pannes ne
sont pas masquées. L’auto-stabilisation fait partie de cette derniere classe.

Le concept d’auto-stabilisation dans les systemes distribués a été introduit en 1974
par E. W. Dijkstra [36].

Un systeme auto-stabilisant doit tolérer les pannes transitoires (des processus et des
liens). Une panne transitoire peut corrompre les données en mémoire des processus (vari-
ables, pointeur de programme), les canaux de communication, mais sans corrompre le
code qui est exécuté. L’exécution du code de I'algorithme auto-stabilisant devra permet-
tre de retrouver un état correct, a partir de n’importe quel état, atteint a cause des pannes
transitoires ou de valeurs initiales arbitraires.

Définition 8 (Algorithme auto-stabilisant). Un algorithme est dit auto-stabilisant si quel
que soit son état initial, il atteindra un état correct (légitime), aprés un nombre fini
d’étapes.

Intuitivement, un algorithme est auto-stabilisant s’il est capable de retrouver un com-
portement correct a partir d'un état global initial arbitraire [93]. L’état initial arbitraire
permet de prendre en compte 'effet des fautes sur le systeme.

Les algorithmes auto-stabilisants sont utilisés comme un moyen d’assurer une tolérance
aux pannes parce qu’apres une perturbation imprévue, ils offrent la garanti de retrouver
un état correct sans intervention extérieure.

Pour valider le caractere auto-stabilisant d'un algorithme, il faut montrer que les pro-
priétés de convergence et de cléture [95] sont vérifiées.

Définition 9 (Convergence). La propriété de convergence stipule que quelque soit [’état
miatial, un systeme exécutant un algorithme auto-stabilisant va atteindre un état légal au
bout d’un nombre fini de transitions.

On doit souligner ici que la convergence commence apres que la derniere action de ce
qui constitue la panne a été appliquée. Si le systeme est perpétuellement perturbé, sa
convergence ne pourra pas étre prouvée. Dongc, il faut au moins qu’ un délai suffisamment
long pour permettre une convergence existe entre deux pannes. En d’autres termes, le
temps moyen entre les pannes doit étre plus grand que le temps de réparation (c’est a dire
d’exécution de 'algorithme auto-stabilisant).

Définition 10 (Cloture). La propriété de cloture stipule qu’une fois un systéme auto-
stabilisant a atteint un état légal, et en l'absence de fautes, les transitions le laisseront
dans un état légal.

23

1.2. Modeles

La capacité d'un systeme a pouvoir se réajuster ou retrouver un état correct, apres
des perturbations, et sans intervention externe, est une propriété utile dans les systemes
distribués. C’est la raison pour laquelle, I'auto-stabilisation, en tant qu’une des techniques
de tolérance aux pannes a suscité beaucoup d’intéreét.

24

CHAPITRE 2

Etat de I'art

Sommaire
2.1 Outils et frameworks de déploiement 26
2.2 Description d’architecture logicielle 29
2.3 Description d’infrastructure distribuée 29
2.4 Algorithmes auto-stabilisants 30
2.4.1 Algorithmes auto-stabilisants a vagues 30

Le déploiement de logiciel [17-20] est défini dans [19] comme le processus, constitué
d’un ensemble d’activités liées, entre I'acquisition et I'exécution du logiciel. Ce processus
a pour objectif de rendre opérationnel une application, qui peut ainsi étre utilisée par
les utilisateurs. Une fois 'application déployée, le processus de déploiement continue
par les mécanismes d’adaptation du logiciel afin de chercher a atteindre une qualité de
service. En effet, les infrastructures modernes sur lesquelles on déploie des applications
sont caractérisées par de fréquentes variations de leur environnement.

Cependant, I'objectif d'un déploiement de logiciel, en plus de ceux déja notés dans ces
définitions, peut étre de maintenir une qualité de service autre que la seule disponibilité,
et que la non-atteinte de cette qualité, provoque une stratégie de redéploiement. Cette
qualité de service peut étre qualitative (par exemple maintenir une topologie particuliere)
ou bien quantitative (par exemple le logiciel devra étre capable de réaliser certaines taches
dans un temps inférieur a une valeur donnée).

Ainsi, s’appuyant sur les définitions précédentes, on peut définir le déploiement de
logiciel comme un processus consistant en un ensemble d’activités reliées et ayant pour
but de rendre le logiciel disponible a 'utilisation, a jour et en état d’assurer une qualité
de service prédéfinie.

Le processus de déploiement suppose au moins 'existence d'un logiciel qu'on veut
déployer, d'une infrastructure cible, constituée de ressources informatiques (ordinateurs,

25

2.1. Outils et frameworks de déploiement

clusters, téléphones,...) interconnectées, sur laquelle le logiciel sera déployé, et, éventuelle-
ment, d’outils permettant d’automatiser le déploiement (sinon 'opération sera effectuée
manuellement).

2.1 Outils et frameworks de déploiement

Des standards et spécifications du domaine, on peut citer la spécification de 'OMG (Ob-
ject Management Group) pour le déploiement d’applications distribuées a base de com-
posants [18], 'OSGi (Open Services Gateway initiative) [96].

OSGi fournit un environnement d’exécution, basé sur la technologie Java. Le processus
de déploiement inclut les activités suivantes : l'installation, la mise a jour, la désinstal-
lation. Il fournit un cadre qui permet le déploiement d’applications Java, extensibles et
téléchargeables (appelées “bundle”). Un “bundle” est constitué de classes Java et d’autres
ressources (librairies, fichiers, etc.), 'ensemble pouvant fournir un ou plusieurs services
aux utilisateurs. Ils sont déployés sous la forme d’archives JAR (Java ARchive). Les
“bundles” sont les seules entités utilisées pour le déploiement d’applications. Les appareils
OSGi compatibles peuvent télécharger, installer, supprimer les “bundles”. L’installation
et la mise a jour se font de maniere dynamique, en gérant les dépendances entre les “bun-
dles” et les services. Les limitations de ce modele sont liées au fait qu’il est spécifique a
I’environnement Java et a des applications non distribuées.

Quant a la spécification de 'OMG, elle a pour objectif de fournir un modele de données
et d’exécution permettant de gérer le développement, le packaging, le déploiement et la
configuration d’applications a base de composants. La spécification est décrite a travers
une entité appelée “Platform-Independent Model” (PIM), composée d’un ensemble de
modeles UML! et de regles sémantiques associées. Le PIM est indépendant de tout modele
de composant particulier. Pour utiliser cette spécification avec un modele particulier de
composant, il faut créer une entité appelée “Platform-Specific Mapping” (PSM). Le PSM
est un ensemble de regles qui transforme les modeles UML du PIM en données et modeles
d’exécution, dans un format approprié pour le déploiement du modele de composant
cible. La spécification n’a pour l'instant standardisée que le PSM pour le modele de
composant corba?, dans lequel les modeles de données et d’exécution sont transformés
en deux formats : XML schema pour le stockage sur disque et ’échange entre outils, et
IDL (Interface Definition Language) pour la représentation du modele d’exécution et des
communications entre les entités du déploiement.

Des outils de déploiement [22, 23, 97-99] et de gestion de configuration comme Chef [24],
Puppet [25], Ansible [100], TakTuk [98] permettent un certain niveau d’automatisation
du processus de déploiement. Les outils de configuration récents offrent la possibilité de
“programmer” la maniere dont les ressources seront configurées. Une description de I’état
désiré des ressources considérées est donnée (un modele, au format YAML pour Ansible
par exemple), et ces outils transforment le modele en un ensemble de commandes dont
I'exécution permettra d’avoir 1’état désiré.

Une étude des outils et techniques de déploiement d’applications a été faite dans [101]
en se basant sur une division du processus de déploiement en dix (10) étapes basées en
partie sur les étapes discutées dans [17, 19].

Parmi les différentes approches de déploiement citées, le déploiement dirigé par la

1Unified Modeling Language
20MG : CORBA Component Model, v4.0 http://www.omg.org/spec/CCM/4.0/ 2016

26

2.1. Outils et frameworks de déploiement

qualité de service, dans lequel une application est déployée et éventuellement redéployée
pour atteindre une certaine qualité de service comme la tolérance aux pannes. Une autre
des approches de déploiement utilisée pour 1'étude est le “déploiement a chaud” (hot
deployment) concernant les techniques permettant & une application en cours d’exécution
de s’adapter. Cependant, les exemples cités sont des cadres pour concevoir des applications
capables de s’adapter en cours d’exécution et pas des applications existantes.

Une étude plus récente [102] se base sur les critéres suivants : I'unité de déploiement,
le domaine de déploiement, ’expression des propriétés, I'expertise du concepteur du dé-
ploiement, les activités de déploiement, le controle du déploiement et la nature du boot-
strap. Le bootstrap signifiant ici un programme d’amorce qui doit étre opérationnel sur
les appareils cibles avant le déploiement.

Nous avons supposé I'existence de tels outils (I'intergiciel DIET dispose d’un outil de
ce genre, GoDIET [22]) et dans cette these nous n’avons pas cherché a réaliser des outils de
déploiement. Dans la partie dans laquelle nous simulons ’algorithme distribué que nous
avons proposé, le déploiement est simulé par la création de hiérarchie des processus (une
hiérarchie DIET) sur un ensemble de machines virtuelles interconnectées. Cette opération
aurait nécessité un outil de déploiement dans un environnement réel. On s’intéresse a la
phase o I'application est déja déployée (on suppose avec des outils d’automatisation exis-
tants), et & comment gérer la détection d'un état de I’application qui n’est plus conforme
a sa spécification?

TUNe [103], une évolution de Jade [104], propose un cadre (framework) pour encap-
suler des logiciels patrimoniaux (développés dans/avec un paradigme autre que celui dans
lequel on cherche a les utiliser) dans un modele de composant FRACTAL [15], afin de leur
assurer une gestion autonome. Le cadre propose un langage de description d’architecture
permettant de décrire 'application a déployer, la possibilité d’implanter des politiques de
reconfiguration de I’application a base de composant obtenue.

Ce type d’approche, pour rendre autonome ’administration de logiciels, est aussi pro-
posé par Rainbow [105], un des premiers cadres destinés a la conception d’applications
autonomes basées sur le modele de systeme autonome introduit par IBM (MAPE-K) [29].
Rainbow utilise un modele pour surveiller les propriétés d'un systeme en exécution,
évalue le modele pour détecter des violations de contraintes et si nécessaire applique des
actions d’adaptation sur le systeme en exécution. Rainbow doit étre utilisé pendant
la phase de conception et développement de I'application et n’est donc pas destiné aux
applications patrimoniales.

CASA (Contract-based Adaptive Software Architecture) [106] est un cadre qui permet
I’adaptation dynamique des applications. Il inclut différents mécanismes d’adaptation
dont la recomposition dynamique des composants d’une application.

Ils existent d’autres cadres basés sur d’autres approches telles que Model@run.time [107].
C’est une approche de génie logiciel dont 'objectif est de proposer des outils et méthodolo-
gies adaptés a la conception de logiciels complexes, en se basant sur des modeles. Ces
modeles permettent de décrire les fonctionnalités avec un haut niveau d’abstraction et
d’utiliser des outils de transformation de modeles pour obtenir des implémentations (en
partie ou entierement) des logiciels dans des langages spécifiques. L’utilisation de cette ap-
proche pour le développement de systemes auto-adaptatifs [108-110] considere les modeles
comme les éléments de base a partir desquels les applications seront modifiées en temps
réel. Dans cette approche, le systeme en exécution est représenté sous forme d’un mod-
ele (une réification du systeme réel) et des actions peuvent étre appliquées au niveau du
modele (pour créer des adaptations par exemple), ce qui va se répercuter sur le systeme

27

2.1. Outils et frameworks de déploiement

réel car il y’a une relation causale entre le systeme réel et le modele. Cette connexion crée
une synchronisation entre le modele et le systeme en exécution [111].

ACTRESS [112] est un cadre basé sur l'ingénierie des modeles et qui fournit des
outils pour concevoir et intégrer des mécanismes d’adaptation dans une application, sous
la forme de boucle de controle.

EUREMA (ExecUtable RuntimE MegAmodels) [113] est aussi une approche basée
sur l'ingénierie des modeles. EUREMA propose un langage de modélisation et un en-
vironnement permettant la spécification et I’exécution de mécanismes d’adaptation con-
stitués d’une ou de plusieurs boucles de controle. L’approche repose sur une architecture
en couches, dans laquelle le systeme auto-adaptatif est séparé logiquement en deux par-
ties : la couche métier qui fournit les fonctionnalités, et au dessus, la couche qui gere le
mécanisme d’adaptation (de la couche métier), sous la forme de boucles de controle.

Tous ces cadres sont destinés au développement, a la conception de systemes auto-
adaptatifs.

Le systeme que nous simulons repose sur un modele de composant CORBA [55] et est
patrimonial. Cependant notre approche a des points communs avec ce qui est proposé
dans TUNe : nous avons proposé un formalisme pour décrire un intergiciel hiérarchique
a base de composants en ne faisant pas d’hypotheses sur le modele de composant. De la
méme maniere, nous avons défini des politiques de reconfiguration qui sont spécifiques a
I'intergiciel cible.

De méme, pour simuler les politiques d’auto-adaptation que nous avons proposées,
on utilise une solution proche des Model@run.time car le systeme réel en exécution (les
processus) est abstrait sous la forme d'une structure de donnée (un graphe), et il y’ a un
lien causal entre cette structure de donnée, qu’on utilise pour raisonner et prendre des
décisions, et le systeme réel.

L’approche décrite dans [114] utilise une structure de graphe pour modéliser de maniére
formelle différentes entités qui interviennent dans le processus de déploiement comme
I’application a base de composant qui doit étre déployée, I'infrastructure cible sur lequel
I’application sera déployée, la recherche d'un plan de déploiement dirigée par une qualité
de service. Les algorithmes présentés sont assez général et peuvent étre adaptés a d’autres
types de qualité de service. Des étapes du déploiement sont ramenés, apres la formalisa-
tion, a des problemes de la théorie des graphes (comme la recherche d’un arbre couvrant
minimum). L’ aspect adaptation n’a cependant pas été pris en compte, mais plutot la
préparation d'un déploiement initial. Nous avons aussi utilisé une structure de graphe
pour représenter une partie des entités du déploiement de maniére moins formelle mais
plus focalisée sur 'aspect adaptation.

Disnix [8] est un outil de déploiement automatique avec une approche qui partage
des points communs avec notre travail. C’est le cas dans l'utilisation d’une description
de l'infrastructure cible, de 'application a déployer. Cependant, Disnix reste 1’outil qui
fait le déploiement et non une application a déployer. Or, dans notre travail, I'outil de
déploiement est important car c’est lui qui lance le déploiement, qui participe aux taches
de ré-déploiement, mais 1’accent est surtout mis sur ’application déployée et sa maniere
de réagir aux événements de son environnement d’exécution.

SHMF (Scalable Hierarchical Management Framework) [6] est une approche hiérar-
chique de gestion d’une hiérarchie de type arbre, dans laquelle des contraintes sont fixées,
comme une limite pour le nombre de fils d’'un nceud par exemple. Le point commun avec
notre travail est qu’ici, c’est I’application en exécution qui gere I'auto-adaptation comme
c’est le cas pour nous ou se sont les instances formant la hiérarchie elles mémes qui gerent

28

2.2. Description d’architecture logicielle

I’adaptation.

ADAGE [115] permet de déployer des applications décrites en utilisant un formalisme
générique (GADe) sur une grille. Le formalisme est indépendant des technologies de
composant. Le déploiement réalisé est statique, dans la mesure ou une fois réalisé, de
futures modifications ne sont plus possibles. Cependant, utilisé avec CoRDAGe [116], il
permet un déploiement dynamique.

LE-DAnCE (Locality-Enabled Deployment and Configuration Engine) [117] est un
outil de déploiement pour applications distribuées et hétérogenes. L’outil lui méme
s’adapte face aux variations de I'’environnement sur lequel il déploie des applications, et
aussi en fonction des contraintes de 'application qui est déployée. En plus, il implémente
la spécification D&C de 'OMG [18].

L’approche présentée dans [97] est comparable avec ce que nous avons simulé a la
différence que notre objectif n’est pas quantitatif mais qualitatif. L’architecture en trois
couches : une couche décrit les processus et le matériel sur lequel ils s’exécutent, avec
des sondes qui surveillent des parametres et reportent les données a une couche au dessus
qui crée une image du systeme en exécution. Cette couche correspond dans notre cas au
serveur de déploiement, c’est une couche de réification du systemes réel. Une troisieme
couche de haut niveau pour décrire les préférences des utilisateurs, ce qui correspond dans
notre cas a l’obtention d’un déploiement stable.

2.2 Description d’architecture logicielle

Comment décrire la structure d’une application a base de composant, les interactions et les
dépendances entre ses composants. Des langages de description d’architecture permettent
de saisir ces relations. Nous avons proposé une grammaire, sous forme d’un schéma XML,
qui permet de décrire 'architecture d’un intergiciel hiérarchique du type de DIET [5].

OVF (Open Virtual Format) [118] est une spécification permettant de décrire la struc-
ture d’'un déploiement de machines virtuelles.

DADL (Distributed Application Description Language) [119] est un moyen de décrire
des applications distribuées. Son infrastructure cible est le cloud.

Fractal Deployment Framework (FDF) [99] intégre un langage de description de dé-
ploiement qui permet de décrire les relations entre composants constituant une application
répartie. Certains parmi les outils cités dans la section 2.1 disposent de ce moyen de décrire
la structure et des contraintes sur les applications qu’ils vont déployer : TUNe [103], Dis-
nix [8], ADAGE [115] en disposent chacun.

DELADAS (DEclarative LAnguage for Describing Autonomic Systems) [120], MuS-
cADeL [20], j-ASD [121] permettent aussi de décrire la structure des différentes entités
qui forment un systeme logiciel.

2.3 Description d’infrastructure distribuée

Nous avons proposé une description d’une infrastructure distribuée comme grid’5000° ou
un cloud ou bien juste un cluster sur lequel on peut déployer une application. Parmi les
travaux de ce sous domaine, hwloc [122], qui en plus de la description de la structure

3https://www.grid5000.fr/

29

2.4. Algorithmes auto-stabilisants

jusqu’a des niveaux de détails tres fins (cache, mémoire, core), fournit une API pour faire
des requeétes sur les données de la ressource.

ADAGE [115] et Disnix [8] proposent des moyens de décrire l'infrastructure sur
laquelle les applications doivent étre déployées. En général, cette description est utilisée
pour calculer un plan de déploiement initial.

2.4 Algorithmes auto-stabilisants

Nous avons proposé un algorithme auto-stabilisant dont 1'objectif est qualitatif, a savoir
. assurer l'existence d'un déploiement “toujours vivant” (cf. chapitre 4) et maintenir le
déploiement existant dans un état stable. A chaque instant, un déploiement existe (sauf
le cas extréme ou on tuerait tous les processus simultanément), soit dans un état stable
ou instable. Et si le déploiement est dans un état instable, il retrouvera un état stable
apres un nombre fini d’étapes, suite a I'exécution de I'algorithme.

Pour atteindre cet objectif, 'algorithme réagit a la détection d’un état instable (du
aux pannes transitoires) pour retrouver un état correct, état dans lequel le déploiement
peut exécuter les taches correspondant a sa spécification. Pour cela, ’algorithme cherche
a maintenir une topologie de graphe correspondant a un état correct du déploiement.
L’algorithme est basé sur un modele de passage de messages, asynchrone, non-uniforme
(les noeuds de méme type exécutent le méme code, mais il y a plusieurs types de noeuds).

L’auto-stabilisation est une propriété de certains algorithmes qui leur assure une
tolérance & des pannes transitoires. Depuis son introduction par E. W. Dijkstra [36] en
1974, un grand nombre de travaux ont été réalisés, dans divers contextes et avec diverses
hypotheses [123-134].

Les systemes sur lesquels on utilise des algorithmes auto-stabilisants sont généralement
dynamiques. Ces systemes sont sujets a des pannes transitoires. Ces pannes sont liées,
entre autres, aux fréquents changements de la topologie, qui sont une conséquence de
la possibilité qu’ont les processus de quitter ou de rejoindre de tels systemes. Dans
cette situation on cherche a créer ou maintenir une topologie pour assurer au systeme
certaines propriétés. Dans notre cas, on cherche a maintenir une topologie de type graphe
qui est une condition nécessaire (mais pas suffisante) de la stabilité du systeme. Ainsi,
dans certains travaux, on cherche & construire et/ou a maintenir une topologie de type
arbre [123], de type graphe [124, 125, 132]. Une revue de la littérature sur les algorithmes
auto-stabilisants de construction d’un arbre couvrant est disponible dans [94, 135, 136].

Des algorithmes auto-stabilisants sont aussi proposés pour le partitionnement en clus-
ters [128-130, 133].

2.4.1 Algorithmes auto-stabilisants a vagues

Des algorithmes auto-stabilisants, a vagues, de type propagation d’information avec re-
tour ou PIF (Propagation of Information with Feedback) ont été proposés. Une version
instantanément stabilisante du PIF est proposée dans [137].

Certains travaux supposent la construction ou I'existence d’un arbre couvrant pour ré-
soudre des problémes du type synchronisation [138], élection de leader [139], ré-initialisation
apres faute [140]. L’algorithme décrit dans [141] est aussi de type PIF mais pour des
réseaux quelconques et sans I’hypothese d’un arbre couvrant. Un algorithme auto-stabilisant,
a vagues, avec circulation de jeton est décrit dans [131].

30

CHAPITRE 3

Déploiement initial

Sommaire
3.1 Imtroduction 31
3.2 Architecture proposée. 0 it et e e e e . 32
3.2.1 Travaux antérieurs 34
3.3 Contribution pour le déploiement initial 34
3.3.1 Description de l'infrastructure 35
3.3.2 Description de l'intergiciel 37
3.4 Conclusion i e e e e e e e 42

3.1 Introduction

Nous avons présenté I'architecture de I'intergiciel DIET (cf. Chapitre 1, Section 1.1.1)
sur lequel on a appliqué notre travail. Cet intergiciel, qui fournit des services de calcul
haute-performance, doit d’abord étre déployé sur une infrastructure cible. En plus, une
fois déployé, on souhaite qu’il puisse réagir de maniere autonome, lorsqu’il se trouve
dans un état instable (un déploiement dans cet état est considéré comme non efficace),
pour retrouver un état stable (état défini au Chapitre 4, Section 4.3). On a donc deux
problématiques :

e réaliser un déploiement initial;
e gérer 'adaptation du déploiement obtenu.

Nous allons, dans la suite de ce chapitre, présenté ’architecture générale proposée.
Ensuite, nous présenterons nos contributions pour la premiere problématique, a savoir
la réalisation d’un déploiement initial. Les contributions pour la deuxieme probléma-
tique (I'adaptation d’un déploiement en cours) seront présentées dans les deux chapitres
suivants.

31

3.2. Architecture proposée

3.2 Architecture proposée

Dans cette section, nous décrivons l'architecture proposée pour le déploiement auto-
adaptatif d’'une application a base de composants (en I'occurrence l'intergiciel DIET).
Cette architecture est une adaptation du modele de boucle de controle MAPE-K défini
dans [29]. Nous commentons les différents modules qui sont numérotés, comme indiqué

sur la Figure 3.1.

Déploiement
initial Existant Contributions

Auto-adaptation

1-Paramétres - 2-Algorithmes | 3-Plan de e i
utilisateur #1 de planification »| déploiement -Convertisseur

. \
Rt . <<format compatible>>
s / \
h
7 S H
h
h
h
h

' i 6-Description 7-Description 5-Outil de déploiement
T T intergiciel || infrastructure} [~ " " "7 T (transfert fichiers, f--—-——
\ ! cible ;! configuration,...)
. \‘ : /" ‘ <<Déploiement intergiciel
Y 4 4 A : sur infrastructure cible>>
13-Algorithme d'auto-adaptation <<Decisions>> 5 14-Actions de
7 déploiement

(re-déploiement)

10-Image du déploiement
courant

8-Informations
11-état des ressources <€&—— de monitoring

/ <<données>

12-Charge

Déploiement
(Intergiciel sur Infrastructure)

» B A est une entrée optionnelle pour B

A est une entrée de B; ou bien
A————— > B A produit B; ou bien

La sortie produite par A est une entréé de B; ou bien

L'action de A s'exerce sur B

Figure 3.1: Architecture pour le déploiement auto-adaptatif d’intergiciel

Algorithmes de planification (2) : la fonction d’un algorithme de planification
consiste a répartir les composants de l'intergiciel sur les ressources de la plate-forme qui
satisfont leurs besoins (si possible) et de sorte que les objectifs prédéfinis par I'utilisateur

soient atteints. Pour ce faire, les algorithmes ont besoin de connaitre :

e les parameétres de 'utilisateur (1) qui expriment les préférences de 'utilisateur

(contraintes sur le déploiement, qualité de service,...);

e une description de l'intergiciel (6) qui doit étre déployé;

32

3.2. Architecture proposée

e une description de l'infrastructure (7) sur laquelle Uintergiciel sera déployé.
La description concerne les ressources et leurs relations.

La sortie des Algorithmes de planification (2) est un plan de déploiement (3),
exprimé dans un format donné (en XML par exemple). Il précise pour chaque instance
(d'un composant de base de l'intergiciel) qui sera déployée, les ressources qui lui sont
allouées.

Le convertisseur (4) : ce module convertit le fichier de déploiement (exprimé dans
un format générique) en un fichier au format compris par 'outil de déploiement particulier
utilisé (5). Il faut prendre de (3) les informations pertinentes et créer l'entrée de 'outil de
déploiement (5) qui exécute les opérations de bas niveau du processus de déploiement [17,
18] comme le transfert de fichiers, la configuration des ressources ciblées, 'activation des
processus, etc. Apres les actions de (5), nous obtenons une hiérarchie d’instances de
composants de l'intergiciel , en cours d’exécution sur les ressources de l'infrastructure
physique qui leur ont été allouées par les algorithmes de planification.

A partir de ce moment, nous avons un déploiement initial, avec un intergiciel qui est
disponible a I'utilisation.

Informations de surveillance (8) : elles sont recueillies a travers des sondes et
concernent aussi bien 1'état des processus que des ressources physiques sur lesquelles
s’exécutent les processus.

A partir des informations recueillies (8), on peut analyser 1'état du déploiement, créer
une image du déploiement courant (représentation formelle du déploiement courant sous
la forme d’un graphe par exemple) (10), connaitre I’état des ressources physiques (11),
leurs charges (12).

Ces informations, déduites des données issues du monitoring du systeme déployé, per-
mettent d’évaluer si le déploiement est stable ou instable. Si le déploiement est instable,
I'algorithme d’auto-adaptation (13), dont I'objectif est d’amener un déploiement in-
stable vers un état stable, s’exécute. Cette exécution peut comporter des actions qui
fassent appel aux outils de déploiement et d’autres actions exécutées directement par les
processus.

L’algorithme d’auto-adaptation peut utiliser (ou non) la totalité ou une partie des
algorithmes de planification (2). La sortie I'algorithme d’auto-adaptation est constituée
des actions de re-déploiement (14). Certaines de ces actions, pour étre exécutées, peuvent
nécessiter un appel aux outils de déploiement. Elles sont fournies dans le format d’un
fichier de déploiement générique et peuvent avoir besoin d’étre traduites par un convertis-
seur pour un outil de déploiement particulier. Les actions qui n’ont pas besoin d'un outil
particulier seront exécutées directement.

Cette phase d’analyse de I'état du déploiement et d’exécution de I’algorithme d’auto-
adaptation est effectuée par une entité centralisée qui a une vision globale du déploiement
dans le cadre d’un algorithme centralisé. Dans le cadre d’un algorithme distribué, cette
phase est effectuée par chaque instance de composant déployée (un processus), en fonction
de son état interne qui est mis a jour grace aux informations de surveillance et des échanges
de messages avec les autres instances (ses voisins dans la hiérarchie déployée).

Dans la suite de ce chapitre, nous allons décrire les modules (6) et (7). La partie
auto-adaptation sera décrite en détails dans les chapitres 4 et 5.

33

3.3. Contribution pour le déploiement initial

3.2.1 Travaux antérieurs

Plusieurs travaux liés a l'intergiciel DIET ont été réalisés. Parmi eux, nous résumons
ceux qui ont un lien avec I'architecture proposée.

Des algorithmes de planning ont été proposés dans [142] pour trouver un déploiement
optimal de DIET sur un environnement homogene (les noeuds de calcul et les liens ont
les mémes caractéristiques : puissance de calcul et bande passante); ou bien pour trouver
la meilleure hiérarchie dans un environnement hétérogene (le probleme du planning étant
NP-complet dans ce cas [143]).

Des heuristiques sont proposées dans [144], qui permettent de déterminer, de maniere
automatique, un plan de déploiement de DIET satisfaisant a un critere fixé (maximiser le
nombre de taches exécutées par unité de temps, lorsque plusieurs applications s’exécutent
simultanément par l'intermédiaire de l'intergiciel). Ces heuristiques sont proposées en
fonction des hypotheses faites sur la nature des infrastructures cibles, qui peuvent étre
homogenes ou hétérogenes.

Ces travaux proposent ainsi des moyens d’obtenir un plan de déploiement initial pour
I'intergiciel DIET.

GoDIET [22] est un outil de déploiement spécifique & DIET. Il prend en entrée un
fichier XML décrivant le déploiement (mise en correspondance entre les composants de
I'intergiciel et les ressources sur lesquelles ils seront instanciés). Cependant, d’autres outils
de déploiement non spécifiques a DIET comme ADAGE [115] et TUNe [103] peuvent étre
utilisés (et ont été utilisés [144]) pour le déployer.

3.3 Contribution pour le déploiement initial

Description de l'intergiciel

Description
hiérarchie

Description
fonctionnelle
(composants
de base)

b ot Outil de déploiement Plan de
escription (Algorithmes de I and
infrastructure pla?\iﬁcation) déploiement

Préférences de
|'utilisateur
(optionnelles)

Figure 3.2: Déploiement initial de DIET

Les besoins pour un déploiement initial de DIET, de maniere générale, sont résumés
par la Figure 3.2. Les algorithmes de planification utilisent comme entrées les descriptions

34

3.3. Contribution pour le déploiement initial

de I'intergiciel et de I'infrastructure cible et éventuellement, des parametres de 1'utilisateur.
Ils fournissent en sortie un plan de déploiement dans un format donné. Nous avons
proposé une formalisme que nous voulons générique pour décrire I'intergiciel DIET et les
infrastructures sur lesquelles il est susceptible d’étre déployé.

Ces description sont nécessaires pour réaliser un déploiement initial; et correspon-
dent aux modules (6) et (7) de l'architecture proposée. Nous présentons les descriptions
proposées sous forme de diagrammes de classes UML modélisant les différentes entités.

3.3.1 Description de ’infrastructure

La description de l'infrastructure sur laquelle I'application sera déployée est une entrée
des algorithmes de planification (Figure 3.3).

Description de l'intergiciel

Description
hiérarchie

Description
fonctionnelle
(composants
de base)

A

e Outil de déploiement
Description (Algorithmes de PI:am (:!e
infrastructure planification) déploiement

Préférences de
I'utilisateur
(optionnelles)

Figure 3.3: Description de l'infrastructure comme entrée pour créer un déploiement initial

Le type d’infrastructure visé est un systeme distribué tel qu’une grille, une fédération
de clusters ou de Clouds. Notre but est de fournir un modele qui puisse représenter ces
différents types de systemes ou l'intergiciel peut étre déployé, avec un accent sur une
fédération de sites hébergeant des clusters (Figure 3.4) comme le cas de Grid’5000!.

La Figure 3.5 représente le diagramme des classes modélisant une infrastructure. Il se

compose de plusieurs éléments :
Plateform : cet élément représente la plate-forme (infrastructure). La plate-forme est
composée d'un ensemble de ressources et de liens. Elle a un nom et une propriété “vari-
ation” (“dynamicity”), définie par les administrateurs de la plate-forme et dont le but
est de capturer a quel point les parametres considérés de la plate-forme sont variables
(peu fréquente, fréquente, tres fréquente). Cette valeur peut étre calculée (ou estimée)
en prenant en compte la “variation” de chaque ressource composant la plate-forme ou
en analysant I'historique de la plate-forme (combien de fois une machine est tombée
en panne dans un intervalle de temps donné par exemple). Dans le cas des stratégies
auto-adaptatives de redéploiement, il est utile de pouvoir quantifier les variations de la
plate-forme. En effet, certaines stratégies de redéploiement peuvent étre efficaces avec
une plate-forme tres dynamique et ’étre moins avec une plate-forme peu dynamique.

"https://www.grid5000.fr/

35

https://www.grid5000.fr/

3.3. Contribution pour le déploiement initial

Figure 3.4: Exemple d’infrastructure

Ressource : les ressources peuvent étre de différents types : Cluster, Noeud de
Calcul (Node) et Site. Une ressource a un identifiant et dispose de zéro ou plusieurs
localisations (élément Location). Chaque localisation est une pair (clef, valeur) qui
spécifie un groupe auquel appartient la ressource. Chaque pair capture la notation
d’appartenance/localisation d’'une ressource. Par exemple, une ressource appartient a
un site (site, nomSite), a un réseau local (reseaulocal, adresse IP) et a une ville (ville,
nomVille). Certaines localisations peuvent étre géographiques et d’autres liées au réseau.
La localisation et I'appartenance d’une ressources a des groupes sont nécessaires pour
certaines décisions de redéploiement, quand il est nécessaire de déplacer un composant ou
des données mais aussi pour des raisons de sécurité. Une ressource est aussi décrite par
un ensemble de liens (Link).

Link : cet élément décrit les liens de communications entre les ressources (nceud,
cluster, site). Il est rattachée a deux ressources (endpointl et endpoint2). L’attribut
linklevel spécifie la nature et le niveau dans la hiérarchie du lien. linklevel peut avoir
les valeurs suivantes : “intraCluster”, “intraSite”, “interSite”, “interCluster” et “interNode”.
Le lien est aussi composé d'un ensemble de Capacité comme la bande passante et la
latence.

Capacity : une capacité est décrite par un nom (CPU, diskSpace, numberOfCore,
etc.), une capacityUnit qui spécifie dans quelle unité la valeur de la capacité est exprimée,
une capacityFlavor qui définit si la valeur de la capacité est représenté comme une valeur
simple, un intervalle ou une liste et capacityValue qui contient la ou les valeurs.

Node : un noeud est défini comme un ensemble d’éléments Capacity. Il a un identi-
fiant qui est unique au sein du cluster auquel il appartient.

Cluster : un Cluster est un ensemble de nceuds dont un (appelé frontEnd) a une fonc-

36

3.3. Contribution pour le déploiement initial

Platform
*
+name: String o
+dynamicity: Integer
1..%
Location
+locationGroupName: Enum
+locationGroupValue: String
<<abstract>>
* Resource source p
+resourceld: resourceldType destination p
* -
Link
+linkLevel: Enum
r +endPointl: Resource
1. * +endPoint2: Resource
. - Cluster
Site «|PpelongTo A~
* |+frontEndId: String
1..%
Capacity
+capacityName: Enum
+capacityUnit: Enum

+capacityFlavor: Enum

Node <
+capacityType: String

+nodelId: String +capacityValue: anyType

Figure 3.5: Modele d’infrastructure

tion spéciale. Un cluster virtuel tournant dans un Cloud est représenté comme un cluster
avec un ensemble de machines virtuelles (décrites comme des noeuds) et un ensemble de
liens de communications. Si un cluster appartient a un ou plusieurs sites, un ou plusieurs
éléments Location sont utilisés.

3.3.2 Description de l’intergiciel

Nous avons séparé la description de l'intergiciel en deux parties complémentaires : la
description fonctionnelle qui capture les caractéristiques de I'intergiciel (les composants de
base) qui sont fixées durant la phase de développement et la description d’une hiérarchie
DIET qui capture les relations et les exigences entre les instances des composants de
base. Certaines de ces relations et exigences sont fixes et d’autres peuvent varier d'un
déploiement a un autre.

Description fonctionnelle de I’intergiciel

La Figure 3.8 représente la description fonctionnelle d’un intergiciel comme DIET, con-
stitué d’un ensemble fini de composants de base, dont les fonctions et les possibilités de
communication entre les instances de ces composants de base sont fixées a la conception.

37

3.3. Contribution pour le déploiement initial

Description de I'intergiciel

Description
hiérarchie

Description
fonctionnelle
(composants
de base)

v

L Outil de déploiement
Description (Algorithmes de PI§n de
infrastructure planification) déploiement

Préférences de
I'utilisateur
(optionnelles)

Figure 3.6: Description de 'intergiciel comme entrée pour créer un déploiement initial

Description de I'intergiciel

Description
hiérarchie

Description
fonctionnelle
(composants
de base)

A

. Outil de déploiement
Description (Algorithmes de Plan c!e
infrastructure planification) déploiement

Préférences de
I'utilisateur
(optionnelles)

Figure 3.7: Description fonctionnelle de l'intergiciel comme entrée pour créer un déploiement

initial

Cette description est composée de plusieurs éléments :

Middleware : il représente I'intergiciel et dispose d’attributs comme un nom et une
version. Il est constitué d’'un ensemble fini de composants de base. Ce sont des in-
stances des composants de base qui s’exécutent effectivement sur les machines physiques
ou virtuelles.

MiddBaseComponent : un composant de base de I'intergiciel contient un identifiant
et contient les sections suivantes :

e Softwarelnfo : cet élément décrit les informations logicielles du composant qui
sont fixées durant la conception comme les binaires;

e CommunicationInfo : décrit pour un composant de base, les autres composants
avec qui les instances peuvent communiquer et comment est faite cette communica-
tion. La communication est décrite comme un ensemble d’exigences. Une exigence
est exprimée comme une capacité (ce qu’elle exige doit faire partie des capacités
d’une ressource). Un attribut spécifie si cette exigence est stricte (doit forcément
étre satisfaite) ou non (politique de “best effort”);

38

3.3. Contribution pour le déploiement initial

SoftwareRequirement : il représente les exigences logicielles d’'un composant sur
une ressource sur laquelle il peut étre exécuté. Par exemple, un composant peut ex-
iger un systeme d’exploitation spécifique. Il est composé d’un ensemble de capacités
exigées;

HardwareRequirement : comme pour le SoftwareRequirement, cette section ex-
prime un ensemble de capacités exigées mais celles-ci sont matérielles. Par exemple,
le composant peut exiger un type particulier d’architecture processeur ou une quan-
tité minimum d’espace disque;

LocalityRequirement : cette section décrit les exigences liées a la localisation du
composant. Certains composant peuvent souhaiter partager la méme localisation
pour différentes raisons comme la rapidité des communications;

SecurityRequirement : cette section définit le niveau de sécurité qu’exige le com-
posant. Cette valeur (basse, moyenne, haute) est interprétée par l'algorithme de
déploiement. Elle est spécifique a chaque intergiciel.

Middleware

+middlName: String

+middlversion: String

N

1..%

MiddBaseComponent

+baseCompId: BaseCompIdType

1 <> 0..1
Softwarelnfo

SoftwareRequirement

Communicationinfo

HardwareRequirement

LocalityRequirement

SecurityRequirement

Figure 3.8: Modele de middleware

Description d’une hiérarchie

Nous cherchons a capturer a travers cette description une hiérarchie d’instances des com-
posants de base de l'intergiciel en exécution sur des ressources physiques. En d’autres

39

3.3. Contribution pour le déploiement initial

termes, on cherche a capturer la correspondance (mapping) entre les instances des com-
posants de 'intergiciel et les ressources physiques (Cluster, Noeud,...) sur lesquelles elles
sont en train de s’exécuter ou bien sur lesquelles elles pourraient étre instanciées plus tard.
Cette description peut capturer aussi une hiérarchie sans précision des ressources qui leur
sont affectées.

Description de I'intergiciel

Description
hiérarchie

Description
fonctionnelle
(composants
de base)

v

L Outil de déploiement
Description (Algorithmes de PI§n qe
infrastructure planification) déploiement

Préférences de
I'utilisateur
(optionnelles)

Figure 3.9: Description de la hiérarchie de I'intergiciel comme entrée optionnelle pour créer un
déploiement initial

Cette description est optionnelle comme entrée pour les algorithmes de planification
(dans ce cas, il y’aura uniquement la description fonctionnelle de l'intergiciel). Cette de-
scription peut étre utilisée de plusieurs manieres. En effet, un utilisateur peut fixer sa
propre hiérarchie qu’il veut déployer en précisant les ressources sur lesquelles les instances
seront déployées ou en ne les précisant pas. Dans le cas ou les ressources matérielles sont
précisées (cela suppose que l'utilisateur a une connaissance approfondie de son infrastruc-
ture physique), I'outil de déploiement ne cherchera pas un plan de déploiement (avec des
algorithmes de planification), mais utilisera ses fonctionnalités et outils (de transfert de
fichiers, de configuration,...) pour transformer la hiérarchie en déploiement en exécution
(instancier les composants sur des ressources matérielles) telle que c’est décrit. Lorsqu’on
connait la hiérarchie a déployer et aussi les ressources sur lesquelles les instances seront
déployées, le déploiement peut étre fait de maniere manuelle aussi, puisqu’on dispose de
toutes les informations nécessaires; méme si la maniere automatisée est préférable (moins
d’erreur dans l'exécution des commandes). Dans le cas ou les ressources matérielles ne
sont pas précisées, I'outil de déploiement (ses algorithmes de planification) devra trouver,
si possible, les ressources permettant de déployer la hiérarchie décrite et ensuite réaliser
le déploiement effectif (ses outils de transferts de fichiers, de configuration,...)

Cette description peut aussi servir a décrire un plan de déploiement (hiérarchie avec
précision des ressources matérielles sur lesquelles les instances seront déployées). Cepen-
dant, tous les outils de déploiement n’utilisent pas le méme formalisme/description pour
les plans de déploiement; ce qui fait que la description proposée ici est assez spécifique a
I'environnement de DIET.

La Figure 3.10 représente le modele d’une hiérarchie de DIET. Il est décrit par les
éléments suivants :

Hierarchy : la hiérarchie est un ensemble d’instances (DeployedInstance) de com-
posants de base et de leurs liens de communication. Chaque instance contient les in-

40

3.3. Contribution pour le déploiement initial

formations et exigences nécessaires pour l'algorithme de planification et pour 'outil de
déploiement.

DeployInstancelnfo : cet élément contient les informations relatives a 'instance. Il
contient un ensemble d’exigences présentées ci-dessous :

e LocalityRequirement : il spécifie qu'une instance doit appartenir a une localisa-
tion (réseau ou géographique). Cette exigence peut étre stricte ou flexible;

e ColocationRequirement : il spécifie si I'instance doit avoir la méme localisation
que d’autres instances (par exemple méme site, méme cluster, méme Noeud, méme
réseau local, ...);

e SecurityRequirement : cet élément est utilisé pour spécifier I’exigence de sécurité
de I'instance du composant;

e LinkRequirement : chaque instance déployée a un ensemble d’éléments LinkTo
qui spécifient les exigences de communication. L’élément LinkTo décrit les connex-
ions entre deux instances. Dans le cas d’un intergiciel hiérarchique, une instance
est au moins connecté a une autre. Cet élément peut aussi contenir un ensemble
d’exigences sur le lien de communication qui guidera ’algorithme de planification.

Hierarchy

Deployedinstance

+instanceld: String
+instanceBaseCompId: Ref BaseCompIdType

1

Deployedinstancelnfo <>—

1

LocalityRequirement

LinkRequirement ColocationRequirement

A

SecurityRequirement

LinkTo

Figure 3.10: Modele de déploiement

41

3.4. Conclusion

3.4 Conclusion

Notre objectif est de réaliser un déploiement auto-adaptatif d’'un intergiciel. Pour cela, il
faut d’abord un déploiement initial de I'intergiciel. Une fois un déploiement initial obtenu,
les mécanismes d’auto-adaptation interviennent pour permettre au systeme déployé de
réagir aux événements.

Pour réaliser un déploiement initial de I'intergiciel, des algorithmes de planning utilisent
comme entrées, les descriptions de l'intergiciel a déployer, de l'infrastructure sur laque-
lle I'intergiciel sera déployé et éventuellement des parametres de 'utilisateur. Ces de-
scriptions peuvent aussi étre utilisées par les mécanismes d’auto-adaptation, en plus
d’informations issues de la surveillance du systeme déployé et de 'infrastructure, lorsqu’ils
définissent les stratégies d’adaptation.

Dans ce chapitre, nous avons présenté les descriptions que nous proposons pour l'intergiciel
et I'infrastructure, et qui peuvent servir comme information d’entrée a des algorithmes de
planning, en vue de produire un plan de déploiement initial.

42

CHAPITRE 4

Algorithmes

Sommaire
4.1 Résumé du chapitre 0 o000 43
4.2 Motivation i i e e e e e e e e e e e e e 43
4.3 Définitions et Notations 44
4.3.1 Modele d’un déploiement, 45
4.4 Algorithme auto-adaptatif 45
4.4.1 Spécification de I'algorithme 45
4.4.2 Preuve d’auto-stabilisation de 'algorithme 52
4.5 Conclusion ittt e e e e 55

4.1 Résumé du chapitre

Ce chapitre décrit un travail dont I'objectif est d’ajouter des capacités d’auto-adaptation a
un intergiciel existant; lesquelles capacités devront permettre au déploiement de 'intergiciel
de s’auto-adapter lorsque certains événements sont détectés. Le chapitre inclut la descrip-
tion d’un algorithme auto-adaptatif, de la preuve de son caractere auto-stabilisant.

4.2 Motivation

Les systemes distribués améliorent notre capacité de calcul et a échanger des informations.
Cependant, ils sont difficiles a concevoir, a controler, a maintenir car constitués d’une
variété de composants (logiciels et physiques) complexes qui sont susceptibles de tomber
en pannes ou de subir des variations de leur parametres.

Dans certains cas, comme celui des Clouds, ’élasticité du nombre de ressources est
une caractéristique majeure du systeme. L’acces aux ressources de ces systemes se fait
généralement a travers un intergiciel, et ce dernier doit d’abord étre déployé.

43

4.3. Définitions et Notations

Comme I'environnement évolue, que se passe t-il par exemple si une partie des proces-
sus qui constituent l'intergiciel cesse de fonctionner pour une raison quelconque ?

Si le déploiement est statique, alors le seul moyen de réagir aux événements dont les
effets peuvent dégrader la qualité du service fourni est de refaire tout le processus de
déploiement. Cette opération est cependant assez cotiteuse.

Une meilleure solution consisterait a faire de sorte que le déploiement puisse s’auto-
adapter et éviter autant que possible de reprendre tout le processus de déploiement.
Il s’agit donc de concevoir un systeme auto-adaptatif [29, 31]. De tels systémes ont la
capacité de modifier en temps réel leurs comportements de maniere autonome (totalement
ou en partie) pour s’adapter aux variations de leurs environnements.

L’algorithme décrit dans ce chapitre a pour objectif, de permettre a un déploiement de
I'intergiciel DIET, de retrouver un état légitime ou stable dans un nombre fini d’étapes,
a chaque fois qu’un état instable est détecté.

4.3 Deéfinitions et Notations

Avant de décrire 'algorithme, nous allons fournir un ensemble de définitions qui clarifient
ce que signifie dans notre cas un nceud stable et un déploiement stable. Rappelons que
ces définitions sont liées a l'intergiciel DIET (cf. chapitre 1, section 1.1.1) qui nous sert
de cas d’utilisation.

Définition 11 (Nceud stable). Un neeud est stable si son état est légitime (correct). La
signification exacte de ce qui est jugé légitime ou pas dépend de la nature du probleme a
résoudre (du code qui est exécuté). Dans la suite du document, un état stable ou légitime
ou correct pour un neud correspond a la situation ou le neud exécute autre chose qu’une
des regles de [’algorithme; puisque l’exécution des actions associées a une regle a lieu a
la suite de la détection d’un événement qui rend le neeud instable, donc le déploiement.

Définition 12 (Déploiement stable). Un déploiement est une hiérarchie de neeuds inter-
connectés qui a une structure arborescente.

Un déploiement (ou état) stable de lintergiciel est un déploiement efficace qui a les
caractéristiques suivantes :

e il respecte les regles de hiérarchie des composants de l'intergiciel. Ces régles de
hiérarchie imposent qu’un MA peut étre le pére d’'un MA, d’un LA, d’un SED; q’un
LA peut étre le pére d’un LA, d’un SED; qu’un SED ne peut avoir de fils (c’est une
feuille dans la structure arborescente de la hiérarchie); qu’un Client se connecte a
un MA ou SED;

e tous les éléments sont connectés entre euz (le déploiement a une structure de graphe
et il y’a une seule composante connexe, pour un déploiement efficace);

e il n’y a pas de chaine d’agents (pour des raisons d’efficacité);

e aucun agent n'est en surcharge (pour des raisons d’efficacité également). La sur-

charge est mesurée par rapport au nombre d’enfants de l’agent concerné (un seuil
est fizé).

Lorsqu’un déploiement satisfait a ces critéres, alors chacun de ses neeuds est stable et
[’état global du déploiement est aussi stable.

44

4.4. Algorithme auto-adaptatif

4.3.1 Modele d’un déploiement

L’intergiciel, une fois déployé, peut étre modélisé par un graphe non orienté G = (V, F)
ou V désigne I’ensemble des processus et E ’ensemble des liens entre processus. Une aréte
(u,v) € E si et seulement si il existe un lien entre u et v. Dans ce modele, I'existence d'un
lien entre deux processus signifie que les deux processus sont voisins. Ce lien implique
aussi que, si I'un des deux processus se termine (terminaison normale ou anormale), autre
processus détectera cet événement. Les processus communiquent uniquement par échange
de messages. Un processus peut envoyer un message a un autre s’il connait son adresse.
Chaque processus a un identifiant unique et conserve une liste des adresses de ses voisins
qu’il met a jour en fonction des messages recus et des tests effectués.

Les processus sont indépendants dans I'exécution des actions des lors que les gardes
sont vraies (démon synchrone). Autrement dit, ’exécution des actions au niveau d’un
processus ne dépend pas d’un autre processus. Les regles sont définies pour chaque type
de composant. L’algorithme n’est pas uniforme car tous les processus n’exécutent pas le
méme code.

4.4 Algorithme auto-adaptatif

Une fois qu’un intergiciel est déployé, des événements susceptibles de modifier les criteres
attendus peuvent survenir. Ces événements peuvent provenir de l'intergiciel lui méme
(arrét d’'un processus) ou de l'infrastructure sur laquelle U'intergiciel est déployé (panne
d’une ressource physique, probleme de réseau).

L’objectif de cet algorithme est de permettre a un intergiciel déployé de pouvoir s’auto-
adapter lorsque certains événements sont détectés. Ce processus d’adaptation se fait par
exécution de regles incorporées dans les composants. C’est cet ensemble de regles qui
constituent ’algorithme.

Le type d’événements susceptibles de modifier le fonctionnement de l'intergiciel cou-
vre un large spectre. Nous avons donc considéré uniquement un ensemble restreint
d’événements auxquels les composants qui constituent 'intergiciel devront réagir. Ces
événements sont essentiellement liés a l'intergiciel et correspondent a des situations dans
lesquelles le déploiement n’est pas stable (Définition 12). Pour chaque type de composant
de DIET, les événements gérés correspondent a la partie condition des regles qui sont
définies pour ce composant.

Intuitivement, cet algorithme a pour objectif de maintenir un déploiement “toujours
vivant” et stable.

4.4.1 Spécification de P’algorithme

L’algorithme est constitué des regles suivantes, regroupées en fonction du type de com-
posant. Toutes les instances d’'un composant exécutent le méme programme (les regles
définies pour ce type de composant). Chaque regle est constituée d’une partie condition
qui exprime la détection d'un événement, et d’une partie action correspondant aux in-
structions d’auto-adaptation a exécuter lorsque I'événement est détecté. Dans certains
cas, une instance a besoin, en plus de son état interne (ses variables locales) d'une infor-
mation externe. Nous supposons donc 'existence d’un oracle capable de fournir ce type
d’information et qui joue le role d'un service de découverte de ressources. On suppose

45

4.4. Algorithme auto-adaptatif

donc que la fonction découverte de ressources est assuré par un autre systeme extérieur a
I’algorithme mais que ce dernier peut interroger.

Regles définies pour les instances de type Client

3 regles sont définies pour le composant client :

La regle R1 définit comment un client réagit lorsqu’il détecte la perte d’'une connexion
avec un MA et que le client a 'information qu’il existe au moins un autre MA dans le
déploiement. Dans ce cas, le client se connecte a un autre MA, sélectionné de maniere
aléatoire, parmi ceux dont il a connaissance.

Client regle 1: R1
1 if Client N (M A_lost == Vrai) N (#MA > 0) then

2 ‘ sélectionner un MA et se connecter;
3 end

La regle R2 définit comment un client réagit lorsqu’il détecte la perte d’'une connexion
avec un MA et que le client a I'information qu’il n’existe plus de MA dans le déploiement.
Dans ce cas, le client crée un fils MA.

Client regle 2: R2

1 if Client N (M A_lost == Vrai) N (#MA == 0) then
2 ‘ créer un fils MA ;
3 end

La regle R3 définit comment un client réagit lorsqu’il détecte la perte d’une connexion
avec un SED. Dans ce cas, il soumet sa requéte de nouveau.

Client regle 3: R3

1 if Client N (SeD_lost == Vrai) then
2 ‘ soumettre de nouveau la requéte ;
3 end

Regles définies pour les instances de type MA

5 regles sont définies pour le MA

La regle R4 définit comment réagit un MA lorsqu’il détecte qu’il n’a pas de fils et
qu’il a I'information qu’il existe au moins un autre MA que lui méme dans le déploiement.
Dans ce cas, il se suicide.

46

4.4. Algorithme auto-adaptatif

MA regle 4: R4

1 if MA N (#MA_children ==0) A (#MA > 1) then
2 ‘ H#MA=+#MA— 1,
3 end

MA regle 5: R5

1 if MA N (#MA_children ==0) A (#MA == 1) then
2 ‘ créer un fils de type SED;
3 end

La regle R5 définit comment réagit un MA lorsqu’il détecte qu’il n’a pas de fils et qu’il
a I'information qu’il est 'unique MA du déploiement. Dans ce cas, il crée un fils de type
SED.

La regle R6 définit comment réagit un MA réagit lorsqu’il détecte qu’il a un fils
unique de type MA ou LA (une chaine d’agents). Dans ce cas, il exécute la fonction
Fusionner(M A, M A_child). La fonction Fusionner(x,y) (ligne 2, R6) connecte les fils
de y comme fils de = et supprime y.

MA regle 6: R6

1 if MA N (#MA_children ==1) N (MA_child_type == (M A Vv LA)) then
2 | Fusionner(MA, MA_child) ;
3 end

La figure 4.1 montre un exemple d’application de la regle MA R6.

regle MA R6
lal # sedl sed2 sed3

sedl sed?2 sed3

Figure 4.1: Exemple d’application de la regle MA R6 lorsque 'unique fils du MA est de type
LA. Cela aurait été pareil si 'unique fils était un MA. En rouge, I'instance instable qui a détecté
et exécuté la regle. En vert, les instances stables.

La regle R7 définit comment réagit un MA réagit lorsqu’il détecte qu’il est la racine
d’un sous arbre du déploiement (cela signifie qu’il n’a pas de peére de type MA méme si un
client peut étre connecté sur lui ou pas) et qu’il a I'information qu’il existe au moins un
autre sous-arbre qui a une racine de type MA et que les deux sous-arbres sont déconnectés.

47

4.4. Algorithme auto-adaptatif

Dans ce cas, le MA qui a détecté I’événement se connecte en tant que fils a 'un des MA,
racine d’'un des autres sous-arbres. Ainsi le nombre de sous-arbres sera réduit de un (1).

MA regle 7: R7

1 if MA N ({#pere /| TypeDuPeére = MA} ==

0) A ({#sous — arbre /| TypeRacine = M A} > 1) then
2 ‘ sélectionner une des racines de type MA comme pere;
3 end

La regle R8 définit comment réagit un MA lorsqu’il détecte qu’il est surchargé.

MA regle 8: R8

1 if MA N (MA_charge > M A_seuil_charge) then

2 Partitionner I’ensemble de ses fils en deux sous-ensembles A et B tels que : ;

3 | card(A) — card(B) | < 3;

4 créer un agent comme pere de tous les éléments pour chaque sous-ensemble ;

5 les racines (2 agents) des sous arbres nouvellement créés deviennent les fils du
MA ;

6 end

La surcharge est simulée en fixant un seuil pour le nombre de fils que peut avoir une
instance. On a surcharge lorsque le seuil est dépassé. Dans ce cas, le MA surchargé réduit
sa charge (donc le nombre de ses fils) en créant deux agents qui deviendront ses deux
seuls fils et en distribuant 'ancienne charge (ses anciens fils) entre ses deux nouveaux
fils. Ainsi, apres 'opération, ses anciens fils qui étaient a l'origine de la surcharge, se
retrouvent comme ses petits fils et le MA n’a plus que deux (nouveaux) fils. Dans les
détails, la réduction de la surcharge se fait de la maniere suivante : rappelons nous que
Le MA ne peut avoir que des fils des trois types suivants : MA, LA, SED. Soient F,,,,
Fia, Fsed, les trois ensembles qui désignent respectivement les fils du MA qui sont de type
MA, ceux de type LA et enfin ceux de type SED. Chacun de ses ensembles peut étre vide.

Chacun de ses ensembles est divisé en deux sous ensembles qui ont le méme cardinal
(si le cardinal de 'ensemble divisé est pair) ou bien dont la différence des cardinaux est
égal & un (1) (si le cardinal de I'ensemble divisé est impair) :

Fma = Flig U F2p,, avec | card(Fl,,,) — card(F2,,) | < 1.

Fia = Flig U F2), avec | card(F1y,) — card(F2,) | < 1.

Fseda = Flgeq U F24eq avec | card(Flgeq) — card(F2sq) | < 1.

Le MA partitionne 'ensemble de ses fils en deux ensembles A et B obtenus de la
maniere suivante :

A:FlmaUFllaUFlsed

B:FzmaUF2laUF236d

Ainsi les deux ensembles sont tels que : | card(A) — card(B) | < 3. Une fois ces
deux ensembles créés, le MA surchargé va procéder comme suit : Il crée un agent comme
pere de tous les éléments de I'ensemble A (ses anciens fils) et fait la méme chose pour les
éléments de B.

48

4.4. Algorithme auto-adaptatif

Les deux agents nouvellement créés deviennent les deux fils du MA et ses anciens fils
deviennent ses petit-fils. L agent nouvellement créé comme pére des éléments dans A est
de type LA s’il n’existe pas de MA dans A (un LA ne pouvant pas étre pere d'un MA),
et de type MA sinon. Cette derniere remarque est valable aussi pour le type de 'agent
créé pour les éléments dans B.

En fin de compte, si tout le processus s’est bien déroulé, le MA qui était surchargé se
retrouve avec uniquement deux fils. Ces deux fils (de type agent) peuvent étre surchargés
juste apres leur création, et dans ce cas, ils exécuteront la méme regle (si ce sont des MA)
sinon la regle correspondante pour un LA.

Regles définies pour les instances de type LA

Six (6) regles sont définies pour le LA. Les regles définies pour le LA sont presque les
mémes que celles définies pour le MA puisque tous les deux sont des agents et jouent
presque le méme role. Le LA a six (6) réegles au lieu de cinq comme pour le MA. Cette
regle supplémentaire, R13, gere le cas ou un LA détecte qu’il n’a pas de pere et qu’il
a 'information qu’il n’existe aucun MA dans le déploiement. Les autres regles du LA,
a savoir, R9, R10, R11, R12, R14 peuvent étre respectivement interprétées de la méme
maniere que les regles suivantes du MA, R4, R5, R6, R7, R8 en remplacant MA par LA
et agent (qui peut étre un MA ou un LA) par LA.

La regle R9 (similaire & MA R4) définit comment réagit un LA lorsqu’il détecte qu’il
n’a pas de fils et qu’il a 'information qu’il existe au moins un autre LA que lui méme
dans le déploiement. Dans ce cas, il se suicide.

LA regle 9: R9

1 if LA N (#LA_children ==0) A (#LA > 1) then
2 | #LA=H#LA—1;
3 end

La regle R10 (similaire & MA R5) définit comment réagit un LA lorsqu’il détecte qu’il
n’a pas de fils et qu’il a I'information qu’il est 'unique LA du déploiement. Dans ce cas,
il crée un fils de type SED.

LA regle 10: R10

1 if LA A (#LA_children ==0) A (#LA == 1) then
2 ‘ créer un fils de type SED;
3 end

La regle R11 (similaire & MA R6) définit comment réagit un LA lorsqu’il détecte
qu’il a un fils unique de type LA (une chaine de LA). Dans ce cas, il exécute la fonction
Fusionner(LA, LA_child). La fonction Fusionner(z,y) (ligne 2, R11) connecte les fils
de y comme fils de x et supprime y.

La regle R12 (similaire & MA R7) définit comment réagit un LA lorsqu’il détecte qu’il
est la racine d’un sous arbre du déploiement (ce qui signifie qu’il n’a pas de pére) et qu'il

49

4.4. Algorithme auto-adaptatif

LA regle 11: R11

1 if LA A (#LA_children ==1) A (LA_child_type == LA) then
2 | Fusionner(LA, LA_child) ;
3 end

a linformation qu’il existe au moins un autre sous-arbre qui a une racine de type MA
ou LA et que les deux sous-arbres sont déconnectés. Dans ce cas, le LA qui a détecté
I'événement se connecte en tant que fils & I'un des agents (MA ou LA), racine d'un des
autres sous-arbres. Ainsi le nombre de sous-arbres sera réduit de un (1).

LA regle 12: R12

1 if LA N (#pere ==0) A (#{sous — arbre : TypeRacine = (LA vV MA)} > 1)
then

2 ‘ sélectionner une des racines (de type MA ou LA) comme peére;

3 end

La regle R13 définit comment réagit un LA lorsqu’il détecte qu’il n’a pas de pere et
qu’il a 'information qu’il est I'unique agent dans le déploiement. Dans ce cas, il crée un
MA comme pere.

Cette regle est spécifique au LA, car la méme situation pour un MA est normale et
signifie juste qu’il n y a pas de client connecté. En d’autres termes, un MA peut ne pas
avoir de pere car pouvant étre la racine d’une hiérarchie stable alors qu'un LA doit avoir
un pere car il ne peut étre la racine d’une hiérarchie stable.

LA regle 13: R13

1 if
LA N (#pere ==0) A (#{sous — arbre : TypeRacine = (LA VvV MA)} ==1)
then

2 ‘ créer un MA comme pere ;

3 end

La regle R14 (similaire & MA R8) définit comment réagit un LA lorsqu’il détecte qu’il
est surchargé. La surcharge est simulée en fixant un seuil pour le nombre de fils que
peut avoir une instance. On a surcharge lorsque le seuil est dépassé. Dans ce cas, le LA
surchargé réduit le nombre de ses fils de la maniere décrite au niveau de la regle MA R8 en
prenant en compte le fait qu'un LA ne peut avoir que des fils de deux types : LA et SED,
contrairement au MA qui peut en avoir de trois types. En plus, les agents nouvellement
créés sont tous de type LA alors que pour le MA ils pouvaient étre de type LA ou MA.

En fin de compte, si le processus s’est bien déroulé, le LA qui était surchargé se retrouve
avec deux fils de type LA et ses anciens fils deviennent ses petits-fils.

50

4.4. Algorithme auto-adaptatif

LA regle 14: R14

1 if LA A (LA_seuil > LA seuil_charge) then

2 Partitionner I’ensemble de ses fils en deux sous-ensembles A et B tels que : ;

3 | card(A) — card(B) | < 3;

4 créer un LA comme pere de tous les éléments pour chaque sous-ensemble ;

5 les racines (2 LA) des sous arbres nouvellement créés deviennent les fils du LA ;
6 end

Regles définies pour les instances de type SeD

Trois regles sont définies pour le SED:

La regle R15 illustre la réaction d’'un SED qui n’est pas en train d’exécuter une tache
(job), qui n’a pas de pere et qui a I'information qu’il n’ y a pas d’agent dans le déploiement.
Dans ce cas, il crée un MA comme pere.

SeD regle 15: R15

1 if SED A (#pere ==0) A (exécute tache == Faux) N (#{MA, LA} ==0)
then

2 ‘ créer un MA comme pere ;

3 end

La regle R16 illustre la réaction d’'un SED qui n’est pas en train d’exécuter une tache
(job), qui n’a pas de pere et qui a l'information qu’il existe au moins un agent dans le
déploiement. Dans ce cas, il sélectionne un des agents comme pere.

SeD regle 16: R16

1 if SED A (#pere ==0) A (exécute tache == Faux) N (#{MA, LA} >0)
then

2 ‘ sélectionner un des agents (MA ou LA) comme pere ;

3 end

La regle R17 illustre la réaction d'un SED qui est en train d’exécuter une tache et qui
n’a pas de pere. Dans ce cas, il continue I’exécution pendant au maximum un temps fini
T, fixé par 'utilisateur. T peut représenter le temps estimé pour exécuter une tache.

Résumé des effets des regles

Les effets de chacune des regles sont résumés dans le Tableau 4.1.

51

4.4. Algorithme auto-adaptatif

SeD regle 17: R17
1 if SED A (#pere ==0) A (exécute tache == Vrai) then
2 continuer I'exécution pour un temps maximum de T unités de temps ;
3 apres quoi, I'exécution de la tache courante est supposée étre terminée ;
/* T est un paramétre définit par 1l’utilisateur. x/
/* L’exécution d’une tdche est supposée &tre finie au maximum dans
un temps T. Il n’y a donc pas de calcul infini */
4 end

Tableau 4.1: Effets des regles

Elément | Id regle | Effet de la régle
Client R1 #sous-arbre - 1

R2 #MA + 1

R3 re-soumettre requéte
MA R4 #MA -1

R5 #SED + 1

R6 #Agent - 1

R7 #sous-arbre - 1

RS #Agent + 2
LA R9 #LA -1

R10 #SED + 1

R11 #LA - 1

R12 #sous-arbre - 1

R13 #MA + 1

R14 #LA 4+ 2
SED R15 #MA + 1

R16 #sous-arbre - 1

R17 exécution pendant T unités de temps au maximum

4.4.2 Preuve d’auto-stabilisation de I’algorithme

Le modele de Pannes

Un systeéme auto-stabilisant doit tolérer les pannes transitoires (des processus et des liens).
Une panne transitoire peut corrompre les données en mémoire des processus (variables,
pointeur de programme), les canaux de communication, mais sans corrompre le code qui
est exécuté. Les pannes considérées sont celles qui peuvent induire une modification de
la topologie du réseau (nouveaux nceuds qui rejoignent le réseau ou bien disparition de
neeuds), une corruption des variables des processus (par exemple la liste des voisins).
Pour rendre le réseau instable, nous n’allons ajouter que des nceuds isolés, c’est a dire
sans voisin. Or ce type de nceud est toujours instable et rend le réseau instable car le
graphe correspondant au réseau obtenu n’est plus connexe. Or, la connexité du graphe est
une condition nécessaire pour que le déploiement soit stable (voir définition 12). Ainsi
le nceud isolé cherchera a se stabiliser par I'exécution des regles (qui dépendent de son
type). La disparition provoquée d’un ou plusieurs nceuds peut aussi rendre le réseau
instable avec une différence par rapport a I'ajout de nceuds isolés : la disparition d’un ou

52

4.4. Algorithme auto-adaptatif

plusieurs noeuds ne menent pas forcément a un réseau instable, tout dépend de leur type,
de leur position dans la hiérarchie, etc.

Chaque processus teste régulierement ses liens avec ses voisins. Lorsque le test échoue,
cela est aussi considéré comme une modification de la topologie (disparition d’une aréte
du graphe modélisant un déploiement). Dans ce cas, le processus met a jour ses variables
internes en supprimant de la liste de ses voisins I'identifiant du processus avec qui le test
a échoué.

L’ajout des nouveaux noeuds (processus) isolés, la suppression de nceuds existants,
et le test des liens avec ses voisins constituent les différentes actions qui modifient la
topologie d'un déploiement, et ces actions peuvent rendre actives toutes les regles qui ont
été définies.

Nous considérons qu’'une panne est constituée d’une opération unique (par exemple le
fait de tuer une instance en un seule opération) ou de plusieurs opérations uniques (par
exemple tuer 100 instances en répétant 100 fois I'opération tuer une instance).

Nous considérons qu’il n’y a plus d’événements externes apres 1’exécution de la derniere
opération de la panne (qui est considérée comme un événement externe). En d’autres
termes, apres I'exécution de la derniere opération de la panne, les seuls événements qui
ont cours sont ceux prévus par le programme exécuté par les instances, notamment les
regles d’auto-adaptation. Si un déploiement est perturbé avec une fréquence qui ne laisse
pas a l'algorithme auto-adaptatif le temps de s’exécuter, le systeme sera constamment
instable et la convergence de I’algorithme ne pourra pas étre vérifiée.

Propriétés d’auto-stabilisation

Considérant 'algorithme distribué, spécifié sous la formes des regles définies a la Sec-
tion 4.4.1, nous allons fournir une esquisse de preuve (sketch of proof), montrant que
I'algorithme est auto-stabilisant (Définition 8); ce qui signifie dans ce contexte qu'un dé-
ploiement de DIET, dont les instances exécutent les regles définies précédemment, soumis
a des pannes transitoires, retrouvera un état stable apres un temps fini.

Pour cela, nous allons montrer les deux propriétés de convergence (Définition 9) et
de cléture (Définition 10) de I'algorithme.
Preuve d’auto-stabilisation

Preuve de la propriété de convergence

Pour prouver qu'un déploiement sujet a des pannes transitoires va retrouver un état
stable dans un temps fini, il suffit de prouver les propriétés suivantes :

e P; : le nombre de sous-arbres diminue;

e P, : la création de nouvelles instances se termine;
e P : la suppression d’instances se termine;

e P, : 'exécution d’une tache se termine.

preuve de P; :

e on peut constater qu’aucune des regles (cf. Tableau 4.1) n’a pour effet d’augmenter
le nombre de sous-arbres;

53

4.4. Algorithme auto-adaptatif

54

au méme moment, les regles suivantes ont pour effet de diminuer le nombre de

sous-arbres : Client R1, MA R7, LA R12, SED R16;

ainsi, le nombre de sous-arbres est constant (dans ce cas il est égal a 1) ou diminue.
.

preuve de P; :

I'exécution de chacune de ces regles conduit a la création d’'une ou de deux instances
: Client R2, MA [R5, R8|, LA [R10, R13, R14] et SED R15;

aucune de ces regles ne peut créer un sous-arbre déconnecté de celui qui contient
I'instance exécutant la regle; elles peuvent juste ajouter une ou deux instances a un
sous arbre existant;

lorsqu’un agent (MA ou LA) n’a pas de fils, il crée un fils de type SED. De ce fait,
une fois que MA R5 ou LA R10 est exécutée, la situation qui nécessite son exécution
disparait. L’exécution de ces regles ne créent pas de chaine d’agents/ LA ni d’agents
sans fils;

lorsqu’'un client perd la connexion avec un MA, il crée un MA en exécutant la regle
Client R2 une fois. Le MA créé par cette regle va exécuter la regle MA R5 une fois;

lorsqu’un agent est surchargé, il crée deux nouveaux agents en exécutant une fois
soit la regle MA R8 (si ¢’est un MA), soit la regle LA R14 (si ¢’est un LA). Chacun
des agents nouvellement créés a un pere et au moins un fils. Par conséquent, si un
agent nouvellement créé (par une des regles ci-dessus) n’est pas surchargé, il ne va
exécuter aucune regle qui a pour effet une création d’instance. Si par contre un
agent nouvellement créé est surchargé, il va exécuter lui aussi les regles ci-dessus et
ne sera plus surchargé. Ainsi, de maniere générale, apres un nombre fini d’étapes,
on aura des agents nouvellement créés par une des regles MA R8 ou LA R14 qui ne
seront pas surchargés;

lorsqu’un SED est isolé et qu’il n’y a pas d’agent dans le déploiement, il exécute la
regle SED R15. Apres cette opération, #{Agent} > 1 et cette regle ne s’exécutera
plus parce qu’il y a au moins un agent;

On peut donc dire que la création de nouvelles instances se termine car a chaque fois,
I’exécution d’une regle qui a pour effet une création d’instances élimine la situation
qui avait nécessité cette exécution. [l

preuve de Pj :

I’exécution de chacune des regles suivantes a pour effet la suppression d’une instance
: MA R4, MA R6, LA R9, LA R11, LA R12;

un agent sans fils est supprimé (MA R4, LA R9) sauf §'il est 'unique agent du
déploiement (MA R5, LA R10);

chaque agent créé par MA R8 ou LA R13 ou LA R14 a au moins un fils. Par
conséquent, pour chacun de ces agents, les regles MA R4 ou LA R9 ne seront pas
exécutées;

4.5. Conclusion

e un MA créé par Client R2 ne sera pas supprimé mais va exécuter MA Rb5;

e toute chaine d’agents est supprimé (MA R6, LA R11). Le nombre d’agents dans un
déploiement est fini, et donc la suppression des chaines se termine en un temps fini;

e ainsi, on peut dire que la suppression d’instances se termine. [
preuve de P; :

e laregle SED R17 montre que tout calcul par un SED se termine au bout d’un temps
fini. [

A partir de Py, Ps, P3, P4, nous pouvons dire qu'une configuration correcte sera atteint
par le déploiement quelque soit la configuration initiale. En effet, Py, Ps, P3 montrent qu’il
arrivera un moment ou le graphe qui modélise un déploiement sera constitué d’une seule
composante connexe (P;), qu’il n’y a plus de création de nouvelles instances (Ps), ni de
suppression d’instances (P3). Cela signifie que le nombre d’instances devient constant.
A partir de ce moment, les seules regles dont les gardes peuvent étre vraies sont celles
qui n’ont ni d’effet de création ni de suppression, a savoir les deux regles : Client R3 et
SED R17. Or, P, montre que 'exécution de SED R17 se termine au bout d'un temps
fini. Quant a la regle Client R3, elle est exécutée une fois et l'instance qui l'exécute
(re-soumettre une requéte & un MA) recevra une réponse positive (adresse d’'un SED) ou
négative (si aucun SED ne peut exécuter sa requéte).

Ainsi, au bout d’un temps fini, toutes les instances seront stables, le déploiement
aussi. En conclusion, on peut dire qu'un déploiement de l'intergiciel, sujet a des pannes
transitoires, retrouvera une configuration stable au bout d’un temps fini.

Preuve de la propriété de cléture

Pour rappel, la propriété de cloture dispose qu'un déploiement stable reste stable en
I’absence de fautes transitoires.

Dans notre cas, un déploiement est stable lorsque toutes les instances sont stables.
Une instance est stable lorsqu’il n’est pas en train d’exécuter une regle. Lorsqu’une
instance est stable (ses voisins aussi sont stables), les seuls événements qui peuvent le
rendre instable sont les fautes transitoires comme la perte d’un voisin (ce qui n’arrivera
pas puisque les voisins sont stables), I'ajout de nouvelles instances (ce qui n’arrivera pas
car lorsque le déploiement est stable, le nombre d’instances est constant et il n'y a pas
de nouvelles créations), la perte de connexion avec un voisin, etc. Donc, en 'absence de
fautes transitoires, une instance stable reste stable, et par conséquent le déploiement reste
stable. [

4.5 Conclusion

Dans ce chapitre, nous avons présenté un algorithme dont 'objectif est de rendre le dé-
ploiement d’un intergiciel auto-adaptatif. Nous avons prouvé que l'algorithme proposé
est auto-stabilisant. Ainsi, a partir d'un déploiement initial arbitraire, un déploiement
stable sera atteint au bout d’un temps fini. Nous n’avons cependant pas une idée claire
du temps de stabilisation. Pour cela, nous allons effectuer des simulations pour faire une
évaluation expérimentale du comportement de ’algorithme. Ces résultats sont présentés
dans le Chapitre 5.

55

CHAPITRE 5

Simulations

Sommaire
5.1 Résumé duchapitre 0. 58
5.2 Imtroduction e 58
5.3 Simulateur 00 i L e e 58
5.4 Fonctionnalités du simulateur 59
5.4.1 Créer un déploiement 59
5.4.2 Créer un événement de simulation 61
5.4.3 Afficher ’état global d’un déploiement 61
5.5 Description du simulateur, 61
5.5.1 Représentation des composants de l'intergiciel 62
5.5.2 Gestion des états dun AEF 64
5.5.3 Définition d’un déploiement stable pour le simulateur 65
5.5.4 Détection d’un déploiement stable 67
5.6 Configuration matérielle et logicielle 70
5.7 Simulations et résultats 00000, 70
5.7.1 Effet d’un changement de topologie par ajout de nouvelles in-
stances oL L oL L L 71
5.7.2 Effet du changement de topologie par suppression d’instances . 71
5.7.3 Effet du changement de topologie par alternance d’ajout et de
suppression d’instances L. 76
58 Conclusiont e e e e e 78

o7

5.1. Résumé du chapitre

5.1 Résumé du chapitre

Dans ce chapitre, nous décrivons le simulateur con¢u pour faire une évaluation de cer-
taines propriétés de I'algorithme décrit dans le chapitre précédent (comme le temps de
stabilisation). Il inclut aussi les simulations réalisées et les résultats des simulations.

5.2 Introduction

Nous avons décidé de simuler I'algorithme proposé afin d’avoir une appréciation de son
comportement. Les simulations d’un algorithme ne permettent pas de prouver son car-
actere auto-stabilisant (preuve apportée au Chapitre 4) puisqu’'on a pas ici une borne
supérieure pour le temps de stabilisation (la définition garantit I’atteinte d’un état global
correct dans un temps fini, mais ne précise pas en combien d’étapes). Cependant les sim-
ulations pourront révéler des cas de convergence. L’objectif des simulations est d’étudier
de maniere expérimentale certains aspects de 1’algorithme.

On n’a pas aussi des topologies régulieres (la topologie d’un déploiement est un graphe
dans le cadre général et un arbre dans des cas particulier, voire une chaine). Avec des
topologies régulieres, on pourrait chercher des bornes supérieures (complexité temporelle)
pour le temps de stabilisation.

Pour ce faire, nous avons congu un simulateur Ad hoc permettant de simuler 1’algorithme
décrit dans le Chapitre 4. Nous voulons tester la convergence quand le réseau est a nou-
veau stable. Nous supposons donc que dans tous les cas, le réseau sous-jacent est con-
necté et pas partitionné parce que comme l'algorithme est basé sur une communication
entre les processus, si une déconnexion du réseau rend cette communication impossible,
I’algorithme que nous voulons évaluer ne pourra pas s’exécuter correctement.

Nous décrivons dans la suite de ce chapitre I'implémentation du simulateur, les simu-
lations réalisées et leurs résultats.

5.3 Simulateur

Le simulateur a été concu pour nous permettre de valider 'aspect auto-adaptatif de
I'algorithme. Il a été programmé avec le langage Erlang [21, 145].

Dans un systeme programmé avec Erlang, le “travail” est réalisé par les processus.
Le processus est I'élément de base, qui exécute les taches et qui utilise des fonctions
regroupées dans des modules. Les processus communiquent entre eux par échange de
messages. L’échange de messages peut se faire de maniere synchrone ou asynchrone. Un
processus recoit les messages qui lui sont envoyés (on suppose que le réseau fonctionne
correctement). Un processus peut fixer les types de messages qu'il est prét a recevoir et
les actions a exécuter lorsque ce type de message est regu. Les messages sont rangés dans
une file et consommeés les uns apres les autres (selon leur ordre d’arrivée ou bien selon des
priorités).

Un processus peut superviser 'existence (I'état vivant) d’autres processus en établis-
sant un lien avec eux (ce lien est symétrique). Lorsqu’un processus se termine, il envoie un
signal FXIT a tous les processus avec qui il existe un lien. Le comportement par défaut
d’un processus qui regoit le signal EXIT est de se terminer lui aussi en propageant le
signal aux processus avec lesquels il est lié. Un processus peut changer ce comportement

58

5.4. Fonctionnalités du simulateur

par défaut. Dans ce cas, la réception du signal est traité de la méme maniere que les
autres types de messages, afin de prévoir les actions a exécuter lorsqu’on le regoit.

5.4 Fonctionnalités du simulateur

Le simulateur peut réaliser plusieurs actions. Les plus importantes, et celles que nous
avons utilisées le plus sont les suivantes : créer un déploiement (prédéfini ou aléatoire),
créer un événement de simulation pour rendre instable un déploiement stable ou afficher
I'état global du déploiement (stable ou instable).

5.4.1 Créer un déploiement

On peut créer un déploiement prédéfini ou un déploiement aléatoire.

Déploiement prédéfini

Pour créer un déploiement prédéfini, il faut décrire la hiérarchie souhaitée dans un fichier.
La hiérarchie est décrite comme une liste (représentée par une paire de crochets |[...])
d’éléments de la forme :

[{{type,id,11 12,13 ,14 /15,16 },init |adapt},

{{ } ,init|adapt},
{{. } ,init|adapt},
(1. ...}, init|adapt}

Listing 5.1: Description d’un déploiement prédéfini

La structure {{type,id,(1,12,13,14,15,16}, init|adapt} décrit chaque élément de cette
liste. Les données qu’elle contient ont les significations suivantes :

e type : le type du composant de base a savoir Client ou MA ou LA ou SED;

e id : identifiant pour distinguer des éléments de méme type. Cette information est
utilisée surtout, avec d’autres éléments, lors de la création du processus, pour créer
des identifiants uniques et globaux (avec une fonction de hachage) pour les processus
crées;

e 11,12, 13 : 11 (successivement 12 et 13) désigne la liste contenant 1’ancétre de type
Client (successivement de type MA et de type LA). Nous rappelons qu'un élément
de DIET ne peut avoir un type d’ancétre différent de ces trois possibilités. Toutes
ces listes peuvent étre vides, dans le cadre d'un élément a qui on a pas fixé un
ancétre, ou bien pour un élément de type Client. Cependant, lorsqu’elles ne sont
pas toutes vides, une seule d’entre elles contient des valeurs, les deux autres étant
vides car un élément de la hiérarchie ne peut avoir qu’'un ancétre;

59

5.4. Fonctionnalités du simulateur

e 14,15, 16 : 14 (successivement 15 et 16) désigne la liste contenant les fils de type
MA (successivement de type LA et de type SED). Nous rappelons qu'un élément
de DIET ne peut avoir un type de fils différent de ces trois possibilités. Toutes
ces listes peuvent étre vides, dans le cadre d’un élément qui n’a aucun fils, ou bien
pour un élément de type SED. Certains éléments peuvent avoir des fils de différents
types, et dans ce cas, chaque type de liste contient les informations correspondant
aux fils de méme type;

e init ou adapt : Le parametre init permet de distinguer les processus qui ont été
créés avant la création des événements de simulation (événements perturbateurs)
des processus créés pendant les phases d’auto-adaptation (apreés un événement per-
turbateur); pour ces derniers le parametre est adapt. Ces deux informations servent
a I'exploitation des données de la simulation.

Ce fichier sera lu et chaque élément sera transformé en processus (simulant une instance
du composant de base, s’exécutant sur une machine choisie de maniere aléatoire parmi les
machines du réseau) qui établira les liens avec ses voisins (ancétre et fils). Un exemple de
tel fichier pour définir un déploiement prédéfini est proposé dans le Listing 5.2.

{{ma,mal,[] ,[],[],[],[] . [{sed,sedl, nil} {sed,sed2, nil},
{sed ,sed3 ,nil },{sed ,sed4 ,nil} {sed,sed5,nil}]|},init},

{{sed ,sed1 (], [{ma,mal, nil }] (][] ,[] [}, init},

{{sed ,sed2 [] ,[{ma,mal, nil }][], [],[],[]},init},

{{sedsed3,[],[{ma,mal, nil }] [],[],[],[]},init},

{{sedsed4 ,[],[{ma,mal, nil }] [],[],[],[]},init},

{{sed ,sedb ,[] ,[{ma,mal, nil }] ,[],[].[],[]},init}

].

Listing 5.2: Exemple de description d’un déploiement prédéfini

Il s’agit ici de décrire une hiérarchie qui sera composée d’un élément racine (mal)
(cas particulier ou la hiérarchie est un arbre) de type MA, qui a cinq fils tous de type
SED (sed! a sed5). Le parametre nil sert a initialiser. Il précise qu’il faudra créer une
référence lors de la création du processus. Cette référence sera combinée avec le parametre
id pour créer un nom global pour chaque processus. Ces deux informations (id, référence)
permettront aussi, a tout processus qui les connait de pouvoir retrouver ’adresse du
processus correspondant pour lui envoyer un message.

L’élément mal (décrit lignes 2 et 3), qui n’a pas de pere ici (les listes pour ancétres
sont vides) est suivi des listes des fils (comme il n’a ni fils de type MA, ni fils de type LA,
les listes prévues pour ses éléments sont vides) de type SED (seule liste de fils non vide).

Pour chacun des SED, seul la liste prévue pour les ancétres de type MA contient leurs
ancétres (ici mal) et comme le SED ne peut avoir de fils, les listes pour fils sont vides.

Le déploiement créé a partir de ce fichier ressemblera a la structure de la Figure 5.1.
Les instances seront créées sur des machines choisies de maniere aléatoire parmi celles
constituant le réseau de nceuds Erlang (des machines virtuelles sur lesquelles s’exécutent
les processus).

60

5.5. Description du simulateur

N

sedl) sed2 sedd 'sed4) sedd

a

Figure 5.1: Un déploiement de 1 MA + 5 SEDs

Déploiement aléatoire

Pour un déploiement aléatoire, il suffit de lancer un nombre quelconque d’instances isolées
(de méme type ou de type différent), les laisser s’auto-adapter, et au bout d’un nombre
fini de transitions, on obtient un déploiement aléatoire stable.

5.4.2 Créer un événement de simulation

Le simulateur permet de générer des événements qui peuvent rendre un déploiement insta-
ble et activer I'exécution de 'algorithme auto-adaptatif. En d’autres termes, ces événe-
ments peuvent rendre vraies les gardes des regles composant ’algorithme et permettre
I'exécution des actions associées. Ces événements simulent des pannes transitoires. Les
principaux événements générés sont 1'ajout (création) d’un ensemble d’instances isolées
(de méme type ou de type différent) qui vont rejoindre un déploiement existant ou bien
tuer un certain nombre d’instances (en les choisissant de maniere aléatoire ou connaissant
leurs identifiants) existant dans un déploiement. L’action qui consiste a tuer un nombre
d’instances d'un déploiement existant se déroule de la facon suivante : a partir du dé-
ploiement de départ sur lequel on veut appliquer 1’événement de simulation, et connaissant
le nombre n d’instances qu’on veut tuer (n donné ou calculé si c’est un pourcentage), on
exécute n fois ’action suivante : choisir de maniere aléatoire une instance répondant aux
criteres (type d’instance par exemple) et lui envoyer un signal (message) pour qu’elle se
termine.

5.4.3 Afficher I’état global d’un déploiement

On peut afficher I'état global du déploiement de maniere périodique (la période peut
étre fixée par la personne qui conduit les simulations), c¢’est-a-dire si le déploiement est
stable ou instable, avec le nombre d’instances stables, le nombre d’instances instables et
le nombre total d’instances du déploiement. Cet affichage nous permet par la suite de
compter le nombre d'unité de temps (appelé aussi hop) que prend un déploiement pour
redevenir stable apres un événement de simulation.

5.5 Description du simulateur

Le simulateur se compose de trois parties principales :
Un serveur de déploiement

Cet élément centralisé a une vue globale du déploiement. C’est ’élément qui joue le
role d’oracle et qui répond aux requétes relatives a la découverte de ressources. En effet,

61

5.5. Description du simulateur

la découverte de ressources n’a pas été intégrée dans le simulateur. Elle est donc simulée
par cet élément.

Son état interne est représenté par une structure de donnée dynamique (graphe), qui
représente une image temps réel du déploiement. Chaque sommet du graphe représente
un processus simulant une instance de l'intergiciel. Chaque aréte représente un lien en-
tre un processus et un de ses voisins. Cette structure de donnée est mise a jour apres
chaque création d’une nouvelle instance, apres chaque création ou suppression d’un lien,
par chaque instance qui se termine. Ce serveur doit étre déployé avant toute création
d’instance.

Un serveur de détection de la stabilité du déploiement

Il sert a détecter I'état global d’un déploiement. En effet, pour les besoins des sim-
ulations, nous voulons pouvoir détecter si I'algorithme (qui doit permettre au systéme
perturbé de retrouver un état correct et qui se déclenche lorsque ’état du systeme est
instable) est en cours d’exécution ou s’il s’est terminé. Si l'algorithme (les regles) est
en cours d’exécution, cela signifie que le déploiement est instable. Si I'algorithme ne
“s’exécute plus”, c’est qu’aucune regle n’est active, et donc que le déploiement est sta-
ble. Le fait que l'algorithme d’auto-stabilisation ne soit pas en train de s’exécuter, ne
signifie pas qu’aucun autre algorithme n’est en train d’étre exécuté. Cela signifie, ici,
que le systeme est stable et qu’il est en train d’exécuter son algorithme de base, c’est a
dire, qu’il est en train de fournir les fonctionnalités attendues. Dans la simulation, nous
n’avons pas pris en compte ce que fait le systeme une fois qu’il est stable. Son algorithme
n’a pas été programmé, les processus se contentent lorsqu’ils sont stables, de tester de
maniere périodique leurs états et leurs liens avec leurs voisins. Ce qui a été programmé,
c’est I'algorithme qui permet au systeme de retrouver un état stable une fois qu’il a été
perturbé.

Ce serveur nous sert donc a traiter les informations relatives a 1’état global du dé-
ploiement et a afficher ses informations. Son état interne est constitué de deux variables
entieres positives ou nulles. Une des variables contient le nombre d’instances stables,
I’autre le nombre d’instances instables. La somme des deux représente le nombre to-
tal d’instances d'un déploiement. La maniere dont ces variables sont mises a jour est
décrite a la Section 5.5.4. C’est une version centralisée de détection de la terminaison
d’un algorithme [61, 62, 67, 68]. Ce serveur doit aussi étre déployé avant toute création
d’instance.

Un déploiement

Un déploiement est une hiérarchie d’instances qui a une structure de graphe. Chaque
instance se comporte comme un automate a états finis. Les instances ne peuvent commu-
niquer entre elles que par passage de messages.

5.5.1 Représentation des composants de ’intergiciel

Comme décrit dans la Section 1.1.1, 'intergiciel DIET est composé de quatre types de
composant de base, dont les instances constituent un déploiement. Ces composants de
base sont : Client, MA, LA, SED.

Nous avons utilisé un Automate & Etats Finis (AEF dans la suite du document) [146]
pour modéliser chacun de ces composants.

Un AEF est une machine abstraite qui permet de modéliser la dynamique d’une entité.

62

5.5. Description du simulateur

Il dispose d’un nombre fini d’états et réalise des transitions entre ses états en fonction des
données en entrée. Ils sont utilisés pour modéliser divers phénomenes dans divers domaines
comme 'apprentissage de la programmation par des étudiants [147], 'architecture [148],
la biologie [149], les protocoles de communication [150], etc.

Définition 13 (Automate a états finis déterministe). Un automate a états finis déter-
ministe est un quintuplet (E, 3,9, e, F') ot

FE désigne un ensemble fini d’états.

> représente un alphabet, un ensemble fini de symboles.

0 désigne une fonction de transitions entre états. 0 : E X ¥ — E

eg désigne un état initial.

F est un sous-ensemble de FE, appelé ensemble des états finaux (ou terminauz).

Pour un AEF déterministe, card(d(e,m)) = 1, c’est-a-dire que l'entrée m lorsque
I’automate est a 1’état e produit la méme cible.

Définition 14 (Automate a états finis Non déterministe). Un automate a états finis non
déterministe est un quintuplet (E,%,6,1, F) ot

FE désigne un ensemble fini d’états.

Y représente un alphabet, un ensemble fini de symboles.

0 désigne une fonction de transitions entre états. 0 : E x X C E

I représente un sous-ensemble de E, appelé ensemble des états initiauz.

F est un sous-ensemble de E, appelé ensemble des états finals (ou terminaux).

Un AEF peut étre non déterministe de trois manieres :

e card(l) > 1 : plusieurs états initiaux;
e §(e,—) # () : transition arbitraire sans se préoccuper de I'entrée;

e card(d(e,m)) > 1 : plusieurs cibles pour la méme entrée.

Nous utiliserons indifféremment les termes automate, AEF, instance, processus, nceud
pour désigner un processus, qui simule un composant de base de l'intergiciel et qui agit
comme un automate a états finis. Cela signifie que le processus a un nombre fini d’états
et effectue des transitions entre les états. Il peut étre de type Client, MA, LA, SED.

Dans notre cas, pour chaque élément € {Client, M A, LA, SED}, 'automate qui le
modélise est non déterministe dans le sens ot il peut exister plusieurs cibles pour la méme
entrée, mais sans transitions arbitraires et avec un seul état initial. En plus, 'automate
est tel que son nombre d’états, card(E) = card(R) 4+ 1 avec R qui désigne I'ensemble des
regles définies pour ce type de composant, et 1’état supplémentaire représente 1’état stable.
Ainsi pour le composant Client, card(E) = 3+ 1 puisque trois regles ont été définies pour
lui. Pour le MA, on a card(E) =5+ 1, pour le LA on a card(E) = 6 + 1 et pour le SED
on a card(E) =3+ 1.

Aussi, X représente dans notre cas spécifique, ’ensemble des messages et événements
dont la réception ou la détection peut changer I'état d’'un AEF. Il contient un élément
spécial (un message) qu’on appellera calcul_état. Ala réception de ce message (dont
I'envoi par I'automate & lui méme peut étre provoqué par divers événements), ’automate
recalcule son état, et peut éventuellement faire une transition vers un autre état ou rester
dans le méme état qu’auparavant. L’automate peut recevoir divers autres messages, dont

63

5.5. Description du simulateur

le traitement peut provoquer ’envoi du message calcul_état. La réception d’'un message
autre que calcul_état ne peut pas directement générer une transition.

I est réduit a un seul état (I’état initial). Les processus partent de cet état juste apres
leur initialisation (cet état est pris une seule fois dans le cycle de vie d’un processus), et
les transitions possibles se font entre les autres états.

La fonction de transition, d, peut étre caractérisée de la maniere suivante :

Ve € E,¥Ym; € ¥ tel que m; # calcul_état: 6(e,m;) = e

Ve € E : d(e, calcul_état) C E \ I, ce qui signifie que I'ensemble des transitions est
constitué d’éléments de la forme

(€i, calcul_état, e;) avec e; € E et e; € E'\ I.

F est vide car il n'existe pas d’état terminal. Cela signifie qu'une fois I’état initial
dépassé, quelque soit 1’état dans lequel se trouve 'automate, les événements détectés
et/ou les messages requs et les traitements qu’ils provoquent, peuvent créer une transition
vers un autre état. Il n’y a pas un état a partir duquel aucune transition n’est plus
possible, tout dépend des événements détectés et des messages recus.

Chaque AEF est a la fois un serveur et un client. Il est un serveur dans la mesure ou
il peut recevoir des requétes (messages) auxquelles il répond mais aussi client car pouvant
envoyer une requéte a un autre AEF.

5.5.2 Gestion des états d’'un AEF

Définition de 1’état interne d’un AEF

L’état interne d’'un AEF est constitué de I’ensemble de ses variables locales (leurs valeurs).
La méme structure de données (un enregistrement) est utilisée pour décrire cet état in-
terne. Un sous-ensemble des champs de cette structure sert a conserver des données pour
identifier I’élément, et un autre sous-ensemble des champs sert a conserver les identifiants
des voisins (pere et fils). Comme un élément ne peut avoir au plus que trois types de
pere et trois types de fils, six listes ont été prévues pour conserver ces informations sur
les voisins. Cet état est mis a jour en fonction des messages regus, des timeout, de la
rupture de lien avec un voisin, etc. Mais seul I'instance propriétaire peut modifier son
état interne.

Identification

Le sous-ensemble des variables locales qui conserve les données d’identification de 1’élément
est utilisé par une fonction de hachage qui crée, a partir de ces informations un nom unique
(par rapport au cluster de machines virtuelles Erlang). Ce nom unique peut servir
d’adresse au processus et on peut lui envoyer un message en donnant ce nom comme
adresse. En plus, on peut retrouver I'identifiant du processus (PID) a partir de ce nom.
L’avantage de ce nom est la possibilité de I'utiliser pour personnaliser les informations
sur les processus (en perspective du traitement des données a faire plus tard apres la
simulation). Par exemple on peut concaténer le type (ma, la, ...) du processus avec ce
nom et on aura encore des noms uniques avec ’avantage d’avoir une information sur le
type du processus. Par contre le PID offre moins de flexibilité car il ne permet pas de
distinguer les types. Mais son avantage est que les communications sont plus rapides car
il n’est pas nécessaire de faire des calculs pour trouver I’adresse, alors que cette étape est
un préalable (fonction hachage) si on veut utiliser le nom unique de hachage. Dans le cas

64

5.5. Description du simulateur

de 'implémentation de l'intergiciel DIET, ce probleme est résolu au travers des IOR de
CORBA et du service de nommage (Naming Services).

Introspection

Un AEF a une capacité d’introspection, c’est-a-dire, qu’il a la capacité de lire son état
interne (valeurs courantes des variables locales) a chaque fois que cela s’avere nécessaire
et peut 'utiliser dans diverses opérations.

Calcul de l’'état

L’état d’'un AEF ne dépend que de son état interne. Dans son fonctionnement, un AEF
peut envoyer et recevoir des messages, peut détecter certains événements de son environ-
nement, peut exécuter des opérations périodiques.

A la suite de chacun de ces événements, un ensemble d’opérations prévues est exécuté
en fonction du type du message, de I'événement détecté, du test effectué. Et a chaque
fois que 'exécution de cet ensemble d’opérations est susceptible de modifier ’état interne
de ’AEF, ce dernier calcule de nouveau son état pour le mettre a jour. Ainsi, le traite-
ment associé a chaque événement pouvant modifier I’état interne, comporte une derniere
opération qui demande de calculer a nouveau I’état et de le mettre a jour. Cette demande
se fait par ’envoi d’un message particulier, calcul_état (cf. Section 5.5.1).

La réception de ce message spécial par un AEF provoque le calcul et la mise a jour de
son état en fonction des valeurs courantes de ses variables locales. Ce message, ne peut
étre envoyé a un AEF que par lui méme. Le résultat du calcul peut étre une transition
vers un autre état ou un statu quo.

Chaque instance vérifie de maniere périodique ses liens avec ses voisins. Si apres un
certain nombre de tentatives, la vérification échoue, I'instance met a jour ses variables
locales en supprimant de la liste des voisins I'instance avec qui la vérification a échoué, et
recalcule son état.

De méme, chaque instance lance de maniere périodique, une opération de mise a jour
de son état méme si aucun message n’est recu et traité, ni aucun événement détecté.

5.5.3 Définition d’un déploiement stable pour le simulateur

Un déploiement correspond a une hiérarchie d’instances, modélisées sous forme d’AEF.
Chaque instance est déployée sur une machine virtuelle Erlang. Les instances ne peuvent
communiquer que par envoi de messages.

Nous allons affiner la définition d’un déploiement stable. On I'a déja défini dans le
cadre général (Définition 12), on le redéfinit en tenant compte des particularités de la
simulation.

Définition 15 (Un déploiement stable pendant une simulation). Pendant les simulations,
un déplotement sera dit stable si :

e Chaque instance est dans son état stable (c’est-a-dire qu’elle n’est pas en train
d’exécuter une régle). Si toutes les instances sont dans leur état stable, on a :

#{instances instables} = 0

65

5.5. Description du simulateur

#{instances stables} = #{instances du déploiement};

e [l y a au moins deux instances dans le déploiement (un déploiement avec une seule
instance est toujours instable);

e Et le déploiement est stable (et le reste par la suite) pendant un nombre n d’unités
de temps, et durant ces n unités de temps (et apres), le nombre total d’instances
reste constant en [’absence d’événements externes.

L’idée derriere ce nombre n est qu’au bout de n unités de temps, tout message en tran-
sit devrait atteindre sa destination, et aussi qu'une instance nouvellement créée devrait
terminer sa phase d’initialisation et se faire enregistrer.

Transition des états

Pour chaque type de composant = € {Client, M A, LA, SeD} nous notons par :

s : I’état d’une instance de type x.

s : 1'état stable d’une instance de type z.

usy : I’état instable © d'une instance de type z.

US® = {usT, ..., usi} U'ensemble des états instables d’une instance de type . k dépend
de x et est tel que k = card(R), avec R qui représente ’ensemble des regles définies pour
le type de composant x.

AS? . Uensemble des états possibles d’'une instance de type x :

AS® = {ss,us?, ... ust} = {ss}|J US”

La Figure 5.2 illustre le comportement générique d'un AEF et les types de transitions
qu’il peut effectuer.

/ état_instable_1 N

!
. ¢état_instable_2 ‘ calenl dtat

création du
processus

terminaison

calcul_état

calcul_état

Figure 5.2: Transitions entre les états d’'un AEF

66

5.5. Description du simulateur

Apres la création du processus, AEF exécute des instructions d’initialisation et se
met automatiquement dans I’état initial, qu’il occupera cette unique fois. Il s’auto-envoie
un message pour calculer son état.

A un instant donné, 1'état s d'un AEF “vivant”(déja initialisé) de type x est tel :

s € AS” = {ss,us7, ...,usi}; donc stable ou instable.

Si’AEF est stable (s = ss), il exécute le code pour lequel il est spécifié. Il effectue aussi
des vérifications périodiques et peut recevoir et gérer les messages qui lui sont envoyés.
Apres le traitement des événements, il calcule de nouveau son état et le met a jour. Le
résultat de cette mise a jour est soit le statu quo (de stable a stable), soit une transition
vers un des états instables us? € US*,1 < i < card(US™).

Si AEF est instable (s € US* = {usy,...,ust}), il peut faire une transition de son
état instable courant vers le méme état instable, ou bien vers un autre des états instables,
ou bien vers I’état stable.

5.5.4 Détection d’un déploiement stable

Lorsqu’un déploiement est soumis a des pannes transitoires et devient instable, I'algorithme
auto-adaptatif s’exécute pour que le systéeme retrouve un état stable. Pour les besoins
de la simulation, nous avons besoin de savoir, a un moment donné, si le déploiement
est stable (I’algorithme auto-adaptatif ne s’exécute pas) ou instable (I’algorithme est en
train de s’exécuter). Nous avons donc besoin de pouvoir déterminer 1’état global d’un dé-
ploiement, et cela passe par la possibilité de détecter la terminaison (ou non) de I'exécution
de I'algorithme auto-adaptatif.

L’état global d'un déploiement est constitué de I’état de chacun de ses nceuds et de
I'état des canaux de communication (Définition 4). Détecter I’état global d’un systeme
distribué ou il n’existe pas de mémoire partagée, ni un temps global et ou les délais des
messages sont arbitraires n’est pas trivial. La détection d’un état global du déploiement
peut étre comprise comme un algorithme de détection de la terminaison [66], qui détermine
si un algorithme distribué est terminé. La détection de la terminaison est un probleme
fondamental pour la programmation distribuée. S’inspirant des définitions dans [66], nous
pouvons formuler notre probleme (détecter si le déploiement est stable ou instable) comme
un probleme de détection de la terminaison d’un algorithme distribué.

Une partie des calculs et des messages envoyés et recus constituent 1’algorithme auto-
adaptatif dont I'exécution a pour but de rendre le déploiement stable. C’est I’ensemble
des regles définies pour les différents types de composant. Ces calculs sont appelés calculs
de base et les messages produits dans ce cadre, des messages de base. Une partie supplé-
mentaire est ajoutée et comprend les calculs et messages produits dans le but de détecter
la terminaison. On les appelle calculs et messages de controle. Cette partie est indépen-
dante de l'algorithme auto-adaptatif mais a été ajoutée pour détecter I'état global du
déploiement, pour les besoins de la simulation. Ainsi, la partie controle est implémentée
pour détecter la terminaison de I'algorithme de base.

Les messages de controle correspondent a ceux utilisés dans le Listing 5.3, ils sont
envoyés par une instance a un observateur externe (serveur de détection de la stabilité du
déploiement).

La terminaison peut étre détectée de I'extérieur par un observateur externe (version
centralisée que nous avons adoptée). Mais si ce sont les processus eux mémes qui doivent
détecter la terminaison, dans ce cas on a la détection distribuée de terminaison.

Une instance d’un déploiement est soit en exécution (“vivante”), soit elle est terminée.

67

5.5. Description du simulateur

Une instance en exécution est soit dans un état stable (actif), soit dans un état instable
(passif). Lorsqu’une instance est dans un état instable (un des états de 'ensemble fini des
états instables possibles pour ce type d’instance), elle exécute 1’algorithme auto-adaptatif.
Cela signifie qu’au moins une regle a une garde qui est vraie et les actions correspondantes
sont en train d’étre exécutées. Si l'état de 'instance n’est pas instable, alors il est stable.

Une instance terminée cesse d’exister et ne peut plus ni recevoir, ni envoyer de mes-
sages, ni exécuter aucune autre action. Une instance se termine a la réception d'un
message particulier (message exit par exemple). Une instance se termine a la suite d'un
ordre (message) de terminaison qu’il s’auto-envoie ou qui lui est envoyé par une autre
instance.

Juste avant de cesser d’exister définitivement, une instance peut exécuter une derniere
fonction (fonction terminer). Une instance peut utiliser cette fonction pour “avertir”
les autres instances de son choix (notamment ses voisins) de sa terminaison. En plus,
un message avertissant de la terminaison d’une instance est envoyé automatiquement a
toutes les autres instances avec qui elle avait un lien. Donc, chaque fois qu’une instance se
termine, ses voisins le sauront d’une maniere ou d’une autre, méme si c¢’est une terminaison
brutale causée par une panne du matériel. Soit les voisins recevront un message les
avertissant de la terminaison ou bien ils tenteront de vérifier le lien (ce qui se fait de
maniere périodique) et ce sera un échec. Dans ces différents cas, les voisins mettront a
jour leurs données internes en supprimant l'instance terminée ou inaccessible de la liste
de leurs voisins.

Un calcul distribué est considéré comme terminé lorsque tous ses processus en exécu-
tion sont dans I’état passive et qu’aucun message de base n’est en transit (tous les canaux
de communication sont vides). Ceci est appelé la condition de terminaison distribuée [66].

Dans notre cas, cette condition correspond a la Définition 15. Les instructions et
messages de controle pour détecter la terminaison de l'algorithme de base constituent
I’algorithme de détection de la terminaison.

Détecter un déploiement stable est donc comparable a la détection d’une terminaison
distribuée mais avec des hypotheses moins strictes. En effet, nous supposons que lorsque
le déploiement est stable et reste stable pour un nombre fixé d’unités de temps, c’est
qu’il n’y a pas de messages en transit, donc que les canaux sont vides. Les messages
en transit incluent ceux qui sont en attente d’étre consommés. Théoriquement, lorsque
les communications sont asynchrones, les messages peuvent prendre un temps arbitraire
mais fini. Notre hypothese est de borner ce temps dans la mesure ou nous effectuons
les simulations dans un environnement stable ol les messages sont transmis de maniere
spontanée.

Nous avons utilisé une méthode Ad hoc et centralisée pour détecter la terminaison. Les
instances surveillent des variations particulieres de leurs états et envoient des messages a
un observateur extérieur qui se charge de détecter 1’état global du déploiement. C’est le
serveur de détection de la stabilité du déploiement (Section 5.5).

L’état interne de ce serveur est constitué de deux variables entieres et positives :

StableSem pour compter le nombre courant d’instances stables et UnstableSem
pour compter le nombre courant d’instances instables d’un déploiement. Ces deux vari-
ables sont initialisées a zéro lorsque le serveur est lancé (avant toute création d’instance)
et sont mises a jour selon la méthode décrite dans le Listing 5.3.

Une instance qui vient d’étre créée, apres une phase d’initialisation se met dans ’état
initial, qu’elle prend cette unique fois. Ensuite, au prochain calcul de son état, le résultat
sera entre ’état stable ou un des états instables du type de l'instance. C’est a partir de

68

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

5.5. Description du simulateur

ce moment qu’elle peut s’enregistrer au niveau du serveur. Donc une instance qui n’est
pas encore dans un état stable ou instable est inconnue de ce serveur.

Une instance connue du serveur (déja enregistrée) est donc soit stable ou instable et
peut se terminer a partir de cet état. Une instance qui a entamé une phase de terminaison
ne peut plus changer d’état et son état est le dernier qu’elle a eu avant d’entamer la phase
de terminaison (exécution de la fonction terminer).

A chaque fois qu'une instance veut calculer son état, elle sauvegarde son état précédent
et le compare avec le nouvel état. Si certaines variations sont notées (une transition d'un
état e; a un état e; tel e; # e;), l'instance envoie un message au serveur pour qu’il
incrémente ou décrémente ses deux variables.

Ainsi une transition d’un état initial a un état stable incrémente StableSem et une
transition d’un état initial a un état instable incrémente UnstableSem.

Une transition d'un état stable a un état instable incrémente UnstableSem et décré-
mente StableSem et une transition d’un état instable a un état stable incrémente Sta-
bleSem et décrémente UnstableSem.

Lorsqu’une instance meurt (lorsque 'instance exécute la fonction terminer), elle envoie
un message au serveur qui décrémente une des variables en fonction du dernier état de
I'instance qui meurt.

case {EtatPrecedent, EtatCourant} of /xcase transitionx/

/xtransition de 1|’ état initial vers un des états
instables. Premier calcul de son état aprés initialisationx/
{etat_initial , instable} : UnstableSem-++;

/xtransition de [’état initial vers |’ état stable.
Premier calcul de son état aprés initialisationx/
{etat_initial , stable} : StableSem++;

/xtransition de [’état stable wvers un des états instablesx/
{stable, instable} : UnstableSem++;
StableSem ——;

/xtransition d’un des états instables wvers [’ état stablex/
{instable , stable} : StableSem++;
UnstableSem ——;

/xinstance instable qui meurt (instance exécutant la
fonction terminer)x/
{instable , instance qui se termine} : UnstableSem——;

/xinstance stable qui meurt (instance exécutant la
fonction terminer)x/
{stable , instance qui se termine} : StableSem——;

end ;

Listing 5.3: Méthode de détection d’un déploiement stable

69

5.6. Configuration matérielle et logicielle

5.6 Configuration matérielle et logicielle

Toutes les simulations ont été réalisées sur une machine ayant les caractéristiques matérielles
suivantes : Processeur Intel(R) Xeon(R) X5570 @ 2.93GHz avec 16 coeurs et 33 GB de
RAM, avec le systeme d’exploitation Debian GNU/Linux 7 (wheezy), et la version Erlang
R15B01 (erts-5.9.1).

5.7 Simulations et résultats

mal- - machine physique

image du déploiemen

NE

serveur déploiement

sed3 serveur détection stabilité
: ,
|
sed?2 ! {7,1,8,instable} %
‘ \ {6, 0, 6, stable}| =
| Y {6, 0, 6, stable} .%&
sedl. | Y {6, 0, 6, stable}| /(Q
~ 2 _fnsg, e s :
Tl (1(;1\)]()1

liens gntre \nstances

événements de simulation

tuer(20, sed);

| tuer(10%, sed);

Noeud Erlang (NE)

Figure 5.3: Un exemple de configuration de simulation

Pour toutes les simulations effectuées, nous avons utilisé cinq machines virtuelles Er-
lang (que nous appelons aussi neeuds erlang) déployées sur la méme machine physique
(Figure 5.3). Les nceuds erlang sont connectés entre eux sous la forme d’un graphe com-
plet, formant ainsi une sorte de cluster. Ainsi, tout processus déployé sur un des noeuds
peut communiquer avec un autre processus déployé sur le méme noeud ou sur un autre
neeud s’il connailt son adresse. De méme, un processus peut exécuter une fonction sur un
neeud autre que celui sur lequel il est déployé par un mécanisme d’appel de procédure a
distance. Cette topologie n’est pas obligatoire mais elle est simple a mettre en ceuvre.
Deux nceuds sont utilisés pour le déploiement de la hiérarchie, un nceud pour le serveur
de déploiement (contient une image du déploiement courant sous la forme d’une structure
de données graphe), un ceud pour le serveur de détection de la stabilité (affichage péri-
odique du nombre d’instances stables, du nombre d’instances instables, du nombre total
d’instances et de I’état global du déploiement), et un nceud pour lancer des événements
de simulation (ajout de nouvelles instances, suppression d’instances).

Les instances de la hiérarchie sont déployées de maniere aléatoire entre les deux noeuds
prévus pour les recevoir.

Nous avons effectué quatre simulations que nous allons décrire dans la partie qui suit.

70

5.7. Simulations et résultats

1.4 T T T T T T
N i i i i i i
Q \
© \ ‘ ‘ ‘ ‘ ‘ ‘
« |
9 15 1
»n |
2 | | | | |
B
£
2 06|]
P
€ 04F L
o) } ‘ ‘ ‘ ‘ ‘ ‘
c i i i i i i
S o2} \ ——e—e—memoss
o : : : :
2 : 77777+777777”****77——77;,,,77777“#77 o H -
0 I I I I I I

100 200 300 400 500 600 700
Nombre de SEDs ajoutés

Figure 5.4: Ajout d’'un nombre X (abscisse) de nouvelles instances (des SEDs isolés) a un
déploiement stable. Pour chaque X, calculer la moyenne (sur cing valeurs) des tops qu’il a fallu
pour que le déploiement retrouve un état stable. Calculer le ratio entre cette moyenne et X. La
courbe représente le ratio en fonction de X.

5.7.1 Effet d’un changement de topologie par ajout de nouvelles
instances

L’idée de la premiere simulation est la suivante : créer un déploiement stable et simuler
I'effet d’'un changement de topologie di a I’ajout de nouvelles instances. Pour réaliser
cette simulation, nous partons d’un déploiement stable et simple constitué d’'un (1) MA
et de cinq SEDs, fils du MA. Et pour chaque X € {5,10, 50,100,200, 500,600, 700},
nous ajoutons X nouveaux SEDs isolés (éléments instables) au déploiement de base et
comptons le nombre de périodes de temps (500ms) que nous appelons tops que va prendre
le déploiement pour redevenir stable. Pour chaque X, 'expérience est répétée cinq fois et
on calcule la moyenne des tops pour les cing expériences.

La Figure 5.4 montre le ratio entre la valeur moyenne des tops et le X correspondant.

5.7.2 Effet du changement de topologie par suppression d’instances
L’idée de ces simulations est d’étudier 'effet d’un changement de topologie dii a la sup-
pression d’'un certain nombre d’instances ou d’un pourcentage des instances.

Suppression d’un nombre d’instances

Pour cette simulation, nous créons un déploiement de départ stable avec un nombre assez
important de SEDs. Pour ce faire, nous ajoutons 500 SEDs isolés a un déploiement de
base constitué d’'un MA et cinq SEDs et obtenons a la fin un déploiement stable avec un
nombre important de SEDs.

71

5.7. Simulations et résultats

1200 T T T T T — — T
‘ ‘ ‘ ‘ Début simulation (D) ——
Fin simulation (F)
(D-F)
1000 i : : e e
[\+ H //kii'f—+—ffAi77+7,,77ﬁ—777+
< -~ ‘ ‘ ‘ ; ; : ‘
8 800 |t ; /]
Q : : : : : :
C
o
1) : : : : : :
© 600 | [S S
c : : : : : :
o
>
g : : : : : i
I B
5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
§ | | | | P e |
< 200 o I S e e e B
0 bee i i i i i i i i

0 50 100 150 200 250 300 350 400 450 500
Nombre de SEDs tués

Figure 5.5: Suppression d’'un nombre X (abscisse) d’instances (des SEDs) d'un déploiement
stable. Pour chaque X, déterminer le nombre total d’instances de tout type (Client, MA, LA,
SED) avant et apres la suppression, ainsi que la différence entre ces deux valeurs. La courbe
représente ces trois valeurs en fonction de X.

Il est possible de faire autrement en créant directement un déploiement par ajout de
500 SEDs isolés et laisser faire le processus de stabilisation. Mais nous avons constaté
que la premiere méthode prenait “moins de temps” que la seconde méthode pour que le
déploiement se stabilise . Nous avons donc préféré la premiére méthode pour cette raison.

Les déploiements stables obtenus ne sont pas toujours les mémes (ni en terme de
structure ni en terme de nombre d’instances) méme s’ils sont tous obtenus par les mémes
opérations. Cela est du au fait que les décisions prises par les instances ne sont pas déter-
ministes (nous rappelons que les processus sont modélisés par des AEF non déterministes).

Une fois ce déploiement stable obtenu avec un nombre assez important de SEDs, pour
chaque X € {5, 10,50, 100,200,500}, on répete cing fois les actions suivantes : X SEDs
sont tués (choisis de maniere aléatoire), on compte le nombre de tops d’horloge que le
systéme prend pour redevenir stable, on sauvegarde le nombre total d’instances (AEF)
avant 1'événement de simulation (“tuer X SEDs”) et aussi le nombre total d’instances
(AEF) lorsque le déploiement redevient stable. Pour chaque X, on calcule les valeurs
moyennes de ces parametres (cinq valeurs pour chaque parametre). Les Figures 5.5, 5.6
montrent les résultats de ces simulations.

La Figure 5.5 montre pour chaque X (nombre de SEDs tués) le nombre moyen d’AEF
avant la simulation, le nombre moyen d’AEF apres la simulation et la différence entre ces
deux valeurs. La Figure 5.6, obtenue a partir des données du tableau 5.1, représente, pour
chaque X, le ratio entre la moyenne des tops d’horloge (pour que le déploiement retrouve
un état stable) et X. Pour cette expérience lorsqu’on tue 5 ou 10 ou 50 SEDs, le temps de
stabilisation est presque instantané avec une moyenne du nombre de tops d’horloge pour

72

5.7. Simulations et résultats

0.1
(%]
\©
2 008
[%2]
o
L
w
3
s 006
fe]
£
o
=z
2 004
o
l_
(]
c
c
2 002
=

0 50 100 150 200

250 300 350 400 450 500

Nombre de SEDs tués

Figure 5.6: Suppression d’'un nombre X (abscisse) d’instances (des SEDs) d'un déploiement
stable. Pour chaque X, calculer la moyenne (sur cing valeurs) des tops qu'il a fallu pour que
le déploiement retrouve un état stable. Calculer le ratio entre cette moyenne et X. La courbe

représente le ratio

en fonction de X.

se stabiliser qui est égale respectivement a : 0,4; 1,4 et 0,2. Cette moyenne passe a une
valeur comprise entre 6 et 10,4 lorsqu’on tue un nombre de SEDs compris 100 et 500.
On peut dire que lorsqu’on tue un “petit” nombre de SEDs, I'effet sur le systeme est vite
résorbé, si il n’est pas simplement négligeable. Ceci semble logique dans la mesure ou, le
fait de tuer un SED, voire un ensemble de SEDs ne conduit pas forcément a un systeme

instable.

Tableau 5.1: Données de la Figure 5.6

#SeDs tués | moyenne tops d’horloge | (moyenne tops horloge) / (#SeDs)
5) 0,4 0,08

10 1.4 0,14

50 0,2 0,004

100 6 0,06

200 6.8 0,034

300 8 0,026

400 9,2 0,023

500 10,4 0,0208

73

5.7. Simulations et résultats

1200 T T T T — — — .
‘ ‘ ‘ ‘ Début simulation (D) ——
Fin simulation (F)
(D-F) =
1000 F bbb
w ~ P Y
& +w;,,,,,/ ~TT— ‘
@ 800
Q 1 1 1 1 1 1
[
I
1) : : : : : :
) 600 - S U
c ; ; ; ; i ;
(0]
>
g : : : : : :
o 00 o | N R e
£ x |
o ‘ ‘ ‘ ‘ o ‘ ‘ ‘
- V’*’<
0) a a a a a a a a

0 10 20 30 40 50 60 70 80 90 100
% de SEDs tués

Figure 5.7: Suppression d’un pourcentage X (abscisse) d’instances (des SEDs) d’un déploiement
stable. Pour chaque X, déterminer le nombre total d’instances de tout type (Client, MA, LA,
SED) avant et apres la suppression, ainsi que la différence entre ces deux valeurs. La courbe
représente ces trois valeurs en fonction de X.

Suppression d’un pourcentage des instances

Cette simulation est comparable a la simulation précédente a la différence qu’au lieu de
tuer X SEDs, ce sont X % des SEDs qui sont tués et X € {5, 20, 25, 35, 40, 50, 65, 75, 80, 100}.

Ainsi donc, apres avoir crée un déploiement stable avec un nombre “assez important”
de SEDs, pour chaque X € {5, 20, 25, 35, 40, 50, 65, 75,80, 100}, X% des SEDs (choisis de
maniere aléatoire) et la simulation est répétée cing fois et pour chaque fois les valeurs des
parametres suivants sont enregistrées:

e Le nombre de tops d’horloge que prend le systeme pour retrouver un état stable;

e Le nombre total d’instances (AEF) avant I’événement de simulation (“tuer X % des
SEDs”);

e Le nombre total d’instances (AEF) lorsque le déploiement redevient stable apres
application de I’événement de simulation (“tuer X% des SEDs”).

e Le nombre total de SEDs avant 1’événement de simulation (“tuer X% des SEDs”);

e Le nombre total de SEDs lorsque le déploiement redevient stable apres application
de I’événement de simulation (“tuer X% des SEDs”).

Pour chaque X, on calcule les valeurs moyennes de ces parametres (cing valeurs pour
chaque parametre).

74

5.7. Simulations et résultats

700 T T T T
’ ’ ’ ’ ’ Début simulation (D) ——+—
Fin simulation (F)
600 - (O-F)]
G B00 o
LU
) ‘ ‘ ‘ ‘ ‘ ‘
T 400 e R S
c ‘ ‘ ‘ ‘ ‘ ‘
[0 ; ; ; ; ; ;
>
2 ‘ ‘ ‘ ‘ ‘ |
300 bt S S S
3 | | | e
> 200 b ‘ ‘ * SR AU st S
100 Fooie ** ‘ U SRS NS S S
0 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100
% de SEDs tués

Figure 5.8: Suppression d’un pourcentage X (abscisse) d’instances (des SEDs) d’un déploiement
stable. Pour chaque X, déterminer le nombre total d’instances de type SED avant et apres la
suppression, ainsi que la différence entre ces deux valeurs. La courbe représente ces trois valeurs
en fonction de X.

1 T I T T T T T T T

09 F ‘ ‘ S N R S
» 0.8 =
)
2
g 07 : : e A
7
o 0.6 .
©
* o5
n
S o4l i
p N
C
C
(0]
>
[e]
s

oI 2 N A B B

s o e e
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
% de SEDs tués

Figure 5.9: Suppression d’un pourcentage X (abscisse) d’instances (des SEDs) d’un déploiement
stable. Pour chaque X, calculer la moyenne (sur cinq valeurs) des tops qu’il a fallu pour que
le déploiement retrouve un état stable. Calculer le ratio entre cette moyenne et X. La courbe
représente le ratio en fonction de X.

75

5.7. Simulations et résultats

Les figures 5.7, 5.8, 5.9 montrent les résultats de cette simulation.

Les courbes sur la Figure 5.7 représente pour chaque X (le % de SEDs tués) le nombre
moyen d’AEF avant 1’événement de simulation (début simulation), apres I’événement de
simulation lorsque le déploiement est redevenu stable (fin simulation) et la différence entre
ces deux valeurs moyennes.

Le nombre moyen d’AEF avant la simulation est indépendant de I’événement de simu-
lation. Il varie entre 844 et 982 instances et est le résultat obtenu en créant un déploiement
en ajoutant 500 SEDs isolés a un déploiement stable constitué d’un MA et cinq SEDs.

Le nombre moyen d’AEF a la fin de la simulation décroit lorsque le pourcentage de
SEDs tués augmente.

La différence entre le nombre moyen d’AEF au début et a la fin de la simulation
peut étre intuitivement compris comme le nombre de SEDs tués. Cependant, le nombre
totales d’instances tuées peut étre supérieur ou inférieur au nombre de SEDs tués par
I’événement de simulation car des instances peuvent étre créées ou tuées durant la phase
d’auto-adaptation apres que ’événement de simulation a été déja appliqué.

Les courbes sur la Figure 5.8 représentent pour chaque X (% de SEDs tués) le nombre
moyen de SEDs au début de la simulation, a la fin de la simulation, et la différence entre
ces deux valeurs. Comme dans le cas précédent, les valeurs moyennes avant le début de
la simulation sont indépendantes de I’événement de simulation. Cette valeur est presque
constant et varie entre 504 et 505 instances.

Le nombre moyen de SEDs a la fin de la simulation décroit lorsque le pourcentage de
SEDs tués augmente mais est toujours supérieur ou égal a zéro méme lorsque 100% des
SEDs sont tués. En effet, des SEDs sont aussi créés quand c’est nécessaire par ’algorithme
auto-adaptatif.

La différence entre les deux valeurs moyennes (au debut et a la fin) peut étre intu-
itivement compris comme le nombre moyen de SEDs qui se sont finalement terminés.

La Figure 5.9 montre le ratio entre le nombre moyen de tops d’horloge pour que le
déploiement recouvre un état stable (lorsque X% des SEDs sont tués) et X.

5.7.3 Effet du changement de topologie par alternance d’ajout
et de suppression d’instances

L’idée de cette simulation est de partir d’'un déploiement stable et d’alterner les ajouts
de nouvelles instances aux suppressions d’instances. A chaque fois qu’un de ces événe-
ments est appliqué, on attend que le déploiement retrouve un état stable et on applique
I’événement suivant.

Pour cela, nous créons d’abord un déploiement stable avec 408 instances, obtenu par
ajout de 250 SEDs isolés a un déploiement stable constitué d'un (1) MA et de cing SEDs.

A partir de ce déploiement stable de 408 instances, on tue 100 SEDs choisis de maniére
aléatoire, et on attend que le systeme retrouve un état stable. Une fois que le systeme
est redevenu stable, on ajoute 100 SEDs et on attend encore que 1’état stable soit atteint
pour alterner ces deux opérations. Durant toute la simulation, le nombre total d’AEF
stables et le nombre total d’AEF instables sont enregistrés de maniere périodique. Pour
dessiner les courbes, on a réduit les plages pendant lesquelles le systeme est stable. Donc,
avant 'application de tout événement “ajout de 100 SEDs ” ou “suppression de 100 SEDs
7 le systeme a été stable pendant suffisamment longtemps, période qu’on a réduite pour
mettre en exergue les moments pendant lesquels le systeme retrouve un état correct.

76

5.7. Simulations et résultats

700 — . . T '
L P P P Instances instables ——+—
Instances stables

BOO [b Total e

0n
(O]
(&)
c
8
2]
£
©
(0]
S
€
©] b P b b ‘ ‘
=z : : : : : : : : : :
00
] T e
0 lé””lléh \HL““H;HH}WA”H;"‘LHQM MI%AMMI REazaaaEy
T TA TA TA T A

T =Tuer 100 SEDs A = Ajouter 100 SEDs

Figure 5.10: Alternance des événements “tuer 100 SEDs (T)” et “ajouter 100 SEDs (A)”. Apres
I’application d’'un événement, attendre que le déploiement retrouve un état stable et appliquer
I’événement suivant.

Les courbes sur les Figures 5.10 et 5.11 montrent les variations des valeurs enregistrées
au cours de la simulation.

On peut faire quelques observations sur la courbe de la Figure 5.11. La premiere est
qu’apres 'application de chaque événement de simulation qui modifie la topologie (ajout
ou suppression), le déploiement retrouve un état stable (nombre d’instances instables égal
a zéro) au bout d’un certain temps.

On peut aussi observer que l'effet de I’événement de suppression d’instances est plus
spontané que celui de I'ajout. Ceci peut s’expliquer par le fait qu’apres une action d’ajout,
les instances nouvellement créées ont besoin de s’initialiser avant que le processus d’auto-
adaptatif ne commence. Or, pendant cette phase d’initialisation (le temps que cela prend
peut varier d’'une instance a une autre, en fonction de leur type et des données initiales,
mais dans tous les cas, ce temps est non nul), les instances ne sont pas encore enregistrées
au niveau du serveur qui détecte la stabilité meéme si I'instance est connue par le serveur de
déploiement. C’est apres la phase d’initialisation et une premiere mise a jour de son état
que I'instance (maintenant dans un état stable ou instable) peut exécuter les instructions
d’adaptation.

L’effet de ’action de suppression est plus spontané parce qu’'une instance qui se termine
exécute moins d’opérations en général qu’'une instance qui s’initialise. Une instance qui
se termine envoie des messages erit a ses voisins (avec qui elle a un lien) et un message

7

5.8. Conclusion

120 T T T — ;
L L L Lo Instances mstables R

il L.

80 -t

e R e | e

Nombre d’instances

Jl

T =Tuer 100 SEDs A = Ajouter 100 SEDs

Figure 5.11: Alternance des événements “tuer 100 SEDs (T)” et “ajouter 100 SEDs (A)”. variation
du nombre d’instances instables.

de mise a jour des variables au serveur de détection de la stabilité.

Dans certains cas, 'effet de I'action de suppression n’est pas tres perceptible parce
que supprimer des SEDs d'un déploiement stable ne rend pas forcément le déploiement
instable, mais c¢’est uniquement le nombre d’instances qui diminue dans ce cas.

5.8 Conclusion

Dans ce chapitre, nous avons décrit le simulateur que nous avons cong¢u pour évaluer
I’algorithme auto-adaptatif décrit dans le Chapitre 4. Les processus sont modélisés par
un automate a états finis non déterministe. Nous avons décrit les simulations effectuées
et présenter les résultats.

78

Conclusion

Dans cette these, nous avons étudié les moyens de rendre auto-adaptatif le déploiement
d’un intergiciel hiérarchique. L’auto-adaptation a lieu lorsque l'intergiciel détecte certains
événements liés a la plate-forme sur laquelle il est déployé ou bien aux processus de
I'intergiciel en cours d’exécution. Ces événements peuvent étre la variation du nombre de
ressources de la plate-forme et/ou 'arrét accidentel de certains processus de l'intergiciel,
et qui rendent 1’état du déploiement instable.

Pour ce faire, nous avons proposé des modeles pour décrire les entités qui interviennent
dans ce processus, a savoir la plate-forme distribuée et élastique sur laquelle I'intergiciel
est susceptibles d’étre déployé, 'architecture de l'intergiciel ainsi qu'un déploiement en
cours d’exécution.

Nous avons ensuite proposé un algorithme distribué permettant a l'intergiciel d’étre
tolérant a certains types de pannes, mais aussi de chercher a atteindre un objectif qualitatif
qui a été traduit par la définition d’un déploiement stable. Nous avons prouvé que cet
algorithme est auto-stabilisant.

Nous avons con¢u un simulateur permettant d’exécuter un algorithme auto-adaptatif
et d’étudier son comportement. Nous avons simulé 1’algorithme proposé, pour étudier son
comportement face a certaines modifications du contexte. Les résultats des simulations
montrent que l'algorithme est auto-adaptatif. Les simulations montrent également que le
temps de stabilisation (des simulations) est arbitraire mais fini.

Perspectives

Pour de futurs travaux, il serait intéressant de réfléchir sur les pistes ci-dessous :

e Intégrer les modeles définis au Chapitre 3 (dans le simulateur) pour les futurs
simulations. En effet, la prise en compte des caractéristiques des ressources de
I'infrastructure (mémoire, CPU, réseaux, etc.), des contraintes de haut niveau de
I'intergiciel (préférence d’exécution sur les ressources d'un site A au lieu du site B)
améliorent le réalisme des simulations. A I'heure actuelle, le choix des ressources
sur lesquelles on déploie les processus est fait de maniere aléatoire et les ressources
sont considérées comme identiques;

e [l faudra une campagne de simulations avec des actions qui ne se limiteront plus aux
SED mais aussi aux autres types de composant de DIET pour comparer les effets;

e Il faudra aussi s’intéresser a d’autres modeles de pannes que celles transitoires;

79

Conclusion

80

e Une question intéressante est celle de savoir si l'algorithme est robuste 7 Dans

notre cas, cela signifie que 'algorithme est en mesure de fournir un service (méme
dégradé) pendant la phase méme de stabilisation. Nous avons supposé dans ce
travail que des que le systeme est instable, il n’y a pas d’assurance qu’il puisse
assurer sa spécification. Par principe de précaution, on suppose qu’il ne l'assure
que lorsqu’il est stable et ne I'assure pas dans le cas contraire. Il serait intéressant
d’étudier le comportement du déploiement pendant la phase méme de stabilisation :
est ce qu'il existe des “portions” (sous-arbres) de systeme stables pour exécuter des
taches méme si le systeme global est instable 7 Et si oui, de quel type, forme sont
elles 7 Le déploiement a une structure de graphe connexe lorsqu’il est stable. Mais
il peut étre une forét pendant certaines phases de stabilisation avec plusieurs sous
arbres non connectées. La question est de savoir si parmi ces sous-arbres, certains ne
sont pas stables lorsqu’ils sont pris de maniere isolée méme si le déploiement global
(ensemble de tous les sous-arbres) est instable;

Nous avons utilisé des éléments centraux pour les besoins des simulations. Il serait
intéressant de se passer des éléments centraux (serveur de déploiement qui joue le
role d’oracle ou de service de découverte de ressources) en implémentant un mécan-
isme de découverte de ressources non centralisé pour que les noeuds ne se basent
qu’exclusivement sur des informations locales. Une piste pourrait étre 1'utilisation
d’algorithmes de type “gossip”;

Il serait intéressant aussi de réfléchir a 'adaptation du simulateur pour ’étendre a
d’autres types d’intergiciels hiérarchiques ou non.

Annexes

Algorithme exécuté par toutes les instances de type
Client

Algorithme 18: Client: MA _lost event

1 if CLIENT .lostMa == TRUFE then
2 SetOfMa + get the set of MA from the Oracle;

if Card(SetOfMa) > 0 then
selectOneMa();
connectToMal();

Ise
createOneMal();
connectToMal();

end

© 0 N O CoA W
@

10 end

Algorithme 19: Client: SED _lost event

1 if CLIENT lostSed == TRUE then
2 ‘ submitTheRequest Again() ;
3 end

81

Annexes

Algorithme exécuté par toutes les instances de type
MA

Algorithme 20: MA: no child event

[uny

if M AnumberO fChildren == 0 then
SetOfMa <+ get the set of MA from the Oracle;

N

3 if Card(SetOfMa) == 1 then

4 | createSedAsChildWithBAsicService();
5 else

6 | maSuicide();

7 end

8 end

Algorithme 21: MA: chain of Agent event

1 if (M AnumberO fChildren == 1) AND (M A.childType == M A OR LA) then
2 ‘ mergeMaAndChild() ;

3 end

Algorithme 22: MA: no MA father event

1 if MA did not have an father of type MA then

2 SetO f MalInOther Hierarchy < get from the Oracle the set of MA in
others hierarchy than the one which contains the M A executing this
algorithm;

if Card(SetO fMalnOther Hierarchy) > 0 then
selectOneM AasFather();
connectToSelectedMaf() ;
else
‘ no forest;
end

© W N o T W

end

Algorithme 23: MA: overloaded event

1 if M A.load > M A.loadT hreshold then

2 divideMaChildrenInTwoSet() ;

3 createOneAgentAsFatherForEachGroup() ;

4 theTwoNewlyCreated Agent AsMaChildren() ;

5 end

82

Annexes

Algorithme exécuté par toutes les instances de type

LA

Algorithme 24: LA: no child event

1 if LA.numberO fChildren == 0 then
2 SetOfLa < get the set of LA from the Oracle;

3 if Card(SetOfLa) == 1 then

4 | createSedAsChildWithBAsicService();
5 else

6 | laSuicide();

7 end

8 end

Algorithme 25: LA: chain of LA event

1 if (LA.numberO fChildren == 1) AND (LA.childType == LA) then
2 | mergeLaAndChild() ;
3 end

Algorithme 26: LA: no father event

1 if LA.father == NULL then

2 SetO f AgentInOther Hierarchy < get from the Oracle the set of Agent
in others hierarchy than the one which contains the LA executing
this algorithm;

if Card(SetO fAgentInOtherHierarchy) > 0 then
selectOneAgent AsFather() ;
connectToSelectedAgent() ;

Ise
createMal() ;
connectToMa() ;

end

© 0 N O Utoh W
@

10 end

Algorithme 27: LA: overloaded event

1 if LA.load > LA.loadT hreshold then

2 divideLaChildrenInTwoSet() ;

3 createOneLaAsFatherForEachGroup() ;
4 theTwoNewlyCreatedLaAsLaChildren() ;

5 end

83

Annexes

Algorithme exécuté par toutes les instances de type
SeD

Algorithme 28: SED: no father event

1 if SED.father == NULL then

2 if SED.is_currently_computing == T RUFE then
3 continue computing For T units of time.

4 T is supposed to be the Mean time a SeD took
5 to compute a job. After T units of time

6 the job is supposed to be finished ;

7 else

8 SetO f Agent <+ get the set of Agents from the Oracle;
9 if Card(SetOfAgent) > 0 then
10 selectOneAgent();
11 connectToAgent();
12 else
13 createOneMal();
14 connectToMa();
15 end
16 end

17 end

84

Bibliographie

1]

2]

[10]

H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. Wiley-Interscience, 2004. 1, 18, 20

lan Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.
1, 11

Peter Mell and Tim Grance. The nist definition of cloud computing. 2011. 1, 11

Philip A Bernstein. Middleware: a model for distributed system services. Commu-
nications of the ACM, 39(2):86-98, 1996. 1

Eddy Caron and Frédéric Desprez. DIET: A Scalable Toolbox to Build Network
Enabled Servers on the Grid. International Journal of High Performance Computing
Applications, 20(3):335-352, 2006. 1, 29

Hendrik Moens and Filip De Turck. A scalable approach for structuring large-scale
hierarchical cloud management systems. In CNSM, pages 1-8. IEEE, 2013. 28

Bernardetta Addis, Danilo Ardagna, Barbara Panicucci, Mark S. Squillante, and
Li Zhang. A Hierarchical Approach for the Resource Management of Very Large
Cloud Platforms. IEEE Trans. Dependable Sec. Comput, 10(5):253-272, 2013.

Sander van der Burg and Eelco Dolstra. Disnix: A toolset for distributed deploy-
ment. Science of Computer Programming, 2012. 28, 29, 30

Sander van der Burg and Eelco Dolstra. A self-adaptive deployment framework
for service-oriented systems. In Holger Giese and Betty H. C. Cheng, editors, 2011
ICSE Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2011, Waikiki, Honolulu, HI, USA, May 23-2/4, 2011, pages 208-217. ACM,
2011.

Sander van der Burg and Eelco Dolstra. Automated deployment of a heteroge-
neous service-oriented system. In Software Engineering and Advanced Applications
(SEAA), 2010 36th EUROMICRO Conference on, pages 183-190. IEEE, 2010. 1

85

Bibliographie

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

86

Clemens Szyperski. Components vs. objects vs. component objects. In Proceedings
of OOP, volume 1999, 1999. 1

Wolfgang Emmerich and Nima Kaveh. Component technologies: Java beans, com,
corba, rmi, ejb and the corba component model. In Software Engineering, 2002.
ICSE 2002. Proceedings of the 24rd International Conference on, pages 691-692.
[EEE, 2002.

Felix Bachmann, Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred Long,
John Robert, Robert Seacord, and Kurt Wallnau. Volume II: Technical concepts of
component-based software engineering. Carnegie Mellon University, Software Engi-
neering Institute, 2000. 1

Kung-Kiu Lau and Zheng Wang. Software component models. Software Engineer-
ing, IEEE Transactions on, 33(10):709-724, 2007. 2

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The fractal component model and its support in java. Software-
Practice and Ezxperience, 36(11):1257-1284, 2006. 2, 27

Eddy Caron, Frédéric Desprez, David Loureiro, and Adrian Muresan. Cloud Com-
puting Resource Management through a Grid Middleware: A Case Study with
DIET and Eucalyptus. In IEEE, editor, CLOUD 2009: IEEE International Con-
ference on Cloud Computing, Bangalore, India, September 2009. Published In the
Work-in-Progress Track from the CLOUD-II 2009 Research Track. 2, 11, 12

Antonio Carzaniga, Alfonso Fuggetta, Richard S. Hall, Dennis Heimbigner, An-
dre Van Der, and Er L. Wolf. A Characterization Framework for Software Deploy-
ment Technologies. Technical report, Department of Computer Science, University
of Colorado, April 10 1998. 2, 25, 26, 33

Object Management Group, Inc. Deployment and Configuration of Component-
based Distributed Applications Specification, Version 4.0, 2006. An Adopted Speci-
fication of the Object Management Group, Inc. http://www.omng.org/spec/DEPL/,
2015. 3, 26, 29, 33

Alan Dearle. Software deployment, past, present and future. In 2007 Future of
Software Engineering, pages 269-284. IEEE Computer Society, 2007. 2, 25, 26

Raja Boujbel. Déploiement de systemes répartis multi-échelles : processus, langage
et outils intergiciels. These de doctorat, Université de Toulouse, Toulouse, France,
janvier 2015. 2, 3, 25, 29

Francesco Cesarini and Simon. Thompson. FErlang Programming. O’Reilly Media,
Inc., 2009. 2, 58

E. Caron, P.K. Chouhan, and H. Dail. GoDIET: A Deployment Tool for Distributed
Middleware on Grid’5000. In IEEE, editor, EXPGRID workshop. Fxperimental Grid
Testbeds for the Assessment of Large-Scale Distributed Apllications and Tools. In
conjunction with HPDC-15, pages 1-8, Paris, France, June 19th 2006. 3, 26, 27, 34

http://www.omg.org/spec/DEPL/

Bibliographie

23]

[24]
[25]

28]

[29]

[30]

[31]

32]

[33]

[35]

[36]

Zhengxiong Hou, Jing Tie, Xingshe Zhou, Ian Foster, and Mike Wilde. ADEM:
Automating Deployment and Management of Application Software on the Open
Science Grid. In Grid 2009, 10th IEEE/ACM International Conference on Grid
Computing, pages 130-137, Banff, October 13-15 2009. IEEE, IEEE. 26

Chef:, 2015. https://www.chef.io/chef/. 26

Puppet labs: It automation software for system administrators, 2015. https://
puppetlabs.com/. 3, 26

Paul Marshall, Henry Tufo, and Kate Keahey. Provisioning policies for elastic com-
puting environments. In Parallel and Distributed Processing Symposium Workshops
€ PhD Forum (IPDPSW), 2012 IEEFE 26th International, pages 1085-1094. IEEE,
2012. 4

Alessio Gambi, Waldemar Hummer, Hong-Linh Truong, and Schahram Dustdar.
Testing elastic computing systems. Internet Computing, IEEE, 17(6):76-82, 2013.
4

Alan G Ganek and Thomas A Corbi. The dawning of the autonomic computing
era. IBM systems Journal, 42(1):5-18, 2003. 5

J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):41-50, 2003. 5, 27, 32, 44

J. Andersson, R. De Lemos, S. Malek, and D. Weyns. Modeling dimensions of self-
adaptive software systems. Software Engineering for Self-Adaptive Systems, pages
27-47,2009. 5

Rogério De Lemos, Holger Giese, Hausi A Miiller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas, Thomas Vogel,
et al. Software engineering for self-adaptive systems: A second research roadmap.
In Software Engineering for Self-Adaptive Systems II, pages 1-32. Springer, 2013.
5, 44

Jeffrey O. Kephart and Rajarshi Das. Achieving self-management via utility func-
tions. IEEE Internet Computing, 11(1):40-48, 2007. 5

Harald Psaier and Schahram Dustdar. A survey on self-healing systems: approaches
and systems. Computing, 91(1):43-73, 2011. 5

Harald Psaier, Florian Skopik, Daniel Schall, and Schahram Dustdar. Behavior Mon-
itoring in Self-Healing Service-Oriented Systems. In Proceedings of the 3/th Annual
IEEE International Computer Software and Applications Conference, COMPSAC
2010, Seoul, Korea, 19-23 July 2010, pages 357-366. IEEE Computer Society, 2010.

Eugen Feller, Louis Rilling, and Christine Morin. Snooze: A scalable and auto-
nomic virtual machine management framework for private clouds. In Proceedings
of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), pages 482-489. IEEE Computer Society, 2012. 5

Edsger W. Dijkstra. Self-Stabilizing Systems in Spite of Distributed Control. Com-
munications of the ACM, 17(11):643-644, 1974. 6, 17, 23, 30

87

https://www.chef.io/chef/
https://puppetlabs.com/
https://puppetlabs.com/

Bibliographie

[37]

[38]

[39]

[40]

[41]

[50]

[51]

88

Andrew S Tanenbaum and Maarten Van Steen. Distributed systems. Prentice-Hall,
2007. 9, 15

Kayhan Erciyes. Distributed graph algorithms for computer networks. Springer
Science & Business Media, 2013. 9, 20

Marco Conti and Stefano Giordano. Mobile ad hoc networking: milestones, chal-
lenges, and new research directions. Communications Magazine, IEEE, 52(1):85-96,
2014. 10

lan F Akyildiz and Mehmet Can Vuran. Wireless sensor networks, volume 4. John
Wiley & Sons, 2010. 10

lan Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.
11

[an Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling

scalable virtual organizations. International journal of high performance computing
applications, 15(3):200-222, 2001. 11

Fran Berman, Geoffrey Fox, and Anthony JG Hey. Grid computing: making the
global infrastructure a reality, volume 2. John Wiley and sons, 2003. 11

lan Foster. Globus toolkit version 4: Software for service-oriented systems. In
Network and parallel computing, pages 2—13. Springer, 2005. 11

Dietmar W Erwin and David F Snelling. Unicore: A grid computing environment.
In Euro-Par 2001 Parallel Processing, pages 825-834. Springer, 2001. 11

Heba Kurdi, Maozhen Li, and Hamed Al-Raweshidy. A classification of emerging
and traditional grid systems. Distributed Systems Online, IEEFE, 9(3):1-1, 2008. 11

F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, E. Jeannot,
S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, B. Quetier, and O. Richard.
Grid’5000: A large scale and highly reconfigurable grid experimental testbed. In
Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing,
GRID ’05, pages 99-106, Washington, DC, USA, 2005. IEEE Computer Society. 11

Mario David, Gongalo Borges, Jorge Gomes, Joao Pina, Isabel Campos Plasencia,
Enol Fernandez-del Castillo, Ivan Diaz, Carlos Fernandez, Esteban Freire, Alvaro
Simén, et al. Validation of grid middleware for the european grid infrastructure.
Journal of Grid Computing, 12(3):543-558, 2014. 11

L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Linder. A Break in the Clouds:
Towards a Cloud Definition. ACM SIGCOMM Computer Communication Review,
39(1):50-55, 2009. 11

P. Sempolinski and D. Thain. A Comparison and Critique of Eucalyptus, Open-
Nebula and Nimbus. In CloudCom, pages 417-426. IEEE, 2010. 12

Sonali Yadav. Comparative study on open source software for cloud computing plat-
form: Eucalyptus, openstack and opennebula. International Journal Of Engineering
And Science, 3(10):51-54, 2013. 12

Bibliographie

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

H. Nakada, S. Matsuoka, K. Seymour, J.J. Dongarra, C. Lee, and H. Casanova.
A GridRPC Model and API for End-User Applications. In GFD-R.052, GridRPC
Working Group, jun 2007. 12

Keith Seymour, Hidemoto Nakada, S. Matsuoka, Jack Dongarra, Craig Lee, and
Henri Casanova. Overview of GridRPC: A Remote Procedure Call API for Grid
Computing. In Manish Parashar, editor, Grid Computing - GRID 2002, Third
International Workshop, volume 2536 of LNCS, pages 274-278, Baltimore, MD,
USA,, November 2002. Springer. 12

Andrew D Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems (TOCS), 2(1):39-59, 1984. 12

Object Management Group. The Common Object Request Broker (CORBA): Ar-
chitecture and Specification. Object Management Group, 1995. 12, 28

Gérard Le Lann. Distributed systems-towards a formal approach. In IFIP Congress,
volume 7, pages 155-160. Toronto, 1977. 13

Osvaldo SF Carvalho and Gérard Roucairol. On mutual exclusion in computer-
networks. Communications of the ACM, 26(2):146-147, 1983. 14

Yuh-Jzer Joung. Asynchronous group mutual exclusion. Distributed computing,
13(4):189-206, 2000. 14

Ousmane Thiare, Mohamed Naimi, and Mourad Gueroui. A group mutual exclusion
algorithm for mobile ad hoc networks. In Imnovations and Advanced Techniques

in Computer and Information Sciences and Engineering, pages 373-377. Springer,
2007. 14

SP Rana. A distributed solution of the distributed termination problem. Information
Processing Letters, 17(1):43-46, 1983. 14

Edsger W Dijkstra and Carel S. Scholten. Termination detection for diffusing com-
putations. Information Processing Letters, 11(1):1-4, 1980. 14, 62

Nissim Francez. Distributed termination. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 2(1):42-55, 1980. 14, 62

Friedemann Mattern. Algorithms for distributed termination detection. Distributed
Computing, 2:161-175, 1987. distributed termination detection, Mattern, DTD,
terminaison, etat global stable. 14

Subbarayan Venkatesan. Reliable protocols for distributed termination detection.
IEEE Transactions on Reliability, 38(1):103-110, 1989.

Jeff Matocha and Tracy Camp. A taxonomy of distributed termination detection
algorithms. The Journal of Systems and Software, 43:207-221, 1998. distributed
termination detection, terminaison.

D.M. Dhamdhere, Sridhar R. Iyer, and E. Kishore Kumar Reddy. Distributed
termination detection for dynamic systems. ParallelCompufing, 22:2025-2045, 1997.
67, 68

89

Bibliographie

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

90

JongBeom Lim, Kwang-Sik Chung, and Heon-Chang Yu. A termination detection
technique using gossip in cloud computing environments. J.J. Park et al. (Eds.):
NPC 2012, LNCS 7513, IFIP International Federation for Information Process-
ing 2012, pages 429-436, 2012. DTD, distributed termination, terminaison, gossip
algorithm, cloud,. 62

Huiling Wu. Termination detection for synchronous algorithms in p systems. In
Proceedings of the International MultiConference of Engineers and Computer Sci-
entists, volume 1, 2014. 14, 62

Ernest J. H. Chang. Echo algorithms: Depth parallel operations on general graphs.
IEEFE Transactions on Software Engineering, (4):391-401, 1982. 14

Fred B Schneider and Leslie Lamport. Paradigms for distributed programs. In
Distributed Systems: Methods and Tools for Specification, An Advanced Course,
April 3-12, 1984 and April 16-25, 1985 Munich, pages 431-480. Springer-Verlag,
1985.

Jean-Michel Hélary, Aomar Maddi, Noél Plouzeau, and Michel Raynal. Parcours et
apprentissage dans un réseau de processus communicants. 1986.

Gerard Tel. Introduction to distributed algorithms. Cambridge university press,
2000. 20

Sukumar Ghosh. Distributed systems: an algorithmic approach. CRC press, 2007.
14, 15, 17, 20

P. Jesus, C. Baquero, and P.S. Almeida. A survey of distributed data aggregation
algorithms. Communications Surveys Tutorials, IEEE, 17(1):381-404, 2015. 14

Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Dependability and its
threats: a taxonomy. In Building the Information Society, pages 91-120. Springer,
2004. 15

Sumit Kumar Bose, Scott Brock, Ronald Skeoch, and Shrisha Rao. CloudSpider:
Combining Replication with Scheduling for Optimizing Live Migration of Virtual
Machines across Wide Area Networks. In CCGRID, pages 13-22. IEEE, 2011. 17

Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed
systems. Software Engineering, IEEE Transactions on, (1):23-31, 1987. 17

Bogdan Nicolae and Franck Cappello. BlobCR: Efficient Checkpoint-Restart for
HPC Applications on IaaS Clouds using Virtual Disk Image Snapshots. May 26
2011.

Bogdan Nicolae, John Bresnahan, Kate Keahey, and Gabriel Antoniu. Going back
and forth: efficient multideployment and multisnapshotting on clouds. In Arthur B.
Maccabe and Douglas Thain, editors, HPDC, pages 147-158. ACM, 2011. 17

Michael Barborak, Anton Dahbura, and Miroslaw Malek. The consensus problem
in fault-tolerant computing. aCM Computing Surveys (CSur), 25(2):171-220, 1993.
17

Bibliographie

[81]
[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]
[90]

[91]

[95]

[96]

Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18-25, 2001. 17, 18

Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation, 105(1):132-158, 1993. 17

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133—
169, May 1998. 18

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374~
382, 1985. 18

Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin Travers. Of Choices,
Failures and Asynchrony: The Many Faces of Set Agreement. Algorithmica, 62(1-
2):595-629, 2012. 18

Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed
computing. Distributed computing, 16(2-3):121-163, 2003.

Attiya Hagit and Ellen Faith. Impossibility Results for Distributed Computing. Syn-
thesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers,
2014. 18

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3):382-401, 1982. 18

Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996. 18

Dinesh P. Mehta and Sartaj Sahni. Handbook Of Data Structures And Applications
(Chapman & Hall/Crc Computer and Information Science Series.). Chapman &
Hall/CRC, 2004. 19

O.R. Aguilar, A.K. Datta, and S. Ghosh. Simulating shared memory in message
passing model. In Computers and Communications, 1991. Conference Proceedings.,
Tenth Annual International Phoeniz Conference on, pages 232238, Mar 1991. 20

Shlomi Dolev, Amos Israeli, and Shlomo Moran. Resource bounds for self-stabilizing
message-driven protocols. SIAM Journal on Computing, 26(1):273-290, 1997. 20

Swan Dubois and Sébastien Tixeuil. A taxonomy of daemons in self-stabilization.
arXw preprint arXw:1110.0334, 2011. 22, 23

Lélia Blin. Self-stabilizing algorithms for spanning tree construction and for the
management of mobile entities. Habilitation a diriger des recherches, Université
Pierre et Marie Curie - Paris VI, December 2011. 22, 30

Ankh Arora and Mohamed Gouda. Closure and convergence: A foundation of fault-
tolerant computing. Software Engineering, IEEE Transactions on, 19(11):1015-
1027, 1993. 23

OSGi Alliance. Osgi service platform core specification, release 6, version 2.0, june
2014. http://www.osgi.org. 26

91

http://www.osgi.org

Bibliographie

[97]

98]

[100]

[101]

102]

[103]

[104]

105

[106]

[107]

[108]

109

92

Sam Malek, Nenad Medvidovic, and Marija Mikic-Rakic. An extensible framework
for improving a distributed software system’s deployment architecture. Software
Engineering, IEEE Transactions on, 38(1):73-100, 2012. 26, 29

Benoit Claudel, Guillaume Huard, and Olivier Richard. TakTuk, adaptive deploy-
ment of remote executions. In Proceedings of the 18th ACM international symposium
on High performance distributed computing, HPDC ’09, pages 91-100, New York,

NY, USA, 2009. ACM. 26

A. Flissi, J. Dubus, N. Dolet, and P. Merle. Deploying on the Grid with DeployWare.
In CCGRID’08: Proceedings of the 8th IEEE/ACM International Symposium on
Cluster Computing and the Grid, Lyon, France, May 2008. 26, 29

Ansible:, 2015. http://www.ansible.com/. 26

Abbas Heydarnoori. Deploying component-based applications: Tools and tech-
niques. In Software Engineering Research, Management and Applications, pages
29-42. Springer, 2008. 26

Jean-Paul Arcangeli, Raja Boujbel, and Sébastien Leriche. Automatic deployment
of distributed software systems: Definitions and state of the art. Journal of Systems
and Software, 103:198-218, 2015. 27

Laurent Broto, Daniel Hagimont, Patricia Stolf, Noel Depalma, and Suzy Temate.
Autonomic Management Policy Specification in tune. In SAC ’08: Proceedings of
the 2008 ACM symposium on Applied computing, pages 1658-1663, New York, NY,
USA, 2008. 27, 29, 34

Sara Bouchenak, Fabienne Boyer, Benoit Claudel, Noel De Palma, Olivier Gruber,
and Sylvain Sicard. From Autonomic to Self-Self Behaviors: The JADE Experience.
TAAS, 6(4):28, 2011. 27

D Garlan, SW Cheng, AC Huang, B Schmerl, and P Steenkiste. Rain-
bow: architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46-54, 2004. 27

Arun Mukhija and Martin Glinz. Runtime Adaptation of Applications Through Dy-
namic Recomposition of Components. In Systems Aspects in Organic and Pervasive
Computing - ARCS 2005, volume 3432 of Lecture Notes in Computer Science, pages
124-138. Springer Berlin / Heidelberg, 2005. 27

Robert France and Bernhard Rumpe. Model-driven development of complex soft-
ware: A research roadmap. In 2007 Future of Software Engineering, pages 37-54.
[EEE Computer Society, 2007. 27

Uwe Afimann, Nelly Bencomo, Betty HC Cheng, and Robert B France. Mod-
els@run.time (dagstuhl seminar 11481). Dagstuhl Reports, 1(11):91-123, 2011. 27

Franck Chauvel, Nicolas Ferry, Brice Morin, Alessandro Rossini, and Arnor Solberg.
Models@ runtime to support the iterative and continuous design of autonomic rea-
soners. In MoDELS@ Run. time, pages 26-38, 2013.

http://www.ansible.com/

Bibliographie

[110]

[111]

[112]

[113]

114]

[115]

[116]

[117]

18]

119

[120]

[121]

[122]

Sebastian Go6tz, Nelly Bencomo, and Robert France. Devising the future of the
models@run.time workshop. SIGSOFT Softw. Eng. Notes, 40(1):26-29, February
2015. 27

Betty HC Cheng, Kerstin I Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A Miiller, Patrizio Pelliccione, Anna Perini, Nauman A Qureshi, Bernhard
Rumpe, et al. Using models at runtime to address assurance for self-adaptive sys-
tems. In Models@ run. time, pages 101-136. Springer, 2014. 28

Filip Krikava, Philippe Collet, and Robert France. ACTRESS: Domain-Specific
Modeling of Self-Adaptive Software Architectures. In Symposium On Applied Com-
puting, Gyeongju, South Korea, March 2014. 28

Thomas Vogel and Holger Giese. Model-driven engineering of self-adaptive software
with eurema. ACM Trans. Auton. Adapt. Syst., 8(4):18:1-18:33, January 2014. 28

Abbas Heydarnoori and Walter Binder. A graph-based approach for deploying
component-based applications into channel-based distributed environments. Journal
of Software, 6(8):1381-1394, 2011. 28

S. Lacour, C. Pérez, and T. Priol. Generic Application Description Model: Toward
Automatic Deployment of Applications on Computational Grids. In 6th IEEE/ACM
International Workshop on Grid Computing (Grid2005), Seattle, WA, USA | Novem-
ber 2005. Springer-Verlag. 29, 30, 34

Loic Cudennec, Gabriel Antoniu, and Luc Bougé. CoRDAGe: Towards Transparent
Management of Interactions Between Applications and Ressources. In STHEC/ICS
2008, Island of Kos, Aegean Sea, Greece, June 2008. 29

W.R. Otte, D.C. Schmidt, and A Gokhale. Towards an Adaptive Deployment and
Configuration Framework for Component-based Distributed Systems. In Proceedings
of the 9th Workshop on Adaptive and Reflective Middleware (ARM’10), 2010. 29

Distributed Management Task Force, Inc. (DMTF). Open Virtualization For-
mat (OVF)., 2015. https://www.dmtf.org/sites/default/files/standards/
documents/DSP0243_2.1.1.pdf. 29

J. Mirkovic, T. Faber, P. Hsieh, G. Malaiyandisamy, and R. Malaviya. DADL:
Distributed Application Description Language. USC/ISI Technical Report# ISI-
TR-664, 2010. 29

Alan Dearle, Graham Kirby, and Andrew McCarthy. A middleware framework for
constraint-based deployment and autonomic management of distributed applica-
tions. arXiv preprint arXiw:1006.4733, 2010. 29

Mohamed El Amine Matougui and Sébastien Leriche. A middleware architecture
for autonomic software deployment. In ICSNC’12: The Seventh International Con-
ference on Systems and Networks Communications, pages 13-20. XPS, 2012. 29

Brice Goglin. Managing the topology of heterogeneous cluster nodes with hardware
locality (hwloc). In High Performance Computing & Simulation (HPCS), 201/
International Conference on, pages 74-81. IEEE, 2014. 29

93

https://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.1.pdf

Bibliographie

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

[131]

132]

[133]

[134]

[135]

94

Eddy Caron, Florent Chuffart, and Cédric Tedeschi. When self-stabilization meets
real platforms: An experimental study of a peer-to-peer service discovery system.
Future Generation Computer Systems, 29(6):1533-1543, 2013. 30

Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. A synchronous self-
stabilizing minimal domination protocol in an arbitrary network graph. IWDC
2003: Distributed Computing, pages 832-832, 2003. 30

Dominik Gall, Riko Jacob, Andrea Richa, Christian Scheideler, Stefan Schmid, and
Hanjo Téaubig. A note on the parallel runtime of self-stabilizing graph linearization.
Theor. Comp. Sys., 55(1):110-135, 2014. 30

Riko Jacob, Stephan Ritscher, Christian Scheideler, and Stefan Schmid. A Self-
stabilizing and Local Delaunay Graph Construction. In Yingfei Dong, Ding-Zhu Du,
and Oscar H. Ibarra, editors, ISAAC, volume 5878 of Lecture Notes in Computer
Science, pages 7T71-780. Springer, 2009.

Riko Jacob, Andrea Richa, Christian Scheideler, Stefan Schmid, and Hanjo T&ubig.
SKIP+: A Self-Stabilizing Skip Graph. J. ACM, 61(6):36:1-36:26, December 2014.

A. K. Datta, L. L. Larmore, and P. Vemula. A Self-Stabilizing O(k)-Time K-
Clustering Algorithm. Computer Journal, 2008. 30

Mandicou Ba, Olivier Flauzac, Bachar Salim Haggar, Florent Nolot, and Ibrahima
Niang. Self-stabilizing k-hops clustering algorithm for wireless ad hoc networks. In
Proceedings of the 7th International Conference on Ubiquitous Information Man-
agement and Communication, page 38. ACM, 2013.

C. Johnen and L. H. Nguyen. Robust Self-Stabilizing Weight-Based Clustering
Algorithm. Theoretical Computer Science, 410(6-7):581-594, 2009. 30

Yihua Ding, James Wang, and Pradip Srimani. Self-stabilizing master-slave token
circulation algorithm in undirected rings and unicyclic graphs of arbitrary size and
their orientations. International Journal of Networking and Computing, 4(1):42-52,
2014. 30

Jalel Ben-Othman, Karim Bessaoud, Alain Bui, and Laurence Pilard. Self-stabilizing
algorithm for efficient topology control in wireless sensor networks. Journal of Com-
putational Science, 4(4):199-208, 2013. 30

N. Mitton, E. Fleury, I. Guerin L., and S. Tixeuil. Self-Stabilization in Self-
Organized Multihop Wireless Networks. In ICDCSW’05: Proceedings of the Second
International Workshop on Wireless Ad Hoc Networking (WWAN), pages 909-915,
Washington, DC, USA, 2005. IEEE Computer Society. 30

Shmuel Katz and Kenneth J Perry. Self-stabilizing extensions for meassage-passing
systems. Distributed Computing, 7(1):17-26, 1993. 30

Felix C Gértner. A survey of self-stabilizing spanning-tree construction algorithms.
Technical report, 2003. 30

Bibliographie

[136]

[137]

138

[139)]

[140]

141]

142]

[143]

[144]

[145]

[146]

[147]

[148]

Stephane Rovedakis. Algorithmes auto-stabilisants de constructions d’arbres cou-
vrants. PhD thesis, PhD thesis, Université d’Evry-Val-d-Essone, 2009. 165, 2009.
30

Alain Bui, Ajoy K Datta, Franck Petit, and Vincent Villain. State-optimal snap-
stabilizing pif in tree networks. In Self-Stabilizing Systems, 1999. Proceedings. 19th
IEEE International Conference on Distributed Computing Systems Workshop on,
pages 78-85. IEEE, 1999. 30

Luc Onana Alima, Joroy Beauquier, Ajoy K Datta, and Sébastien Tixeuil. Self-
stabilization with global rooted synchronizers. In Distributed Computing Systems,
1998. Proceedings. 18th International Conference on, pages 102-109. IEEE, 1998.
30

Shlomi Dolev, Amos Israeli, and Shlomo Moran. Uniform Dynamic Self-Stabilizing
Leader Election. IEEE Transactions on Parallel and Distributed Systems, 8(4):424—
440, 1997. 30

Ankh Arora and Mohamed Gouda. Distributed reset. Computers, IEEE Transac-
tions on, 43(9):1026-1038, 1994. 30

Alain Cournier, Ajoy Kumar Datta, Franck Petit, and Vincent Villain. Snap-
Stabilizing PIF Algorithm in Arbitrary Networks. In ICDCS, pages 199-206, 2002.
30

Pushpinder Kaur Chouhan. Automatic Deployment for Application Service Provider
Environments. PhD thesis, Ecole Normale Supérieure de Lyon, 2006. 34

Arnaud Legrand, Olivier Beaumont, Loris Marchal, and Yves Robert. Optimizing
the steady-state throughput of Broadcasts on heterogeneous platforms. Technical
Report RR-4871, INRIA, July 2003. 34

Benjamin Depardon. Contribution to the Deployment of a Distributed and Hier-
archical Middleware Applied to Cosmological Simulations. Thesis, Ecole Normale
Supérieure de Lyon, october 2010. 34

Erlang/OTP. http://www.erlang.org, 2015. 58

Enrique Vidal, Frank Thollard, Colin De La Higuera, Francisco Casacuberta, and
Rafael C Carrasco. Probabilistic finite-state machines-part ii. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 27(7):1026-1039, 2005. 62

Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
Modeling How Students Learn to Program. In Proceedings of the 43rd ACM Techni-

cal Symposium on Computer Science Education, SIGCSE 12, pages 153-160, New
York, NY, USA, 2012. ACM. 63

Gowtham Bellala, Manish Marwah, Amip Shah, Martin Arlitt, and Cullen Bash.
A Finite State Machine-based Characterization of Building Entities for Monitoring
and Control. In Proceedings of the Fourth ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, BuildSys 12, pages 153-160, New York,
NY, USA, 2012. ACM. 63

95

Bibliographie

[149] Giordano Pola, Maria D. Di Benedetto, and Elena De Santis. Arenas of Finite State
Machines, December 2011. 63

[150] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Jour-
nal of the ACM (JACM), 30(2):323-342, 1983. 63

96

	Introduction
	Systèmes Distribués
	Généralités
	Exemples de systèmes distribués contemporains
	Les grilles informatiques
	Les Clouds
	L'intergiciel de grille et cloud DIET

	Tâches classiques
	Élection de leader
	Exclusion mutuelle
	Détection de propriété globale
	Algorithmes à vagues

	Tolérance aux fautes
	Types de pannes
	Techniques de tolérance aux pannes
	Pannes masquées
	Pannes non masquées
	Algorithmes de consensus

	Modèles
	Systèmes distribués
	Modèle de communication
	Modèle à passage de messages

	Modèle d'exécution
	Auto-stabilisation

	État de l'art
	Outils et frameworks de déploiement
	Description d'architecture logicielle
	Description d'infrastructure distribuée
	Algorithmes auto-stabilisants
	Algorithmes auto-stabilisants à vagues

	Déploiement initial
	Introduction
	Architecture proposée
	Travaux antérieurs

	Contribution pour le déploiement initial
	Description de l'infrastructure
	Description de l'intergiciel
	Description fonctionnelle de l'intergiciel
	Description d'une hiérarchie

	Conclusion

	Algorithmes
	Résumé du chapitre
	Motivation
	Définitions et Notations
	Modèle d'un déploiement

	Algorithme auto-adaptatif
	Spécification de l'algorithme
	Règles définies pour les instances de type Client
	Règles définies pour les instances de type MA
	Règles définies pour les instances de type LA
	Règles définies pour les instances de type SeD
	Résumé des effets des règles

	Preuve d'auto-stabilisation de l'algorithme
	Le modèle de Pannes
	Propriétés d'auto-stabilisation
	Preuve d'auto-stabilisation

	Conclusion

	Simulations
	Résumé du chapitre
	Introduction
	Simulateur
	Fonctionnalités du simulateur
	Créer un déploiement
	Déploiement prédéfini
	Déploiement aléatoire

	Créer un événement de simulation
	Afficher l'état global d'un déploiement

	Description du simulateur
	Représentation des composants de l'intergiciel
	Gestion des états d'un AEF
	Définition de l'état interne d'un AEF
	Identification
	Introspection
	Calcul de l'état

	Définition d'un déploiement stable pour le simulateur
	Transition des états

	Détection d'un déploiement stable

	Configuration matérielle et logicielle
	Simulations et résultats
	Effet d'un changement de topologie par ajout de nouvelles instances
	Effet du changement de topologie par suppression d'instances
	Suppression d'un nombre d'instances
	Suppression d'un pourcentage des instances

	Effet du changement de topologie par alternance d'ajout et de suppression d'instances

	Conclusion

	Conclusion
	Annexes
	Bibliographie

