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Chapitre 1

Introduction Générale

1 Motivation

En Afrique Sud du Sahara (ASS), lamortalité maternelle (MM) est parmi les plus élevées au monde. Laréductiondu
taux de MM de trois quart entre 1990 et 2015, constitue le cinquieme Objectif du Millénaire pour le Développement (OMDS5) ;
malheureusement, les progrés sont lents et 1’atteinte des objectifs fixés est trés hypothétique [20]. Depuis 1990, certains pays
en Asie et en Afrique du Nord ont fait baisser de plus de moitié la mortalité maternelle. Il y a eu aussi des progres en Afrique
subsaharienne (5%). Mais, sur ce continent et contrairement aux pays développés ot le risque a la naissance pour une femme de
mourir pendant une grossesse ou peu de temps apres est de 1 sur 3800, le risque de mortalité maternelle reste tres élevé a 1 sur 39[1].
AT’échelle mondiale, pour la période 1995- 1998, on a enregistré 430 décés maternels pour 100 000 naissances vivantes. En Afrique
subsaharienne, le taux de décésmaternel estestiméa 975 pour 100000 naissances vivantes contre 13 pour les pays industrialisés
(WHO, 2000).

Des études dans diff érents pays d’Afrique subsaharienne ont identifié plusieurs facteurs de risque indépendants qui diff érent
sensiblement entre les auteurs, probablement en raison des diff érences entre les populations d’étude, I’environnement, les variables
recueillies et les méthodes statistiques utilisées. Ainsi, il reste diffi cile de fourniraux professionnels de lasanté des pays d’ Afrique
subsaharienne des recommandations pour identifier les signes ou symptdmes cliniques qui pourraient aider le personnel a
détecterlespatientsahautrisque de décesal’hopital. Pourtant, cescritéres pourrontaider le per- sonneladécidersiunpatientdoit
étretraité commeuncasdehaute priorité parlesprofessionnelsde santé qualifiés dans lessoins obstétricaux d’urgence complets[3].
Bien que les criteres de complications obstétricales graves sont proposés par I’Organisation mondiale de la Santé (OMS) comme
facteurs pré- dictifs appropriés de mortalité maternelle [21], des diffi cultés subsistent dans leur identification, et il y a peu
d’expérience avec’utilisation de ces critéres dans les paysafaible revenu [19].

Du point de I’apprentissage statistique supervisé, tout ensemble de données ou ladistributiona priori de la variable réponse
est significativement diff érente de la distribution uniforme est considéré comme un jeu de données déséquilibrées. Cependant, la
compréhension commune de lacommunauté



1.3 L’état de ’art

statistique est que les données déséquilibrées correspondent a des ensembles de données présentant un déséquilibre significatif, et
dans certains cas un déséquilibre extréme. Plus précisément, cette forme de déséquilibre est considérée comme un déséquilibre
entre les classes de la variable d’intérét. On rencontre trés souvent des déséquilibres d’ordre 1/100, 1/1 000 et 1/10 000 entre les
classes, ou dans chaque cas, une classe domine sévérement une autre. De ce point de vue, on peut aborder 1’analyse de la mortalité
maternelle sous I’angle de données déséquilibrées. On dit que le décés maternel, considéré ici comme étant 1’événement d’intérét,
estunévénementrareparrapportal’événementnon-déces.

2 Classification supervisée

Laclassification supervisée consiste aclasser de nouveaux objets en se basant sur I’observation d’exemples similaires. Elle
est’une destachestypiquesdudomaine du datamining. Icichaque objet estdécrit paruncouple (X, Y)ou X estune vecteurdep
variables aléatoires pouvant étre numériques, discrétes ou catégorielles. La variable X prend ses valeurs dans un domaine X
produit de p domaines numériques, discrétes et catégoriels. La variable réponse Y prend ses valeurs dans le domaine catégoriel Y =
{ys,....ysh
Lorsqu’ontraiteunproblémedeclassificationsupervisée,onconsidére laréalisation{(x;,yi),i=1:n} d’unéchantillon T, =(X4,
Y1), - +,(Xn, Yn)pourconstruireunerégle Ry, : X —Y quipermetune prédiction future de lavariableréponse Y, ense
basantsur1’observationde X seulement.

En général on considére que T, est une suite d’éléments aléatoires indépendantes et identiquement distribuées suivantune loi F
inconnue définie sur X x Y. De plus la régle de classement qui réalise le minimum d’erreur de classement est la régle de
Bayes définie par

R, (x) =argmaxPr(Y =y X =%) yxe X
yeY
Cequicorresponda
_ . Pr(Y =y|X=x) ,

ou Pr(Y =y|X =x) est la probabilité conditionnelle estimée d’appartenance ay.

Parmi les méthodes statistiques de classement on peut distinguer des approches non paramétriques comme la méthode des plus
proches voisins et les arbres binaires de classement et des approches paramétriques comme I’analyse discriminante, la
régression logistique et les réseaux de neurones. Ces approches sont basées sur une évaluation implicite ou explicite de la
distributionconditionnelle Pr(Y =y|X =x).Parexemple, dansuneanalyse discriminante, onsuppose uneloiapriori[Y ]sur
lavariable Y.Puisons’intéresse doncaloide probabilité conditionnelle Pr(YY|X) définie par:

Pr(X =x|Y =y) Pr(Y =vy)

—Pr(Y =y|X=x)= si X est une variable discréte

Pr(X = x|Y = vyi) Pr(Y =vyi)

i=1
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— Pr(Y = ylx - X) - Zf(le = y) Pr(Y = Y)

si la loi de X conditionnellement a Y =y admet une
XY =y Pr(Y =vyi)

i=1

densité
L’analyse est basée sur la possibilité d’estimer la loi de probabilité conditionnelle Pr(X|Y ) a partir des données. Tandis que
lesarbresdeclassementaff ectentlesobjetsdanslesdiff érentesclassesen fonction de I’ estimation non paramétrique de laloi
de probabilité conditionnelle Pr(Y|X).

Apartirdelarelation(l.1),onconsiderelafamilledesréglesdeclassementindexéeparte ]0,+e[ et définie par
Pr(Y = y|X =x) S

t — v o ’ 1.2
RTn(X) Y S By = yIX = 9 vy y (12)
Larelation
X RX, o Pr(Y = v!X = X1) >tet Pr(Y =y|X = X’2) S (X3 X )€ X XX
PriY =y |X =x1) PriY = y|X = x2)

est une relation d’équivalence. Et donc R* (x) est cgnstante sur la classe x Il en résulte que la'végle
RtTn produitune partitionde X ensous-ensemblesdontchacuned’eux estassociéeauneclassede’Y.

Dans ce travail, nous abordons le probléme de la classification supervisée lorsque la variable ré- ponse est binaire et que la
distribution a priori de ses classes est déséquilibrée. On rencontre cette situation dans plusieurs domaines tels que la finance
(identification de transactions de cartes de crédit frauduleuses ou demande de crédits défaillants), 1’épidémiologie (diagnostic de
cellules cancéreuses par la radiographie ou toute maladie rare), les sciences sociales (détection de comportement anormal),
I’informatique (reconnaissance de la forme dans des données d’image ou catégorisation de textes), la bio-statistique
(aff ectation d’un objet & sa famille d’appartenance). Ce probléme n’est pas nouveau dans le domaine du data mining. Il a été
rapporté plusieurs fois dans la littérature que la distribu- tion déséquilibrée des classes de la variable réponse aff aiblit
lourdement le processus d’apprentissage, puisque le classifieurtend ase focaliser sur laclasse prévalente enignorantlaclasse
rare.

3 L’état de I’art

Le probléme de la classification supervisée dans une situation ol 1’événement d’intérét est consi- déré comme un
événement a priori rare n’est pas un probléme nouveau dans le domaine du data mining. Dans un passé récent, plusieurs
méthodes d’apprentissage d’un classifieur sur des données déséquilibrées ont été proposées dans la littérature [8]. Lasituationa
ce jour semble fournir des mé- thodes multiples, chacune d’entre elles améliorant les méthodes existantes en ce qui concerne
certains aspects, mais présentant des limites par rapport a d’autres aspects. Dans de nombreux cas, on ne sait pas clairement
pourquoi une technique doit étre préférée aux autres, et seules des raisons heuristiques
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sont données pour justifier les propositions suggérées.

3.1 Quelques méthodes de classement standard et leurs limites

Dans une telle situation, le but de I’analyse est de produire un classifieur qui off rira une grande précision pour la classe
minoritaire sans pour autant compromettre gravement I’exactitude de la classe majoritaire. Lorsqu’un algorithme d’apprentissage
standard, paramétrique ou non-paramétrique, est appliqué aux données déséquilibrées, les régles d’induction qui décrivent la
classe minoritaire sont souvent rares et plus faibles que celles de la classe majoritaire, puisque la classe minoritaire est souvent a la
fois en infériorité numérique etsous-représentée.

— La régression logistique, traditionnellement connue comme étant ’'une des méthodes paramé- triques les plus usuelles
pour une classification supervisée binaire, a pour objectif de modéliser le paramétre de la distribution de la variable
réponse Y qui, pour une unité i donnée, prend la valeur 1 avec une probabilité x et 0 avec la probabilité 1 - x. 1l est
SUppPosé que

. -
logit(m)=log  — =X'B
l1-=n
ou X est un vecteur de variables aléatoires et p un vecteur de parametres.
Le classement de nouvelles unités pourrait étre obtenu par I’estimation de 7 par

X8
I

1+eX7

ol B est I'estimation du paramétre p.

Onclasse en'Y =1, les unités qui ont estimé w supérieur a un seuil (0.5 par défaut). Et lorsque nous sommes dans une
situation ou la probabilité de la classe d’intérét (Y = 1) de la variable réponse tend vers zéro, alors le paramétre ©
est sous-estimé.

Larégression logistique est ineffi cace lorsqu’il s agit de traiter des données déséquilibrées car la probabilité conditionnelle
de la classe rare est sous-estimée [11].

— Lebutde I’analyse discriminante linéaire consiste a chercher argmaxie pomcy)f(Xly =j) Pr(Y =j), ouf(x]y=j)estladensité
d’uneloigaussienne demoyenne ; pour legroupe jetdematrice de covariance =2 = X. Lorsque les paramétres de
la distribution sont connus, la fonction de discrimination déduite de laregle de décision de Bayes est donnée par

gj(X) = —_lZ(X -W)EMX - ) —% In|2£ - d|n2n-5 InPr(y =j)

ou d est la dimension de Dom(X).
Pourestimer p; etX;, onutilise habituellementlamoyenne empirique ~ et la matrice de
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covariance de 1’échantillon Xj. [’a matrice de covariance de 1’échantillon est donnée par :

n

1 st
5= 1 Ko -t =0l
il i=1

ou n; est le nombre d’observations de la classe y =].

Eneff et Xie et Qiuontmontré dans [22] que I’ensemble d’apprentissage déséquilibré n’a pas d’eff ets sur la matrice de
projection si les deux matrices de covariance de I’échantillon sont identiques. Mais si les deux matrices de covariance
d’échantillonnage sont diff érentes, I’énorme déséquilibre dans la répartition des classes est trés problématique pour
I’analyse discriminante linéaire parce que la probabilité a priori de la classe majoritaire éclipse les diff érences dans les
termes de la matrice de covariance d’échantillonnage. Toutefois, I’hypothése de 1’égalité des ma- trices de covariance
d’échantillonnage est limitée a des cas particuliers dans des scénarios de la vie réelle. Par conséquent, nous devons
considérer I’eff et de I’ensemble d’apprentissage déséqui- libré sur la performance de ’analyse discriminante linéaire dans
la pratique. Et parconséquent on peutdire que ladistribution a priori déséquilibrée de lavariable Y nuita la performance
de I’analyse discriminante linéaire.

— Le classifieur bayésien naif donné par :

'
h(X)=argmaxye 0,13Pr(Y =y) Pr(XiY =y)
i=1
est fortement dominé par la classe y = 0 puisque I’estimation empirique de la probabilité Pr(y = 1) a partir de
I’ensemble d’apprentissage Dy est tres faible. Donc I’utilisation du clas- Sifieur bayésien naif n’est pas envigeasable
puisqu’il produit une sous-estimation explicite de la probabilité conditionnelle Pr(Y = 1|X =x).

—L’objectifdesarbres de décision est de prédire la valeur d’une variable qualitative en fonction d’un ensemble de variables
explicatives de nature quelconque. L algorithme détermine la régle de classement en deux temps : (1) On commence par
partitionner les données selon les moda- lités de I’attribut le plus discriminant, puis onrépéte I’opération localement sur
chaque nceud ainsi obtenu jusqu’a la réalisation d’un critere d’arrét. (2) On dérive larégle de classement en choisissant
dans chaque nceud lamodalité majoritaire de la variable a prédire, en général sim- plement la plus probable, dans chaque
feuille (nceud terminal) de Iarbre. Le principal probléme de cette procédure en présence de données déséquilibrées est
que le partitionnement successif de I’espace des données résulte sur I’observation de moins en moins d’exemples de la
classe rare occasionnant moins de feuilles décrivant la classe minoritaire et successivement des estimations plus faibles de
laconfiance. lIsfournissentainsi unesous-estimationimplicitede laprobabilité
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conditionnelle Pr(Y =1|X =x) via ladistribution des classes au niveau des feuilles terminales [4]. Les arbres de décision
ne sont donc pas appropriés pour construire une régle de classement sur des données déséquilibrées.

— Les réseaux de neurones ne sont pas non plus adaptables puisqu’ils produisent une estimation de la distribution a
posteriori Pr(Y |X=x) quiest fortementdominée par laclasse y =0.

Le principe de classement des diff érentes méthodes énumérées ci-dessus consiste a calculer un score prédictif pour chaque
nouvelle observation puis comparer ce score avec un seuil t fixé a priori. Ce pendant les scores calculés a partir de données
déséquilibrées sonttrésproches de zéro. Parconséquent ils dépassent rarement le seuil t fixé.

3.2 Quelques solutions proposées pour la prise en charge des données déséquili-
brées

Plusieurs travaux ont été consacrés au probleme de classement pour données déséquilibrées et méme dans un passé récent,
que ce soit du point de vue statistique conventionnelle en tant que telle ainsi que de I’apprentissage automatique. Certaines
ceuvres parmi eux envisageront I’amélioration de 1’ajustement des modeles de régression pour produire une fonction de
classification avec un faible biais de prédiction sans perdre des fonctionnalités intéressantes des méthodes classiques comme la
capacité a évaluer la contribution de chaque variable dans les variations de la probabilité de la classe cible (méthodes de
régression) ou de I’identification du motif de risque (arbre de décision). Dans I’en- semble, les méthodes visant a s’attaquer au
probléme de classification sur données dont la distribution de la variable réponse est déséquilibrée peuvent étre divisées en deux
grandes catégories : les mé- thodes préconisant un prétraitement des données et les méthodes intervenant au niveau du processus
d’apprentissage.

— Le prétraitement des données proposé par certaines méthodes pour traiter des données déséqui- librées consiste a simuler un
ensemble d’apprentissage non déséquilibré conditionnellement aux données observées. Les techniques de simulation (ré-
échantillonnage) proposées dans la littéra- ture sont nombreuses et variées. On peut citer la méthode du sur-
échantillonnage avec rempla- cement qui consiste a dupliquer les observations de la classe rare et le sous-échantillonnage
sans remplacement qui consiste a supprimer des observations de la classe dominante. La plupart des méthodes actuelles
sont basées sur ces deux techniques d’échantillonnage. Elles permettent de réduire le degré de déséquilibre de
I’échantillon d’apprentissage et par conséquent améliorer la précision globale du classifieur. Cependant le sous-
échantillonnage peut conduire a supprimer des données capitales pour la construction du classifieur. De méme le sur-
échantillonnage augmente lavraisemblance du modéle ajusté puisqu’il crée des doublons dans I’ échantillon d’apprentissage.
I1 faut noter aussi que le classifieur obtenu & partir de ces deux techniques est fortement dé-
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pendant de I’ensemble d’apprentissage. Pour parer a cette éventualité, de nouvelles stratégies de sélection de nouvelles
observations ont été proposées dans un passé récent. Pour plus de détails on peut consulter les travaux de Lee
(1999,2000)[12, 13], les travaux de Chawal et al. (2002) qui ont proposé la méthode SMOTE (Synthetic Minority
Oversampling Technique) ou bien les travaux de Menardi et al. (2012) qui ont proposé 1’algorithme ROSE (Random
Over-Sampling Exemples)[17].

— Les solutions préconisant un algorithme d’apprentissage sont nombreuses et variées. Parmi les plus utilisées figure celle
qui consiste a modifier le processus d’apprentissage en tenant compte des colts de mauvais classements diff érents. Cette
approche permet de donner plus de poids aux observations de la classe rare. Cette approche est utilisée lorsque la
distribution déséquilibrée des classes est associée a des colts de mauvais classement. Dans ce cas, une régle de classification
minimisant le codt de mauvais classement moyen est établie. Certains classifieurs tels que les réseaux de neurones, les
méthodes de régression, etc., produisent un score représentant le degrés d’appartenance d’une observation du domaine des
covariables aune classe de lavariable réponse. La regle de classement est définie par la spécification d’un seuil & [6]. On
peut faire varier le seuil A de maniére a ce que la régle de classification soit sensible par rapport a la classe faible- ment
représentée. D’autres approches consistent a des techniques d’agrégation comme bagging, boosting ou foréts aléatoires
(random forest), qui combinent plusieurs fonctions de classification avec un grand taux d’erreur individuel pour produire
une nouvelle fonction de classification avec un plus petit taux d’erreur [2]. A ces derniéres, on peut ajouter les méthodes
consistant a as- socier leré-échantillonnagedel’ensembled’apprentissage aveclacombinaisondesclassifieurs[9].

Ces diff érents processus d’apprentissage, bien qu’ils aient la faculté d’améliorer les performances des classifieurs en présence de
la distribution déséquilibrée des classes de la variable réponse, ont le désa- vantage d’étre lourds, et en plus le classifieur obtenu est
sous forme d’une boite noire. 11 est diffi cile (impossible) d’identifier les profils qui ont contribué a la construction du
classifieur.

4 Classification supervisée et regles d’association

Notre objectif est de proposer une méthode d’apprentissage statistique qui fournit un classifieur ef- ficace et permettant
d’identifier les profils pertinents corrélés avec la classe cible de la variable réponse. Pour atteindre cet objectif, nous nous sommes
tournés vers I’apprentissage des régles d’association qui est une méthode bien connue dans le domaine du data mining. Il est
utilisé pour le traitement de grandes bases de données pour la découverte non supervisée de modeles locaux qui expriment des
relations précieuses cachées et potentielles entre les variables d’entrée. En examinant les régles d’asso- ciation d’un point de vue de
I’apprentissage Statistique supervisé, un ensemble pertinent de classifieurs faibles est obtenu a partir duquel on tire une reégle de
classification qui fonctionne bien. Une telle ap- proche n’est pas réellement nouvelle puisqu’elle a déja été prise en compte
dans la littérature de



I.4 Classiftcation supervisée etregles d’association

’apprentissage automatique [14].

Des études récentes dans le domaine du data mining ont proposé une nouvelle approche de clas- sement appelé “classement
associatif" qui a montré des taux d’erreur plus faibles que les algorithmes traditionnels tels que les arbres de décision. Cependant,
parce que le nombre de régles d’association possibles en général est trés grand, les algorithmes sont complexes et sujettes a un
sur-ajustement.

Lorsqu’il s’agit de traiter un probléeme de classification supervisée, on se focalise sur un sous-ensemble particulier de régles
d’association communément appelé "Class Association Rules" (CAR). Quand on utilise les CARs pour classer un nouvel
objet (i.e un objet ou individu qui n’a pas participé a la construction du sous-ensemble), il arrive que plus d’une régle soit
éligible. C’est pour cette raison qu’une relation d’ordre est définie dans I’ensemble des CARs. Parmi les algorithmes de
classement as- sociatif, I’algorithme CBA : ("Classification Based on Associations”)[16], I’algorithme CMAR :("Clas-
sification based on Multiple Association Rules")[15] et I’algorithme CPAR :("Classification base on Predictive
Association Rules")[23] sont les plus utilisés dans la littérature.

L’algorithme CBA génére premiérement un ensemble de régles d’association candidates a I’aide d’un seuil de support
minimum et d’un seuil de confiance minimum. Ensuite il définit la relation d’ordre suivante sur I’ensemble des régles
candidates. Larégler; précéde laregler; si

— riaune confiance plus élevée que celle de rj ; ou bien

— si leurs confiances sont égales, ri a un support plus élevé que celui de rj ; ou bien

— si leurs confiances et leurs supports sont égaux deux a deux, r; est généré avantr;.

Pour prédire la classe d’un nouvel objet, la premiére régle vérifiée par I’objet est choisie pour la prédiction.

L’algorithme CMAR est similaire a I’algorithme CBA par la méthode de générer I’ensemble des régles candidates mais aussi par
larelation d’ordre établie sur ce dernier. Leur diff érence majeure se situe au niveau de la procédure d’élagage et le principe de
classement d’un nouvel objet. Au niveau de la procédure d’élagage, I’algorithme CMAR utilise une structure d’arbre plus
effi cace [7] et un test du chi2 (x?) pour élaguer les régles redondantes et les informations bruyantes. Au niveau du principe de
classement, CMAR sélectionne le sous-ensemble de régles vérifiées par le nouvel objet.

— si toutes les régles du sous-ensemble ont la méme classe, I’objet est aff ecté a cette classe.

— sinon, ondivise lesrégles en groupe selon la classe correspondante et on aff ecte I’objetalaclasse la plus représentée [15].
L’algorithme CPAR combine les avantages du classement associatif et des algorithmes précédents. Au lieu de générer les régles
de la méme fagon que les deux algorithmes précédents, CPAR adopte un algorithme plus général (FOIL) [18] pour générer des
regles & partir des données d’apprentissage. En outre, CPAR génére et teste plusde régles que lesalgorithmes CBAet CMAR pour
éviter de manquer des regles importantes. Pour éviter aussi le sur-ajustement, CPAR calcule la précision attendue appélée
I’estimation d’erreur attendue de Laplace pour évaluer la précision de chaque régle [5]. La précision attendue est définie par

LaplaceAccuracy = (n¢ + 1)/ (Nt + k)
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oukestlenombredesclassesdelavariableréponse,ncestlenombred’observationsdanslaclassec
prédite par la regle et nyt est le nombre total d’observations.
L’algorithme CPARutiliseleskmeilleuresréglespourlaprédictiondelaclassed uneobservation.

La procédure gue nous proposons dans cette thése s’inspire des algorithmes précédemment cités. Nous adoptons la méthode

utilisée dans les algorithmes CBA et CMAR pour générer les régles, mais aussi le test d’indépendance pour élaguer les régles qui
ne sont pas corrélées avec la variable réponse. Nous avons utilisé la mesure de I’entropie pour discrétiser les variables numériques
au lieu de I’utiliser dans la procédure de génération des régles telle qu’elle a été utilisée dans CPAR.
La diff érence majeure entre la procédure que nous proposons et les algorithmes précédents se situe au niveau de la recherche de
I’ensemble optimal des profils qui seront combinés pour construire un classifieur. L’idée principale de la procédure consiste a
utiliser les outils de la statistique inférentielle pour sélectionner un ensemble réduit et optimal de profils. Dans la procédure,
nous avons utilisé des mesures statistiques telles que lasensibilité et la spécificité pour réduire I’ensemble des profils candidats
et ensuite nous avons utilisé la valeur prédictive positive pour sélectionner I’ensemble réduit et optimal de profils qui définiront
un classifieur.
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Chapitre 11

Apprentissage d’un classifieur binaire par regles

d’association

1 Introduction

Dans le présent travail, nous proposons une approche consistant a déterminer les profils, expression d’interactions entre les
covariables, corrélés avec la variable réponse pour construire une fonction de classement. Cette approche est en étroite liaison avec
la notion de régles d’association. Des approches similaires ont été proposées dans la littérature du domaine de I’intelligence
artificielle ces derniéres années [6-8]. L’idée principale consiste a rechercher un ensemble optimal de profils & partir d’un
ensemble de profils fréquents. La stratégie consiste a élaguer les profils redondants et les profils de faible performance en se
basant essentiellement sur les mesures statistiques suivantes : la sensibilité, la spécificité et les valeurs prédictives. Le présent
travail viseainsérer cette approche dans le cadre de lastatistique traditionnelle eta montrer la pertinence de sonapplicationdans
unproblémeréel.

2 Profils et classement basé sur un profil

On considere un couple de variables aléatoires (Y, X), ou Y est une variable de Bernoulli et X = (X;)j=1:p est une suite
finie de p variables aleatoires ou chaque X; est une variable non numérique a ¢; modalités mp gy, h(j) =1:q5;j =1:p.

2.1 Profil

. 2
Déftnition 1. Onappelleprofiltoutesuitefinied’événements X; =Mngj) e J,ouJ c 1:petmp)

est une modalité de la variable X;.

P2
Lalongueurduprofil XJ mh(J) estegalealatalIIe(cardmaI)del ensembleJc1:p.Pour
S|mpI|ﬁer Ie%notatlons dans lasuite, on ecrlt m’” pour de3|gner la n%odallte m h(i) delavariableX;
J
eronnote M=, . ) pourdésignerleprofils Xj=Mhg) €’
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Un profil peut étre vu comme la réalisation conjointe de |J| variables (Xj)je ;. Plus la taille du profil est grande, plus le
nombre de variables conjointement réalisées augmente. Dans le domaine de I’intelligence artificielle et de I’apprentissage

automatique, un profil est plus connu sous le nom d’item-
z

set. Un profil de taille k est un k-itemset. Un profil m
d’une interaction entre les diff érentes variables non numériques (X,),eg qui le définissent. La taille

d’un profil est équivalente & la complexité d’une interaction dans un modele paramétrique tel que la régression logistique. La
gestion des interactions existant entre les covariables est I’un des avantages d’un profil par rapport aux modeles paramétriques.
Un profil est pertinent lorsque sa probabilité d’occurrence est significative.

. z . z . z
Déftnition 2. Soient mx'h et mX;] i d deux profils. On dit que m”

peut étre compris comme 1’expression

leL h jeJ estemboité dans

. >
m’é' L si les conditions suivantes sont vérifiées.

a) LcJ N
b) vleL vhe {l:q) 3 1€ J,3 ke {L:q;} tel que m™ :th

IIs sont disjointssi LN J=0.

2.2 Classement associé a un profil et parametres de performance

On peut associer & tout profil U = m” h e une fonction indicatrice (-, U ) définie par :

oXU)= Ll KE (X)
jea G =Mh

Par définition o(-, U ) est un classifieur binaire. (X, U ') = 1 si tous les événements [X; = ij] sont conjointement réalisés. Dans le domaine

de I'intelligence artificielle, on appelle couverture du profil

. z 2 la
U=m ‘ je 3 la probabilité Pr{o(><,U) =1} et on appelle support du profil U = m h e
probablllte Prio(X,U)=1Y=1}.

Dans cette analyse, nous nous plagons dans le cadre de la statistique pour aborder le probléme. A chaque profil U, un seul
classifieur o(X, U) lui est associé. Par la suite, on peut remarquer que la pertinence d’un profil est étroitement liée avec la
performance du classifieur qui lui est associé. Ainsi on peut donc utiliser les indicateurs de performance des classifieurs
associés pour sélectionner un ensemble réduit de profils pertinents dont on se servira pour construire une régle de classement
effi cace. Cependant plusieurs indicateurs de performance ontété proposés dans la littérature pour évaluer les performances d’un
classifieur donné. Parmi les plus utilisés figure I’erreur de classement. L erreur de classement Err(U, Y') d’un classifieur (X, U)
engendré parun profil U est définie par :

Err(U, Y) =Pr{o(X, U) f=Y }=Pr{e(X,U)=1,Y =0} + Pr{o(X,U) =0, Y =1}
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On peut en déduire alors 1’expression suivante :
Err(U, Y)=Pr{Y=1}+Pr{o(X,U) =1} - 2Pr{Y =1, (X, U) =1}

Onconstate que ’erreur de classement estgouverné par le support Pr{Y =1,¢(X,U)=1} duprofil U. L’erreur de classement est
une fonction décroissante du support du profil. Pour deux profils de méme couverture, I’erreur de classement décroit avec le
support des profils. Par conséquent, plus le support du profil est élevé meilleur est le profil. On s’intéressera alors aux profils
pour lesquels les classifieursassociésréalisentdesprobabilitésPr(Y =1,¢(X,U)=1)supérieursaunseuilso.

Pour un classifieur binaire, on considére en particulier la sensibilité et la spécificité définie par

Pr(p(X,U)=1,Y =1)
Pr(Y = 1)

Sensib(U, Y ) =

Pr(o(X,U)=0,Y =0)
Pr(Y = 0)

Spécif(U, Y) =

Onobserve que lasensibilité croftaveclaprobabilité Pr(o(X,U)=1,Y =1). Deuxautres pa- ramétres pourrontaidera
I’évaluation de la qualité du classifieur (X, U) donc a la sélection du classifieur dans un ensemble de classifieurs : la valeur
prédictive positive (VPP) et la valeur prédictive négative (VPN).

VPP(U,Y)= Pr(p(X,U)=1,Y =1)
Pr(e(X, U) =1)
Pr(e(X,U)=0,Y =0)
Pr(e(X, U) = 0)

VPN(U,Y)=

On peut établir les relations suivantes :

Pr(o(X,U)=1)

Sensib(U,Y)=VPP(U,Y) PIY = 1)

Pr(p(X,U)=1) 1-
Pr(Y =1)
Pr(o(X,U)=1)
Pr(o(X,U)=0)
Pour deux profils U; et U, de méme probabilité d’occurrence (couverture), la spécificité croit avec la valeur prédictive
positive du classifieur. Il en résulte que parmi les profils U de méme couverture Pr(o(X,U)=1), on pourras’intéresser & Ceux
pourlesquelslesvaleursprédictivespositivesdesclas- sifieurs associés sont au dessus d’un seuil ¢y .

Spécif(U,Y)=1-[1-VPP(U,Y)]

VPN(U,Y)=[1-VPP(U,Y)]

La valeur prédictive positive d’un profil est communément appelée confiance dans le domaine de
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Chapitre II. Apprentissage d’un classifteur binaire par regles d’association

I’intelligence artificielle et de 1’apprentissage automatique. En plus de la valeur prédictive positive (VPP) et de la valeur
prédictive négative (VPN), on peut aussi baser la sélection des profils sur les paramétres suivants :
Le rapport de vraisemblance positif du profil U que nous notons par RV P () est défini par :

Pr(e(X,U)=1]Y =1)
Pr(o(X,U)=1]Y =0)

RVP(U,Y)=

onaalors

P{Y =0} Pr{p(X,U)=1,Y =1}
Pr{Y=1}Pr{o(X,U)=1,Y =0}

RVP(U,Y) =

VPP(U,Y)  Pr{Y=0}
1-VPP(U,Y)Pr{Y =1}

Le rapport de vraisemblance négatif du profil U que nous notons par RV N() est défini par :

_P(o(X,U)=0]Y =1)

RVN = Pr(p(X,U)=0]Y =0)
onaalors
RVN(U,Y) = P{Y =0} Pr{o(X,U) =0} - Pr{p(X,U)=0,Y =0}
Pr{Y =1} Pr{ep(X,U)=0,Y =0}

1-VPN(U,Y)Pr{Y =0}
VPN(U,Y)  Pr{Y =1}

Sensibilite(U, Y)
1- Specificite(U,Y)
sifieur ¢(X, U ) a de meilleurs indicateurs de performance que le classifieur de méme sensibilité qui

consisteaclasserpositiveauhasardtoutenouvelle observation.C’estadiresurunecourbeROC[2], la courbe du classifieur
o(X, V) se situe au dessus de la premiere bissectrice.

OnaaussiRVP(U,Y)= . Etdonc RV P (U, V) > 1 entraine que le clas-

Le risque relatif du profil U que nous notons RR() est défini par :

Pr(Y =1jo(X.U)=1)
Pr(Y =1|p(X,U)=0)

RR(U,Y)=

On peut établir que

1-Pr{p(X.U)=1}
Pr{Y=1}-Pr{Y=1¢(X U)=1}

RR(U,Y)=VPP(U,Y)

Notons par tt; le groupe d’objets vérifiant le profil U et tty le groupe d’objets ne vérifiant pas le profil
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I1.2 Proftls et classement basé sur un proftl

U . Le risque relatif est une mesure statistique qui permet de comparer ]f probabilité d’occurrence

de I’événement [Y = 1] dans tt; par rapport  tto. Le profil U = m™! h el est un profil a risque

[4] pour Y si le risque relatif excéde un seuil T donné. La probabilité d’occurrence de I’événement

[Y = 1] dans tt; est T fois plus importante que la probabilité d’occurrence de ’événement [Y = 1] dans tto. Dans la suite,
nous nous intéresserons alors aux profils U pour lesquels la probabilité d’oc- currence de [Y = 1] dans tt; est t fois plus
importante que laprobabilité d’occurrence de [Y = 1] danstto. Pardéfaut le paramétre test supérieuraun (t>1). Le sous-
ensemble de profils U pour lequel la probabilité conditionnelle Pr([Y = 1]|[o(Xi, U) = 1]) est plus élevée que la probabilité

condi- tionnelle Pr([Y = 1]|[o(X;, U) = 0]) constitue un ensemble potentiel pour construire un bon classifieur.

Les critéres conventionnels d’évaluation utilisés, tels que la précision globale ou le taux d’erreur, ne fournit pas
sufii samment d’informations dans le cas de I’apprentissage déséquilibré. En eff et, des mesures d’évaluation plus performantes,
telles que les courbes ROC (receiver operating characteristc), les courbes de précision-sensibilité et les courbes de codts, sont
nécessaires a I’évaluation concluante d’un classifieur en présence de données déséquilibrées. L’expression de 1’ aire en dessous de
la courbe ROC d’un classifieur généré par un profil U est donnée par :

0 §Sgnsib(u,Y)+Spécif(U,Y)) si Sensib(U,Y)+Spécif(U,Y) =1
AUC(U,Y)=
- 1QSensib(U,Y)+Spécif(U,Y)) si Sensib(U,Y ) + Spécif(U,Y) <1

L’aire sous la courbe ROC (AUC) est une mesure utile pour évaluer la performance d’un profil. La comparaison des AUC de
diff érents profils peut établir une relation de domination entre les profils. On peut I’ utiliser alors pour la sélection d’un sous
ensemble optimal de profils.

A partir de cette section, il apparait clairement que les principaux paramétres d’apprentissage d’un classifieur basé sur un
ensembleoptimal de profilssontlesupportetlavaleurprédictive positive. lls permettentdegéreralafoisl’erreurdeclassementet
lasensibilité du classifieur. Dans toute lasuite, nous nous intéressons aux profils dont le support est supérieur a un seuil s et la
valeur prédictive positive (confiance) est supérieure a Co.
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Dans la littérature de la classification associative (classification supervisée basée sur les régles d’association), plusieurs
mesures de performance ont été proposées pour ’extraction de regles d’asso- ciation [3]. Une étude comparative exhaustive de
plusieurs mesures de performance a été menée dans [9]. La plupart des mesures de performance sont destinées a découvrir les
profils les plus fréquents. Raison pour laquelle la majeur partie d’entre elles ne sont pas appropriées lorsqu’il s’agit de traiter un
probléme de classification supervisée sur des données déséquilibrées. Le support et la confiance restent les mesures de performance
les plus utilisées dans les algorithmes d’extraction des régles d’association basés sur la sélection des profils fréquents. Dans ces
algorithmes, généralement le support est utilisé pour trouver les profils fréquents suivant sa propriété d’anti-monotonicité [1, 4].
Quant & la confiance elle est utilisée pour générer les régles a partir des profils fréquents et a les filtrer a I’aide d’un seuil de
confiance minimum.

Selon ses propriétés, chaque mesure est utile pour certaines applications, mais pas pour d’autres [12]. Ces mesures peuvent
produire des informations contradictoires sur I’intérét et la pertinence d’un profil. Un exemple bien connu d’une telle mesure
controversée est le support. D’une part, il est grandement utilisé a des fins de filtrage dans les algorithmes d’extraction [1, 10],
puisque sa propriété d’anti-monotonicité simplifie le vaste ensemble de profils qui doit étre exploré. D’autre part, il a
presque tous les défauts qu’un utilisateur souhaite éviter par exemple la variabilité de la valeur sous 1’hypothése
d’indépendance [11].

A notre connaissance, seuls la sensibilité connue sous le nom de support local, le risque relatif et I’odds ratio ont été
utilisés pour la recherche d’un ensemble optimal de profil dans le cadre d’un probléme de classification supervisée sur des
données déséquilibrées par Li et al.[5]. En présence de données déséquilibrées, le support Pr{io(X,U)=1,Y =1} d’un profil U
serait guére fréquentlorsque la classe d’intérét {Y =1} est rare. C’est pourquoi Li et al. ont définit le support local (sensibilité)
Pr{o(X,U) =1|Y =1} comme étant le support d’un profil dans le groupe d’observations vérifiant
{Y =1} puisque le support local vérifie la propriété d’anti-monotonicité du support. Ainsi un profil U est fréquent lorsque son
support local est supérieure a un seuil minimum fixé. Leurs résultats ont montré que la sensibilité et le risque relatif sont des
mesures statistiques pertinentes pour la sélection de profils optimaux lorsqu’on traite des données déséquilibrées.

Les algorithmes d’extraction de régles d’association basés sur les profils fréquents produisent en général un vaste ensemble
de régles d’association dont la majeur partie sont triviales et sans intéréts. Pour construire un classifieur performant a partir du
vaste ensemble de regles d’association explorées, nous allons donc établir une stratégie d’élagage des profils redondants et une
stratégie de réduction de I’ensemble des profils fréquents et nonredondants.
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2.3 Profils redondants et sélection de profils

Al’instar des méthodes standards de classement, la procédure de sélection de profils que nous proposons s’intéressera en
particulier aux profils qui sont corrélés avec la variable réponse.
>
Xj

Proposition 1. Soient U = “mX etU' = m

h __ deux profils. Si U est emboité dans U
leL jed

alors :
1. Pr{e(X,U)=1,Y =1}=Pr{e(X,U)=1Y =1}
2. Pr{p(X,U)=0,Y =0}<Pr{p(X,U)=0,Y =0}
Preuve.  Pour simplifier les expressions, on note (X, U) par pu et p(X,U’) par pu-.
Par hypothése U " est emboité dans U donc ona
{pu=1}> {pu-=1}et{pu=0}c {pu- =0}

On en déduit que :
{foo =12 {pu  =1}=>{pu =1,Y =1}2 {pu-=1,Y =1}> Pr{py =1,Y =1} 2Pr{pu- =1,Y =1}
{pu =0}c {pu-=0}= {pu =0,Y =0}c {pu-=0,Y =0}= Pr{py =0,Y =0}=<Pr{py- =0,Y =0}

.z .Uz =
Déftnition 3. Soient U = m™ U= m9 . s
h leL h i€J deux profils tels que U soit emboité dans
U. Ondit que le profil U" est redondant par rapport a U, si le(s) indicateur(s) de performance de la fonctiondeclassemento(-,U

)générée par le profil U est (sont) plus élevé(s) que le(s) indicateur(s) de performance de la fonction de classifieur (-, U")
générée par le profil U'.

.z .S
Proposition 2. Soient U = m™' o U= md h e s deux profils. Si U’ est emboité dans U
j

alors la valeur prédictive positive du classifieur généré par le profil U est comprise entre

- . PH(Y =Le(X,U)=1)=Pr(Y = Lo(X,U)=1)
Min VPP(U,Y),

Pr(p(X,U)=1) = Pr(e(X,U") =1)

et
- . >
Max VPP(U.Y), Pr(Y =1,0(X,U)=1)-Pr(Y =l,(p§X,U)=1)
Pr(e(X, U)=1) = Pr(e(X, U) =1)
Preuve. On a
VPPU.Y)= Pr(Y =1, (X, U) = 1)
Pr(p(X,U)=1) '
VPP (U, Y) = Pr(Y =1,p(X,U) =1,9(X,U)=1) Pr(Y =1 9(X, U) =1, ¢(X,U)=0)
' Pr(p(X,U) = 1) Pr(p(X,U)=1)
Pr(Y =1, p(X,U") =1) PriYy=1,9(X, U)=1) - Pr(¥ =1, p(X, U) =1, (X, U Y =1)
- Prip(X,U)=1) Prip(X,U)=1) 5 5
- vPPpP (U’ Y)Pr(ga(x, u)=1) + Pr(Y =1,9(X,U)=1)-Pr(Y =1,p(X,U") =1) L= Pr(p(X, U") = 1)
" Pr(p(X,U) = 1) Pr(p(X,U) = 1) —Pr(p(X,U’) = 1) Pr(p(X, U) = 1)

Pr(p(X,U) =1) —Pr(p(X,U") = 1)
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: Pr(p(X,U) =1
On obtient une combinaison convexe de V P P (U, Y ) et Pr{f ~LaXW=1-Pr(Y =Lo(X.U FPls)ar rapport a M
trOGE)=H—PrpOcE)= Pr(p(X,U) =1)

en déduit que V P P (U, Y est comprise entre
Pr(Y =1,p(X,U)=1) Pr(Y=1,p(X,U)=1)-Pr(Y=1,p(X,U)=1)"

Pr(p(X,U)=1) ' Pr(p(X,U) =1) - Pr(p(X,U) = 1)
Pr(p(X,U) = 1) = Pr(p(X,U) = 1)

Min

. Pr(Y =1, (X, U)=1) Pr(Y =1,p(X,U)=1)—Pr(Y =1,9(X,U)=1) *

Prp(X U)=1) Prp(X, U) =1) - Pr(p(X, U) = 1)

En résumé de la proposition 2, on a
Pr(Y =1,¢(X,U)=1)-Pr(Y =1,¢(X,U)=1)
Pr(p(X, U) =1) = Pr(e(X, U) =1)

1. Si VPP(Y,U)<

alors VPP(Y,U)<VPP(Y,U).C’estadire que U’ est redondant par rapport a U. Par conséquent, on peut
éliminerle pluslong puisque sasensibilité estplus faible etsonerreur de classement est plus forte. Parcontre

Pr(Y =1,p(X,U)=1)-Pr(Y =1,¢(X,U)=1)
Pr(e(X, U) = 1) = Pr(e(X, U) = 1)

2. Si VPP(Y,U)>

alors  VPP(Y,U) > VPP(Y,U). Il est préférable de garder le profil U au profit du profil

U, puisque les indicateurs de performance du profil U sont meilleurs que ceux du profil U.

. > . z
Proposition 3. Soient U= m*' oL U= md h s deux profils tels que U’ soit embofté dans
U .AlorsPr{o(X,U)=1}=Pr{e(X,U) =1} sietseulement si 1. Pr{ep(X,U) =
1,Y =1}=Pr{p(X,U)=1,Y =1}

2.Pr{p(X,U)=0,Y=0}=Pr{p(X,U")=0,Y =0}
Preuve. Supposons que Pr {py = 1} = Pr{pu-=1}. Ona

Pripo=1}=Pr{pu=1,Y=1}+Pr{pu=1,Y=0} Pr

{pu- =1} =Pr{pu =1,Y =1}+Pr{pu- =1,Y =0}

On obtient
Prioo =1,Y =1}+Pr{pu =1,Y =0} =Pr{pu- =1,Y =1}+Pr{pu-=1,Y =0} (a)

Puisque [pu = 1] c [py = 1] alors
Pr{oo =1,Y =1}-Pr{pu- =1,Y =1}=0 (b)

Prigu =1,Y =0}-Pr{pu- =1,Y =0}=0 (©

On peut déduire de (a), (b) et (c) les égalités suivantes :

Pr{opo=1,Y=1}=Pr{pu-=1Y=1} 1)
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Pr{opu-=1,Y=0}=Pr{py=1,Y=0} (x)
Par ailleurs on a
Pr{pu- =1,Y =0} =Pr{Y =0}-Pr{py’ =0,Y =0} ()
Pripy =1,Y =0}=Pr{Y =0}-Pr{py =0,Y =0} (x %)

En faisant la différence membre a membre des égalités (+ = ) et (x = * ) et en tenant compte de 1’égalité (+ ), on obtient

Pr{pu-=0,Y=0}=Pr{py=0,Y=0} 2)

Supposons maintenant que les égalités suivantes soient vraies :

Priou=1,Y=1}=Pr{pu-=1,Y=1} 1)

Pr{opu-=0,Y=0}=Pr{py=0,Y=0} )

De I’égalité (2) on déduit
Pr{Y=0}-Pr{pu=1,Y=0}=Pr{Y=0}-Pr{pu-=1,Y=0}

On obtient alors les égalités suivantes
Pr{pu=1,Y=1}=Pr{pu-=1,Y=1}Pr

{pu=1,Y=0}=Pr{pyu-=1Y=0}

En faisant les sommes membres & membres des deux égalités on obtient :

Pripu=1,Y=1}+Pr{pu=1,Y=0}=Pr{py=1} Pr
{pu-=1,Y =1}+Pr{pu- =1,Y =0}=Pr{puy’ =1}

D’ou
Pr{pu=1} = Pr{pu- =1}

Lorsqu’on divise par Pr(Y =1) les deux termes de I’égalité 1 de la proposition 3, on obtient que le profil U’ est redondant
par rapport au profil U selon la définition 3. Le méme résultat est obtenu en divisant les deux termes de 1’égalité 2 par
Pr(Y =0).

.2

Corollaire 1. Soient U = m*' U= m9,_ | deux profils tels que U’ soit emboité dans

leL JE
U. Les propositions suivantes sont équivalentes :

1.

Pr{p(X,U) =1} =Pr "o(X,U") = .
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2.

- VPP(U,Y)=VPP(U"Y)

Y Prip(X,U)= 1Y =1} =Pr{p(X,U) = 1Y =1}
3,

-1 VPN(U,Y)=VPN(U',Y)

H Pr{o(X,U) =0,Y =0} =Pr{p(X,U) =0,Y =0}
4,

- RVP(U,Y)=RVP(UY)

Y Prip(X,U)= 1Y =1} =Pr{p(X,U) = 1Y =1}
5.

1 RVN(U,Y)=RVN(U',Y)

YPrip(X,U)=1Y =1} =Pr{p(X,U) = 1Y =1}
6.

1 Err(UY)=Err(U.Y)

YPrip(X,U)=1Y =1} =Pr{p(X,U) = 1Y =1}
7.

. RR(U,Y)=RR(UY)

Pr{o(X,U)=1,Y =1} =Prip(X,U)=1Y =1}

Preuve. Pour simplifier les expressions, on note par ¢(X, U ) par ¢y et (X, U ) par gy - .
1) Montrons que 1. est équivalent a 2.
Supposons que 1. est vrai

D’apres la proposition 3, si Pr {¢py = 1} = Pr {py - = 1} alors

Priopo=1,Y=1}=Pr{pu-=1Y=1}
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Si on divise les termes respectives de cette derniére égalité par Pr {py = 1} et Pr {pu - = 1} respectivement, on obtient

Plou=1.Y=1} Pripu-=1Y=1
Pr {(/)U= 1}
Réciproquement : supposons que 2. soit vrai

Si2.estvraialorsonaVPP (U, Y)-VPP(U,Y)=0
D’ou

Pr{pu- =1}

Ploy=1,Y=1}[Pr{py- =1} = Pr{py = 1}l=0
Pr {pu=1} Pr {pu- =1}
On en déduit que

Pr{pu =1} -Pr{py=1}=0

2) Montrons que 1. est équivalent a 3.
Supposons que 1. soit vrai

On a Pr{py =1}=1-Pr{py =0} et Pr{pu-=1}=1-Pr{py’ =0} Donc

Pr{pu=1}=Pr{pu-=1}= Pr{pyu=0}=Pr {pu- =0}

D’apreés la proposition 3, on a aussi Pr {¢y = 1} = Pr {pu - = 1} entraine que

Pr{pu=0,Y=0}=Pr{pu-=0,Y=0}
En divisant les termes respectives de 1’égalité ci-dessus par Pr {gpy = 0} et Pr {ou - = 0} respectivement, on obtient

Pr{oy =0,Y=0} _
Pr {(pu = 0}
Réciproquement : supposons que 2. soit vrai

Si3.1lestvraialorsVPN (U,Y)—- VPN (U’ Y)=0. On obtient donc

PI’_{QQz 0,Y =0}_
Pr{pu- =0}

Pr{wQ=O.Y=0}[Pr{wQ'=O}—Pr{wg=O}]:0Pr{¢U
=0} Pr{pu- =0}
Il en résulte que
Pr{pu-=0} = Pr{py=0}

1-Pr{pu-=1} = 1-Pr{pu=1}
d’ou

Priou- =1} =Pr{py =1}

3) Montrons que 1. est équivalent a 4.
On suppose que 1. est vrai
Par définition on a

P{Y =0 Pr =1,Y=1
RVP (U, v) SH=0 fou :
Pr{y=1}Pr{Y =0} - Pr{py=0,Y =0}
Et d’aprés la proposition 3, on a Pr {py = 1} = Pr {pu - = 1} entraine que

Pr{opo=1,Y=1}=Pr{pu-=1,Y=1} et Pr{pu=0,Y=0}=Pr{pu-=0,Y =0}
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Donc si on remplace Pr{py =1,Y =1} par Pr{ou- =1,Y =1}et Pr{py =0,Y =0} par Pr{py- =0,Y = 0} dans I’expression de RV
P (U, Y), on obtient

Pr{Y = 0} Pr{ou-=1Y =1}
Pr{Yy=1}Pr{Y=0}-Pr{pu-=0,Y=0}

RVP (U Y)=

D’ou
RVP (U, Y)=RVP (U',Y)

Réciproquement : supposons que 4. soit vrai
Si4.estvraialorsRVP (U,Y)—-RVP (U’ Y)=0. Il en résulte que

Pripy=1Y=1} _ Pripyr=1.Y=1}
Pr{Y =0}-Pr{pu =0,Y =0} Pr{Y =0}-Pr{pu- =0,Y =0}

Puisque Pr{py=1,Y =1} =Pr{pu- =1, Y = 1} on en déduit donc que Pr {py =0, Y =0} = Pr {py =0, Y = 0}. D’aprées la
proposition 3, on a donc
Pr{py=1}=Pr{pu- =1}

4) Montrons que 1. est équivalent a 5.
On suppose que 1. est vrai

p Finiti
ar définition on a PIY =0} Pr{Y=1}-Pripy=1Y=1}

RVN (U, Y)=
Pr{y =1} Pr{pu=0,Y =0}

Et d’aprés la proposition 3, on a Pr {py = 1} = Pr {pu - = 1} entraine que
Pr{opo=1,Y=1}=Pr{pu-=1,Y=1} et Pri{ou=0,Y=0}=Pr{pu-=0,Y=0}

Donc si on remplace Pr{py =1,Y =1} par Pr{pu’ =1,Y =1}etPr{py =0,Y =0} par Pr{pu- =0,Y =0} dans I’expression de RV
N (U,Y ), on obtient

Pr{Y=0}Pr{¥y=1}-Pripu-=1,Y=1}

Pr{Y =1} Pr{pu-=0,Y =0}

RVN(U,Y)=

D’ou
RVN(U,Y)=RVN U',Y)

Réciproquement : supposons que 5. soit vrai
Si 5. estvraialors RV N (U, Y) = RV N (U, Y) =0. On peut en déduire que

P{Y:l}—Pr{(pgzl,Yzl}_Pr{Yz l}—Pr{(ﬂQ'Zl,YZl}_o
Pr{pu=0,Y =0} Pr{pu-=0,Y =0}

Puisque Pr{py=1,Y =1} =Pr{pu- =1, Y = 1}, on obtient donc que Pr {py, =0,Y =0} = Pr{pu- =0, Y =0}. D’ou

Pr{pu=1}=Pr {pu- =1}

d’apres la proposition 3

5) Montrons que 1. est équivalent a 6.
On suppose que 1. est vrai

Ona
Err(U,Y)=Pr{Y =1}+Pr{py =1}-2Pr{py =1,Y =1} 1)
Err(U,Y)=Pr{Y =1}+Pr{pu- =1}-2Pr{pu- =1,Y =1} 2
Si Pr{py =1}=Pr{py’ =1}alors Pr{gy =1,Y =1}=Pr{pu- =1,Y =1} (proposition 3)
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I1.2 Proftls et classement basé sur un proftl

Il en résulte des égalités précédentes que
Err(U,Y)=Err(U’, Y)

Réciproquement : supposons que 6. soit vrai

Si on les différences membre a membres des égalités (1) et (2) ci-dessus, on obtient

Priopu=1}—Pr{pu-=1}=Err(U,Y)—Err(U,Y) +2(Pr{pu=1,Y=1}-Pr{pu-=1,Y =1}

donc si 6. est vrai alors Pr {py =1} = Pr{py-=1} =0

6) Montrons que 1. est équivalenta 7.

On suppose que 1. est vrai
Ona

Priopo=1}=Pr{pu =1} 1-Pr{pv=1}=1-Pr{pu’ =1}
& Pr{py=0}=Pr{pur =0}

alors

P{oy =0} _Pr{py-=0}
Pr {pu=1} Pr{pu- =1}

€]

D’autre part, on a Pr {py = 1} = Pr {pu - = 1}entraine que (a)
Pr{oo=1,Y=1}=Pr{pu-=1,Y =1}
() Pr{ou=0,Y=0}=Pr{pu-=0,Y=0}

d’aprés la proposition 3. Puisque Pr {py = 0} = Pr {pu- =0} et Pr{pyu=0,Y =0} = Pr{pu- =0, Y = 0} alors

Pripu=0,Y=1}=Pr{py-=0,Y=1}

On en déduit que
Pr{oy=1Y=1}_ Pri{py-=1Y=1} @
Pr{gau=0,Y=1} Pr{¢U'=O,Y=l}

En faisant les produit membre a membre des égalités (1) et (2) on obtient

P{@:O}Pr{wgz1,Y=1}:PQQQ'=O}Pr{¢Q'=1,Y=1}
Pr{pu=1}Pr{py=0,Y =1} Pr{pu-=1}Pr{pu-=0,Y =1}

Il en résulte que
RR(U, Y)=RRU ', Y)

Réciproquement : supposons que 7. soit vrai alors RR(U, Y) = RR(U ', Y ) = 0. Donc

VPP (U, Y) VPP(U'Y) _
1-VPN(U,Y) I-VPNU,Y)

d’ouVPP (U,Y)=VPPU',Y).
OnadoncVPP(U,Y)=VPP U ,Y)etPr{pu=1,Y=1}=Pr{pu-=1,Y =1} ll en résulte que

Pr {pu=1} = Pr{pu- =1}
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Chapitre II. Apprentissage d’un classifteur binaire par regles d’association

. 2 . 2
Proposition 4. Soient U= m*' oL U= m™ b ey deux profils tels que U’ soit embofté dans

U.SiPr{io(X,U)=1,Y=1}=Pr{e(X,U")=1,Y =1}alors
1. VPP(U,Y)<VPP(U.,Y)
2. VPN(U,Y)< VPN, Y)

RVP(U,Y)<RVP(U,Y)

RVN(U,Y)2RVN(U,Y)

Err(U,Y)2Err(U,Y)

RR(U,Y)<RR(U,Y)

Preuve. Pour simplifier les expressions, on note par ¢(X,U) par gu et ¢(X,U") par ¢u-.
1) Montrons que VPP(U,Y) <VPP(U,Y)
On a U’ emboité dans U entraine que {pu = 1} > {pu- = 1}. Donc
1 < 1
Pr{ou=1} Pri{ou- =1}

Si Iégalité Pr{ou = 1,Y = 1} = Pr{pu- = 1,Y = 1} est vérifiée alors

Pr {(PU: 1Y = 1} — Pr{(Pu' =1Y = 1}
Pr {ou= 1} Pr {opu= 1}
Priou- =1Y =1}
Pr{pu- = 1} @

On obtient donc
VPP (U, Y)SVPPU'Y)

2) Montrons que VPN(U,Y) < VPN(U,Y)
On a U’ emboité dans U entraine que {pu = 1} > {pu- = 1}. Donc

1 - 1
Pripu- =0} Pr{pu=0}

Par ailleurs si on a Pr{ou = 1,Y = 1} = Pr{pu- = 1,Y = 1} alors
Priopu =0,Y =1}=Pr{pu- =0,Y =1}
On en déduit que
Pr{pu = 0}-Pr{ou =0,Y =0} =Pr{pu" =0}-Pr{ou" =0,Y =0}
donc

1_Pr{q)u= 0,Y =0} _Pr{pu- =0,Y =0}

1

Pr {(pu :0} - Pr{(PU' - 0}
Pr{pu=10,Y =0} < Pr{pu- =0,Y =0}
Pr {pu =0} B Pr{pu- =0}

On obtient donc
VPN(U,Y)SVPVU'Y)
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I1.2 Proftls et classement basé sur un proftl

3) Montrons que RVP(U,Y)=RVP(U'Y)
Par définition on a
1-Pr{Yy =1} Pripu=1,Y =1}

RVPUY) = Pr{Y¥=1}  Pr{Y =0}-Pr{ou=0,Y =0}

1-Pr{Y=1Pr{pu =1Y =1}
Pr{y=1} Pr{ou=1Y=0}

1-Pr{Y =1} Priou=1Y=1}
Pr{Y=1} Pr{eu=1}-Pr{iou=1Y=1}

donc si Pr{pu =1,Y = 1}=Pr{pu- = 1,Y = 1} et U emboité dans U alors
Priou = 1}-Pr{ou = 1Y = 1}2Pr{pu- = 1}-Pr{pu- = 1,Y = 1}

donc
1-Pr{y =1} Priou- =1Y =1}

PriY =1} Pr{pur =1}-Pripu" = 1Y =1}

RVP(U,Y) <

d’ou
RVP (U, Y)<SRVP (U’ Y)

4) Montrons que RVN(U,Y)=RVN(U',Y) Par

définition on a
1-Pr{Y=1}Pr{Y=1}-Pr{pu=1,Y=1}
Pr{y =1} Pr{ou=0,Y =0}

par hypothese Pr{ipu = 1,Y = 1} =Pr{pu- = 1,Y = 1} on a alors

RVN(U,Y)=

1-Pr{Y = }Pr{Y =1}-Priou- = 1.Y = 1}
Pr{Yy =1} Pr{ou=0,Y =0}

RVN(U,Y) =

Par ailleurs U” emboité dans U entraine que Pr{opu = 0,Y = 0}< Pr{pu- = 0,Y = 0}. On en déduit que

1-Pr{Y = }Pr{Y = 1}-Priou- = 1.Y = 1}
Pr{y = 1} Pripu’ =0,Y = 0}

RVN(U,Y) 2
d’ou

RVN (U, Y)2RVN (U’ Y)

5) Montrons que Err(U,Y)ZErr(U,Y) Par
définition on a
Err(U,Y)=Pr{Y=1}+Pr{ou=1}-2Pr{pu=1,Y =1}

Err(U,Y) =Pr{Y = 1}+Pr{pu- = 1}-2Pr{pu- =1,Y = 1}

Par hypothése on a Pr{ou = 1,Y =1} = Pr{pu- = 1,Y = 1} donc

Err(U,Y)-Err(U,Y) =Pr{pu = 1}-Pr{pu- = 1}
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Chapitre II. Apprentissage d’un classifteur binaire par regles d’association

et puisque U’ est emboité dans U alors Pr{pu = 1}2 Pr{pu- = 1}. On obtient donc

Err(U,Y)ZErr(U',Y)

6) Montrons que RR(U,Y) <RR(U,Y)
Ona
Pr{ou=0,Y=1}=Pr{Y =1} - Pr{opu=1Y =1}

Puisqu’on a Pri{pu = 1,Y = 1} = Pr{pu- = 1,Y = 1}, on obtient alors implique aussi
Pripu =0,Y =1} =Pr{Y = 1}-Pr{pu- = 1,Y = 1}
D’ou
Pr{iopu =0,Y =1} =Pr{pu- =0,Y =1}
Puisque que U " est embofité dans U , on en déduit que

Pr{opu=0,Y =1} Pr S Pri{pu- =0,Y =1}

fu=0) * Thrgo =0 @

Si on fait le rapport membre & membre des inégalités (1) et (2), il en résulte que

RR(U, Y)<RR(U',Y)

O

Il découle de la proposition 4 que lorsque les fonctions de classification générées par deux profils emboités ont la méme
sensibilité et des spécificités diff érentes alors la fonction de classification gé- nérée par le profil le plus long a une erreur de
classement plus faible, une valeur prédictive positive (confiance) plus élevée, un rapport de vraisemblance positif plus élevé, un
rapport de vraisemblance négatif plus faible et un risque relatif plus élevé que celui de la fonction de classification générée par le
profil le pluscourt. De plus U emboité dans U implique que lafonctionde classificationgénérée par U a une spécificité plus élevée
que celle de la fonction de classification générée par U. Par conséquent on préférera le profil le plus long puisque ses indicateurs de

performance (sensibilité, spécificité et erreur de classement ) sont meilleurs.

- z z
o 0 . - X
Proposition 5. Soient U= m™

U.SiPr{oe(X,U)=0,Y=0}=Pr {(p(l)e(,LU ) =0,Y =0}alors
1. VPP(U,Y)2VPP(U,Y)
2. VPN(U,Y)2VPN(U,Y)
3. RVP(U,Y)2RVP(U'Y)
4. RVN(U,Y)<RVN(U,Y)
5 Err(U,Y)<Err(U,Y)
6. RR(U,Y)2RR(U'Y)
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I1.2 Proftls et classement basé sur un proftl

Preuve. 1) Montrons que VPP(U,Y) = VPP(U',Y) Par

définition
Pr{opu =1,Y =1} _ Pr{pu=1Y =1}
PI"{(pU:l} Pr{(pU:l,?: [+Pr{(pU: '?:ii[
et
Priou-=1Y =1} _ Priou-=1Y =1}
Pri{pu- =1} Pr{ou- = 1Y = 1}+ Pr{pu- = 1,Y =0}

Comme Pr{pu =0,Y =0} = Pr{pu- =0,Y =0}, on sait que Pr{ou =1,Y =0}=Pr{pu- = 1,Y =0}

et en plus si a, b, ¢ sont des réels positifs et a > c on a® = . On peut déduire de ces deux conditions que
a+b b

c+

Pripu =1Y =1} _Pripu' =1Y =1} (1)
Pripv=1} Priour = 1}

On obtient donc
VPP(U,Y)2VPP(U'Y)

2) Montrons que VPN(U,Y)=2VPN(U',Y) Par

définition

Pr{pu =0,Y =0} _ Pr{ou=0,Y = 0}

Prieu= "0} M{eu=0Y=I}+Pr{ipu=0,Y =

et

Pri{pou- =0,Y =0} _ Pri{ou- =0,Y =0}

Pr{pu- = 0} Pr{ou- =0,Y =1} + Pr{pu- = 0,Y = 0}

Puisque U " est emboité dans U alors Pr {pu- =0,Y =1}2Pr{pu =0,Y =1}.
d’ou

Pr{pu =0,Y =0} S Pr{pu- =0,Y =0}
Priou=0}F " = = Pripu" =0}

puisque Pr{pu- =0,Y =0} =Pr{pu = 0,Y = 0} donc

VPN(U,Y)2VPN(U'Y)

3) Montrons que RVP(U,Y)=RVP(U,Y) Par
définition on a

_1-pPr{y =1} Pripu=1,Y =1}
RVP(U,Y) = Priy=1  Pr{Y =0}-Pr{pu=0,Y =0}
et
RVP(U,Y) = 1=PHY =1 Priou: = 1Y = 1}

Pr{y =1} Pr{Y =0}-Pr{pu’ =0,Y =0}

par hypothése on Pr{pu = 0,Y = 0} = Pr{pu- = 0,Y = 0} donc le signe de RVP(U,Y)-RVP(U’,Y) dépend du signe Pr{pu1
=1Y =1}-Pripur =1Y =1}

or on a le profil U " emboite dans le profil U . Ceci entraine que

Pr{pusr =1,Y =1}-Pr{pu- =1,Y =1}20

d’ou
RVP(U,Y)=RVP (U’ Y)

4) Montrons que RVN(U,Y) <RVN(U',Y) Par
définition
1-Pr{Y=1}Pr{Y=1}-Pr{ou=1,Y =1}

RVN (U, Y)="p v’ ) Pr{eu=0,Y =0}
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Chapitre II. Apprentissage d’un classifteur binaire par regles d’association

et
’ 1-Pr{Y =1}Pr{y =1}-Pri{pu-=1Y =1}
RVNU Y =" v = Pripu” = 0,Y = 0}
par hypothése on Pr{pu =0,Y =0} = Pr{pu- = 0,Y = 0} donc le signe de RVN(U,Y) - RVN(U',Y) dépend du signe Pr
{four =1Y =1}-Pr{pu = 1Y =1}
or on a le profil U " embofte dans le profil U . Ceci entraine que

Pripur =1,Y =1}-Pr{pu =1,Y = 1}<0
d’ou

RVN (U, Y)<RVP (U, Y)

5) Montrons que Err(U,Y) <Err(U’,Y) On

Pr{iou =0,Y =0}=1-Pr{Y =1}-Pr{ou =1}+Pr{eu =1,Y =1}
Priou =1,Y =1}=Pr{pu =0,Y =0}+Pr{pu = 1}+Pr{Y =1}-1

si on remplace Pr {pu= 1, Y = 1} par son expression dans Err(U, Y ), on obtient

Err(U,Y)=-2Pr{pu=0,Y =0} - Pr{ou=1} - Pr{Y = 1} - 2

de méme on a
Err(U,Y) ==2Pr{pu =0,Y =0}-Pr{pu- = 1}-Pr{y =1}-2

et puisque on a par hypothése que Pr{pu = 0,Y = 0} = Pr{pu- = 0,Y = 0} alors
Err(U,Y)-Err(U,Y) =-Pr{ou = 1} + Pr{pu- = 1}
par ailleurs =Pr{pu = 1}+ Pr{pu- = 1} <0 puisque U" est emboité dans U. d’ou

Err(U,Y)-Emm(U’,Y)<0

6) Montrons que RR(U,Y) 2RR(U',Y)

On a
Pr{opu=0,Y=1} _Pr{pu=0}-Pr{eu=0,Y =0}
Pr {ou =0} Pr {ou =0}
et
Priou- =0.Y =1} _ Pr{eu- = 0}=Pr{ou- =0.Y =0}
Pripu- = 0} Pripu- =0}
en tenant compte que Pr{opu =0,Y =0} =Pr{pu- =0,Y =0} et Pr{iopu =0}<Pr{ou- =0}, 0ona

Priou =0,Y =0} _ Pripu" =0,Y =0}
Pripu =0} Pr{ou- = 0}

et il s’en suit que
Pripu =0,Y =1} _Pr{pu- =0Y =1}
Pr {ou= 0} B Pr{pu- = 0}

d’ou
Pr {pu = 0} S Priou- = 0}
Pr{pu=0,Y =1} B Pr{pu- =0,Y =1}

en faisant le produit membre & membre des inégalités (1) et (2) on obtientque RR (U, Y)<RR (U, Y)

)
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O

[Irésulte de laproposition 5 que sionadeux profils U et U emboités tels que les fonctions de classification qui leurs sont
associées ont des spécificités égales alors non seulement la sensibilité de la fonction de classification générée par U est plus élevée a
cause de I’emboitement mais aussi son erreur de classement est plus faible, sa valeur prédictive positive (confiance) est plus
forte, son rapport de vraisemblance positif est plus élevé, son rapport de vraisemblance négatif est plus faible et son risque relatif
est plus élevé que ceux de la fonction de classification générée par U'. On peut élaguer le profil U’ qui est de plus grande taille.
Cette proposition aété utilisée par Jiuyong Lietal [4] en premier en se basant sur la propriété anti-monotone du support.

3 Regles d’association binaires et classifieur associé a un profil

3.1 Regle d’association

.2z . z
Déftnition 4. Considérons U = m™ . gt U = mY . deux profils disjoints. Une régle
leL J
d’association est I’expressigg-d’une_implication de la forgnesU 3 U’ signifiants gue les probabilités
A : z - _ Y z o
Pr U Xe=mf =1 etPr 1 X; = mif’ =1 | rXi=mX =1 sont significatives
ke LuJ je J le L

(supérieurs aux seuil s et co respectivement). Onappelle U ’antécédent de larégleet U’ laconséquence de la regle.

Co S S . [ » Y
Unerégled’associationU — U'exprimelefaitquenonseulementilyauneforteprobabilitéqueles événements - 1 Xj =

h h

j€J leL

X_Z Y - z

m™ =10et 1 Xy =m* =11 aient lieu simultanément mais aussi

Y - .z
que 1’événement 1 Xj=m"™ =1 aitune forte probabilité d’occurrence conditionnellement a

‘ jed
Y - z
I’événement 1 X =m* =1
le L
. > - x 2
2 o P A ) . [N - X _ j

Déftnition 5. Considérons une regle d assgczlatlon U—-UotU= m™ holeL gtU=m ‘h 1. La

.2
probabilité pr Yoy Xe=m* =1 estappelélesupportdelaregled’associationetlaprobabilité

s PR 2z
. Y - " Yo 3
conditionnellepr X =m To=1 | 1 X =m*X =1 estsaconfiance.
jed h le L | h
jed le L

Ilapparaitque le classifieurassociéaun profil estune implication de laforme [(X,U)=1]— [Y =1] deslorsqu’on
exigequePr(o(X,U)=1,Y =1)>sp etPr(Y =1|o(X,U)=1)>co. Une telle régle d’association est ditebinaire.
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3.2 Classifieur basé sur un ensemble de profils

Dansun apprentissage statistique par régles d’association binaires, I’apprentissage automatique se résumeendeuxétapes. La
premiereconsisteagénérerl’ensembledesprofils U, définipar:
- i 5 2

Ui= U= mY 3 3 POV = 100K, U) = 1) >0, Pr(Y = 1]o(X, U) = 1) > ¢

ol A = (S0, Co) est le paramétre qui spécifie I’ensemble U;.
Le parametre co représente le seuil de confiance minimum et le paramétre so représente le seuil de support minimum. Dans la
pratique, on pourra étendre le paramétre A en ajoutant le paramétre ro représentant le seuil de risque relatif minimum et le

paramétre I, représentant lalongueur ou taille maximale d’un profil.
La deuxiéme étape consiste a implémenter I’ensemble des fonctions indicatrices tt; défini par :

tt,={oX,U)U€E U;}

Lorsque la probabilité de la classe d’intérét tend vers zero, la sensibilité du classifieur associé a un profil U (i.e., (X, U)) peut
étre faible. En considérant un ensemble de profils, on peut espérer aboutir & un classifieur avec une meilleure sensibilité sans trop
détériorer le niveau de spécificité. Etant donné un ensemble de profils tt; pour un A fixé, la fonction

-
eX, A, k) =10 | o(X,U) >k ke {1, [Usl}
Uey,

définit également un classifieur.

4 Conclusion

L’objectif de cette analyse est de défendre une méthodologie permettant de mettre en place une fonction de classement
binaire lorsqu’il s”agit d’une tache de classification supervisée ou la classe cible estun événementrare. Cet objectifestatteint parle
recours & des regles d’association pour explorer les données afin d’identifier les profils qui sont corrélés avec la classe cible.
Des profils pertinents sont sélectionnés sur la base de leurs sensibilités et spécificités, de leurs valeurs prédictives positives ou
négatives, de leurs rapports de vraisemblance positifs ou négatifs et de leurs risques relatifs pour constituer un ensemble
optimal de profils.

Dans la suite, nous allons mettre en place un algorithme d’apprentissage statistique pour établir une régle de classement
(classifieur) basé sur un ensemble optimal de profils lorsque : (1) nous disposons d’un ensemble d’observations indépendantes et
identiquement distribuées; (2) les observations ne sont pas indépendantes et identiquement distribuées.

32



[1]

2]
(3]

[4]

5]

[6]

[7]
(8]

Bibliographie

Agrawal, R., and Srikant, R. Fastalgorithms for mining association rulesin large databases. In Proceedings
of the 20th International Conference on Very Large Data Bases (San Francisco,
CA, USA, 1994), VLDB ’94, Morgan Kaufmann Publishers Inc., pp. 487-499. 18

Fawecett, T. Anintroduction to ROC analysis. Pattern Recogn. Lett. 27, 8 (2006), 861-874. 16

Lenca, P., Meyer, P., Vaillant, B., and Lallich, S. On selecting interestingness measures for
association rules : User oriented description and multiple criteria decision aid. European Journal of Operational
Research 184, 2 (2008), 610-626. 18

Li, J., Fu, A. W.-c., and Fahey, P. Efficient discovery of risk patterns in medical data.
Artificial intelligence in medicine 45, 1 (2009), 77-89. 17, 18, 31

Li, J., Fu, A. W.-c., He, H., Chen, J., Jin, H., McAullay, D., Williams, G., Sparks,
R., and Kelman, C. Mining risk patterns in medical data. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining (New York,

NY, USA, 2005), KDD 05, ACM, pp. 770-775. 18

Li, W., Han, J., and Pei, J. CMAR : accurate and effi cient classification based on multiple class- association
rules. In ICDM 2001, Proceedings IEEE International Conference on Data Mining, 2001 (2001), pp.
369-376. 13

Liu, B., Hsu, W., and Ma, Y. Integrating classification and association rule mining. pp. 80-86. 13

Liu, B.,, Ma, Y., and Wong, C.-k. Classification using association rules : Weaknesses and
enhancements. In Grossman, R. L., et al (eds), Data Mining for Scientific and Engeneering
Applications. Kluwer Academic Publishers (2001), 591-601. 13

33



I1.3 Regles d’association binaires et classifteur associé a un proftl

[9] Ohsaki, M., Kitaguchi, S., Okamoto, K., Yokoi, H., and Yamaguchi, T. Evaluation of
rule interestingness measures with a clinical dataset on hepatitis. In Knowledge Discovery in Databases : PKDD
2004, J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, Eds., no. 3202 in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2004, pp. 362-373. 18

[10] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. Discovering frequent closed itemsets for
association rules. In Proceedings of the 7th International Conference on Database Theory (1999),
Springer-Verlag, pp. 398-416. 18

[11] Piatetsky-Shapiro, G. Discovery,analysis,and presentation of strongrules. InKnowledge Discovery in
Databases. pp. 229-248. 18

[12] Tan, P.-N., Kumar, V., and Srivastava, J. Selecting the right objective measure for asso- ciation
analysis. Inf. Syst. 29, 4 (2004), 293-313. 18

34



Bibliographie

Appendices

35



36



Annexe A

Annexe Chapitre 11

A Preuve de la proposition 1

Preuve.  Par hypothése U’ est emboité dans U doncona:

Pr{ou =1} 2 Pr{py’ = 1} et Pr{pu =0} < Pr{py’ =0} De ces

deux inégalités, on déduit que :

Priou =1} 2 Pr{ou =1} = Pr{ou =1,Y =1}2Pr{eu: =1,Y =1}

Priou =0} < Pr{pu" =0} = Pr{ou =0,Y =0} < Pr{pu’ =0,Y =0}

B Preuve de la proposition 3
Preuve.  Supposons que Pr{ou =1} =Pr{pu- =1}. On a
Pr{iou =1}=Pr{eu =1,Y =1}+Pr{epu =1,Y =0} Pr{py' =1} =Pr

{ou' =LY =1}+Pr{ou' =1,Y =0}

On obtient
Priou =1Y =1} +Pr{ou =1Y =0} =Pr{pu' =1,Y =1}+Pr{ou: =1,Y =0} Pr{oy =1,Y =1} - Pr

four =LY =1} =Pr{pu' =1Y =0} -Pr{pu =1,Y =0}
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C Preuve du Corollaire 1

Puisque [pu' = 1] c [ou =1] alors
Pripu =1,Y =1} -Pr{pu" =1,Y =1}20 @)
Pripu =1,Y =0} -Pr{pu" =1,Y =0}20 (b)
On peut déduire de (a) et (b) les égalités suivantes :
Pripy =1,Y =1} =Pr{ou: =1,Y =1}
Priou' =1Y =0} =Pr{ou =1Y =0} & Pr{pu" =0,Y =0} =Pr{oy =0,Y =0}

Supposons maintenant que les égalités suivantes soient vraies :

Pripu =LY =1} =Pr{pv = 1Y = 1} Pr{pu =0,
Y :O}:Pr{(pu :O,Y :O}

Puisque Pripu" =0,Y =0} =Pr{ou =0,Y =0} © Pr{ou =1,Y =0} =Pr{ou- =1,Y =0},
on a alors les égalités suivantes

Pripuv =1,Y =1} =Pr{pu' = 1,Y =1} Pr{ou =1,
Y =0}=Pripyr =1,Y =0}
En faisant les sommes membres a membres des deux égalités on obtient :

Pripu =1,Y =1}+Pr{ou =1,Y =0} =Pr{gu =1} Pr{ov =1,Y =1}
+ PI’{(pu’ =1Y = O} = Pr{(pu' = 1}

D’ou
Pr{(pu = l} = Pr{(pu' = 1}

C Preuve du Corollaire1

Preuve.  1)Montronsque VPP(U,Y)=VPP(U,Y) Par

définition on a :

Prp =1Y¥=1 3 _Prig =1.Y=1}
Pr{(pu = 1} Pl'{tpu' = 1}

Pr {(pu =1}=Pr{(pu ' 21} =
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Annexe Chapitre I1

Et d’aprés la proposition 2 on a
Pripu =1} =Pr{ou' =1} = Pr{ou =1,Y =1} =Pr{ou' =1,Y =1}

Doncona

Pr{iou=1Y=1}  Pripy-=1Y =1}
Pr {(pu = 1} PI’{(pu' = 1}

Pr{(pu = l} = Pr{(pu' = l} =

2) Montrons que VPN(U,Y)=VPN(U\,Y)
Ona Pr{ou =1} =1-Pr{pu =0} et Pripu' =1} =1-Pr{py’ =0}

Pr{(pu = 1} = Pr{(pu' = l} = Pr{(pu = 0} = Pr{(pu' = 0}

Priou =0.Y =0} _Pr{py =0.Y =0}
Pr{(pu =0} Pr{(pu' = 0}

Etd’apres la proposition2 ona
Pr{(pu = 1} = Pr{(pu' = 1} = Pl'{q)u =0,Y = 0} = Pr{(pu' =0,Y = O}

On en déduit que

Pr{ou=0,Y =0} Pr _ Pr{pu-=0,Y =0

Pripy =1} =Pr{pu" =1} = {00 =0} Prioy’ =0}

3) Montronsque RVP(U,Y)=RVP(U'Y) Par
définition on a

I-prfy =1} Pr{ioy=1Y =1}
Pr{y=1} Pr{Y =0}-Pr{ou =0,Y =0}

RVP(U,Y)=

Etd’aprés laproposition2ona

1-Pr{y =1} Priou:=1Y =1}
Pr{Y =1} Pr{Y =0} - Pr{pu' =0,Y =0}

RVP(U,Y) =

D’ou
RVP(U,Y)=RVP(U'Y)

4) Montrons que RVN(U,Y)=RVN(U,Y)

Donc
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C Preuve du Corollaire 1

Par définition on a

1-Pr{Y=1}Pr{¥Y=1-Pr{ou=1,Y=1}

RVN(U,Y)= - U=t
Pr{Y =1} Pr{pu=0,Y =0}

Etd’aprés la proposition 2, ona

1-Pr{Y =13Pr{Y =1} - Pr{oy- =1,Y = 1}
Pr{Y =1} Pr{pu- =0,Y =0}

RVN(U,Y) =

D’ou
RVN(U,Y)=RVN(U',Y)

5) Montronsque Err(U,Y)=Err(U'Y) Par
définition on a

Err(U, Y)=Pr{Y=1}+Pr{pu=1} - 2Pr{pu=1,Y =1}

Err(U,Y)=Pr{Y =1}+Pr{py: =1} - 2Pr{pu' = 1,Y =1}

Si Pr{ou =1} =Pr{ou’ =1} alors Pr{ou =1,Y =1} =Pr{eu' =1,Y =1} (proposition 2) 11
en résulte des égalités précédentes que

Err(U, Y)=Err(U, Y)

6) Montronsque RR(U,Y)=RR(U',Y) On a

par hypothese
Prigu =1} =Prfpu =1} & 1-Prfpu =1}=1-Prfou’ =1}
& Prioy =0} =Pr{ou’ =0}
alors
Pr{ou =0 _Pr ur =0 M
Pr{ou =1} Pr{pu’ =1}

D’aprés la proposition 1, si on a Pr{ou =1} = Pr{py’ = 1} alors (a) Pr{ou =1,Y =
B=Pr{oy'=1Y =1}
(b) Pripu =0,Y =0} =Pr{ou’ =0,Y =0}
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Annexe Chapitre I1

Puisque Pr{ou =0} = Pr{py- = 0} alors
Pr{ipu =0,Y =0} =Pr{ou' =0,Y =0} & Pr{ouv =0,Y =1} =Pr{pu =0,Y =1}

Onendéduitque

Priou =LY =1} _Priou' =LY =1} @)
Pr{py =0,Y =1} Pr{pu: =0,Y =1}

En faisant le produit les produit membre & membre des égalités (1) et (2) on obtient

Priou =0}Prioy =1Y =1} _Pr{ou: =0}Pr{py- =1Y =1}

Pr{ou =1} Pr{ou =0,Y =1} Pripu’ =1} Pr{pu- =0,Y =1}

Ilenrésulteque
RR(U,Y)=RR(U'Y)

D Preuve de la proposition 4

Preuve.  1)Montronsque VPP(U,Y)<VPP(U,Y) Par

hypothése on a: 1 1

<
PI’{(pU = 1} Pr{(pu’ = l}
Si I’égalité Priou =1,Y =1} =Pr{ou’ =1,Y =1} est vérifiée alors

Pr{ou =1,Y =1} Pr _ Pripu=1Y =1
{ou=1} Pr{ou =1}
Priou-=1Y =1}

Prio: = 1) 1)

On obtientdonc
VPP(U,Y)SVPPU'Y)

2) Montronsque VPN(U,Y)<VPN(U'\,Y) Par

hypothese on a: 1 1

<
Pr{(pu' = O} Pr{(pu = 0}
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D Preuve de la proposition 4

par ailleurs on a

Priou =LY =1} =Pr{pu' =1Y =1} = Pr{ou =0,Y =1} =Pr{ou =0,Y =1}

= Pl'{q)u = 0} - Pl'{q)u =0Y = 0} = Pr{(pu' = 0} - Pr{(pu' =0Y = 0}

donc

_ Pr{eu=0,Y =0 > 4 _ Preu=0Y =0

> 1
Pr{(pu =0} Pr{(pu’ = 0}
Hou =0,Y =0} Pr < Pr{ou- =0Y =0
{ou =0} h Pr{ou- =0}

Onobtientdonc
VPN(U,Y)SVPV(U',Y)

3) Montronsque RVP(U,Y)=RVP(U'Y) Par
définition on a

RVP(U,Y) =  PriY=1} Priou=1Y =1}
Pr{Y=1} Pr{Y =0}-Pr{pu =0,Y =0}

1-Pr{Y =1}Pr{oy =1,Y =1}
PriY=1  Pr{ou=1Y =0}

1-Pr{Y =1} Pr{ou=1.Y =1}
PriY=1  Pripu =1}-Pr{ou =1,Y =1}

donc si Pr{pu =1,Y =1} =Pr{pur =1,Y =1} et U emboité dans U alors
Pripu =1} -Pr{ou =1Y =1} 2Pr{ou’ =1} -Pr{ou- =1,Y =1}

donc
1-pPr{y =1} Priou-=1Y =1}

P{Y =1}  Priov' =1} -Pripv' =1Y =1}

RVP(U,Y)<

d’ou
RVP(U,Y)<SRVPU'Y)

4) Montrons que RVN(U,Y)2RVN(U,Y)
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Annexe Chapitre I1

Par définition on a

1-Pr{Y=1}Pr{Y=1}-Pri{ou=1,Y =1}
Pr{y=1} Pri{pu=0,Y =0}

RVN(U,Y)=

par hypothese Pr{ipu =1,Y =1} =Pr{pu- =1,Y =1} on a alors

1-Pr{Y = Pr{Y =1} -Pr{oy' =1,Y =1}
Pr{y=1 Priou=0,Y =0}

RVN(U,Y)=

par ailleurs U" emboité dans U entraine que Pr{oy =0,Y =0} < Pr{pu’ =0,Y =0}. On en déduit que
RVN(U,Y)> 1=PrY =1PrY =1}-Prfpy =1Y =1)
Pr{Y =1} Pr{pu' =0,Y =0}

d’ou
RVN(U,Y)ZRVN(U',Y)

5) MontronsqueErr(U,Y)2Err(U,Y) Par
définition on a

Er(U,Y)=Pr{Y=1}+Pr{ou=1-2Pr{pu=1,Y =1}

"Er(U,Y)=Pr{Y =1} +Pripu: = 1} - 2Pr{ou = 1,Y =1}

Par hypothése on a Pr{ou =1,Y =1} =Pr{pu- =1,Y =1} donc
Err(U,Y)-Err(U,Y) =Pr{ou =1} - Pr{pu' = 1}
et puisque U est emboité dans U alors Pr{pu =1} = Pr{py’ = 1}. On obtient donc
Err(U, Y) 2 Err(UY)

6) Montrons que RR(U,Y)<RR(U,Y)
L’égalité Pr{ipu =1,Y =1} =Pr{ou’ =1,Y =1} implique aussi

Prigu=0Y =1} =Pr{Y =1} - Pr{pu=1Y =1}
= Pr{Y =1}-Pr{pu =1Y =1}
= Pr{(pu' :O,Y :1}
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D Preuve de la proposition 4

d’ou
Pr{iou=0,Y =1} _ Priou=0Y =1}
Pr {([)u = 0} Pr {(pu = 0}
Prioy-=0Y =1
> 2
Prio =0, P
Si on fait le rapport membre a membre des inégalités (1) et (2), il en résulte que
RR(U, Y)<RR(U ', Y)
]
E Preuve de la proposition 5
Preuve.  1)Montronsque VPP(U,Y)2VPP(U'Y) Par
définition
Hou=1Y=1} Pr{ipu=1Y =1}
Pripu=1} ~ Pripu=1Y =1} +Pr{pu=1Y =0}
et
Priou-=1Y =1} Prioy:=1Y =1}
Pr{pu =1} Pripu' =1Y =1} +Pr{py' =1Y =0}

OnsaitquePr{ou =0,Y =0} =Pr{ou’ =0,Y =0} & Pr{ou =1,Y =0} =Pr{pu' =1Y =0}
et en plus si a,b,c sont des réels positifseta=cona?® asp 2 ctON peut déduire de ces deux

conditions que

Priou =LY =1} _ Pripy: =LY =1} (1)
Pripu=1} Pr{ou: =1}

On obtientdonc
VPPU,Y)2VPPU'Y)

2) Montronsque VPN(U,Y)2VPN(U',Y) Par

définition
Hou=0,Y =0} Pr{oy =0,Y =0}
Pripu=0} ~ Pr{pu=0,Y =1} + Pr{pu=0,Y = 0}
et
Pr{ou =0y =0} _ Pr{ou’ =0Y =0}
Pr{pu- =0} Pr{pu =0,Y =1} +Pr{py" =0,Y =0}
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Annexe Chapitre I1

Puisque U’ est emboité dans U alors Pr{pu- =0,Y =1} 2 Pr{ey =0,Y =1}. d’ou
Pr U=0Y=0 PI’ U'=0Y:0
Pr{(pu = 0} Pr{([)u' = 0}
puisque Pr{py- =0,Y =0} =Pr{pu =0,Y =0} donc

v

VPN(U,Y)2VPN(U'Y)

3) Montronsque RVP(U,Y)2RVP(U'Y) Par
définition on a

RVP(U,Y)= =PY=1}

Pr{ipu=1,Y =1}
Pr{Y=1} Pr{¥=0}-"Pr{ou=0,Y =0}
et 1
RVP(U,Y)=> =Py =1 Prioy: =LY =1)
Pr{Y =1}

Pr{Y =0} - Pr{py- =0,Y =0}
par hypothése on Pr{py =0,Y =0} =Pr{pu- =0,Y =0} donc lesignede RV P(U,Y)-RVP(U',Y) dépend du signe Pr{pu; =
LY =1}-Pripy' =1,Y =1}

or on a le profil U " emboite dans le profil U . Ceci entraine que

Pripu1 =1Y =1} -Pripy' =1Y =1}20
d’ou

RVP (U, Y)2RVP(U'Y)

4) Montronsque RVN(U,Y)<RVN(U',Y) Par
définition

1-Pr{Y=1}Pr{¥Y=1}-Pri{ou=1Y =1}
RVNUY) ="y =1 Prigu=0,Y =0}
et

RVN(U',Y):‘l =Pr{Y =1}Pr{Y =1} -Pr{py =1Y =1}

Pr{Y =1}

Pr{pu- =0,Y =0}
par hypothése on Pr{py =0,Y =0} =Pr{pu’ =0,Y =0} donclesignede RV N(U,Y)-RVN(U',Y) dépend du signe Pr{pu- =1,Y =1}
-Pripy =1Y =1}

or on a le profil U " emboite dans le profil U . Ceci entraine que

Pripu' =1,Y =1}-Pr{ou =1,Y =1}<0
d’ou

RVN (U, Y)SRVP (U, Y)
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E Preuve de la proposition 5

5) Montronsque Err(U,Y)<Err(U,Y) On a
Pr{iou=0,Y =0}=1-Pr{Y =1}-Pr{ou =1}+Pr{eu =1,Y =1}

Pr{ou=1,Y =1}=Pr{pu =0,Y =0}+Pr{py =1}+Pr{Y =1}-1

si on remplace Pr {ou = 1, Y = 1} par son expression dans Err(U, Y ), on obtient
Err(U,Y)=-2Pr{pu=0,Y=0}-Pr{pu=1} -Pr{Y =1} -2
demémeona
Err(U,Y)=-2Pr{pu’ =0,Y =0} - Pr{ou: =1} - Pr{Y =1}-2
et puisque on a par hypothése que Pr{oy =0,Y =0} = Pr{pu- =0,Y =0} alors
Err(U,Y)-Err(U,Y)=-Pr{ou =1} +Pr{gu = 1}

par ailleurs = Pr{py =1} +Pr{py’ = 1} < 0 puisque U’ est emboité dans U. d’ou

Err(U,Y)-Err(U,Y)<0

6) Montronsque RR(U,Y)2RR(U',Y) On a
P{ou=0,Y=1} Pr{ou=0}-Pr{eu=0,Y =0}

Pr{(pu = 0}_ Pr {(pu = 0}
et
Priou 0,Y =1} _ Pr{our =0} =Prigy- =0.Y =0}
Priou =0} Priou =0}
entenantcompte que Pr{ou =0,Y =0} =Pr{pu- =0,Y =0} et Pr{ou =0} < Pr{py" =0}, 0n a
Pripy =0Y = O} Pr{ou- =0,Y =0}
Pr{(pu 0} 2 Pr{(pu' = 0}

etils’ensuitque

Priou =0Y =1} < Pr{iou' =0Y =1}

Pl'{q)u =0} - Pr{(pu’ = 0}
d’ou
Pr{oy =0} > Pr{ou- =0} (2)
Priou =0Y =1} Priou =0Y =1}

enfaisantleproduitmembreamembredesinégalités(1)et(2) onobtientque RR(U',Y)<RR(U,Y)
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O
F Preuve de la proposition 2
Preuve. On a
Pr(Y=1,X,U)=1)  _ Pr(Y=1oXU)=1X,U)=1) 4 PriY =L,0(X,U)=1,0(X,U)=0) Pr(o(X,
Pr(p(X, U)=1) Pr(p(X, U)=1) U)=1)

Pr(Y=1,¢(X,U") =1)
Pr(e(X, U) =1)
Pr(Y =1,0(X,U)=1)~Pr(Y =1,0(X,U)=1,0(X,U)= 1) Pr(p(X,U) =
1)

Pr(Y=1,0X, U ) =1)Pr(p(X, U ) =1)

Pr(o(X,U) = 1) Pr(o(X,U)=1) ©
Pr(Y =1,0(X,U)=1)-Pr(Y = 1,(p(X,U') =1) Pr(p(X,U)

= ]_)

Pr(Y=1,¢X,U)=1)Pr(e(X,U ) =1)

Pr((p(X,U') =1) Pr(p(X,U)=1)
Pr(Y =1,o(X,U)=1)-Pr(Y = 1,(p(X,U') =1)

> Pr(p(C,U)=1)”

1
Pr(p(X,U)=1)-Pr(e(X,U)=1) Pr(e(X, U) =1)

On obtient une combinaison convexe de
Pr(Y =1,9(X,U)=1)
Pr(p(X,U)=1)

PY =Lo(U)=) Pr(p(X,U)=1)
Pr(e(X, U) =1) Pr(e(X,U)=1)

est compris entre

en déduit que

" Pr(Y =1,9(X,U)=1) Pr(Y =1,(X,U)=1)-Pr(Y =1,¢(X,U)=1) >
Pr(p(X,U)=1) ’ Pr(p(X, U) = 1) - Pr(p(X, U) = 1)

o Max Pr(Y =1,p(X,U)=1) Pr(Y =1,0(X,U)=1)-Pr(Y =1,(X,U)=1) z
Pr(p(X,U)=1) ’ Pr(¢(X, U) = 1) - Pr(p(X, U) = 1)
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Chapitre 111

Classifieur base sur un ensemble de profils
lorsque les données sont indépendantes et
Identiquement distribuées

1 Introduction

Dans cette thése, nous proposons une méthode de classement basée sur les régles d’association binaire dans le but

d’améliorer les performances d’une régle de classement lorsque la classe cible de la variable réponse binaire est faiblement
représentée. Généralement dans une telle situation, la régle de classement a une forte spécificité. Donc pour améliorer les
performances de la régle de classement, nous nous intéressons plus aux profils de classement dont les classifieurs associés ont des
sensibilités fortes.
Atravers lesindices de performances présentés au chapitre I1, on peut affi rmer que 1’apprentissage du classifieur associé a un
profil est fortement dépendant de la valeur prédictive positive (VPP). Généralement on estime ce dernier par le maximum de
vraisemblance. Mais dans une situation ot le support (la couverture) du profil est trop faible, il est recommandé d’estimer la
VPP par une forme corrigée de Laplace [11] définie par

Pr{io(X.U)=1,Y =1}+1
Pr{p(X,U)=1,Y =1}+Pr{p(X,U)=1,Y =0}+|Dom(Y)|

VPP(U,Y)=

Danslasuite, nous verrons qu’il est possible d’avoirune interprétation Bayésienne de laformule de Laplace.

Soit Dy = (i, Xi) un ensemble fini d’éléments générés de facon aléatoire par la loi du couple (Y, X), ou'Y est une variable
binaire et X = (Xj)j=1,p est un vecteur de variables aléatoires, ou lavariable X; peut &tre numérique ou catégorielle. Al’aide
des outils statistiques présentés dans le chapitre 11, nous présentons un algorithme d’apprentissage dont les performances sont
comparables avec d’autres méthodes tres connues pour un classement binaire.
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I11.3 Prétraitement des données : discrétisation des covariables numériques

2 Algorithme d’apprentissage d’un classifieur basé sur un ensemble
de profils

Dés qu’un phénoméne, qu’il soit physique, biologique ou autre, est trop complexe ou encore trop bruité pour accéder a une
description analytique débouchant sur une modélisation déterministe, un ensemble d’approches est élaboré afin d’en décrire au
mieux le comportement & partir d’une série d’observations. On appelle apprentissage statistique 1’ensemble d’approches élaboré
[5]. C’est une combinaison & la fois de 1’apprentissage automatique et de la statistique [26]. L apprentissage automa- tique consiste
a utiliser des ordinateurs pour optimiser un modele de traitement de I’information selon certains critéres de performance a partir
d’observations. Tandis que la statistique permet de formaliser le processus, de garantir sa qualité et éventuellement de suggérer de
nouvelles techniques. Cependant le principe de I’apprentissage reste le méme, mais la démarche est diff érente selon que la taille
du jeu de données est grande ou petite.

2.1 Présentation de I’algorithme de construction du classifieur

Lorsque la taille des données est suffisamment grande, on adoptera 1’approche Apprentissage/Validation/Test
pour la sélection d’un ensemble optimal de profils. Cette approche consiste a subdiviser les données de maniére aléatoire en
trois ensembles : un ensemble d’apprentis- sage, un ensemble de validation et un ensemble test. L’apprentissage statistique que
nous proposons peut étre résumeée par les diff érentes étapes suivantes:

1. Discrétisertoutes les variables numériques par une méthode de discrétisation (au choix)
2. A partir d’un ensemble d’apprentissage :

(@) Spécifier le paramétre d’apprentissage A = (So, Co, lo)

(b) Générer un ensemble U, de profils

(c) Elaguer les profils redondants dans U; pour constituer un petit ensemble
Ui={leX,U)=1]—=[Y=1];U€ U}

3. A partir d’un ensemble de validation :
(@) Réévaluer I’ indicateur de performance VPP (ou RVP ou RVN) de toutes les regles dans
Uy
(b) Supprimer les profils dont le RVP est inférieur a un (1)

(c) Parmilesprofilsdans U" qui spntemboités, ne retenir que le profil dontle VPP (oule RVP ou le RVN) est le
plus significatif.
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont
indépendantes et identiquement distribuées

4. Ausortir de1’étape 3, on dispose alors d’un ensemble de profils U? tel que lUZ,ILS [UL.

5. Définir la regle de classement (classifieur) ¢ d’une observation X par

I
] 1 i o(X,Un ) >0
O(X, 1) = m=1

"0 sinon
Leclassifieur (X, A) estuncasparticulier duclassifieur définiau chapitre I1alasection 3.2 ou onachoisikégalazéro.On
choisit alors de classer positive une observation X lorsqu’elle vérifie au moins un profil parmi ceux qui sont dans

I’ensemble U?. N

Dans tout ce qui suit, on fixe aun le nombre minimum de profils a vérifier pour qu’une observation soit classée positive.

3 Prétraitement des données: discrétisation des covariables numeé-

riques

Un ensemble de données pour un classement est normalement sous la forme d’un tableau de don- nées qui est décrit par un
ensemble de variables distinctes. La plupart des applications réelles (données réelles) pour une classification supervisée
comportent a la fois des variables numériques (continues) et des variables nominales (catégorielles). Certaines méthodes de
classement, particulierement I’algo- rithme d’apprentissage des régles d’association, exigent que toutes les covariables soient
nominales. Ainsi il est nécessaire de convertir les variables continues en des variables discrétes. L’idée consiste & transformer

chaque variable numérique X; en une variable catégorielle X" . La vgiable X" estobtenue
en subdivisant le domaine des valeurs de X; en g; intervalles m™ h =1: ;. La variale X' sera
h

i
utilisée & la place de X; pour construire le classifieur.

En général une variable continue est une variable dont le domaine de définition est totalement ordonné. La discrétisation
doit étre choisie de maniére a apporter des informations de classification utiles sans modifier les classes auxquelles les
observations du domaine de la variable appartiennent. En général, une discrétisation est simplement une condition logique, en
termes d’une ou plusieurs valeurs évaluées, qui sert a partitionner les données en au moins deux sous-ensembles. Supposons que
X; soit une variable numérique et I’intervalle [a, b] soit son domaine. Une partition mx; sur [a, b] est définie comme le sous-

ensemble des k intervalles suivants
nx; = {[Xj0,Xj1), X1, Xj2), .., [Xj (k-1), Xix]}

oU Xjo = &, Xj(i-1) < X;ji pour i = 1 : k et xj = b. Ainsi la discrétisation est le processus qui produit
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une partition mx; sur [a, b].

Plusieurs méthodes de discrétisation des variables numériques ont été étudiées dans la littérature. On peut, par exemple,
considérer des combinaisons linéaires de plusieurs variables et comparer le ré- sultat avec un seuil (Breiman etal., 1984)[7]. Il est
aussi possible d’éviter le seuillage en formant une condition qui compare les valeurs de deux ou plusieurs variables directement.
Cependant le nombre de telles expressions possibles rend I’espace de recherche tres vaste.

La méthode de discrétisation d’une variable numérigue la plus simple reste la méthode de largeur d’in- tervalle égale (Equal
Interval Width Method). Elleconsisteapartitionnersondomaineenintervalles de largeur égales.

Une méthode de discrétisation de variable numérique par la discrétisation adaptative a été propo- sée dans [8]. La méthode
consiste a diviser d’abord le domaine de la variable en deux intervalles de largeur égale et un processus d’apprentissage est lancé
pour générer les regles. Ensuite, la qualité des regles est testée en évaluant les performances des régles. Si la mesure de performance
est inférieure a un seuil fixe, I’un des intervalles est subdivisé en outre, et le processus est répété. Le principal incon- vénient de
cette méthode, cependant, est la répétition du processus d’apprentissage jusqu’a ce que le niveau de performance finale soit
atteint.

Une discrétisation basée sur I’entropie marginale maximale a été introduite dans [30]. Ce procédé consiste a diviser le
domaine de la variable numérique de telle sorte que la fréquence d’échantillonnage dans chaque intervalle soit approximativement
égale. Ce procédé est généralement appelé la méthode par intervalle de fréquence égale (Equal Frequency per Interval Method).
Le seul paraméetre fourni par I"utilisateur est le nombre d’intervalles & induire sur le domaine d’origine. La discrétisation par la
mesure de I’entropie utilise les bornes du domaine de la variable pour induire les intervalles sou- haités. Cette méthode de
sélection d’un point de coupure est utilisée dans I’algorithme 1D3 [23], dans I’algorithme CART [6], et d’autres [15].

Lorsque nous traitons un probleme de classification supervisée, il est naturel de penser a discrétiser les variables numériques en
fonction de la variable réponse. Ceci constitue I'un des points faibles des diff érentes méthodes de discrétisation citées
précédemment. Ce concept est pris en compte par la méthode de discrétisation avec la classe-entropie comme critére pour
sélectionner le meilleur point de coupure [13]. Dans tout ce qui suit, nous avons utilisé laméthode de discrétisationdont le critere
d’arrét est basé sur le principe de la longueur de description minimum plus connu sous le nom de MDLP (Minimum Description
Length Principle). Cette méthode est initiée par Fayyad et Irani [13, 14]. La méthode est présentée comme une méthode effi cace
pour la discrétisation pour I’apprentissage des arbres de décision et du classifieur de Bayes Naif [2] (voir I’annexe B pour plus
de détails).
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4 Extraction d’'un ensemble initial de profils

L’ensemble des profils U, généré au départ pour 1’apprentissage du classifieur, est caractérisé par co, une estimation de la
VPP, et s, une estimation du support. L>un des plus connus algorithmes d’exploration des régles d’association, utilisant ¢, et
So pour I’extraction des regles les plus fréquentes, reste 1’algorithme "apriori”. Il est1’un des algorithmes d’extraction de regles
d’association qui a utilisé en premier I’¢lagage basé sur le support pour controler systématiquement la croissance exponentielle
des regles candidates. C’est la raison pour laquelle, nous avons choisi de I'utiliser pour la suite. On pouvait utiliser d’autres
algorithmes d’extraction de régles fréquentes existant dans la littérature par exemple I’algorithme "FP-Growth"(FPtree
structure) [17]. Un choix de I’algorithme d’extraction est laissé a I'utilisateur. Ci-apres (Tableau 111.1), nous présentons un
pseudo code de la partie de génération des profils fréquents par’algorithme "apriori". Soit Cy 1’ensemble des profils de longueurk

candidats, D I’ensemble de toutes les observations et Fy 1’ensemble des profils fréquents et de longueur k.

Algorithme : Génération de régles fréquentes par I’algorithme "apriori"

— Entrées: D unensembled’observations,So unsupportminimumetco une confiance minimum
Sorties : U; un ensemble de profilsfréquents

1:k=1
2:F = {Trouver tous les 1-itemsets fréquents} 3 :
répéter
4:  k=k+1
5:  Cy=apriori-gen(Fk-1). {Générer les profilscandidats} 6 :
pour chaque observationt€ D faire
7: C: = subset(Cx, t). {Identifier tous les candidats contenus danst} 8 :
pour chaque profil candidat ¢ € C; faire
9: supp(c)=supp(c)+1. {Incrémenter le compte du support}
10: sit.class=c.classfaire {t.class:laclasseassociéeal’observationt}
11: conf(c)=conf(c)+1. {Incrémenter le compte de la confiance}
12 ftn si
13: ftn pour

14: ftn pour

15: Fe={c € C«|supp(c) = so; conf(c)/supp(c) = co }
{Extraire les profils fréquents de taille k} 16 :

jusqua F =9

17:Retourner:U; = k Fx

Tableau II1.1 — Algorithme de génération des régles fréquentes (“apriori")

Pourlasuite,nousnousintéresseronsauxprofilsgénérésapartirdel’algorithme"apriori* quisont corrélésaveclavariable

réponse etqui vérifient les conditions d’apprentissages suivantes : support2 so,
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confiance 2 Co, risquerelatif2ro, taille<lo. Cette étape de’algorithme estélaborée sur1’échantillon d’apprentissage. Ausortir de
cette phase, un vaste ensemble U;, A = (So, Co, Fo, lo) contenant a la fois desprofils redondants et des profils de faibles performances,
estgénéré. llestdoncnécessaire d’élaborer une procédure d’élagage des profils redondants pour réduire le vaste ensemble U; aun
ensemble U* N
ne contenant que des profils fréquents et non redondants.

5 Elagage des profils redondants

Dans cette section, nous nous intéressons aux profils qui sont liés & la variable réponse. La sup- pression des profils qui ne
sont pas corrélés a la variable réponse et des profils redondants permettra de sélectionner un ensemble réduit de profils dont on
pourraseservirpour construire unclassifieur performant.

. T X z ) z . "y

Soient Uy = m™ 3 etU; = m™ h el deux profils tels que U soit emboité dans Us. L’ap-
plication des résultats théoriques précédents nécessite de faire un test d’hypothése sur I’égalité des
couvertures, sur I’égalité des supports ou sur I’égalité des spécificités de deux profils emboités. Pour cela, il est possible de faire
un test stochastique

5.1 Teststochastique (randomisé) pour la sélection entre deux profils emboités

En principe, si 1’égalité n’est pas vérifiée sur un échantillon donné, on peut affirmer qu’elle n’est pas vérifiée sur la
population dont est issu I’échantillon. Par contre on ne peut pas en dire autant lorsqu’elle est vraie sur un échantillon. C’est la
raisonpourlaquelleunteststochastique (outestran- domisé) est nécessaire.

Y - < z Y - z
Onnote par (X,U1)= 1 Xj=m™ etgX,U)= 1 Xi= m*' les fonctigps de clas-

j€d leL
sement générées respectivement par U, et U,. Puisque U, estemboité dans Us, ona[o(X,U;)=1]c

[o(X, Uy) =1].

(a) Soitleparameétre8; définipar6; =Pr(p(X,U1)=1)—Pr(p(X,U,)=1). Nousvoulonstester si oui ou non 6; est
nulle i.e décider entre les deux hypothéses

Hé:91=0 VS Hi:el f=0
Nous allons considérer la variable aléatoire définie par

Z1(X) = o(X, Uz) — ¢(X, Uy)
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Puisque [¢(X, Uz) = 1] c [e(X, U;) = 1], on peut écrire

Ol sig(X,Uy)=1et o(X,Uz) =0
Zl(X):

0 si (X, Ur) = o(X, Ua)

(b) Pour tester I’égalité des sensibilités de Ui et Uy, on considére le paramétre 0, définipar
0, =Pr([o(X, U) =1, Y =1]) - Pr(Jo(X, Uz) =1, Y =1]). Les hypothéses & tester sont :

H2:0,=0 vs H2:0, O

On peut associer au test la variable aléatoire Z,(X) définie par

ZaX) =1 (X, U) =1, Y =1]) - 1 ([o(X, U2) = 1, Y = 1])

Puisque [¢(X, Uz) =1, Y =1] c [o(X, Us) =1, Y = 1], on peut écrire

1 sid(e(XU) =LY =1])=1et 1(p(X,Uz) =LY =1]) =0
Zz(X) =

0 sil(e(X,U) =1Y =1 =1([o(X,U) =1,Y =1))

(c) Pour tester I’égalité des spécificités de Ui et U,, on considére le paramétre 65 défini par 63 = Pr([o(X, U2) =0,
Y =0]) - Pr(Jo(X, U1) =0, Y = 0]). L’ hypothése nulle et son al- ternative sont données par :
H8:63=0 VS Hi:eg f=0

La variable aléatoire Z3(X) associée au test est définie par
Zy(X) = 11 ([9(X, Uz) =0, Y =0]) = 11 ([9(X, U1) =0, Y =0])
Puisque [¢(X, Uz) =0, Y =0] 2 [¢(X, U1) =0, Y = 0], on peut écrire

1

o1 sid([o(X,Us) =0,Y =0)=0et 1([p(X,Uz) =0,Y =(])
Zs(X) =
0 si1(e(X,U) =0,Y =0]) =1 ([o(X,U2) =0,Y =0)])

Les variables (Zx(X))k=1:3 sont donc des variables aléatoires de Bernoulli de paramétre (Ox)k=1:3.
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On considére une suite d’éléments aléatoires Dn = (Xi, Yi)ic 1. indépendants et identiquement distribués, ou Y; est
une réalisation d’une variable de Bernoulli Y et X; est une suite finie de p réalisations d’un vecteur de variables aléatoires
non numériques (Xj)j=1p & ¢j modalités m” Jh=1:¢5,) =1:p. Puisque les observations (Xi)i=1:n sont indépgndantes alors
les Zx (Xi)i=1:n coOnstituent
desréalisationsindépendantes. Donclasomme

skuivintlgloi binomiale BN(n,0x). Nousconsidéronsleteststochastique définicommesuit: Pourtout

3 . . (L
n i=1 Zk(Xi) est une réalisation d’une variable aléatoire

3
0 1 si ni=1 Zk(Xi) >0

ok (Dn) = s
Ul S TN Zi(X) =0 et 0<ycs1

Ontire unnombre puniformément réparti entre Oet 1. Si = 1 -y onrejette H etsi p<1-vyx 0
on accepte H* gyec 0 <vyx < 1. L’application du test stochastique s’eff ectue comme suit :

— Si¢u(Dn) =1: rejeterH*
— Sigk(Dn)=1-vk:rejeterH* avecuneprobabilitéyxi.e.ongénereunevaleurpuniformesur O et 1. Si g2 1-yy, on

rejette H¥, sinon on accepte. 0
Le niveau du test est obtenu en calculant
; 2 b3 b3
Pr rejeter HKIHX = Pr “ok(Dn) = 1|HX %+ Pr ox(Dn) = 1-yk,pu2 l Tk |[HX N
= Pr ¢k(Dn) = 1|H% +EI’ ¢k(Dn) =1- yk|Hk Br |.121 yHE
= =n =N
=Pr Zk(Xi) >0 | Hk0 +Pr Zk(Xn)—O|H|S Pr(u=1-v
i=1 z i=1 z
- :n - :n
= 1-Pr Zk(Xi)=O|H|S +Pr Zk(Xi)=0|Hko (L-Pr(u<1-y)
i i=1 z i i=1 z
n bl
= 1-Pr Z(Xi) =0|Hf§ +Pr Zk(Xi) = 0|HY, vk
i=1 i=1
- 2z
b

Zk(Xi) =0|HY%, =1

= vk puisque Pr o =1

Et on obtient la puissance du test en calculant

. 2 2 2
Pr rejeter H'5|H"1 = Pr ¢k(Dn)—1|Hk]z+ Pr ¢x(Dn) =1 -7k, p>l i |HK .
2
= Pr ¢x(Dn) =1|H% +Er ¢k(Dn)—1 yk|Hk Pr uzl yk|HK

=N =N
=pr ZX) >0 H 4 pr _ Zu(Xi) =01HY  pru=1 -y
i=1 Z i=1 Z
= K - K
=1-Pr Zk(Xi)ZOIHL + Pr Zk()(i)ZOIH:L (1‘P|’(H<1_Yk))
} i=1 s i=1
=1-Pr Zk(Xi) = 0|Hk
=1-Pr 1 Pr(u<l-vy)
i=1

=1-(1-6"1— v
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5.2 Algorithme de la procédure d’élagage

Ensebasantsur les résultats présentés dans lasection précédente, on peut proposer une procédure d’¢élagage des profils
redondants comme suit.

Algorithme : Procédure d’élagage des profils redondants

— Entrées : R un ensemble de profils
— Sorties : R un ensemble de profils non redondants

1 : On se donne R un ensemble de profils
2 : pour tout profil U € R faire

3 : Sy =subset(U,R) {lesous-ensembledeprofilsdeR emboitésdansU}

4 : pour tout profil U € Syfaire

5:  TesterH! Pr{o(X,U)=1}=Pr{p(X,U)=1}vsH! :Pr{o(X,U)=1}= Pr{p(X,U") =1}
6: SiH.gstvraie,S'y =delete(U,Su) {supprimerU'de Sy envertudelaproposition3.}

7: Sinon

8 : Tester H2 yPr{o(X,U)=1,Y =1}=Pr{p(X,U) =1,Y =1} contre son opposée H? 1

9: SiH?gstvraie, S'y =delete(U,Su) {supprimerU de Sy envertude laproposition4.}

10 : Tester H3 s Pr{o(X,U)=0,Y =0} =Pr{p(X,U) =0,Y =0} contre son opposée H* 1

1 : SiH3gstvraie, S'y =delete(U’,Su) {supprimer U’ de Sy selonlaproposition5.}

12 : ftn si

13 : ftn pour U’
14 : ftn pour U

.S ,
15 :Retourner R = g Su

Tableau ITI.2 — Algorithme d’¢élagage des profils redondants

Leteststochastique présenté ci-dessusestapplicable quellequesoitlatailledesdonnéesd’analyse.
Habituellement, I’ensemble U* , contient un grand nombre de profils, certainement plus qu’il en faut

pour construire une fonction de classification qui est effi cace et facile a mettre en ceuvre.
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6 Détermination d’'un ensemble optimal de profils

6.1 Lorsque les données sont de grande taille

D’une maniére générale, on peut utiliser un test comparant les valeurs prédictives positives de deux profils embofités pour
sélectionner le profil le plus adéquat. Ce test est basé sur la normalité asymptotique du logarithme de rapport des valeurs
prédictivespositivesdesdeux profilsemboftés.

6.1.1 Test d’hypothése asymptotique pour la sélection d’'un ensemble optimal de proftls
z z
Proposition 6. Soient U; = m h e s et Uy = m ’ L deux profils emboités tels que J < L.

Soient VPPUL,Y) et VPPYUz,Y) les estimateurs empiriques diVPP(Ul,Y) et VPP(Uz, Y) res-

TVPPULY)
pectivement. La variable aléatoire log —  est asymptotiquement distribuée suivant une
loi normale centrée de variance VPP, Y)
6 = <6 ZZ
3= piv - piv i
i=1 i=1

ou 0

Vv 1 4 1 1 _ 1

v 1 P1+Pa4 p1+p2 p1 P1+p2tpatps

2 1 1

p1+p2 P1+P2+PastPs

1 1
P1+Pa Pb"'pz"'pﬂ'ps
nVspo=n N
[ Va4 =
U]
1
Vs T pitpa+Patps
Vs 0

Preuve. Soit le vecteur aléatoire (Y, o(X, U1), ¢(X, Uz)). On considére les événements suivants :

Ei={Y =1,0(X,U1)=1,0(X,Uz)=1} E>={Y =1,¢(X,U1)=1,0(X,U,)=0}
E3 ={Y =1,(p(X,U1) =0,(p(X,U2)=O} Es ={Y =0,(|)(X,U1)=1,(p(X,U2)=1}
Es={Y =0,0(X,U1)=1,0(X,U2)=0} Es ={Y =0,0(X,U1)=0,0(X,U;)=0}

dont les probabilités de réalisation sont pi, p2, ps, P4, Ps €t ps respectivement avec

>
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Compte tenu du fait que U, soit emboité dans U, on a

pL=Pr(Y =1,p(X,Uz) =1) Ps=Pr(Y =0,0(X,Uz)=1)
ps =Pr(Y =1,0(X,U1)=0) ps =Pr(Y =0,p(X,U1)=0)

On note par lg,, k =1 : 6 la fonction indicatrice de ’événement Ex. La distribution de Bernoulli généralisée de
parametres 0 = (py, ..., ps) de la variable aléatoire Z = (lg,, . . ., lg;) admet comme matrice de variance covariance la
matrice

A(0) = diag(®) - 07 0

Soit (Z;)i-1.n Une suite indépendante de distribution la Bernoulli généralisée. Si on considére

1=
n

o

Z
i=1

I’estimateur empirique de 0, le théoréme cent\ri.l limite pfrmet de dire que
n -0 NOAO)

-=5

Par ailleurs nous avons

Pr{Y =1,0(X,U;) =1} p1tp;
VPP(U )= =
(L) Pr{p(X,Us) = 1} P1+ P2+ Patps
VPR )= PHY =LoCLU)=1) _p,
2 Pr{o(X,Uz)=1} P1+ Pa
d’ou
YP(ULY) _ (p1+ pa)(p1 +p7)

VPP(U2Y)  pups+p2 +ps+ps)
Soit lafonction

. b
2(0)=log VPP(U1,Y)
VPP(U,Y)
Ona
0oy 11 1 []

P1+Pa pl1+pz P1 1 P1+pP2+pPstPs

P1tp2 P1+pP2tpPstps

LJ L
1 1
P1+Pa4 P3+P2+PstPs
v g(e) = J‘ | _ L]
R S
U P1+pP2+pastps
0
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En utilisant la Méthode Delta Multivariée, on démontre que

NE . . b2
ng@® W90 ~-— N 0,7V g®)AW®)V g(6)

ou
TVO)AO)Ve®) =  T7g6)diag0)7 g(6) - (gV g6) T (6Vg®)
6 = <6 2
= piv Zi— piV i
i=1 i=1
avec
Vi
Veg®)= .
Ve
3
Etantdonnéque pi=l,alors™  V g(0)A(0) ¥(0)>0puisquec’estunevarianceduvecteur( i,..., v
i=1
qui n’est pas colinéaire avec le vecteurM1 = a,..., 1.

L’application : 6 —— V g(0) est continue de méme que 1’application : 8 —— A(0). Et puisque 05,

converge en presque sirement vers 6, on obtient alors
TV g(Bm)ABR)Y g(Bn) -=5° vTg(O)A®)V g(6)
Grace au théoreme de Slutsky, on peut conclure que

Ng g
() -9(0)

- -5, N(O, 1)
TV gB)ABR)V g(Bn)
PP(Up,Y . . .
Sous I’hypothése que VEP Uy Y) =1, si la taille de I’échantillon est suffi ssmment grande alors
V PP(U.,Y)
y- 2
" o) -5 N, 1)

T gBn)AB)V g(6n)

Cequinous permetde construire une stratégie de sélection du profil le plusadéquat. Si on note par
01-2 le quantile d’ordre 1-a/2 de la loi normale centrée réduite, on peut eff ectuer les tests suivants.

1. Test1:

6)
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(@) Sélectionner le profilU i

A Tygmadnv-gbn—
g(el’l) 2 O1-cx?2 n
n

(b) Sélectionner le profil U, si

n Ty AV o6
00) € ~t1orr g(bn) (n) g(bn)
n

(c) Choisir au hasard entre U; et U, si
0

TV gAY o) 7Y glAG)Y o)

a
L]

96 e —toe

n 1-c2

Cette troisieme étape du test utilise le principe du test stochastique (test randomisé) ot on génére une réalisation b
d’une variable de Bernoulli de parametre 1/2. On sélectionne U; si b = 1 sinon on sélectionne U..

2. Test2:

(@) Sélectionner le profil U, si

g(en) <=(1-a2 n

(b) sinon Sélectionner le profil U;

Le Test 2 permet de favoriser les profils les plus courts. Les résultats présentés dans cette analyse sont obtenus en utilisant le Test 2.

6.1.2 Algorithme

Apartird’unensembledevalidation, nouscherchonsaréduirel’ensemble U* enutilisantlavaleur, prédictive positive comme
parametre de comparaison. Les indicateurs de performance tels que les rapports de vraisemblance positifs (RVP) ou les
rapports de vraisemblance négatifs (RVN) peuvent également étre utilisés.
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Algorithme : Réduction de I’ensemble U

Entrées : D un ensemble d’observation; U un engemble de regles non redondantes
— Sorties : U un ensemble optimal de profils

1 :pourtoutprofilCe U?  faire

2:  S=issubset(C,UY) {le sous-ensemble des profils emboités dans C} 3 : pour
tout profil C' € Sfaire
4: Evaluer les indicateurs suivants
5. Bu=(1...peID)
AN AN ! A
6: g(0n)=log(VPP(C,Y |6n))-log(VPP(C,Y|0) 7: Ahn)
= diag () - 6% 6 n
8: Vn=Vg0:§9
: ftn pour
t
10: Si ilexiste C'€ S tel que g(0n) < ZUi-c2 V”A(nw faire
n
11:
U2 =delete(C,U?) {Supprimer le profil C}
12 Sinon
U2 =delete(S,U?) , {Supprimer le sous-ensemble S}
13 :ftn si
14 : ftn pour

15 :Résultat U?

Tableau ITI.3 — Algorithme de réduction de I’ensemble non redondant

Leprocessusd’apprentissage, tel qu’ilaété décritjusqu’icirequiertunegrandebase dedonnéesqu’il faudra échantillonnerentrois
sous-ensembles (apprentissage, validation et test) de tailles suffi samment grandes. Habituellement dans la tiche de I’apprentissage
automatique, il est courant que le nombre d’observations disponibles ne permettent pas une subdivision des données en trois
échantillons, un pour ’apprentissage, un pour la validation et un pour le test. Le recours a I’échantillon de validation permet
d’évaluer les parametres de performance sur un échantillon diff érent mais issu de la méme distribution que I’échantillon
d’apprentissage. Onpeutenvisageralorsune procédure bootstrap.

6.2 Lorsque les données sont de taille petite

Lorsqu’on ne dispose pas de données suffi santes pour une subdivision en trois sous-ensembles : apprentissage, validation
ettest,onpeutrecourirauneprocéduredebootstrappourlavalidationdu
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classifieur. En eff et lorsque n,la taille de 1’échantillon, est petite, la condition

Vi- @ z
n)— 9
5= n g(On)-9(0) L N.)
Ty g(é\n)[\(é\n)v g(é\n)

n’est plus assurée. D’ou la nécessité de recourir a un test d’hypothése bootstrap.

6.2.1 Test d’hypothese boostrap pour la sélection d’un ensemble optimal de proftls

Le bootstrap est une technique de ré-échantillonnage bien connue dans la littérature [9, 10]. Le principe fondamental du
bootstrap est de substituer a la distribution inconnue F, dont est issu I’échan- tillon d’apprentissage, la distribution empirique Fy
qui donne un poids 1/n & chaque réalisation. Ainsi on obtient un échantillon de taille n dit échantillon bootstrap selon la
distribution empirique F, par n tirages aléatoires avec remise parmi les n observations initiales.

La statistique d’intérét S a une distribution d’échantillonnage notée Fs. Cette distribution dépend de la distribution ttz de la
variable aléatoire Z dont les valeurs observées sont zs, . . ., z,. On écrit Fs(s, ttz), ol ttz est la distribution de Bernoulli
généralisée de lavariable Z. Ladistribution ttz, quant aelle, dépend de la distribution Fx de la variable aléatoire X dont les
observationssontxi,...,Xn. Onnotettz(z,Fx). Enrésumé, ladistributionFs dépendde laréalisationzdelavariable Zetdela
distribution Fx de la variable X. On écrit Fs(s, z, Fx).

Puisque Fx est inconnue, on travaille avec une estimation de Fx que I’on note Fx et qui est la

distribution empirique F, des données {xi, . . ., Xn}. Le fait de remplacer Fx par F, va donner une distribution
d’échantillonnage Fs également modifiée. On écrit Fs(s, z, Fr) au lieu de Fs(s, z, Fx). Remplacer Fx par F, et générer un
echantillon de taille n selon la distribution F, revient de méme que de tirer avec remise n éléments de I’ensemble de donnges

originales {xi,...,Xn}. ) N
Ona g(é\n) un estimateur de la quantité g(6) et 6n = ;11 Ty g(@n)A(é\n)V g(é\n) un estimateur de

Pécart type de g(Bn) - g(6). On note par g(8 ) une estimation de g(6) et & une estimation de I’écart

n n

type de g(& )T g(6n) toutes deux calculées & partir d’un échantillon bootstrap. En particulier 6" est
I’estimation emypirique bootstrap de1’écart type de g(6° ) Ah (é\ Alors la distribution bootstrap de
g(é\‘r) g@n) 76 estime la distribution bootstrap de a(Bn) - 9(0) /6n sous I’hypothése nulle [16].

Baser le test d’hypothése sur la distribution bootstrap de g(é\’) g(é\n) /6" permet d’améliorer, la
précisionduniveaudutestsansmodifier lapuissancedutest[4,16].
Pour appliquer le test bilatéral bootstrap de Ho : g(8) = 0 au niveau a, on eff ectue les instructions suivantes : commence par

1. Calculerlavaleurde lastatistique S pourl’échantillon de départ : soitso lavaleur observée.

2. SimulerBéchantillonsdetaillenobservationstiréesdefagonaléatoireavecremiseapartirde
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I’ensemble de données originales, et obtenir ainsi B valeurs simulées de s* de S : b
N b N,
* = n 90
S b=1,...,.B
LERECR™)

3. Calculer lap-value bootstrap

1 =B
p* s I(s" >5) Og
b=1

peutformuleralorslaréglededécisionsuivante:
1. Test 1.

(@) Sélectionner le profil Uz si p* < a/2
(b) Sélectionner le profil Uy si p* > 1 - 0/2

(c) Choisirau hasard entre Uz et Uzsip” € [a/2,1 - 0/2 ]
Cette troisieme étape du test utilise le principe du test stochastique (test randomisé) ot on génére une réalisation b
d’une variable de Bernoulli de paramétre 1/2. On sélectionne U; si b = 1 sinon on sélectionne Us.

2. Test2:

(@) Sélectionner le profil Uz i p* < 0/2

(b) sinon Sélectionner le profil U;

Le Test 2 permet de favoriser les profils les plus courts. Les résultats présentés dans cette analyse sont obtenus en utilisant le Test 2.

6.2.2 Algorithme

L’algorithme d’apprentissage statistique, adapté au bootstrap, est le suivant :
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Algorithme : Réduction de I’ensemble U!

Entrées: D unensembled’observation; U un ensemblede reglesnonredondantes, a=0.05 le niveau du testet B le
nombre d’échantillon bootstrap (20 par défaut).
— Sorties : U? up ensemble optimal de profils

1 :pourtoutprofilCe Ut , faire

21 S=issupset(C,Ut) {le sous-ensemble des profils emhoités dans C} 3 : pour
tout profil C' € Sfaire
4: Evaluer les indicateurs suivants
5: B = (p1,...,ps|D)
AN N ! A

6: 2(8n)=log(VPP(C,Y|0n))—log(VPP(C,Y[0,)) 7 :

A(Bh) = diag(fh) - 6t 6\,
8:  Va=Vglh)

. z
9: 8= L viAbh)V .
10 : so = g(On)/on”
1 pour toutéchantillonboostrap D faire
12: 6° = (p1,...,ps|D®) ,
/\b N\ /\b

13: g(8,)=log(VPP(C,Y8,)-log(VPP(C,Y16,))

14 A®) = diag(®) 7 )5
15: Vo=V g -g0h)

- . z
16: o = TTVTA@)V,
An n n n
b n n
. o 2
1B fnoomky o6y seb
19: Calculerlap - vaIuBQ
: =
20: p* = E I(s,>5) 0
b=1
b=1
21 : si p*<a?2 faire
2 Ui=delete(C,U1) A {Supprimer le profil C}
23 : sinon
24 - Ui:delete(C',Ul) , {Supprimer le profil C’}
25 ftn si
26 : ftn pour
27 :ftn pour

28 :Résultat U?

Tableau I11.4 —Algorithmederéductiondel’ensemble nonredondantlorsque’échantillond’appren- tissage est de petite
taille
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7 Application a des données de la littérature

Toutes les données que nous avons utilisé pour 1’application de 1’algorithme d’apprentissage sont issues du répertoire
d’apprentissage automatique UCI (UCI Machine Leraning Repository) [3]. Toutes les analyses relatives & la méthode de
classement proposée ont été réalisées dans I’environnement de programmation R [25]. L exploration des reégles d’association a
été faite en utilisant le package arules [1]. Nous avons également utilisé le package rpart [28], la package partykit [18], le package
e1071[22] etle package DMwWR [29] pour comparer notre approche avec cellesexistantes dans lalittérature.

7.1  Données Adult Data Set

Les données d’application sont extraites de la base de données du bureau de recensement de 1994 [19]. Elles contiennent
essentiellement des sujets agés de plus de 16 ans et ayant a la fois un revenu brut ajusté supérieur a 1 et un volume horaire de travail
positif. Au total, elles contiennent 45222 sujets hormis les données manquantes. Les sujets sont échantillonnés sur deux
ensembles : un ensemble d’ap- prentissage de 30162 sujets (2/3 de données totales) et un ensemble test de 15060 sujets. Les
données contiennent 14 covariables dont 5 sont continues et 8 sont nominales dont une variable réponse binaire indexant le revenu
annuel d’un sujet & plus de $ 50K ou moins. L’objectif visé dans cette analyse est de trouver un profil prédictif du niveau de
revenu d’un sujet donné.

Pour évaluer la procédure d’apprentissage des régles d’association binaire, nous allons eff ectuer plu- sieurs expériences en sur-
échantillonnant ou en sous-échantillonnant le jeu de données census. Pour obtenir un ensemble de données déséquilibrées, on
commence par sélectionner toutes les observations de la classe prévalente ; ensuite on se fixe une proportion o de la classe rare.
Soit n le nombre d’ob- servations de la classe prévalente. On sélectionne n' = no/(1 - o)) observations de la classe rare. On
obtientainsi, unéchantillonden+n’observationsavecune proportiona.de laclasserare.

Dans tout ce qui suit, nous avons fixé le parametre de la taille maximale des régles a 4, le paramétre du risque relatif minimal
égal a 1 et le parametre de la p-value minimale associée au test exact de Fisher égale a 0.05. Aprés avoir construit notre
échantillon déséquilibré, on se fixe un seuil de sup- port minimale (minsup) et un seuil de valeur prédictive positive minimale
(minconf). Ces derniers nous permettront de générer ’ensemble de régles d’association fréquentes R. Pour chaque expérience, on
subdivise aléatoirement I’échantillon en deux parties : apprentissage et validation. Un ensemble test est utilisé pour évaluer les
performances du classifieur. Cependant, on peut évaluer deux types d’erreurs de classement : 1’erreur de classement lorsque la
distribution de I’ensemble d’apprentissage est diff érente de la distribution de I’ensemble test et I’erreur de classement lorsque la
distributionde 1’ensemble d’apprentissage est identique a la distribution de ’ensemble test.

7.1.1 Performances du classifteur lorsque la distribution de I’échantillon test estiden-
tique a celui de I’échantillon d’apprentissage
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Proportions Nb profils dans U; | Erreur.cl U, Nb profils dans U? | Sensibilité | Spécificit¢ | Erreur.clt Minsup Minconf
76 0.22 12 0.68 0.81 0.19
129 0.28 10 0.69 0.78 0.22
110 0.25 15 0.70 0.78 0.23
69 0.19 14 0.60 0.83 0.17
92 0.24 12 0.72 0.80 0.20
<=50K >50K 101 0.27 16 0.71 0.81 0.19 0.001 0.028
0.993 0.007 130 0.32 12 0.80 0.77 0.23
145 0.30 11 0.74 0.81 0.19
126 0.35 17 0.74 0.74 0.26
101 0.24 06 0.62 0.83 0.17
110 0.22 13 0.74 0.81 0.19
104 0.23 11 0.60 0.81 0.19
61 0.19 10 0.67 0.83 0.17
62 0.19 10 0.67 0.85 0.16
69 0.21 11 0.72 0.82 0.18
34 0.08 04 0.49 0.93 0.08
91 0.23 09 0.71 0.83 0.17
<=50K >50K 81 0.21 09 0.61 0.85 0.15 0.002 0.06
0.985 0.015 70 0.19 10 0.71 0.83 0.17
59 0.22 15 0.80 0.78 0.22
67 0.21 08 0.72 0.84 0.16
91 0.24 11 0.70 0.80 0.20
69 0.21 09 0.72 0.83 0.18
92 0.23 07 0.60 0.89 0.12

Tableau II1.5 — Performance prédictive sur 12 expériences : (0.7% & 1.5%)
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Proportions Nb profils dans U; | Erreur.cl U; Nb profils dans U7 | Sensibilité | Spécificit¢ | Erreur.clt Minsup Minconf
56 0.23 22 0.79 0.77 0.23
64 0.25 19 0.77 0.79 0.21
43 0.19 15 0.68 0.84 0.17
55 0.26 09 0.68 0.83 0.17
35 0.19 06 0.48 0.92 0.10
<=50K >50K 44 0.20 10 0.67 0.86 0.14 0.0050.10
0.970.03 35 0.22 09 0.70 0.83 0.17
66 0.25 16 0.71 0.81 0.20
51 0.20 11 0.75 0.83 0.18
59 0.24 11 0.68 0.81 0.19
58 0.24 16 0.80 0.77 0.23
50 0.26 13 0.81 0.77 0.23
67 0.20 21 0.76 0.80 0.20
83 0.22 24 0.77 0.78 0.22
69 0.20 15 0.73 0.83 0.18
74 0.16 20 0.66 0.86 0.16
73 0.20 14 0.70 0.83 0.18
<=50K >50K 50 0.20 14 0.71 0.83 0.17 0.010.23
0.930.07 50 0.16 16 0.63 0.88 0.14
63 0.18 20 0.67 0.83 0.18
50 0.16 19 0.64 0.86 0.16
55 0.20 16 0.72 0.83 0.17
67 0.20 17 0.73 0.83 0.18
75 0.18 18 0.67 0.83 0.18

Tableau I11.6 — Performance prédictive sur 12 expériences : (3% & 7%)
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Proportions Nb profils dans U; | Erreur.cl U; Nb profils dans U7 | Sensibilité | Spécificité | Erreur.clt Minsup Minconf
62 0.23 19 0.67 0.86 0.17
56 0.22 20 0.78 0.78 0.22
62 0.23 17 0.63 0.83 0.20
60 0.22 18 0.68 0.83 0.19
49 0.23 22 0.75 0.78 0.23
<=50K >50K 40 0.20 10 0.58 0.88 0.16 0.0250.4
0.850.15 54 0.23 21 0.70 0.83 0.19
59 0.23 18 0.61 0.86 0.18
33 0.19 13 0.64 0.86 0.18
44 0.21 18 0.73 0.80 0.21
65 0.23 20 0.67 0.86 0.17
46 0.23 11 0.64 0.86 0.18
58 0.20 17 0.65 0.88 0.16
66 0.20 22 0.68 0.83 0.20
62 0.20 21 0.67 0.86 0.18
66 0.20 21 0.68 0.83 0.20
46 0.18 18 0.61 0.88 0.18
<=50K >50K 64 0.20 23 0.65 0.88 0.16 0.030.5
0.800.20 53 0.18 18 0.65 0.88 0.17
75 0.22 19 0.68 0.83 0.20
57 0.18 19 0.65 0.88 0.16
49 0.19 19 0.68 0.84 0.19
58 0.18 20 0.67 0.86 0.18
67 0.22 20 0.74 0.81 0.20

Tableau IIL.7 — Performance prédictive sur 12 expériences : (15% & 20%)
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Avec un diagramme-boites en paralléle, nous avons représenté, pour chaque série de 100 valeurs des diff érentes mesures de
performances (sensibilité, spécificité et erreur de classement), la distribution de celles-ci de maniére trés simplifiée avec la médiane
(trait épais), une boite qui s’étend du quartile 0.25 au quartile 0.75, et des moustaches qui s’étendent par défaut jusqu’a la valeur
distante d’au maximum
1.5 fois la distance inter-quartile.
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Figure IIL.1-Distribution de lasensibilité estimée sur 100 échantillons
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Figure III.2 —Distribution de laspécificité estimée sur 100 échantillons
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Figure II1.3 — Distribution de I’erreur de classement estimée sur 100 échantillons

p=20%

7.1.2 Performances du classifteurlorsqueladistribution de’échantillon test est diffé-

rente de celui de ’échantillon d’apprentissage
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Proportions Nb profils dans U; | Erreur.cl U; Nb profils dans U7 | Sensibilité | Spécificit¢ | Erreur.clt Minsup Minconf
80 0.24 12 0.71 0.77 0.24
101 0.26 14 0.78 0.73 0.25
80 0.23 11 0.74 0.78 0.23
47 0.20 13 0.70 0.82 0.20
93 0.24 07 0.57 0.83 0.23
<=50K >50K 46 0.21 14 0.73 0.83 0.20 0.001 0.028
0.993 0.007 113 0.27 14 0.72 0.73 0.27
71 0.21 12 0.55 0.83 0.23
94 0.23 13 0.74 0.79 0.22
51 0.20 08 0.54 0.85 0.22
102 0.23 04 0.46 0.91 0.19
53 0.19 06 0.49 0.90 0.20
53 0.19 08 0.58 0.89 0.18
67 0.20 16 0.66 0.83 0.21
40 0.19 10 0.64 0.84 0.21
59 0.18 16 0.66 0.86 0.18
100 0.23 16 0.74 0.77 0.23
<=50K >50K 53 0.19 13 0.69 0.84 0.19 0.002 0.06
0.985 0.015 46 0.17 08 0.57 0.93 0.16
64 0.18 14 0.65 0.86 0.18
73 0.19 12 0.59 0.85 0.21
60 0.18 11 0.61 0.90 0.17
74 0.18 14 0.65 0.89 0.17
97 0.21 13 0.74 0.83 0.19

Tableau I11.8 — Performance prédictive sur 12 expériences : (0.7% & 1.5%)
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Proportions Nb profils dans U; | Erreur.cl U; Nb profils dans U7 | Sensibilité | Spécificité | Erreur.clt Minsup Minconf
74 0.26 20 0.66 0.81 0.23
75 0.24 18 0.82 0.75 0.24
63 0.22 16 0.76 0.81 0.20
68 0.24 12 0.67 0.79 0.24
61 0.21 11 0.58 0.88 0.19
<=50K >50K 61 0.22 16 0.77 0.80 0.21 0.0050.1
0.970.03 51 0.21 10 0.70 0.82 0.21
74 0.27 20 0.75 0.76 0.25
51 0.21 11 0.70 0.82 0.21
85 0.25 14 0.72 0.80 0.22
62 0.24 15 0.77 0.77 0.23
71 0.24 21 0.80 0.75 0.24
73 0.20 25 0.75 0.81 0.20
71 0.22 23 0.74 0.83 0.19
76 0.20 24 0.75 0.81 0.20
85 0.22 24 0.75 0.81 0.20
75 0.20 20 0.66 0.86 0.18
<=50K >50K 73 0.20 20 0.74 0.83 0.19 0.010.23
0.930.07 71 0.18 19 0.66 0.86 0.18
71 0.21 23 0.76 0.80 0.21
71 0.18 22 0.66 0.86 0.18
67 0.20 20 0.73 0.84 0.18
76 0.20 20 0.66 0.86 0.18
79 0.22 18 0.68 0.83 0.21

Tableau I11.9 — Performance prédictive sur 12 expériences : (3% & 7%)
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Proportions Nb profils dans U; | Erreur.cl U; Nb profils dans U7 | Sensibilité | Spécificit¢ | Erreur.clt Minsup Minconf
56 0.20 16 0.66 0.86 0.18
65 0.22 19 0.76 0.81 0.20
62 0.22 17 0.66 0.86 0.18
59 0.22 14 0.65 0.89 0.17
55 0.22 17 0.66 0.86 0.18
<=50K >50K 52 0.21 21 0.70 0.81 0.21 0.0250.4
0.850.15 60 0.22 21 0.74 0.81 0.21
56 0.22 22 0.75 0.81 0.20
52 0.23 15 0.60 0.86 0.20
58 0.22 20 0.77 0.79 0.22
64 0.22 18 0.66 0.86 0.18
56 0.22 17 0.75 0.81 0.20
62 0.21 20 0.72 0.84 0.18
65 0.21 21 0.76 0.81 0.20
59 0.21 21 0.74 0.82 0.20
75 0.22 22 0.74 0.83 0.19
54 0.18 17 0.65 0.89 0.17
<=50K >50K 62 0.20 22 0.66 0.87 0.18 0.030.5
0.800.20 54 0.20 20 0.68 0.84 0.20
58 0.20 22 0.75 0.81 0.20
54 0.18 19 0.65 0.89 0.17
46 0.18 18 0.64 0.89 0.17
56 0.20 19 0.74 0.82 0.20
70 0.22 25 0.74 0.83 0.19

Tableau III.10 — Performance prédictive sur 12 expériences : (15% & 20%)
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II1.7 Application a des données de la littérature

Avec un diagramme-boites en parallele, nous avons représenté, pour chaque série de 100 valeurs des diff érentes mesures de
performances (sensibilité, spécificité et erreur de classement), la distribution de celles-ci de maniére trés simplifiée avec la médiane
(trait épais), une boite qui s’étend du quartile 0.25 au quartile 0.75, et des moustaches qui s’étendent par défaut jusqu’a la valeur
distante d’au maximum
1.5 fois la distance inter-quartile.
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Figure I11.4 —Distribution de lasensibilité estimée sur 100 échantillons
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Figure II1.5 - Distribution de la spécificité estimée sur 100 échantillons
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Figure II1.6 — Distribution de I’erreur de classement estimée sur 100 échantillons

7.2 Comparaison de la méthode d’apprentissage avec des méthodes alternatives

Le classement binaire basé sur la régression logistique ou les arbres binaires de régression implique I’ajustement d’un modéle
paramétrique ou non paramétrique aux probabilités conditionnelles Pr(Y = y|X =x) ouy € Dom(Y)etx e Dom(X). Notons
par Pr(Y =y|X =X, D) la probabilité ajustée aux données D et considérée comme un score. Dans ces cas, le classifieur ¢ est
alorsdéfiniparladonnée d’un seuil A € ]0, 1[par
1 siPr(Y=y|X=x,D)>A
p(x)= PrY = yIX=xD)

0 sinon
Dans le cas de I’analyse discriminante (;u des réseaux bayésiens comme le réseau bayésien naif on considére une loi a priori n
pour la distribution de probabilité des classes et on ajuste un modéle paramétrique ou non paramétrique aux lois
conditionnelles de X sachant que Y =y. Notons par Pr(X = x|Y =y) la densité conditionnelle de X sachant Y =y selon

que X est discréte ou non. Leclassifieurestobtenuapartir de laloiaposterioride Y sachantque X =x qui est définie par

Pr(x|Y =y,D)n(y)
Pr(x|D)

lesdonnées D et Pr(x|D) est laloi marginale de X correspondantau couple (Pr(x|y,D),x(y)). Ce

considérée comme un score ou Pr(x|Y =y, D) est la loi ajustée en utilisant

classifieur est alors défini, pour A > 0 fixé, par

- 1 siPr(Y =y|X =x, D)a(y) >\

XA)=
(pF ) 0 sinon
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Il se pose alors la question de sélectionner un classifieur optimal sur la base d’un compromis sur des mesures de performance
comme la sensibilité , la spécificité, le taux d’erreur, etc. La courbe ROC et la mesure AUC sont généralement utilisées pour
réaliser cet objectif. Cette démarche peut étre étendue aux méthodes d’agrégation de classifieur comme le boosting d’arbre binaire
de classement ou le random forest. Généralement ces méthodes utilisent un seuil 1 = 0.5 par défaut. Tres souvent le classifieur
o(x|}) associé au seuil A =0.5 ne fournit pas de meilleurs performances. Ainsi pour comparer notre méthode de classementa
cesdiff érentesméthodes,nousconsidéronslastratégiesuivante:

1. Nous identifions le seuil optimal pour chague méthode associant un score a une observation. C’est & dire le seuil qui
produit le classifieur dont les mesures de performance fournit le meilleur compromis.

2. Nous comparons alors les classifieurs ainsi obtenus a notre classifieur. Les résultats obtenus sont présentés dans les
tableaux ci-dessous.

Les résultats présentés ci-dessous sont obtenus en utilisant le package caret[20] (classification and regression training) dans
I’environnement de programmation R. Ce dernier contient un riche ensemble de fonctions de modélisation a la fois pour la
classification et la régression. Le package caret permet d’éliminer la diff érence syntaxique située entre un grand nombre
d’algorithme pour la construction et la prédiction de modeles. II contient un ensemble d’approches raisonnables semi-
automatisées pour 1’optimisation des valeurs des parametres d’apprentissage. A1’aide du package caret, on peut donc trouver,
pour la plus part des méthodes (classification ou régression), le classifieur optimal qui ajuste le mieux les données
d’apprentissage grace a sa fonction train. La fonction train est utilisée pour sélec- tionner les valeurs du(des) parametre(s)
d’apprentissage du modéle et/ou d’estimer les performances du modéle en utilisant une méthode d’échantillonnage. En utilisant
une methode d’échantillonnage telle que le bootstrap ou la validation croisée, un ensemble d’observations est simulé
conditionnellement aux données d’apprentissage. A chaque ensemble échantillonné correspond un classifieur. Pour chaque
combinaison de parametres d’apprentissage candidats, un modéle est ajusté aux données échantillon- nées et ensuite est utilisé
pour laprédiction. Laperformance dumodéle estestimée enagrégeant les prédictions du modeéle sur les données échantillonnées.
Ces performances estimées sont utilisées pour évaluer laquelle des combinaisons des paramétres d’apprentissage est appropriée.
Pour des données de grande taille telles que les données "Adult Dataset" nous avons choisi la validation croisée comme mé- thode
d’échantillonnage et pour les données de petite taille, par exemple les données "Credit Approval Dataset", nous avons utilisé le
bootstrap comme méthode de ré-échantillonnage.

Le taux d’erreur de classement est la mesure de performance généralement associée aux algorithmes d’apprentissage
automatique. Dans le contexte des ensembles de données symétriques et des ensembles de données avec des colits de mauvais
classement égaux, il est raisonnable d’utiliser le taux d’erreur comme mesure de performance. Par contre lorsque les données sont
déséquilibrées ou lorsqu’elles sont associées a des codts d’erreur inégaux, il est plus approprié d’utiliser la courbe ROC ou
d’autres
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techniques similaires (Ling et Li, 1998 ; Drummond & Holte, 2000 ; Provost & Fawcett, 2001 ; Bradley, 1997 ; Turney 1996 ).
L’aire sous la courbe ROC (AUC) est une mesure utile de la performance du classificateur car elle est indépendante du
critére de décision choisi et aux changements de la distribution des classes [12]. La comparaison des AUC peut établir une
relationdedominationentre les classifieurs.

Le score de Pierce constitue aussi une mesure de performance congue pour la prévision d’événements climatiques rares afin de
pénaliser les modéles ne prévoyant jamais ces événements ou encore générant trop de fausses alertes. Le modeéle idéal prévoit tous les
événements rares sans fausse alerte. Le score de Pierce : Sensibilité + Spécificité - 1, comprisentre -1 et 1, évalue la qualité d’un
modele de prévision. Sice score est supérieur a0, le taux de bonnes prévisions est supérieur a celui des fausses alertes et plus il
est proche de 1, meilleur est le modeéle.

Dans la suite, nous avons choisi de comparer notre méthode a des méthodes alternatives qui associent un score a chaque
observation. Pour ces méthodes il est donc possible de construire leurs courbes ROC. Pour chague méthode alternative, on peut
produire unensemble de classifieurs et puis sélectionner le classifieur le plus pertinent suivant un critere de sélection a1’aide de
la fonction train du package caret. Dans cette analyse nous avons choisi la précision (taux de bien classés) comme critére
de sélection. Par la suite, nous allons comparer les performances des meilleurs classifieurs sélectionnés avec les performances de
notre classifeur. Les résultats sont présentés sous forme de tableaux.

Données Adult Data Set

7.2.1

1. Lorsque la distribution de ’échantillon test est identique a celui de I’échantillon
d’apprentissage
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Proportion : negative - positive = 0,97 - 0,03
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On peut constater a partir des graphes ci-dessus que lorsque la proportion d’observations posi- tives devient de plus en

plus grande, les courbes ROC se rapprochent de plus en plus.
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont
indépendantes et identiquement distribuées

Distributions ARM CART CTREE

"o" -1t sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 0,700 | 0,779 0222 | 0,740 | 0,479 | 0,105 | 1,000 | 0,007 | 0,552 | 0,105 | 0,593 | 0,878 | 0,124 | 0,736 | 0471
0.985-0.015 | 0,671 | 0,821 0181 | 0,746 | 0,492 | 0,152 | 1,000 | 0,014 | 0,576 | 0,152 | 0,793 | 0,777 | 0,222 | 0,785 | 0,570
0.970-0.030 | 0,644 | 0,807 0,198 | 0,726 | 0,451 | 0,450 | 0,948 | 0,067 | 0,699 | 0,398 | 0,812 | 0,766 | 0,232 | 0,789 | 0,578
0.930-0.070 | 0,754 | 0,799 0,204 | 0,776 | 0,553 | 0,530 | 0,948 | 0,083 | 0,739 | 0,478 | 0,797 | 0,805 | 0,296 | 0,801 | 0,602
0.850-0.150 | 0,791 | 0,774 0223 | 0,782 | 0,565 | 0,467 | 0,949 | 0,127 | 0,708 | 0,416 | 0,813 | 0,818 | 0,183 | 0,815 | 0,631
Distributions ARM Naive Bayes SMOTE

"o"- "1t sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 0,700 | 0,779 022 | 0,74 | 0,479 | 0,814 | 0,719 | 0,279 | 0,766 | 0,533 | 0,547 | 0,770 | 0,231 | 0,659 | 0,317
0.985-0.015 | 0,671 | 0,821 0181 | 0,746 | 0,492 | 0,799 | 0,761 | 0,238 | 0,780 | 0,560 | 0,696 | 0,821 | 0,181 | 0,758 | 0,517
0.970-0.030 | 0,644 | 0,807 0,198 | 0,726 | 0,451 | 0,842 | 0,750 | 0,247 | 0,796 | 0,592 | 0,716 | 0,755 | 0,247 | 0,736 | 0471
0.930-0.070 | 0,754 | 0,799 0,204 | 0,776 | 0,553 | 0,850 | 0,760 | 0,233 | 0,805 | 0,610 | 0,783 | 0,772 | 0,227 | 0,778 | 0,555
0.850-0.150 | 0,791 | 0,774 0223 | 0,782 | 0,565 | 0,832 | 0,785 | 0,207 | 0,808 | 0,617 | 0,805 | 0,792 | 0,207 | 0,798 | 0,597
Distributionss ARM Boosting Random forests

"o" -1t sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss

0.993-0.007 | 0,700 | 0,779 0222 | 0,740 | 0,479 | 0,756 | 0,793 | 0,208 | 0,774 | 0,549 | 0,698 | 0,851 | 0,150 | 0,774 | 0,549

0.985-0.015 | 0,671 | 0,821 0181 | 0,746 | 0,492 | 0,766 | 0,814 | 0,187 | 0,790 | 0,580 | 0,799 | 0,794 | 0,205 | 0,796 | 0,593

0.970-0.030 | 0,644 | 0,807 0,198 | 0,726 | 0,451 | 0,823 | 0,801 | 0,199 | 0,812 | 0,624 | 0,791 | 0,780 | 0,220 | 0,786 | 0,571

0.930-0.070 | 0,754 | 0,799 0,204 | 0,776 | 0,553 | 0,842 | 0,804 | 0,193 | 0,823 | 0,646 | 0,804 | 0,794 | 0,204 | 0,799 | 0,598

0.850-0.150 | 0,791 | 0,774 0223 | 0,782 | 0,565 | 0,836 | 0,828 | 0,171 | 0,832 | 0,664 | 0,780 | 0,833 | 0,176 | 0,806 | 0,613

Tableau ITI.11 — Performances prédictives des méthodes alternatives
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II1.7 Application a des données de la littérature

On peut constater que notre méthode d’apprentissage (ARM) est plus performante que lamé- thode CART. Du point de
vue de I’aire en dessous de la courbe ROC (AUC) et du score de Pierce (PSS), laméthode ARM enregistre des valeurs
largement au dessus des valeurs de laméthode CART. Elle produit également des sensibilités plus élevées variant entre
62% et 80% tandis que la méthode CART enregistre des sensibilités entre 10% et 50%. Par contre la méthode CART
est plus spécifique (95%-100%) et admet des erreurs de classement plus faibles (7%-12%) contre (77%-81%) et (18%-
22%) respectivement pour la méthode ARM.

Le classifieur naif de Bayes, malgré qu’il produit des sensibilités, des AUC et des PSS plus élevés que ceux produits par la
méthodes ARM, enregistre de forts taux d’erreurs de classement entre 21% et 28% avec des spécificités plus petites que
celles de la méthodes ARM.

Les résultats présentés dans le tableau I11.11 ci-dessus montrent une forte équivalence entre la méthode ARM et les
méthodes SMOTE, Boosting et foréts aléatoires. Réputées d’étre les meilleurs méthodes de classement en terme de
performance, la méthode boosting et la méthode des foréts aléatoires présentent des performances sensiblement égales
aux performances de la méthode ARM.

. Lorsque la distribution de I’échantillon test est différente de celui de I’échantillon
d’apprentissage

A ma connaissance, les performances d’un classifeur binaire sont généralement évaluées a partir d’un ensemble test dont la
distribution est identique a celle de I’ensemble d’apprentissage qui a servis a construire le classifieur. Nous voulons évaluer
les performances de la méthode d’appren- tissage statistique et de les comparer avec les performances des méthodes
alternatives lorsque la distribution de I’échantillon d’apprentissage est diff érente de la distribution de I’ensemble test.

Proportion : négative - positive = 0,993 - 0,007 Proportion : négative - positive = 0,985 - 0,015
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Proportion : négative - positive = 0,97 - 0,03 Proportion : négative - positive = 0,93 - 0,07
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De méme on peut constater aussi, a partir des graphes ci-dessus, que lorsque la proportion d’ob- servations positives
devientdeplusenplusgrande, lescourbesROCserapprochentdeplusen plus.
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II1.7 Application a des données de la littérature

Distributions ARM CART CTREE
"0"-"1" sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 0,729 | 0,763 0245 | 0,746 | 0,492 | 0,248 | 0,995 | 0,189 | 0,621 | 0,243 | 0,555 | 0,922 | 0,168 | 0,738 | 0477
0.985-0.015 | 0,594 | 0,866 0201 | 0,730 | 046 | 0,168 | 0,999 | 0,205 | 0,584 | 0,167 | 0,637 | 0,874 | 0,184 | 0,756 | 0,511
0.970-0.030 | 0,697 | 0,750 0,263 | 0,724 | 0,447 | 0,493 | 0,948 | 0,164 | 0,720 | 0,441 | 0,840 | 0,761 | 0,220 | 0,800 | 0,601
0.930-0.070 | 0,752 | 0,800 0212 | 0,776 | 0,552 | 0,525 | 0,948 | 0,156 | 0,736 | 0,473 | 0,811 | 0,804 | 0,194 | 0,808 | 0,615
0.850-0.150 | 0,754 | 0,799 0212 | 0,776 | 0,553 | 0,724 | 0,858 | 0,175 | 0,791 | 0,582 | 0,819 | 0,816 | 0,183 | 0,817 | 0,635
Distributions ARM Naive Bayes SMOTE
"o -1 sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 0,729 | 0,763 0245 | 0,746 | 0,492 | 0,814 | 0,775 | 0,216 | 0,794 | 0,589 | 0,649 | 0,705 | 0,309 | 0,677 | 0,354
0.985-0.015 | 0,594 | 0,866 0201 | 0,730 | 0,460 | 0,829 | 0,773 | 0,213 | 0,801 | 0,602 | 0,728 | 0,776 | 0,236 | 0,752 | 0,504
0.970-0.030 | 0,697 | 0,750 0,263 | 0,724 | 0,447 | 0,831 | 0,776 | 0,211 | 0,804 | 0,607 | 0,649 | 0,855 | 0,196 | 0,752 | 0,504
0.930-0.070 | 0,752 | 0,800 0212 | 0,776 | 0,552 | 0,835 | 0,770 | 0,214 | 0,802 | 0,605 | 0,793 | 0,768 | 0,226 | 0,780 | 0,561
0.850-0.150 | 0,754 | 0,799 0212 | 0,776 | 0,553 | 0,825 | 0,784 | 0,206 | 0,804 | 0,609 | 0,825 | 0,754 | 0,229 | 0,790 | 05579
Distributions ARM Boosting Random forests
"o" -1 sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 0,729 | 0,763 0,245 | 0,746 | 0,492 | 0,806 | 0,807 | 0,193 | 0,806 | 0,613 | 0,733 | 0,809 | 0,210 | 0,771 | 0,542
0.985-0.015 | 0,594 | 0,866 0,201 | 0,730 | 0,460 | 0,820 | 0,807 | 0,190 | 0,814 | 0,627 | 0,793 | 0,775 | 0,220 | 0,784 | 0,568
0.970-0.030 | 0,697 | 0,750 0263 | 0,724 | 0,447 | 0,823 | 0,812 | 0,185 | 0,818 | 0,635 | 0,800 | 0,794 | 0,205 | 0,797 | 0,594
0.930-0.070 | 0,752 | 0,800 0212 | 0,776 | 0,552 | 0,839 | 0,817 | 0,177 | 0,828 | 0,656 | 0,788 | 0,800 | 0,203 | 0,794 | 0,588
0.850-0.150 | 0,754 | 0,799 0212 | 0,776 | 0,553 | 0,831 | 0,832 | 0,169 | 0,831 | 0,663 | 0,808 | 0,808 | 0,191 | 0,808 | 0,616

Tableau I11.12 — Performances prédictives des méthodes alternatives

INJRIINNI] B[ AP SIuuop s9p e uonedrddy L-111



Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont
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Ici aussi on obtient des résultats analogiques aux résultats obtenus lorsque la distribution de 1’ensemble
d’apprentissage est identique a la distribution de 1’ensemble test. On observe que la méthode d’apprentissage ARM
est plus performante que la méthode CART. Du point de vue de I’aire en dessous de la courbe ROC (AUC) et du
score de Pierce (PSS), la méthode ARM enregistre des valeurs largement au dessus des valeurs de laméthode CART.
Elle produit égalementdessensibilités plusélevées variantentre 59% et 75% tandis que laméthode CART enregistredes
sensibilités entre 16% et 72%. Par contre laméthode CART est plus spécifique et admet des erreurs de classement plus
faibles sur tous les échantillons simulés.

Dans le cas ou la distribution d’apprentissage est diff érente de la distribution test, les indices de performances du
classifieur naif de Bayes sont meilleurs que les indices de performance de la méthode d’apprentissage ARM sur tous les
échantillons simulés sauf au niveau de la spécificité oul onaenregistré des taux sensiblement égaux. On peut constater aussi
que laméthode Boosting domine largement la méthode ARM sur tous les échantillons en plus elle enregistre des taux
d’erreur inférieurs a 20% des scores de Pierce supérieurs a 61% . Tandis que la méthode des foréts aléatoires enregistre
des taux d’erreurs inférieurs a 22% et des scores de Pierce compris entre 54 — 61%. La ou la méthode ARM enregistre
destaux d’erreurs supérieursa 20% et des scores de Pierce inférieurs a 55%.

— ARM : Association Rules Mining ; CART : Classification And Regression Tree ; CTREE : Condi- tional tree ; Naive

Bayes : Naive Bayes Classifier; SMOTE : Synthetic Minority Oversampling Technique,

7.2.2 Données Credit Approval Data Set

Lejeudedonnées"creditapproval" concerne desdemandes de carte de crédit[24]. Touslesnoms et valeurs des variables ont

été modifiés pour protéger la confidentialité des données. Les données contiennent au total 690 observations incluant les

données manquantes. Elles sont constituées d’un mélange de 6 variables numériques, de 9 variables non-numériques et d’une
variable réponse binaire ("+","-"). L’objectif visé dans cette analyse est de trouver un profil prédictif d’approbation d’une carte
crédit a un sujet donné.
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Proportion : negative - positive = 0,993 - 0,007

False positive rate

Proportion : negative - positive = 0,985 - 0,015
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On constate également que lorsque la proportion d’observations positives devient de plus en plus grande, les courbes ROC
se rapprochent de plus en plus.
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Chapitre IIIDCliskifteur basé sur un eng&ible de proftls lorsque les donn@8Eont CTREE

indépendantes et idéntiqasinernsbdistriboaées auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 1.000 | 0.852 0.147 | 0.926 | 0.852 - - - - - 1.000 | 0,966 | 0,033 | 0,983 | 0,966
0.985-0.015 | 1.000 | 0.832 0.166 | 0.916 | 0.832 - - - - - 1.000 | 0,947 | 0,052 | 0974 | 0,947
0.970-0.030 | 0.909 | 0.714 0.280 | 0.811 | 0.632 | 0,727 | 0,964 | 0,043 | 0,845 | 0,691 | 0909 | 0947 | 0,055 | 0,928 | 0,856
0.930-0.070 | 0.889 | 0.818 0.177 | 0.853 | 0.707 | 0,556 | 0,983 | 0,047 | 0,770 | 0,539 | 1,000 | 0,866 | 0,125 | 0,933 | 0,866
0.850-0.150 | 0.857 | 0.765 0221 | 0.811 | 0.622 | 0,889 | 0,801 | 0,186 | 0,845 | 0,690 | 0,889 | 0,801 | 0,186 | 0,845 | 0,690
0.700-0.300 | 0.935 | 0.625 0.283 | 0.780 | 0.560 | 0,928 | 0,801 | 0,161 | 0,864 | 0,729 | 0,948 | 0,790 | 0,163 | 0,869 | 0,738
Distributions ARM Naive Bayes SMOTE
Ea sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 1.000 | 0.852 0.147 | 0.926 | 0.852 | 1.000 | 0,992 | 0,008 | 0,996 | 0,992 | 1.000 | 0,992 | 0,008 | 0,996 | 0,992
0.985-0.015 | 1.000 | 0.832 0.166 | 0.916 | 0.832 | 1.000 | 0,997 | 0,003 | 0,998 | 0,997 | 1.000 | 0,997 | 0,003 | 0,998 | 0,997
0.970-0.030 | 0.909 | 0.714 0.280 | 0.811 | 0.632 | 1,000 | 0,933 | 0,065 | 0,966 | 0,933 | 1,000 | 0,933 | 0,065 | 0,966 | 0,933
0.930-0.070 | 0.889 | 0.818 0.177 | 0.853 | 0.707 | 0,889 | 0,933 | 0,070 | 0,911 | 0,822 | 0,889 | 0,933 | 0,070 | 0911 | 0,822
0.850-0.150 | 0.857 | 0.765 0221 | 0.811 | 0.622 | 0,825 | 0,840 | 0,162 | 0,832 | 0,665 | 0,825 | 0,840 | 0,162 | 0,832 | 0,665
0.700-0.300 | 0.935 | 0.625 0.283 | 0.780 | 0.560 | 0,784 | 0,905 | 0,132 | 0,844 | 0,689 | 0,784 | 0,905 | 0,132 | 0,844 | 0,689
Distrbutions ARM Boosting Random Forests
Ea sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 1.000 | 0.852 0.147 | 0.926 | 0.852 | 1.000 | 1,000 | 0,000 | 1,000 | 1,000 | 1.000 | 1,000 | 0,000 | 1,000 | 1,000
0.985-0.015 | 1.000 | 0.832 0.166 | 0.916 | 0.832 | 1.000 | 0,994 | 0,006 | 0,997 | 0,994 | 1.000 | 1,000 | 0,000 | 1,000 | 1,000
0.970-0.030 | 0.909 | 0.714 0.280 | 0.811 | 0.632 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.930-0.070 | 0.839 | 0.818 0.177 | 0.853 | 0.707 | 1,000 | 0,992 | 0,008 | 0,996 | 0,992 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.850-0.150 | 0.857 | 0.765 0221 | 0.811 | 0.622 | 0,889 | 0,888 | 0,112 | 0,889 | 0,777 | 1,000 | 0,997 | 0,002 | 0,998 | 0,997
0.700-0.300 | 0.935 | 0.625 0.283 | 0.780 | 0.560 | 0,915 | 0,874 | 0,213 | 0,895 | 0,789 | 0,993 | 0,992 | 0,008 | 0,992 | 0,985

Tableau I11.13 — Performances prédictives des méthodes alternatives par bootstrap
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II1.7 Application a des données de la littérature

7.2.3 Données Pima Indians Diabetes Data Set

Le jeu de données "pima-indians-diabetes” est constitué par des femmes d’au moins 21 ans d’origine indienne Pima auxquelles
on a administré un test pour le diabéte [27]. L’échantillon est constitué de 8 variables numériques et d’une variable réponse
binaire qui prend lavaleur 1si le test est positif. I contientau total 768 observations. L’ objectifde 1’analyse est de déterminer si
ouiounonlapatiente présente dessignesde diabéte selon lesnormesde I’ organisation mondiale de lasanté.
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont

indépendantes et identiquement distribuées
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On constate de méme que lorsque laproportion d’ observations positives devientde plusenplus grande, les courbes
ROC se rapprochent de plus enplus.




II1.7 Application a des données de la littérature

Distributions ARM CART CTREE

" sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993 0.007 1.000 | 0.824 0175 | 0.912 | 0.824 - - - - - - - - - -
0.985-0.015 0.875 | 0.846 0.154 | 0.860 | 0.721 - - - - - 050 | 0954 | 0,053 | 0,727 | 0,454
0.970 - 0.030 0.933 | 0.786 0.210 | 0.859 | 0.719 - - - - - 0333 | 0954 | 0,064 | 0644 | 0,287

0.930-0.070 0.711 | 0.782 0223 | 0.746 | 0.492 - - - - - 0684 | 0,732 | 0271 | 0,708 | 0,416
0.850 - 0.150 0.784 | 0.602 0370 | 0.693 | 0.482 | 0,250 | 0,978 | 0,131 | 0,614 | 0,228 0807 | 0574 | 0,391 | 0,690 | 0,381
0.700 - 0.300 0.785 | 0.682 0287 | 0.733 | 0.466 | 0,477 | 0900 | 0,227 | 0,688 | 0,377 0836 | 0634 | 0305 | 0,735 | 0,470

Distributions ARM Naive Bayes SMOTE

R sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss

0.993-0.007 | 1.000 | 0.824 0175 | 0912 | 0.824 | 1.000 | 0,962 | 0,038 | 0,981 | 0,962 | 1.000 | 0,962 | 0,038 | 0981 | 0,962
0.985-0.015 | 0.875 | 0.846 0154 | 0.860 | 0.721 | 0,750 | 0,900 | 0,102 | 0,825 | 0,650 | 0,750 | 0,900 | 0,102 | 0,825 | 0,650
0.970-0.030 | 0.933 | 0.786 0210 | 0.859 | 0.719 | 0,733 | 0,834 | 0,169 | 0,784 | 0,567 | 0,733 | 0,834 | 0,169 | 0,784 | 0,567
0.930-0.070 | 0.711 | 0.782 0223 | 0.746 | 0.492 | 0,789 | 0,730 | 0,266 | 0,760 | 0,519 | 0,789 | 0,730 | 0,266 | 0,760 | 0,519
0.850-0.150 | 0.784 | 0.602 0370 | 0.693 | 0.482 | 0,784 | 0,748 | 0,246 | 0,766 | 0,532 | 0,784 | 0,748 | 0,246 | 0,766 | 0,532
0.700-0.300 | 0.785 | 0.682 0287 | 0.733 | 0.466 | 0,762 | 0,736 | 0,256 | 0,749 | 0,498 | 0,762 | 0,736 | 0,256 | 0,749 | 0,498

Distributions ARM Boosting Random Forests

R sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss

0.993-0.007 | 1.000 | 0.824 0175 | 0912 | 0.824 | 1.000 | 0,984 | 0,016 | 0,992 | 0,984 | 1.000 | 1,000 | 0,000 | 1,000 | 1,000
0.985-0.015 | 0.875 | 0.846 0154 | 0.860 | 0.721 | 1,000 | 0,928 | 0,071 | 0,964 | 0,928 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.970-0.030 | 0.933 | 0.786 0210 | 0.859 | 0.719 | 0,800 | 0,758 | 0,241 | 0,779 | 0,558 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.930-0.070 | 0.711 | 0.782 0223 | 0.746 | 0.492 | 0,737 | 0,778 | 0,225 | 0,758 | 0,515 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.850-0.150 | 0.784 | 0.602 0370 | 0693 | 0.482 | 0,716 | 0,824 | 0,193 | 0,770 | 0,540 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.700-0.300 | 0.785 | 0.682 0287 | 0.733 | 0.466 | 0,822 | 0,724 | 0,246 | 0,773 | 0,546 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
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Tableau II1.14 — Performances prédictives des méthodes alternatives par bootstrap
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont
indépendantes et identiquement distribuées

Les résultats obtenus a partir des données "Pima Indians Diabetes Dataset" et "Credit Approval Dataset" montrent que,
méme en présence d’un jeux de données de petite taille, la méthode ARM reste toujours meilleur que la méthode CART de
méme que la méthode CTREE dont, pour les données "Credit Approval Dataset", les taux d’erreur peuvent aller jusqu’a 39% et
les scores de Pierce inférieurs a47% tandis que laméthode ARM enregistre des scores supérieurs a47%. Ce pendant elles enregistrent
des scores de méme ordre de grandeur pour les données "Pima Indians Diabetes Dataset" mais avec des taux d’erreur plus
élevés pour la méthode ARM. Il faut noter aussi que pour les deux jeux de données les indicateurs de performance
(sensibilité, spécificité, AUC et PSS) décroissent et le taux d’erreur croit au fure et & mesure que la proportion
d’observations positivesaugmente.

7.2.4 Données Breast Cancer Data Set

Les données obtenues a partir du diagnostique de Wisconsin du cancer du sein (WDBC), fourni par le Centre Hospitalier
Universitaire de Wisconsin, a été dérivé d’un groupe d’images par aspiration & I’aiguille fine (FNA) de la poitrine [21]. Une
programmation génétique avec diff érentes tailles de la population a été utilisée pour cette étude. L objectif est d’identifier la
classe "benign" ou "malignant” de chaque numéro. Les échantillons arrivent périodiquement comme le Dr Wolberg rapporte ses
cas cliniques. La base de données refléte donc ce regroupement chronologique des données. Chaque variable a I’exception de la
premigre a été convertie en 11 attributs numériques primitifs avec des valeurs allant de 0 a 10. Il y a 16 valeurs manquantes. Les
données contiennent 699 observations sur 11 variables, 1’une étant une variable de caractére, 9 étant ordonnées ou
nominales, etuneclassecible.
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II1.7 Application a des données de la littérature
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On peut remarquer également que lorsque la proportion d’observations positives devient de plus en plus grande, les
courbes ROC se rapprochent de plus en plus.
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6

Chapitre IIIDCliskifteur basé sur un eng&ible de proftls lorsque les donn@8Eont CTREE
indépendantes et idéntiqasinernsbdistriboaées auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss

0.993-0.007 | 1,000 | 0,964 0,036 | 0,982 | 0,964 - - - - - 1.000 | 0,989 | 0,011 | 0,994 | 0,989
0.985-0.015 | 1,000 | 0,908 0,091 | 0,954 | 0,908 | 0,857 | 0,993 | 0,009 | 0,925 | 0,850 1.000 | 0,964 | 0,035 | 0982 | 0,964
0.970-0.030 | 1,000 | 0,883 0114 | 0,942 | 0,883 | 0,643 | 0,993 | 0,018 | 0,818 | 0,636 1.000 | 0,966 | 0,033 | 0,983 | 0,966
0.930-0.070 | 1,000 | 0,858 0132 | 0,929 | 0,858 | 0,879 | 0,984 | 0,023 | 0,932 | 0,863 097 | 0971 | 0,029 | 0970 | 0,941
0.850-0.150 | 0,987 | 0,858 0123 | 0,922 | 0,845 | 0,962 | 0,968 | 0,033 | 0,965 | 0,930 0987 | 0,953 | 0,042 | 0,970 | 0,940
0.700-0.300 | 0,995 | 0,858 0,01 | 0,926 | 0,853 | 1,000 | 0,948 | 0,036 | 0,974 | 0,948 1,000 | 0,948 | 0,036 | 0974 | 0,948
Distributions ARM Naive Bayes SMOTE

Ea sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0,993-0,007 | 1,000 | 0,964 0,036 | 0,982 | 0,964 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0,985-0,015 | 1,000 | 0,908 0,091 | 0,954 | 0,908 | 1,000 | 0,993 | 0,007 | 0,996 | 0,993 | 1,000 | 0,993 | 0,007 | 0,996 | 0,993
0,970-0,030 | 1,000 | 0,883 0114 | 0,942 | 0,883 | 1,000 | 0,977 | 0,022 | 0,988 | 0,977 | 1,000 | 0977 | 0,022 | 0,988 | 0,977
0,930-0,070 | 1,000 | 0,858 0,132 | 0,929 | 0,858 | 1,000 | 0,977 | 0,021 | 0,988 | 0,977 | 1,000 | 0977 | 0,021 | 0988 | 0,977
0,850-0,150 | 0,987 | 0,858 0,123 | 0,922 | 0,845 | 0,987 | 0,971 | 0,027 | 0,979 | 0,958 | 0,987 | 0971 | 0,027 | 0979 | 0,958
0,700-0,300 | 0,995 | 0,858 0,01 | 0,926 | 0,853 | 0,995 | 0,971 | 0,023 | 0,983 | 0,96 | 0,995 | 0971 | 0,023 | 0,983 | 0,966
Distributions ARM Boosting Random Forests

Ea sensib | spécf err.cl auc pss sensib | spécif | err.cl auc pss sensib | spécif | err.cl auc pss
0.993-0.007 | 1,000 | 0,964 0,036 | 0,982 | 0,964 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000 | 1,000
0.985-0.015 | 1,000 | 0,908 0,091 | 0,954 | 0,908 | 1,000 | 0,993 | 0,007 | 0,996 | 0,993 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.970-0.030 | 1,000 | 0,883 0114 | 0,942 | 0,883 | 1,000 | 0,993 | 0,007 | 0,996 | 0,993 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.930-0.070 | 1,000 | 0,858 0132 | 0,929 | 0,858 | 1,000 | 0,991 | 0,008 | 0,996 | 0,991 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.850-0.150 | 0,987 | 0,858 0,123 | 0,922 | 0,845 | 0,987 | 0,989 | 0,012 | 0,988 | 0,976 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000
0.700-0.300 | 0,995 | 0,858 0,101 | 0,926 | 0,853 | 0,989 | 0,977 | 0,019 | 0,983 | 0,966 | 1,000 | 1,000 | 0,000 | 1,000 | 1,000

Tableau III.15 — Performances prédictives des méthodes alternatives a partir de 20 échantillons bootstrap
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I11.8 Conclusion

Les résultats obtenus a partir des données "Breast Cancer Dataset" confirment donc que en pré- sence de données de petite
taille et déséquilibrées, la méthode ARM domine la méthode CART et enregistre des performances sensiblement équivalentes
aux performances obtenues & partir des mé- thodes de classement telles que la méthode Boosting et la méthode des foréts
aléatoires.

Il ressort de cette analyse que notre méthode d’apprentissage est largement plus performante que la méthode CART. Ce

pendant elle est comparable & la méthode CTREE, le classifieur naif de Bayes, la méthode SMOTE, le boosting d’arbres de
classement et la méthode random forest. Du point de vue de la sensibilité, de la spécificité, de I’aire en dessous de la courbe
ROC et du score de Pierce, notre méthode d’apprentissage a les méme ordres de valeur que les méthodes citées précédemment.
Par contre elle enregistre une erreur de classement supérieur a celles des autres méthodes de I’ordre de 107 4 1072,
Parailleurs, onpeutremarquerquesi CART et CTREE permettentde fournirunoutil d’aideala décision (arbre de décision)
permettant de visualiser des profils pertinents celan’est pas le cas des méthodes comme le boosting et les foréts aléatoires qui
parfois ont des performances supérieures a ceux obtenues par la méthode d’apprentissage étudiée dans la thése. D’ou I’avantage de
cette derniere sur les autres car elle permet d’avoir des performances sensiblement égales aux méthodes comme le boosting et les
foréts aléatoires mais aussi elle permet de visualiser les profils les plus pertinents pour construire une régle de classement.

8 Conclusion

La procédure permet de surmonter I'impuissance des méthodes de régression qui sous-estiment les probabilités
conditionnelles de I’apparition de la classe cible lorsque la fréquence des instances qui appartiennent a cette classe est tres
faible. De plus les interactions d’attributs qui sont fortement corrélées avec la classe cible sont spécifiées, ainsi la fonction de
classification n’apparait pas comme une boite noire. Néanmoins il faut remarquer qu’une étape de prétraitement des données est
nécessaire avant d’eff ectuer la procédure car il est supposé que les variables soient évaluées sur une échelle non numérique.
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Annexe B

Annexe Chapitre 111

A.1 Discrétisation par la Méthode de largeur d’intervalle égale

La technique de discrétisation la plus simple est celle dont le domaine de la variable discrétisée est le plus petit possible. i.e.,
Ina|=2. La plus simple discrétisation, pas nécessairement lameilleure, est la discrétisation binaire. Bien qu’il existe une infinité
de discrétisations binaires pour n’importe quel intervalle, toute variable numérique dans un ensemble de n observations peut
seulement prendre au plus n valeurs distinctes. Ainsi, au plus n = 1 discrétisations binaires sont pratiquement possibles. La
méthode la plus simple pour discrétiser une variable numérique consiste a partitionner son domaine en intervalles de largeur
égale. On1’appelle laMéthode de largeur d’intervalle égal (Equal Interval Width Method).

A.2 Discrétisation par la méthode par intervalle de fréquence égale

Plusieurs algorithmes de discrétisation basés sur la méthode de largeur d’intervalle égale (Equal Interval Width Method) ou
sur la méthode par intervalle de fréquence égale (Equal Frequency per Interval Method) ont été étudiés dans plusieurs papiers.
Parmi ces derniers on peut citer I’algorithme ChiMerge de Kerber [? ] qui utilise la statistique du+? pour discrétiser une variable
numérique. On peutciteraussil’algorithme Chi2 [? Jquiestuneaméliorationde1’algorithme ChiMerger sur lechoix du critére

d’arrét a.

A.3 Discrétisation par la mesure de ’entropie

Supposons que nous avons un ensemble S de N observations. Pour discrétiser une variable numé- rique A, nous choisissons
le «meilleur » point de coupure Ta de son domaine de définition en évaluant tous les points de coupure candidats. Premiérement il
faut ordonner les observations dans I’ordre crois- sant des valeurs de lavariable A et le point milieu entre chaque paire successive
d’observationsdans la séquence ordonnée est considéré comme un point de coupure potentiel. Ainsi pour chaque variable
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numérique, onauraN - 1 points de coupure potentiels (sionsuppose que les observationsn’ont pas desvaleursde Aidentiques).
Pour chaque pointde coupure T, lesdonnées sont partitionnéesen deux ensembles et I’entropie de la partition obtenue peut
étre alors calculée.

L’ensemble S peut étre vu comme un ensemble d’événements réalisé par une ou plusieurs variables. A chaque événement E;
est associée une probabilité P (E;, S). En général ces probabilités sont non- uniformes, a I’événement E; on associe la
probabilité P (E;, S), mais de somme égale a 1 car toutes les réalisations possibles sont prises en comptes. La quantité
d’information l; d’un événement simple E; est définie comme le logarithme de base 2 de la probabilité de I’événement P
(Ei,S) .

li= |ngp (Ei, S)

L’entropie Ent(E;,S) de1’événement E; est1’opposé de i (Ent(Ei, S) =-1i). L entropie peut étre vue comme I""incertitude".
Obtenir une quantité d’informations d’un événement c’est perdre la méme quantité d’incertitudes de 1’événement, ainsi I; et
Ent(E;, S) ne diff érent que par le signe. Par définition I; est toujours négative. Elle varie entre —« et 0 puisque P (Ei, S) est une
probabilité. Intuitivement, plus I’événement est improbable, plus I'incertitude augmente. A partir de la définition précédente, on
peut alors définir I’entropie d’un ensemble d’événements. L’entropie d’un ensemble S est 1’entropie moyenne de tous les
événements de 1’ensemble. Elle est calculée en pondérant chacune des entropies Ent(Ei, S) par la probabilité P (E;, S) de

I’événement.

> >
Ent(S)=- P (Ei, S)Ent(Ei, S) =— P (E;, S)logzP (Ei, S)
i i

Le choix de la mesure logarithmique est justifié par le désir d’une entropie additive. Nous voulons que 1’algébre de notre
mesure refléte les régles de probabilité. C’est a dire que lorsque nous recevons un ensemble d’événements indépendants, nous
aimerions pouvoir dire que 1’entropie totale recue est la somme des entropies individuelles. Mais la probabilité conjointe
d’événements indépendants est le produit des probabilités des événements, et donc nous devons prendre le logarithme afinque la
pro- babilité conjointe desévénementsindépendants puisse contribuer de fagonadditiveal’entropie acquise.

A.4 Discrétisation par la méthode MDLP

Ici les événements d’intérét sont spécialement les classes des observations d’un ensemble S. Sup- posons qu’il y ait k
classes:Cy,...,Cretnotonspar P (C;,S) laproportiond’observation dans S de classe Ci. Pour calculer ’entropie d’une classe
donnée apres que I’ensemble S est partitionné en deux sous-ensembles S; et Sz, nous prenons la moyenne pondérée des
entropiesdespartitions.

Déftnition 6. Pour un ensemble S d’observations, une variable A, et une valeur de coupure T. Supposons S; c Sle
sous-ensemble des observations dans S dont les valeurs correspondantes de A
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sontpluspetitesqueTetSz=S—81.L’entropiedeIa%rtitionindicéqgaTT,notéeparE(A,T,S), est définie par
E(A, T, S) = 2LEnt(S ) + =2 Ent(S)
N N

ol N = |S| est le nombre d’observations dans 1’ensemble S.

Lemeilleurpointde coupure parmitous lespointsde coupure candidatsest le pointde coupure
Ta pour lequel
Ta=argmimE(A, T, S)
T

Ceci détermine une discrétisation binaire de la variable A. Fayyad et Irani [? ] ont montré que la valeur Tx de la variable A qui
minimise la classe-entropie E(A, Ta, S) pour un ensemble d’apprentissage S doit toujours étre une valeur (une borne) entre deux
observations de classes diff érentes dans la séquence des observations ordonnées. L’ensemble S est alors subdivisé en deux sous-
ensembles par le point de coupure Ta. Une suite de points de coupure est obtenue en appliquant de maniére récursive la méme
méthode de discrétisation binaire pour chacun des sous-ensembles nouvellement produits jusqu’a ce que la condition suivante
soit réalisée :

ttaint(A,T,S) < logp(N=1) A (A, T;S)
" N N
oUl ttaint(A, T;S) = Ent(S) - E(A, T;S), A(A, T;S) = loga(3" - 2) - [kiEnt(S1) — k:Ent(S2)], et k,ki et k; sont les
nombres de classes représentées dans les ensembles S,S; et S, respectivement[? ]. Cette méthode de discrétisation d’une
variable numérique est généralement appelée le principe de la longueur de description minimal (Minimal Description
Length Principle).
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Chapitre IV

Classifieur base sur un ensemble de profils
lorsque les observations ne sont pas
Identiquement distribuées

1 Introduction

L’apprentissage statistique présenté dans la premiére partie de cette analyse (voir chapitre I11) est élaboré sous I’hypothése
présent chapitre, nous cherchons & adapter notre procédure d’apprentissage dans une situation ot les données, en plus d’étre
déséquilibrées, sont réparties entre m clusters (groupes ou blocs) tirés aléatoirement a partir d’une population donnée. On suppose
que chaque cluster admet une distribution [Y, X]n; h€ {1, - -, m} indépendantes des autres. Etant donné que I’indicateur de
performance au tour duquel la procédure d’apprentissage a été éla- borée est la valeur prédictive positive, nous proposons un
estimateur Bayésien de la valeur prédictive positive de tout profil U conditionnellementaladistribution[Y, X]» desobservations
dansunclusterh donné. Cette approche nous permet de tenir en compte ’eff et du cluster dans les résultats de I’analyse.

Les méthodes d’analyse classiques permettant de traiter des données groupées (essais multicen- triques) introduisent en
général la variable d’échantillonnage (groupe, cluster ou centre) comme Va- riables explicatives en autorisant les interactions.
Cependant elles ont des limites : (1) Lorsque le nombre de groupes est important, les introduire tous dans le modéle devient
problématique. (2) Puisque I’un des groupes est utilisé comme groupe de référence, on ignore les écarts de chaque groupe a la
moyenne. (3) Les groupes participant a I’essai constituent un échantillon d’une population plus large de groupes, on peut
souhaiter faire des prédictions pour un groupe n’ayant pas participé a I’essai. (4) On peut aussi souhaiter avoir une mesure
d’hétérogénéité entre les groupes.

Le modéle Béta-binomiale figure parmi les méthodes alternatives les plus utilisées dans la littéra-
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ture. Ce dernier permet a la fois d’estimer I’espérance de la probabilité de succes conditionnellement & un profil U (X) dans la
population et sa variabilité d’un groupe a un autre. De plus, il permet d’inférer sur la probabilité de succés conditionnellement a
I’événement [U(X) = 1] dans n’importe quel groupe, pas seulement ceux échantillonnés.

2 Modeéele hiérarchique pour le calcul des valeurs prédictives posi-

tives

Nous étudions dans ce chapitre un modele statistique correspondant au cas ou les données sont générées par une suite (Y,
Xi)i=1:n d’éléments aléatoires non identiquement distribués. 1l en résulte alors une hétérogénéité des données dont il faudrait
tenir compte dans le modéle statistique sur lequel I’analyse du classifieur sera basée.

Nous considérons ici la situation particuliére ou la suite (Yi, Xi)i=1:n €St structurée suivant une partition

de m sous-ensembles (Yin, Xin)n=1:m tell_les que les éléments de la suite (Yin, Xin)i=1:n, SOieNt indépen-

dants et de méme loi [Y, X]s. Nous surl)poérgns que les éléments de lasuite [Y, X]* ={[Y, X]», h = 1: m} sont générés de fagon
indépendante suivant une loi p sur I’ensemble P rob(Y, X) des lois de probabilités sur Dom(Y ) x Dom(X) muni de la tribu

associéealatopologie de laconvergencefaible. Sionse donne U (X), un profil défini par X, on aalors
-y |6L:1, [Y, X]] = Bernoulli(8" ),hoﬁ oY = I?]r(Y =1U (X)=1,[Y, X]* =Y, X]»)

. 2 h h
—lasuite 67 ;. estun échantillon iid.
On consideére dé;ormais que la Sl;ite Y = oY s n h=Lm est issue de la loi Béta de parametzres (au, Pu).

On désigne par Y,0",[Y,X]- et 0Y,[Y,X]" les lois de probabilité respectives de Y0V, [Y,X]- et 0Y[Y,X]- .
Le principe de la factorisation permet d’écrire

3 >3 23 3
Y, 0, [V, XI5 = YoYU, [Y, X" oY, [Y, X]t

3 53 23 b3 3
Y,0U Y, XL = Y[OU, [V, X\ Y[y, X" [Y, X[t

m X > m .2 p3p3 2 2
v Y.OULY Xl m o YUY, X 0YY. X ILY, Xl
h = h h
h=1 h=1
2 2 2 2

On peut remplacer la loi  6Y I[Y,, X]n par laloi 0" ow , By dans I’expression précédente puisqu’il

s’agit de la méme distributiory Pour réduire lagomplexité du problgme, nous aljons nous intéresser

pour la suite a la distribution Y |0V, [Y, X]n eta la distribution 0" oy, Bu . Le modéle hiérarchique
h h

a étudier est alors le suivant :

z z .z
o YPRIY,.X]n = Bernoulli 8¥

. 2 2
qglau,ﬁu = Beta(ou , Pu)
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IV.2 Modéle hiérarchique pour le calcul des valeurs prédictives positives

Cemodele permetd’estimer laprobabilité Pr(Y =1|U(X),[Y,X]n) quin’estriend’autre que lavaleur prédictive positive (VPP) du
profil U(X) sous la contrainte [Y, X]x.

. 2z
Proposition 7. Si Y est une variable binaire telle que Y [8Y,[Y,X]n ~ Bernoulli 6Y o 6" |ay,Bu
h h h
est une variable aléatoire de loi Beta(ay , fu ) alorsona
oy
Pr(Y =1y(X))=—""— (IV.1)
au +Pu
z z
G,§J|Y =y,au,pu =Beta(ay +y,pu+1-Y) (IvV.2)
Preuve.
Ona
. >
Pr(Y =1jU(X)) = E Yo
_o.h »3
= E E Y[V X
.2

— U

= E Oh
Par ailleurs, on a

z 22 z

3 z Y =y[6Y,0u,Bu 0w, Bu
" h h
0°lY=y, 0, u = f4= 3

ol Y=ylo%e u,Bu LBHla u,BuLdeL{q
0 h U U h U U h

On en déduit alors que
2 [(ou + LB =Y +1) oy vyt
r((‘l,u +[3U +1)

2
BIY =y.a y.By = (A-0 h) Y

ay oy Bu

Ona E@l0 ,B)=
h U U au + BU
Ty = &U@y}gu

_ 1
(U oy +ﬂU +1
famille de loi Béta par la moyenne 7y et le parameétre yu appelé parameétre de dispersion. Pour mty

fixé, leparametreyy détermine laforme deladensité. Nousretiendronsdanslasuite dutravail cette paramétrisation de la
famille des lois Béta.

et  Var(®’|la .B)=
UV oy +Bu (o +Bu )(aw + Bu+ 1)

L’application(ay,Bu)——"" - étant injective, on peut envisager de reparametrer la
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3 Lois a posteriori des parametres relatifs aux clusters : approche
Bayésienne empirique
Pouralléger les notations dans cette section, on pose ty = 1/yy — 1. Danslasuite, nous avons choisi d’écrire le modéle en

fonction des parametres {ny , Ty }. Cependant les résultats seront présentés en fonction des paramétres {ru , yu }. On pose le
modele suivant :

> -m -
ZY| v =g Z Uy =133, 1v.x1, ) (U OO, IV XTw) -6, 2 (1Ll =) vV 04,1, X1
[] k=1
[] zeU 2 - I'(zy) -eU zn'uru—l -l_eU Z(l—n'u)ru—l 1 -OUZ
hj’t u T u- F(n'u‘[u)r((l_ﬂ'u)‘[u) h h [0’1] h

3.1 Détermination de la loi a posteriori du parameétre 8" par une approche Bayé-
sienne empirique

Dans une approche bayésienne compléte, la détermination de la loi a posteriori de 6" n Nécessite
laspécificationd’une loiaprioripourle couple (ny,yu). Endéfautde laspécification d’une telle loia priori, on peut adopter
une approche empirique pour la détermination a posteriori du vecteur (8 )n=1:m €t de ses éléments marginaux.

h
3.2 Loi a posteriori : approche bayésienne empirique

La méthode de Bayes empirique est trés souvent utilisée lorsqu’il s agit d’un probléme d’estimation de paramétres multiples
ou lesrelations connues (i.i.d.) entres les composantes du vecteur de para-
N - ren rtager les informations entre les diff érentes réalisations
métres inconnus 6° heim sugge_e t de pa _tage es . 0 _ato sentre le ‘
similaires du couple (\P, X) pour obtenir une meilleure estimation de chaque paramétre 8" . L’ap- h
proche de Bayes empirique a été classée en deux catégories par Morris, C.N.[1983][7] dont : le cas non paramétrique (voir [8] pour plus de
détails) et le cas paramétrique.
Dans le cas pa@métrique, 0Q suppose que la loi a priori du paramétre 6" i est dans une classe pa-
ramétrique 6" |gu , yu , ol les hyperparamétres my et yu sont inconnus. L’idée principale consiste a estimer les
hyperparametres d’abord et de les replacer dans la loi a priori avant d’estimer la loi a posteriori (pour plus de détails,

consulter [2, 3]).

On considére, (Yi, Xi)i=1n, , Une suite de n, réalisations indépendantes de [Y, X]». On note

=
nnu = U(U(Xi) = 1) le nombre d’observations i telles que U(X;) = 1. On suppose que nyy est
i=1

unentierconnuetsupérieurstrictementaun.OnnoteSpy = UCYi =1,U(X;) = 1) une variable
i=1
aléatoire qui détermine le nombre d’observations i telles que U(X;) = 1 et Y; = 1. On suppose que
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(Snu|6Y}=1.m estunesuitedevariablesaléatoiresindépendantesmais pasnécessairementidentique- ment distribuées. Pour
tout cluster h donné, on suppose que

> 2
Shu 1§, = Binomiale(nny , 6Y,)

L’objectif est de trouver une estimation ponctuelle pour 6" a partir des opservations Spy. On
commence par déterminer la loi a posteriori de 6" v, yu qui dépend des données par Syu. La loi a
posteriori est donnée par :

z )3 z
z Z Swl6Y, 0%mu.vu

hu,TuU,Y U [ShulﬂTU,YU]

En supposant que les hyperparamétres ny et yy sont inconnus, nous les estimerons a partir de la distribution marginale de

toutes les données, [Shu|mu,yu]. On obtient la distribution a posteriori estimée :
X X
ﬁu |Shu, Ru,fu

ound etyg sontdesfonctionsdeShy (i.e.,(Shu)etyu(Shu )). Ces estimateurs sont habituellement
obtenus par laméthode du maximum de vraisemblance (MLE) ou la méthode des moments (MOM) & partir de la distribution
marginale [Shu |mu, yu]. Une fois les estimateurs {my, yu } obtenus, nous pouvons estimer alors 6 acomme étant la moyenne de
la distribution a posteriori estipée. Notons que, BV dépend de toutes les données par le biais de #u et fu. Dans cette analyse, nous
pgpposons d’estimer

les hyperparamétres 7y €t yu par la méthode des moments.

4 Estimation des hyperparametres 1y et yu

4.1 Estimation par la méthode des moments

Le principe de la méthode des moments consiste a estimer les parameétres recherchés en égalisant certains moments
théoriques (qui dépendent de ces parametres) avec leurs contreparties empiriques. L’égalisation se justifie par la loi des grands
nombres qui implique que 1’on peut "approcher” une espérance mathématique par une moyenne empirique. On est donc
amené a résoudre un systéme d’équations.

4.1.1 Moments des variables Sy et 6

Etantdonné que laloiapriori de 6x|mu,yu estconnue (laloi Béta), il est possible de déterminer les expressions explicites de ses
moments d’ordre un et deux. Nous commencerons par donner I’ expression

109



IV.4 Estimation des hyperparameétres ny et yy

des moments d’ordre n. Ensuite nous en déduirons les moments d’ordre un, deux, trois et quatre.

2 2 2 2
. T )3 - r i LUF mul=w) 4 -

U n Yu Yu

E 0, [|mw =03 ARl z Tl

r @@= r Lwynp

Yu Yu

Onobtientalors:
. >
E emnu,"{u = Tu
S 2

E & lhuyo=r+yg u u@-m)

Nous déduisons des moments de 6" les mpments suivants :

r . )3

E(Shu) = EE Shuleu,TCLHYU
. z z

= E E Shu|9tj1 |Tliu,YU

= Nhu Ty

Val’(Shu ) = E[Var(ShU |Tl:u , YU )] + Var[E(Shu |71:u , Yu )]

= Nhu U (1 = Ty ) +Yu Ty (1 = Tu )nhu (nhu - l)
Nous supposons que les observations de nny sont strictement supérieuresa 1 (i.e. nyy >1). On obtient alors

1 E(Snu) =nhumy

: El(Shu)? = nhunu (1 =y +nhumu) +yumu (L= mu)Mhu (o = 1)

En faisant la diff érence membre a membsre des deux égalités ci-dessus, on obtient les égalités suivantes
E > =g
_Thu 5

¥

H E  Shu Shu-1 =my % yumu(l-mu)

Nhu Nhu -1
4.1.2 Estimation de ny et yy

Dans ses travaux, Griffi ths a montré que lorsque les nny sont inégaux, I’estimation des parametres ny etyy par des moments
empiriques pondérés produit de meilleurs estimateurs que lorsque on utilise des moments empiriques non pondérés [4].
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: : -Sw : A
Sionsupposequelesvariables W sont indépendantes et de variances non nulles de méme
s Nhu
. '%Ushu_l . [ - o eqs .. -
que les variables ———— ,ilestalorsdésirable d’utiliser leurs moments empiriques pondérés
Nhy Nhu -
dans le but d’obtenir de meilleurs estimateurs de ny et de yu .
Soit s
A Whu " Su - V.3
Wy = \ Wy = Whu V.3
et WU My h=1
et
m m
Sy = Lo wE W (IV.4)
h=1 YU  Nhu Nhu h=1
- >
2 Wy " SwSw-1 =
h=1 V¢  MhuNhug h=1
esmomentsempiriquesrespectifsde et ,OuUWw etv représente les coeffi -
Nhu Nhu Nhu — 1 hu - hu

cients de pondération respectifs. Dans la suite, on verra comment ils sont choisis.
Endéfinissantlesstatistiquesdeséquations(IV.3)et(IV.4)égalesaleursvaleursthéoriquesetenré- solvantleséquationsquien
résultentparrapportamy etyy, nousobtenonslesestimateurssuivants:

A _ Wy Shu W
g o= (IV.5)
h=1 WU nhU
h=1
Zm Vhu. Shiishiu—lz_ﬁz
'Y - h=1 Vu Nhu Nhu -1 U (IVG)
“u
Nty (1 - Ttu)
Lesestimateursdesmoments pondérés dépendentduchoix des poids{wnu,vhu}. llesttrésconnude S T
la littérature que si {Whu,Vh } sont choisis proportionnellement aux variances respectives de i
o Nhu
" S Shu-1 . . . : -
et %_ alorsW ; et Sy ont les plus petites variances parmi tous les estimateurs linéaires
hu hhu =
. . , . S
sanshiaisdemy et yu respectivement. Si nous pondérons chaque variable n—hU et chaque variable
hu
ShwShw=1 . : A _ i
par ’inverse de sa variance (supposée étre connue) alors W nny Nny — 1 u etSu sont les estimateurs
linéairessanshiaisetdevarianceminimumdeny etden® +yymu(1-my) respectivement. Lespoids
correspondants sont :
°S z nu(1l-my) i >
var =% = Sy y yl-n )y 1-—
s nff Nhu Nhu
Var “Shu B = flou
Nhu ny(l-mu)+yumu (l-mu)(nhu—1)
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z z

i i i 5 i %>;
\ar Shu Sy =1 _ E Shu Shu —1 E Shu Shu—1
Nhu Nhu —1 Nhu Nhu —1 Nhu Nhu —1
2
2
> 2
E " Shu_Shu ‘lz 2 L
Nhu Nhu —1 T Fyumu(1-m)
avec
> 5.2
- _1%2 1 A S S »
. SELLJJ Shsu l T hu, hu B Shu -2 Shy +E Sy
Nhu nhu -1 [nhu(nhu -1)]2
- U 2 U i u22
E 32 0 = Nhu 0 +nhu(nhu —1) 0 z
_ & UE " I -euriz+ -Diw-2)
E spdf™, = My On+2mu  (Mhy ) 6 ARy (n hu h
> - 2 .2
. _ U _ 3
E S;:Jeuh = Nhu ehj +4nhU(nhU 1) 0 o +_4n 5 hU (nh 1)(n hU _2) eUh
-y =3) O
+ Nhu (Nhu = 1) (Nhu h
donc
- 2 %2 UZ - b2 "0 ) U242
E Stu-Sw [0 =n  nulnu -1) 67 +20 pu-2) 67 +(0 pu = D - 3) 67,
2 > ) 5
E " Shu_Shu _122 1 ZE ) UZZ z 5 - Uz3
_ )E [, yu
nhu nhu -1 = nhU 0 hu Oy slmuye +2(neu - 0
+(nhu — 2)(nhu - 3)E oY |t 4 2%
h u>Yu
z b3 T u22 >
R b E 0 2 . \
£ SwSw-1 2 h mu T(I=yu)F 270
= 1+2(Nhu—2)
Nhu Nhu —1 Nhu (Nhu 1+yy

-1)

1 b3
Ty Y '2Y T 1- Y ‘|’3y
+(n _2)(n _3) ( ) ] U( U) V]

1+YU l+2’yu

Puisque mu(1-my) est constant (indépendant de h), alors nous considérons pour wyy lavaleur suivante :
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et pour vny la valeur suivante :

1
_ V.8
Vhu = Z-S s 122z 3 22 V9
i Shiu= _ 2 _
] ny;+yunu(1-mnu)

Cependant1’ estimationduparamétre wny etdu parametre vy estcompliquée parlefaitquetousles deux paramétres dépendent
des paramétres my etyy inconnus. Une maniére de les estimer consisterait

aremplacermy etyu par leurs estimations respectives my A etyp dans les equations (1V.7) et (1V.8).
Cependant, lorsque m le nombre de cluster n’est pas suffi samment grand, la loi des grands nombres ne s’applique pasetparconséquent, les
momentsempiriques Wy etSy n’approchentpassuffi samment

bien les moments théoriques. En plus le signe de yu ~  dépenddelasuite (Shu ,Nnu ). Les estimateurs
ainsi obtenus peuvent avoir tendance a sortir du support des paramétres (voir annexe C).

Pour parer a cette diffi culté, une méthode de pondération empirique a été proposée en premier par Kleinman en [1973][6] puis
améliorée par Tchuang-Steinen [1993][1] pour I’estimation de Wy . A partir

decetalgorithme, uneestimation deny aété dédgite. Nousnoussommesinspirés de cette méthode

pourétablir]’ algorithme d’estimation de zy etdeyy décritci-dessous.

4.1.3 Algorithme de la méthode de Pondération Empirique

On propose de choisir une valeur initiale yo = 0 ouyo = 1 du paramétre yy pour obtenir les valeurs initiales wo et vo
de whu etvay respectivement. Ensuite on utilise les équations (1V.5) et
(IV.6) pour obtenir les estimations de my etdeyy .Apartirdecetteestimationdeyy ,notéeyu”~ , on
calculelecouple{wnu,vhu}apartirdeséquations (1V.7) et (IV.8). Etenfinonutiliseraces poids empiriques pour former de
nouvelles estimations de Wy et Sy. On répéte cette itération jusqu’a ce
que les diff érences entre deux itérations consécutives d’estimations Wy ,Su etyp soienta lafois plus
petites qu’une certaine valeur prédéterminée, par défaut 107%. Pour des soucis de programmation, nous proposons de
réinitialiseral10® lesestimationsnégativesdeyy aulieudeOcommeproposépar Kleinman.
Pour des raison de programmation, nous avons ajouté la masse de Dirac au point 0 de nny dans le calcul des statistiques Wy
etSy. Danslasimulation,iln’estpasévidentd’avoirtouteslesstatistiques
(Nhu )kk:1 supérieuresstrictemental. Enutilisantcetteastuce, nousnousassuronsque lesdénomi-
nateurs de Shu /[Nhu + do(Nhu )] et Shu (Shu = 1)/[Nhu (Nhu = 1)do(Nhu (Nhu = 1)) + 8o(Mhu (Nhu — 1))] Soient toujours égaux a
1 si npy est égale a un ou zéro. Dans le cas ou nny = 0, on sait que Shu est presque strement nulle. Ceci nous permet de
pouvoir faire des estimations de ny et de yu méme s’il existe des réalisations (Yi, Xi)i=1n, de [Y, X]n pour lesquelles le profil
U(X)n’apasétéobservé (U(X) =0).
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Algorithme : Méthode de pondération empirique

on suppose avoir observé les statistiques suivantes : (Shu =11 €t (Nhu Ih=1:+
oncommencepardonnerunevaleurinitialeyy =0ouyy =1etlenombred’itérationsmaximum de la procédure : maxiter =
100 (par défaut)

on initialise

- WU :_1
- Syu= 1 Shu(Snu—1)

—K h:.]- Nhu (Nhu —1)do(Nhu (Nhu —1))+50(nr3u. (Nhu —1)) o ) )
Déclarer une variable booléenne cond.arret (condition d’arrét) initialisée a vrai et une variable
t initialisée a 0.

Tant que cond.arret est toujours vrai faire :
initialiser :t=t+1;y' U =W ', =WuyetS' |, =Sy
calculer en fonction de ' et ' le coyple {Whu , Viu }
En suite calculer les statisticfties : U

H Shu
f h=1 npy +So(Nhu )
H

- WU = zm Whu . Shu
h=1 wy Nhu +do(Nhu )

g, = th:l MW Shu(Shu=1) >

TouT Vu Nhu (Nhu —1)o(Nhu (Nhu —1))+0(Nhu (Nhu —1))
SU _71'2

Puisonassocieny =Wy etyy = - (1—7z:J )
-si yu<0 = . Yu= 10°® .

cond.arret = {lyy - y'| > %0‘6, |ny = x| > 10‘6U|SU -8'>10° 1t <L5naX|ter}
ftn tant que

Tableau I'V.1 — Algorithme de la méthode de pondération empirique

4.2 Estimation des hyperparametres par la méthode du maximum de vraisem-

blance

Pour simplifier les notations, ona choisi d’omettre I’indice U sur les paramétresz ety. De plus on considére le

changement de paramétre T =1 - 1.

Y

4.2.1 Vraisemblance des parametres
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Ona
A\
[(St)h=ymIm, T]1= [Snfe, T]

h=1 s

_ Y 5 T()  T(rt+sh)D((L=m)t+nn = sn)
h=1 NnhI'(T+nNp) I['(n7) I'a-mr)

0

V”-shz L Hsﬁz Nh~g—1 [l

= — +k - L]
h=x Mh  j=o TFJ k=0 e+l o (dmme)
h=1 Nh j=0 k=0 1=0
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La vraisemblance des paramétres n et T est donnée par :

.- 22X t

np—1 sh—1 np—sp—1

Lmt) = 109 Sho T oo+ log(mr+K)+ s log(@=mr+)

[] []
h j=0 k=0 1=0

L’optimisation de la vraisemblance L(x, t) est trés compliquée a implémenter. 1l n’est pas possible de trouver une solution
analytique. Cependant plusieurs algorithmes itératifs ont été proposés dans la littérature pour venir & bout cette diffi culté.
Dans cette analyse, nous proposons d’utiliser un algorithme MM.

4.2.2 Présentation du principe et des éléments d’un algorithme MM

Nous allons utiliser 1’algorithme MM (Minimisation-Maximisation) pour estimer les paramétres © et ©. Les algorithmes
MM ont pour objectif de substituer a un probleme d’optimisation numérique d’une fonction f compliquée a implémenter par
celui de I'optimisation d’une fonction auxiliaire g dont I’optimum correspond a un optimum local de f. La fonction
auxiliaire g esttelle que

f(x) = g(x|x) XEAXD
f(x) = 9(xIx)
On observe que si pour Xo fixé et x; = argmax g(X|xo), alors on a f(x1) = g(X1|Xo) = g(Xo|Xo) = f(Xo) Il en résulte que les

algorithmes MM sont des algorithmes monotones. Les algorithmes MM procédent en deux étapes. La premiére étape consiste
atrouver lafonction g telle que

L(z,71)
L(zn,1)

v

g(n, 7|7, 7) (IV.9)
g(m,t|m,7) v (w,1) (Iv.10)

La deuxiéme étape consiste & trouver un couple (r, ) qui maximise la fonction g(x, |r, 7).
N N

/{n,}\r )=argmax g(m, T |n,T)

(m,7)
4.2.3 Proposition de la fonction auxiliaire et ses propriétés

Proposition 8. SoientL(n,t) lalog-vraisemblance du couple des paramétres (r,t) et(r',t) une valeur connue des
paramétres (m,t). La fonction auxiliaire g(n, 7|, 1) définie par

g(m,7|n’,7) =A(n,t)[log(m) +log(t)]+B(n,t)[log(1 - ) +log(1)] - (t—1)C(t) +D(n,t) vérifie les conditions

(IV.9) et (1V.10).
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Preuve. Puisque la fonction —log(x) est convexe, on a :

. , . (r-1)
—log(t+j)=-I +j)-
og(t+j)2-log(z )] pr
En utilisant la concavité de la fonction log(x), on obtient
T “nt+k 2 k Tt 4k "
>
log(nt + k) 2 n'rﬁ R + T+ I(Iog "
-7y T @-1) +] z ! C )+ IZ
- > _ ~ [o] e —
og(@=mr+ )2 Tyrei8— @ T (a-mye +1'% i
On peut donc poser
> m - - 22 m nh—1 S m nz-
vy = g " -7 g +j)-(x-1) - L
g(m,1ln’, 1) g nn g J T+
h=1 h=1 j=0 h=1 j=0 >
>n -SE. " z - .. K 2 Sn SE- K . z
TT nt + e
+  1l(sh=1) proscrarvll Y ———Tt + ?r'+k| g Tt tk
h=1 k=0 Z h=1 k=0 zzz
+ ) 1I(nn > sn) B _@-m) lo @y 1
o @mTel @ T
Sn - nhfsh—l | ; . Y
— @)+
+  1l(nh>sh) (A-m)r+1 log (I-n)
h=1 1=0

On peut réécrit la fonction g(r,1|n’,7") de telle sorte que les paramétres = et t soient séparés. On obtient

. >m __ShZZ Zm M-l , = m = 1
g(majn,t) = log o log(r +j) —(x-7) -
h=1 h=1 j=0 h=1 j=0 J 5
m = s:h—l . Z - ., Z
+  lm=1 U g K +1og(m) + log(r)
het keo TTHK Tt
2z
= Tl Kk S )
+  1l(sh=1) g log T +k
h=1 k=0 >
m 'nh:—sh—l 1- "o Z - 1- ’ '+|Z z
+ 1> sn) @om)r gy ATm L g - 1) + log(e)
h=1 1=0 1-m)7'+l 1- TE)TZ
z 'nh“-Sh—l I - o Z
+  1l(nh>sh) (A-r)7 +I log (1-n) +I
h=1 1=0
Si on pose
. p
z Fil TT
A, 1) = ) U(sh = 1) Ttk
=1 =
ny:,—sh—l 1- " or Z
B(n',t) = U(nh = sh) ( n’ ),T
h=1 o (ATmTHI
, -l
C(t) = Tt
h=1 j=0
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2
D 5 - - z
s m Im nh-1 =1 e -
D@ty =" kg O - log(e +i)+ U(s=1) A
_ Nh o h _ wt+k
h=1 h=1 j=0 >t k=0
- - o > . e 52
" Tk e T e e S A (e S
+  1h=1) P log #7 +k + (nh >sn) T g _
h=1 k=0 T +k h=1 s =0 A-n)t+I 1-n)t
z = nh‘l-Sh—l I - v Z
— @)+
+  1l(nh>sn) (A-m)r+1 log (1-m)r
h=1 1=0
Il en résulte que
g(m,tjn’;t) = Cste—(x1-1)C(") + A, 1)[log(n) + log(x)] + B(x',7")[log(1 — x) + log(z)]

Ona
L(r,7) 2g(m,1n’,7)

En plus lorsque on pose n =« et T =1, on obtient

L(m,t)=g(n, t|n, )

O
Les couples candidats sont I’ensemble des couples annulant les dérivées partielles de la fonction
g(m, tm, T).
d .y 1 ... 1 .y
—g(n,tlm,t) = ~A(mn,t)-— B(zm,t)
on T l-n
5 Co , > o L2
5 g(n,tlm,t) = -C(1)+ - A7) +B(n, 1)
T T
llenrésulteque o
= At t) IV.11
T A, T)+B(n,7) (V.11
A(n,7)+B(n, 1)
; V.12
@) (IV.12)
En pluson a
52 C o 1. 1
Qg(n,rln,r) = -RZA(nF)— (1_n)2B(n,r) (IV.13)
& L i1z .. W\
522 g(n,t|m,t) = - 2 A(m,1)+B(m,1) (1V.14)
Parconséquentona 52
=- <
‘62Tg/(7t}\r [t,t)=-C(t)<0
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et 2 (1 A DA 1)+ 22B(x 1)
) b (1-29)A(m, 1) +/B(n,1)
- g(mtln,t)=-
dn "Nl -n 2

Le couple (r, vpdennée par leséquations (IV.11) et (IV.12) estdonc unmaximum local de lafonction g(m, t|n,t). Enseservant
des équations (1V.9) et (1V.10), on obtient L (r,t) 2L «, t . Le couple (m, t) maximisank la vraisemblahce est atteint
lorsque laconditiond’arrét (??) estobtenue.

4.2.4 Algorithme

La phase de maximisation consiste a maximiser la fonction g(x, |, 1'). Cette derniére partie correspond al’algorithme
numériqueitératif de newton pouroptimiser lafonctiong. Le principede 1’algorithme est le suivant :

Algorithme : MM (Minimisation-Maximisation)

— Entrées: D ={(sn,nn);h=1:m}unensemble d’observations; n°,t° valeurs initiales desz
parameétres a estimer et maxiter le nombre d’itération maximum.
— Sortie : le couple (m, 1) ~
Variables déclarées :
— cond.arret : une variable booléenne initialisée avrai
-t étapg itérative ir&itialisée a0
— gttt < nf 10
Tant que cond.arret est vrai faire :
Onitéret _ t+1 et gD ¢t 7O

A tD) (D)

— 10— s s
A n(t-1) 7(t-1) " + B 'g(t-1) ¢(t-1)
. > . >
A n(t_l),'[(t_l) +B n(t_l)”[(t_l)
T
Gt -1 ° s s

- > - b3
cond.arret «— 20 -t D) 2 LT D) 2y 1 & (t < maxietr)
ftn tant que

P

R >
résultats : 7 ®

Tableau IV.2 — Algorithme MM (Minimisation-Maximisation)
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5 Eléments pour la formulation d’un classifieur individuel pourles

groupes

SoitU(X)unprofildonné. Nousobservons Spy co-occurrencesdansnny observationspertinentes pourunclusterhdonné.
Nousmodélisonslenombredeco-occurrencesparuneloiBinomiale(nny,0") h
et 0% par une loi Beta(mu (1~ yu)/yu, (1= mu)(1-yu)/yu) de maniére hiérarchigue pour partager
I’informationentre lesclusterssimilaires. De maniére plusformelle, nous proposons lemodéle suivant:;

S~ Binom(nnu , 8Y),,

(o) (L-m0)(L-y0)"

0y ~ Bet
YU YU
Sous ces hypothéses, on a
i 2 b1 b3 b2
E 0plY. Xhaw,w = 0 Pr(Y=1U(X%=1,[Y,X]h) 07 ILY, X]n,mu,yu doy
. z .
E UV, X],n,y = Shu + mu —1yu—1
h h U U X
Nhu 1-1

Yu

La valeur prédictive positive a posteriori est donnée par

.. 33
VPPWU,Y,N)=E E 0Y})Y,8u.fu

Puisqu’on n’a pas supposé une loi a priori sur les hyperparamétres my et yu , alors leurs estimations sont faites a partir des
données(['Y, X]n)n=1.m- Parconséquentlavaleurprédictive positiveaposteriori obtenue est un estimateur empirique de Bayesde
lavaleur prédictive positive du classifieur o(X,U) généré par le profil U(X).

N+ -1
U

Pourchaque profil U (X) fixé, onaunesuite (VPP (U, Y, h)),=1., dontchaque VPP (U, Y, h)dépend desobservationsde la
loi [Y, X]s. VPP (U, Y, h)estune estimation de la valeur prédictive positive du profil U (X) dans le cluster h en tenant compte

de ses fréquences dans les autres clusters. On peut S
écrire VP P (U, Y, h) sous la forme d’une combinaison linéaire convexe deMetder.:

VPPUY,N)=¢ Lo = fu 5

Nhu v
S 1- )/ z s
VPPWU,Y,h) ==Y - (L=7u)/fy w8 (1=pu)qu
Nhu Nhu +(1=vu)/yu Nhu +(1—vyu)/yu
N N U N N
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.. Spu
La statlsthuer représente la valeur prédictive positive du profil U(X) dans le cluster h indépen-
hu

damment des autres clusters. Tandis que my représente la valeur prédictive positive du profil U(X)
dans la population.
VPP(U,Y)=%

Pour prédire la classe d’une observation dans un cluster h spécifié, on pourra utiliser la statistique VPP (U, Y, h). Par contre,
lorsqu’il s’agira de prédire laclasse d’une observation dant le cluster n’est pas spécifié oun’a pas participé al’estimation des
parametresmy etyy,onpourraseservirdela statistique VPP(U,Y).

Pour adapter la procédure d’apprentissage étudiée dans le chapitre |1 a une analyse hiérarchique, nous allons construire
Ialgorithme de la recherche de 1’ensemble optimal au tour de la valeur prédictive positive V PP (U, Y, h) du classifieur U (X)
pour un cluster h donné.

Sion note par ¢n (U, X) =8n(C)U (X) le classifieur généré par le profil U pour le cluster h et par D ={(yi,xi,ci);i=1:
n} I’ensemble des observations du triplet de variables (Y, X, C). On peutinterpréter lasensibilité du classifieur o (U
,X) pour le cluster h, Pr{en (U,X) =1]|Y =1,D}, comme une fonctionnelle de la loi a posteriori de ¢n (U, X)
conditionnellement aux données D eta Y = 1. Tenant compteque

Pr{on(U.X)=1| D}

Pr{gy (U X)=1Y=1D=YPP(U,Y,h)

Pr{Y =1]|D}
ona
, 2 , 23 : b3
Pr{pn(U,X)=1|Y =1,D} _TPr{en (U X)=1|D} " "VPP(U' Y, h)
Pr{on(U,X)=1|Y =1,D} Pr{o(U,X)=1|D} VPP(U,Y,h)
: VPP(U'Y, h) ,
D’ou I'interprétation du quotient Pr{gn ————————— commeunfacteurdeBayes.CommeU < U alors
VPP (U,Y,h)

(UX)=1]Y =1,D}
Prion (U X)=1]Y=1D}

< 1. Plus grand est le facteur de Bayes, donc en faveur du classifieur
Pr{pn (U ,X)=1|Y =1,D}

¢(U,X), plusproche de 1 serale quotient . Suivant le point de vue

Pr{on(U,X)=1]|Y =1,D}
exprimé par Kass & Raftery (1995) [5] a savoir, ”Le facteur de Bayes est un résumé des preuves

fournies par les données en faveur d’une théorie scientifique par un modgle statistique, par opposition aux théories alternatives”,
on considére la grille ci-dessous pour interpréter le facteur de Bayes en faveur ou non du classifieur associé au profil le

plus détaillé U' < U :

Facteur de Bayes Interprétation
1-32 on ne peut pas soutenir que le profil U’ estun meilleur classifieur que U
3.2-10 on peut soutenir que U’ est un meilleur classifieur que U
10-100 On peut fortement soutenir que U " est un meilleur classifieur que U
=100 il n’y pas de doute que U’ est un meilleur classifieur que U
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6 Algorithme de la procédure d’apprentissage

L’adoption de I’algorithme d’apprentissage au cas ou les données sont hétérogénes nécessite au préalable un prétraitement
des données. En premier lieu, il faut discrétiser les variables numériques, si il en existe, en utilisant I’une des méthodes étudiées au
chapitre I11. En deuxiéme lieu, il faut subdiviser les données en trois sous-ensembles : un ensemble d’apprentissage, un ensemble
de validation et un ensemble test. La procédure de construction du classifieur peut étre résumée en deux grandes étapes. Une fois
que nous avons fini de construire le classifieur, il nous reste a évaluer ses performances sur I’ensemble test. Ceci constitue la
troisieme étape de la procédure d’apprentissage.

1. Etape 1 : A partir d’un ensemble d’apprentissage

(@) Générer un ensemble de profils fréquents U;, en utilisant le paramétre d’apprentissage
A = (80, Co, lo)

(b) Elaguer les profils redondants dans I’ensemble U;

(c) Sélectionner les profils qui sont significativement corrélés avec la variable réponse (test fisher)
2. Etape 2 : A partir d’un ensemble de validation

(@) Pourchaque profil U : Estimermy A etyp  (par MOM ou MLE)

(b) Pour chaque cluster h

i. Estimer la valeur prédictive positive a posteriori de chaque profil U

5
n Yion (Ci)(p(U,Xi)+TEU 1 -1
VPP (U,Y, h)=" o
1 1 Z i . z
n (Ci)o(U,xi)+ 5, 1

i=1
ii. Siilexiste deux profils U et U’ tels que U’ soit emboité dans U :
A. Calculer le facteur de Bayes

VPP(U',Y,h)

BFU.V)= Uppiy )

B. Onsupprime le profil U si BF(U’,U) 2 100. Sinon on supprime le profil U'.
(c) fin pour
Au sortir des étapes 1 et 2, on obtient un ensemble optimal de profils U". Pl
3. Etape 3 : A partir d’un ensemble test

(@) Pour chaque cluster h
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i. Définir la régle de classement (classifieur) ¢ d’une observation X par

I
oL s o(X, U) >0
o(X, ) = =1

0 sinon

Le classifieur o(X,)) estun cas particulier du classifieur défini au chapitre 11 la section
3.2 ou on a choisi k égale a zéro. On choisit alors de classer positive une observation X
lorsqu’elle vérifie au moins un profil parmi ceux qui sont dans I’ensemble U". 2

La premiere étape consiste & générer U, un ensemble de profils & la fois fréquents et significativement corrélés avec la variable
réponse, ou A est un paramétre d’apprentissage a spécifier par 1utilisateur. D’ailleurs ¢’est pour des raisons d’insuffi sance de
mémoire que le parametre A est utilisé. Sinon I’idéal est de générer tous profils existant dans I’ensemble d’apprentissage. Dans la
deuxiéme étape, il est aussi question d’estimation les paramétres z et y pour chaque profil appartenant a U, et de construire un
ensemble U" spécifique a chaque clusterh.

Cette procédure necessite de subdiviser des données en trois sous-ensembles : apprentissage, validation et test. Il faut subdiviser les
données de telle sorte que tous les clusters soient représentés dans chague sous-ensemble avec la méme proportion que dans
’ensemble de départ.
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Annexe C

Annexe Chapitre 1V

B.1 Existence de ’estimation des moments des parametres d’une
Béta-Binomiale

Généralement on pose

s_1= ™
= Y ki
M My
Ona
DD P2 -3 -3 522
ﬁz 1B 72 _SKZ p.s
Var <l= - -=0
Nk m Nk Nk
Nk k=1 Nk Nk
- 2
2o T2 1 - -, I
E I E ES
n =
ng k6
1 - s
= n_ZE nRE=0)H0%° |
k
1 ne-1- z
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On obtient par la suite
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Si on remplace le terme a gauche de I’équation par sa valeur empirique, on obtient
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Parailleurs, ona T -
n(1-7) 1E -7 20

m n

N N

- k
k=1
Donc le signe de y dépend de son numérateur. Or si on pose

-1m1 x
a = >0
mkzlnki
m -S
b= B : >0
M1 N
i ; X
onobtient b-"Ra+22(1-a)
m k=1 Nk
= 1=
pu-g) LM o 4%

Onaga+g%1 - a) € [n? m) cagc est une combinaison linéaire convexe. A I’aide de I’inégalité de la

variance, on a aussi . >,
T1ES, . TE S
m,_ Nk m,_; Nk
Puisque m
1 = Sk_
=N
m k=1 Ny
alorshe [z2 ®].

Le signe de y d&pend donc de la suite (Sk, nk). Cette équation des moments, comme d’autres proposées

dans la littérature, n’admettent pas toujours une solution dans ]0,1[x]0,1[; d’ou le recourt a une méthode de pondération
empirique.

B.2 Estimation par simulation des performances des estimateurs
obtenus par la méthode de pondération empirique

B.2.1 Organisation des simulations
Avant d’étudier les propriétés statistiques des estimateurs, nous allons décrire la simulation d’un échantillon Béta-binomial. Nous
simulons un échantillon B&ta-binomial de la maniére suivante :

1. On se donne ny, I’ensemble des observations d’étude vérifiant le profil U (X). Nous supposons avoir disposé de ny
observations constituées a partir de m réalisations de la variable [Y, X]*, oii chaque réalisation [Y, X]n de [, X]" est
unesuited’observationsindépendantes (Yi,Xi)i=1:n, de taille ny.

2. Ongénére m réalisations (6 )n=1p d’une loi Béta de parameétres ay et By donnés. Ensuite on construit une suite

(Nhu)p=1m telle que  npu =nu.
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3. Pour chaque h, on simule ny observations d’une loi de Bernoulli de probabilité de succes

OE.Ainsipourchaquecouple(au,ﬁu),nouspouvonsdisposerdesstatistiques(Shu) - et
=1'm

(NhU Dh=1:m-

On appelle I’échantillon (Shu , Nhu )p=1:m UN échantillon Béta-Binomial puisqu’il est obtenu a partir d’une combinaison
d’une loi Béta et d’une loi Binomiale.

B.2.2 Présentation et analyse des résultats

Pour étudier des propriétés statistiques des estimations, on suppose avoirny = 100000 observations constituéesapartirdem=50
réalisations de [Y, X]". On se fixe une valeur de 0.007 pour le paramétre my et on fait varier le paramétre yy avec les valeurs
suivantes :0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75. Nous avons fait le choix de ces valeurs pour simuler des
donnéessemblablesanos données réelles. Parexemple, pour le couple ny =0.007 etyy =0.01, unapercu de laforme de la
densité de la loi Béta associée est représentée ci dessous.

i= 0:007 i = 0.007
S glama=o.oos > L] Z;m;x:om
= <
=]
S — (T2
=
[
=
e 8 @
‘@ K7
= = =
a S S
< |
=F
=
-
IS
K — | (=
| |
= - = -
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x = [0,1] x = [0,1]

Figure A.1— Forme de la densité de Béta
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1]
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pi = 0.007 ol i = 0.007
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Figure A.2 — Forme de la densité de Béta

Pour chaque combinaison (ny, yy;) ; j = 1 : 10, on en déduit un couple (au, Bu) & partir duquel un échantillon Béta-
Binomial (Shu, Nhu )p=1-m €St généré. Ainsi a chaque couple (mu,yu) correspond un échantillon Béta-Binomial. Encombinant
lesvaleurs dey etdeyy, noussimulons 10 échantillons Béta-Binomial sur lesquels les paramétres my etyy serontestimés. Dans le
tableau A.1, nous présentons les estimations obtenues a partir des équations des moments proposées par Kleinman que nous notons
MOMK, les estimations obtenues a partir des équations des moments proposées dans cette analyse que nous notons par MOMG et
les estimations obtenues par laméthode du maximum de vraisemblance notées EMV, pour des valeurs de ny et yy fixées.
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MOMK MOMG EMV

0.007 0.0050  0.0062  0.0029 0.0062  0.0029 0.0061  0.0045
0.007 0.0075  0.0088  0.0055 0.0088  0.0054 0.0088  0.0058
0.007 0.0100  0.0080  0.0086 0.0080  0.0090 0.0080  0.0073
0.007 0.0250  0.0079  0.0205 0.0079  0.0202 0.0079  0.0213
0.007 0.0500  0.0091  0.0522 0.0091  0.0511 0.0090  0.0636
0.007 0.0750  0.0045  0.0532 0.0045  0.0526 0.0045  0.0437
0.007 0.1000  0.0077  0.2118 0.0077  0.2072 0.0080  0.1455
0.007 0.2500  0.0070  0.3013 0.0070  0.2946 0.0064  0.3395
0.007 0.5000 0.0018  0.0707 0.0018  0.0697 0.0017  0.1860
0.007 0.7500  0.0197  0.9866 0.0197  0.9666 0.0156  0.8187

Tableau A.1 — Valeurs estimées des paramétres 7 et y

A travers ce tableau, on constate que, pour les deux méthodes MOMK et MOMG, nous avons la méme estimation de «
quelque soient les valeurs du couple (n,y). Ceci est justifié¢ par le fait que nous avons utilisé le méme estimateur de = dans les
deux méthodes. On constate aussi que la valeur estimée de n par laméthode EMV est peu diff érente de la valeurestimée der par
lesdeux premigres méthodes. Cependant on note une diff érence entre lestrois approches aux niveaux des estimations dey. Les
résultats présentés dans le tableau ci-dessus ne nous permettent pas de départager les trois méthodes. Par contre, on peut comparer
les trois approches en calculant les racines carrées des erreurs quadratiques moyennes des estimateurs en procédant par
simulation.

Nous considérons les valeurs d’apprentissage suivantes : ny = 0.007 et yy = (0.005, 0.05). Pour chaque couple (ny, yu)
fixé, nous porterons nos simulations sur les couples suivants : (ny =20000, m =10), (ny =50000, m=50), (ny =100000, =
100), (ny =200000, m=150), (ny =300000,

m = 200), (nu = 400000, m = 250), (ny =500000, m = 300), (ny = 600000, m = 350) et

(nu=700000, m=400). Pour chaque couple (nuy, m) fixé, on simule B = 250 échantillons Béta- Binomial sur lesquelson
estimenetypourchaqueéchantillon. Etalafinoncalculelaracinecarréede I’erreur quadratique moyennecorrespondante dechaque
parametredanschaqueméthode. Lesrésultats obtenus sont présentés dans les tableaux ci-dessous.



el

B=250

RMSE (m)
RMSE @)

n=20.000, m=10

n=50.000, m=50

n=100.000, m=100

MOMK MOMG EMV

0.00193  0.00193  0.00193
0.00407  0.00337  0.00315

MOMK MOMG EMV

0.00105  0.00106  0.00105
0.00238  0.00204  0.00152

MOMK MOMG EMV

0.00075  0.00075  0.00075
0.00155  0.00147  0.00121

B=250

RMSE (n)
RMSE @)

n=200.000, m=150

n=300.000, m=200

n=400.000, m=250

MOMK MOMG EMV

0.00055  0.00055  0.00055
0.00126  0.00114  0.00087

MOMK MOMG EMV

0.00048  0.00048  0.00049
0.00095  0.00088  0.00067

MOMK MOMG EMV

0.00041  0.00041  0.00041
0.00091  0.00091  0.00064

B=250

RMSE (m)
RMSE )

n=500.000, m=300

n=600.000, m=350

n=700.000, m=400

MOMK MOMG EMV

0.00037  0.00037  0.00037
0.00088  0.00075  0.00060

MOMK MOMG EMV

0.00040  0.00040  0.00040
0.00072  0.00070  0.00056

MOMK MOMG EMV

0.00037  0.00037  0.00036
0.00067  0.00065  0.00049

Tableau A.2 — Racines carrées des erreurs quadratiques moyennes des estimateurs de 7= 0.007 et y = 0.005

Al andey) axauuy



eel

B=250
n=20.000, m=10

n=50.000, m=50

n=100.000, m=100

MOMK MOMG EMV
RMSE (1)  0.00557  0.00560  0.00542
RMSE %) 0.03650 0.03622  0.04707

MOMK MOMG EMV

0.00248  0.00248  0.00244
0.02239  0.02210  0.02024

MOMK MOMG EMV

0.00185  0.00186  0.00184
001952  0.01936  0.01538

B=250
n=200.000, m=150

n=300.000, m=200

n=400.000, m=250

MOMK MOMG EMV
RMSE (1)  0.00147  0.00147  0.00147
RMSE ) 001686  0.01640  0.01134

MOMK MOMG EMV

0.00129  0.00130  0.00129
0.01700  0.01540  0.01077

MOMK MOMG EMV

0.00122  0.00122  0.00122
0.01403  0.01385  0.00971

B=250
n=500.000, m=300

n=600.000, m=350

n=700.000, m=400

MOMK MOMG EMV
RMSE (1) 000115  0.00115  0.00115
RMSE %) 001286  0.01255  0.00948

MOMK MOMG EMV

0.00104  0.00104  0.00104
0.01057  0.01056  0.00833

MOMK MOMG EMV

0.00091  0.00091  0.00092
001115 0.01112  0.00762

Tableau A.3 — Racines carrées des erreurs quadratiques moyennes des estimateurs de = = 0.007 et y = 0.05
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Les résultats présentés dans le tableau A.2 et le tableau A.3 montrent une convergence des erreurs
quadratiques moyennes demy ~ ety vers zéro pour toutes les trois méthodes. On peut constater aussi
que la méthode d’estimation par le maximum de vraisemblance (EMV) est meilleur que les deux autres méthodes puisqu’elle
enregistre la plus petite erreur quadratique moyenne sur les neufs échantillons simulés. Elle est suivie par la méthode MOMG
qui a la deuxiéme plus petite erreur quadratique moyenne. En pratique, on suggére donc d’estimer les hyperparamétres par la
méthode du maximum de vraisemblance.

B.3 Loiconditionnelle de §"

D’aprés e théon%me de Bayes, on peut déterminer la distribution conditionnelle
2.
U Y,nu,1 ar:
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Parailleurs, ona 5 s s s s

YEO, = YUY, X

DI z m 3 z -2

Enplusnousavons & o Y = 0UY,mu,tu puisque lasuite eﬁh L., estun
=1l'm =1
h=1

échantillon iid. Pour simplifier les expressions, nous posons

i 5
dLIv. X1 ), U(X),[Y,X]Lz Iy =13(y)

d(1,[v,X] %-U(X),[Y,X]L (1-1y=13(y))

a

b
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() = rs)
I#BNr(1-m)&) ~
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Par la suite, on obtient
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Par ailleurs, on a
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YW I 2 “H

eﬁlY,Ttu,‘Cu = Beta (a, b)
h=1 h=1

On en déduit que la loi conditionnelle de 8" est upe loi Béta définie par :

> 2
Q$|Y,nu,Tu =Beta(@a+mutw,b+ (1 -nu)w)
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Chapitre V

Application a la Mortalité Maternelle dans les
hopitaux de reference au Sénégal et au Mali

1 Introduction

Selon I’Organisation Mondiale de la Santé (OMS), chaque année 585 000 femmes meurent dans le monde suite a des
complications liées a la grossesse, a I’accouchement ou au post-partum [15]. Pour réduire cette mortalité, les politiques de santé
adoptées par de nombreux pays d’Afrique subsaharienne reposent en grande partie sur la disponibilité des services de Soins
Obstétricaux d’Urgence (SOU), incluant la césarienne et la transfusion sanguine, dans les hdpitaux de référence au niveau des
districts ou régions sanitaires. Par contre, I’accés a ces services est tres variable d une région a une autre, avec une grande disparité
entre milieu rural et urbain (Starrs, 1987). Des études réalisées en Afrique de 1’Ouest, dans le cadre du suivi et de I’évaluation
des interventions, ont révélé des taux de Mortalité Maternelle (MM) élevés et variables d’un hdpital & un autre au sein d’un
méme pays, maisaussid’un pays a un autre [7, 9, 11-13, 20, 21].

Les résultats des études concernant les causes de la MM dans les pays en développement montre que, de tous les décés
maternels qui surviennent en Afrique, 75% seraient dus a des complications obstétricales directes qui sont : les hémorragies
(cause principale de la mortalité maternelle reconnue mondialement), les infections puerpérales, les dystocies, les troubles
hypertensifs de la grossesse et les avortements clandestins [17]. Les causes indirectes les plus couramment rencontrées en
Afrique subsaharienne sont essentiellement 1’anémie, le paludisme, I’hépatite virale et le sida. Un facteur de risque de la MM se
définit comme une caractéristique plus fréquente chez les méres qui meurent que celles qui ne meurent pas (OMS, 1991). Les
facteurs qui prédisposent aux événements mortels de la maternité peuvent étre regroupés en deux grandes catégories : les facteurs
individuels liés aux femmes et les facteurs reliés au systeme de santé ou facteurs institutionnels.

Facteurs individuels : De nombreuses études dans les pays en développement ont montré que la primi-parité, d’autant plus
qu’elle concerne une femme plus jeune, et la grande multi-parité sont des facteurs de risque importants de complication
sévere, indépendamment de 1’age [4, 14]. Ce dernier est un facteur de risque majeur chez les patientes d’ages extrémes
(inférieursa16ou
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supérieurs a 35 ans) identifié depuis longtemps. Méme si le réle dun espace inter génésique court (inférieur a 2 ans) sur la
Mortalité Maternelle a été peu étudié, il représente un facteur de risque retrouvé trés présent chez les femmes de
I’ Afrique de 1’Ouest.

Facteurs institutionnels : Les études qui traitent des facteurs liés aux services de santé sont pour la plupart observationnelles et
limitées ades comparaisons entre pays [19]. Elles révélent cependant que le niveau de MM est plusélevé dans les pays ol les
femmes ont le moins accés aux services de santé équipés et de bonne qualité [2]. Parmi les femmes qui utilisent les
servicesdesanté, la mortalité reste élevée dans certains hdpitaux. Peud’études ont été réalisées dans ce contexte. La seule
étude recensée qui analyse la relation possible entre les données institutionnelles et la MM, a été réalisée dans un pays
développé : les états Unis d’Amérique [18]. La particularité de cette étude réside dans I'utilisation d’une analyse
multivariée de la famille des modgles linéaires généralisés, la régression de poisson, pour estimer le risque relatif, entre
la disponibilité des Soins Obstétricaux d’Urgence (SOU), des médecins spécialisés en SOU et le taux de Mortalité
Maternelle Humaine.

Les grandes stratégies qui devraient permettre de réduire le taux de mortalité maternelle sont connues : le recours aux soins
obstétricaux essentiels tels que I’accouchement assisté par du personnel qualifié¢ et le recours a des services off rant des soins
obstétricaux d’urgence en casde complication obstétri- cale sontles principales mesures recommandées [3]. Plusieurs paysont
adopté des feuilles de route qui constituent un cadre national structuré de la planification des programmes et des activités qui
visenta réduire lamortalité. Leur mise en ceuvre se heurte a des problémes structurels qui aff ectent les systemes de santé de la
plupart des pays de 1’ ASS et en premier lieu le probléme récurrent du financement. La question des ressources humaines est
en passe de devenir le défi majeur qui limite déja la capacité de ces systemes de santé de faire face a des problémes de santé déja
existantseta d’autres a venir.

Des études dans diff érents pays d’Afrique subsaharienne ont identifié plusieurs facteurs de risque indépendants qui diff érent

sensiblement entre les auteurs, probablement en raison des diff érences entre les populations d’étude, I’environnement, les variables
recueillies et les méthodes statistiques utilisées. Ainsi, il reste diffi cile de fourniraux professionnels de lasanté des pays d’ Afrique
subsaharienne des recommandations pour identifier les signes ou symptoémes cliniques qui pourraient aider le personnel a détecter
lespatientsahautrisquededécésal’hopital. C’estdanscecontexteque leprojet QUARITE a été mis en place.
Le projet QUARITE est un essai randomisé par grappes multicentrique international destiné a évaluer I effi cacité d un programme
d’amélioration de la qualité des soins au Sénégal et au Mali, comparé avec un groupe contrdle (soins habituels) sans intervention
extérieure [6]. Le critére d’évaluation primaire de I’essai est la mortalité maternelle en milieu hospitalier. Avec environ 80 000
naissances survenant chaque année dans 46 hopitaux de référence, QUARITE est I’un des plus grands essais randomisés par
grappes dans lasanté maternelle et périnatale jamais entrepris dans les paysafaiblesrevenus.

138



V.2 Présentation des données et objectifs de I’étude

Ainsi, le processus expérimental donne une occasion unique d’évaluer la mortalité maternelle en milieu hospitalier a partir d’un
grand nombre de centres, dans une variété de contextes, et en tenant compte des diff érentes caractéristiques de la mére et de
I’hopital. Dans cette analyse, il est question de mesurer la mortalité maternelle dans les hdpitaux de référence au Mali et au Sénégal
avant la mise en ceuvre du programme d’amélioration de la qualité des soins et d’évaluer les prédicteurs de mortalité a I’hopital
chez les patients qui fréquentent ces établissements de santé.

2 Présentation des données et objectifs de I’étude

Les données de I’étude ont été recueillies au cours de I’exécution du projet QUARITE dans sa phase de pré-intervention qui
s’est déroulée du 1°" Octobre 2007 au 30 Septembre 2008 au Sénégal et du 1°" Novembre 2007 au 31 Octobre 2008 au Mali. Les
données considérées sont issues d’un échantillonnage & deux niveaux : un niveau hdpital et un niveau patiente. Les hopitaux qui
ont participé a la collecte des données ont été tirés au hasard parmi ceux de leurs pays : (1) disposant d’un bloc opératoire
fonctionnel, (2) pratiquant au moins 800 accouchements par an, (3) ayant un consentement signé par le chef de service de la
maternitéetledirecteurdel’établissement. Autotal 46 hdpitaux deréférence, dont24auSénégalet22auMali, ontétéenrdlésdans
I’étude. La population ciblée est ’ensemble des femmes enceintes qui sont prises en charge dans les hopitaux de référence. Sont
incluses, les femmes admises pour un accouchement et les patientes dirigées secondairement vers un des hopitaux concernés par
I’étude. Elles sontexclues: les femmesadmises apres un accouchementa domicile et les femmes prises en charge dans une autre
structure. Au total 89 518 patientes sont incluses parmi lesquelles 617 sont décédées. Soit un taux de 0.7%. L’hopital constitue
I'unité de randomisation et d’intervention pendant que la patiente admise pour un accouchement représente 1’unité

d’analyse.

Seules les données patientes sont analysées dans ce travail. L’échantillon d’étude est constitué de 89518 patientes décrites
par 24 variables explicatives réparties en trois groupes : un premier groupe de sept variables décrivant I’état de la patiente avant
la grossesse en cours, un deuxiéme groupe de onze variables portant sur I’état d’avancement de la grossesse et un troisieme
groupe de six variables relatant le cours de 1’accouchement. Plus une variable réponse binaire. Elle prend la valeur 1 si la
patiente décéde avant d’étre autorisée a quitter I’hopital (617 patientes) et 0 sinon (88 901 patientes). L analyse des données a
deux objectifs. Dans un premier temps, on cherche a : (1) Identifier les profils caractéristiques des patientes décédées sans tenir
compte de 1’échantillonnage au niveau hopital ; (2) Elaborer une régle de classification performante et facile a comprendre
comme un arbre de décision ou une régression logistique. Et dans un deuxiéme temps, on cherche a : (1) Identifier les profils
caractéristiques des patientes décédées sachant que les hopitaux de références sont échantillonnés a partir d’un ensemble
d’hopitaux éligibles ; (2) Elaborer une regle de classification performante et facile a comprendre comme un arbre de décision ou
unerégression logistique selonI’hopital.
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3 Prétraitement des données

Parmi les 24 variables explicatives de I’échantillon, nous avons 21 variables catégorielles et 3 va- riables numériques dont
I’age de la patiente, la parité (le nombre d’accouchements précédents la grossesse en cours) et le nombre de consultations
prénatales pour la grossesse en cours. Pour se mettre dans les conditions d’application de 1’algorithme d’apprentissage du chapitre
1, nous avons discrétisé les variables numériques en utilisant la méthode du principe de la longueur de description minimal ou
"Minimal Description Length Principle” (voir annexe B). Ci-dessous, nous présentons la liste des variables explicatives et
leursmodalitésrespectivesselon lesgroupesd’appartenance.

Variables modalités
Historique des antécédents médicaux

Groupe d’age (en années) <30 =30
Parité (nombre d’accouchements) <5 =25
Hypertension artérielle chronique 0

Cardiaque chronique / Insuffisance rénale
Broncho-pneumopathie chronique

Drépanocytose

N

0
0
0
0

Antécédent césarienne

Tableau V.1 — Liste des variables : historique des antécédents médicaux

Variables modalités
Grossesse en cours
Hypertension gestationnelle

Pré-éclampsie/éclampsie

Saignement vaginal (prés du terme)

Anémie chronique Sévere

Diabéte gestationnel

Rupture prématurée des membranes

Tractus urinaire infection / pyélonéphrite
VIH / SIDA

Paludisme

O O O O O O o o o o
e

Grossesse multiple
Nombre de consultations prénatales <3,=3,24

Tableau V.2 — Liste de variables : Grossesse en cours
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Variables modalités
Travail et accouchement

Evacuer par un autre établissement de santé 01
Induction du travail 01

Mode d’accouchement
voie vaginale
forceps / ventouse
urgence avant I’accouchement césarienne

intrapartum accouchement par césarienne

A W N P O

césarienne élective
Hémorragie post-partum antécédent ou immédiat
Travail prolongé / dystocique

o o o
N

Rupture utérine

Tableau V.3 — Liste des variables : Travail et accouchement

4 Analyse des données sous ’hypothese que la population est ho-
mogene

4.1 Echantillonnage des données

L’apprentissage Statistique que nous proposons dans cette analyse nécessite de subdiviser la base de données en trois
échantillonsde mémetaille : Apprentissage, Validationet Test. Les échantillons sont obtenus de maniéreace qu’une partie des
Hopitaux serveal’apprentissage eta lavalidation du modéle et1’autre partie des clusters soit utilisée pour tester la performance
dumodéle. Onnotenle nombre total des patientes inclues dans I’étude et m=46 le nombre total d’hopitaux.

En fonction de la valeur mo donnée, soit I’échantillon T est est constitué exclusivement d’hdpitaux qui n’ont pas servi a
I’élaboration du classifieur ; soit il contient un faible taux d’observations des hdpitaux qui ont participé a la construction du
classifieur. Ce procédé permet, a 1’aide du classifieur, de faire des prédictions plus tard sur des hdpitaux qui n’ont pas
participé a I’étude. Pour la suite, nous nous sommes fixés de maniére arbitraire une valeur mo égale a 36.
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Algorithme : Echantillonnage des données

*

7
1’
9

Entrées : D unensemble d’observation ; m le nombre de clusters dans D, mg un entier supérieur a m/2
Sorties : Echantillons : Train, V alid, Test

:n : le nombre d’observations dans D
‘no =] n/2+0.5]
: k = tirage aléatoire sans remise de mo clusters parmi les m clusters dans D
: N1 : le nombre d’observations dans les k clusters
. Test=les observations qui ne sont pas dans lesk clusters 6 : Si (n1 > 2
no) faire
. Sub=tiragealéatoire sansremisede (2 no) observations parmilesn1 observations 8: Test=Ajouter dans
échantillon Testles (n1 —2# no) observationsrestantes
:sinon Sub:permuter les n1 observations 10 : Fin

si
11 : T rain = la premiére moitié des observations dans Sub constitue I’ensemble d’apprentissage 12 : V alid = la deuxiéme
moiti¢ des observations dans Sub constitue 1’ensemble validation

4.2

Tableau V.4 — Algorithme d’échantillonnage

Construction du classifieur

A partir de I’ensemble d’apprentissage, on a appliqué la procédure “apriori” (algorithme I11.1) du package “arules"

avec

le paramétre d’apprentissage A = (So, Co, lo). Au support minimum so, on a aff ecté les valeurs suivantes : 9.10°, 1.1073,

2.107%et3.107% Alavaleurprédictive positiveminimale co onaalloué lesvaleurssuivantes : 5%, 4%, 3%et 2%. Etonafixéla
longueur maximalelo a5.

Pour
d’éla

chaque combinaison des trois parametres, on génére un ensemble de profils fréquents (Uy). Puis & ’aide de la procédure
gage (algorithme 111.2), on supprime tous les profils redondants dans

U, pourobtenirunensemble de profils U* ,, detaille plus petite. En général, I’ensemble U , esttres

vaste
rédui
obtie

au point qu’on ne peut pas s’en servir pour construire un classifieur effi cace. On se sert alors de I’algorithme 111.3 pour
re I"ensemble U* . Cette étape de la procédure permet de supprimer tous les profils dans U* de faibles performances. On

ntalorsunensemple U? contenant les profils de 2

meilleurs performances et non redondants. De cet ensemble, on pourra alors déduire un classifieur ¢ performant. L’ensemble

Test servira a calculer les performances du classifieur (sensibilité, spécificité et erreur de classement).

La combinaison des diff érents parametres conduit & la construction de 16 regles de classement (classifieurs). Le meilleur
classifieur est sélectionné a partir de cet ensemble (voir tableau ci-dessous ??) en variant la sensibilité de chaque classifieur par
rapport & sa spécificité. Toutes les analyses relatives a la méthode de classification proposée ont été réalisées dans

’environnementde programmationR
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[16]. L’exploitation des régles d’association a été faite en utilisant le package arules [1, 10].

4.3 Recherche d’un classifieur optimal

Les 16 classifieurs considérés sont des classifieurs binaires discrets [8]. 11s produisent chacun un seul point dans I’espace ROC
(Receiver Operating Characteristics). Offi ciellement, un point dans I’espace ROC est meilleur qu’un autre si il est au nord-ouest
(sensibilité élevée, 1-spécificité faible) par rapport a I’autre. Relativement au classifieur, plus ’aire en-dessous de la courbe ROC
est élevée, meilleurest le classifieur.

Habituellement, pour comparer des classifieurs, on compare les taux d’erreur de classement associés. Cependant, dans le contexte
ou la distribution des classes de la variables réponse est déséquilibrée, il est plus approprié d’utiliser ’aire en-dessous de la courbe
ROC. L’aire sous la courbe ROC, communément notée AUC, a une propriété statistique importante. Le AUC d’un classifieur
peut étre traduitcomme suit : la probabilité de classer une observation positive choisie de maniére aléatoire est plus élevée que
celle d’une observation négative choisie au hasard. A cesdeux indicateurs de performance ona associé le score de Pierce afin de
disqualifier les classifieurs générant trop de fausses alertes. Pour choisir le meilleur, on compare en premier lieu les scores de
Pierce (PSS). On choisit les cing meilleurs classifieurs. Ensuite on compare leurs AUC, puis leurs erreurs de classement, leurs
sensibilités et leurs spécificités avantde comparer les tailles de leurs ensembles optimaux de profils U?.

Paramétres d’apprentissage Profils Performances

Supportmin | VPP (conf) min | Taille U; | TailleUS | Sensibilitt | Spécificit¢ | Erreur | AUC | PSS
9.107% 0.03 5988 44 0.81 0.79 021 | 0.80 | 0.60
9.107% 0.04 3971 34 0.78 0.85 015 | 0.81 | 0.63
9.107% 0.05 2957 18 0.66 0.92 009 | 0.79 | 0.58
1.107% 0.03 5054 40 0.84 0.78 022 | 0.81 | 0.62
1.107% 0.04 3373 27 0.75 0.86 0.14 | 0.80 | 0.61
1.107% 0.05 2518 15 0.61 0.92 0.08 | 0.77 | 053
2107 0.03 1522 13 0.79 0.80 020 | 0.79 | 0.59
2107 0.04 1152 03 0.39 0.98 0.03 | 0.69 | 0.37
2.107% 0.05 1050 03 0.39 0.98 0.03 | 0.69 | 0.37
3.107% 0.03 725 04 0.65 0.86 014 | 0.76 | 051
3.107% 0.04 610 02 0.46 0.94 0.06 | 0.70 | 0.40
3.107% 0.05 610 02 0.46 0.94 0.06 | 0.70 | 0.40

Tableau V.5 —Tableau des performances des 12 ensembles optimaux obtenus a partir du testasymp- totique

Le classifieur dont les performances sont représentéesa la ligne 07 du tableau V.5 est le meilleur classifieur selon les criteres
de sélection énumérés précédemment. Dans le tableau V.6, nous représen- tons la matrice de confiance qui lui est associée.
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Observations sensibilité spécificité erreur clmt
non oui
2
2 | non 23610 45
3 0.789 0.797 0.204
a | oui 6017 168
total 29627 213

Tableau V.6 — Matrice de confusion du classifieur optimal par test asymptotique

4.4 Structure del’arbre constitué par les profils de risque composant le classifieur

optimal

Une structure d’arbre peut étre utilisée pour visualiser les régles de I’ensemble optimal (U?) des profils a risque qui
constituent la regle de classement (classifieur optimal). Cette arborescence permet de présenter la régle de classement sous une
forme facile a comprendre comme un arbre de décision. Chaque branche de I’arbre constitue un profil & risques dont le risque

relatif associé est donné au niveau de la feuille terminale de la branche.
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Pas Paludisme ; RR=6.99,
VPP=3.3%

Pas Saignement Va- ginal

Pas  Drépanocy-
tose ; RR= 6.91,
VPP=3.3%

> Age=30 Pas Drépanocytose ;

Pas Paludisme ——>| RR=6.32, VPP=3%

Pas Diabéte Gesta-
tionnel ; RR= 6.24,
VPP=3%

Pas Hypertension ar-

Pas Paludisme |—> térielle Ch ; RR=6.87,

VPP=3.3%

Parité=5
Pas Dréponocytose | > PasVIH | RR=6.74,
vacuée ponocy VPP=3.2%

Pas Saignement Va- ginal ;
> RR=10.03, VPP=3.5%

Nb CPN <3
Pas Induction ; RR=10.06,

VPP=3.4%

Towl Pas Rupture PM ;
. > RR=6.57, VPP=3.1%
Population Mode Accouche-

ment 3 ] Pas Saignement Va- ginal
; RR=6.33, VPP=3%

A

Pas Saignement Va- ginal ;
RR=26.54, VPP=11.7%

N CPNSTRR=25T79;
VPP=12%

- - Pas Saignement
agina Pas Hyperten- sion

Artérielle Ch ;
RR=23.98,
VPP=9.1%

Figure V.1 — Représentation de 1’arbre des profils a risque

Dans cette analyse, nous avons posé une hypothése forte a savoir que les observations sont toutes indépendantes et
identiquement distribuées. Ce n’est pas tout a fait exact puisque les données de 1’étude (QUARITE) sont obtenues a partir
d’un essai multicentrique randomisé. Supposer donc que les distributions des observations dans les diff érents hopitaux de
référence sont identiques peut avoir une forte influence sur les résultats de I’analyse. 1l serait donc judicieux d’analyser les
donnéesen tenant compte de 1’eff et aléatoire au niveau deshopitaux.
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5 Analyse des données sous I’hypothese que la population est hété-

rogene

Dans cette deuxiéme partie de 1’analyse, nous considérons la méthode de sélection de I’ensemble optimal en utilisant le

facteur de Bayes. On choisit 40 hdpitaux de maniére aléatoire dont il faudra subdiviser en trois sous ensembles :
Apprentissage, Validationet Test, detelssorte que chaque sous- ensemble contient les40 hdpitaux avec laméme proportion. Les
6hopitaux restantsserontajoutésa 1’ensemble test construit précédemment.
Pour générer I"ensemble des profils non redondants et significativement corrélés avec la variable ré- ponse, nous avons considéré
les paramétres d’apprentissage suivant : so = 2.107%, ¢o =0.03 et lo = 5. Ce choix est ddi au fait que ces paramétres ont fourni le
meilleur classifieur dans le cas iid. Ausortir de la premiére étape de la procédure d’apprentissage, on a obtenu un ensemble de
1522 profils non redondants et significativement corrélés avec la variable réponse.

5.1 Présentation des résultats pour les hopitaux ayant participé a ’estimation des
hyperparameétres

Pour chaque hopital participant a 1’élaboration du classifieur (a ’estimation des hyperparamétres de la Béta-Binomiale), la
sélection de I’ensemble optimal de profils est eff ectuée en fonction de la valeur prédictive positive a posteriori. Dans les
tableaux ci-dessous (Tableau V.7 et Tableau V.8), on a présenté les résultats du classement avec les valeurs prédictives
positivesaposteriori.

ot . -

A
01 09 1.00  0.98 002 099
03 09 092 0.78 022 0.85
04 09 092 054 045 0.73
05 09 - 0.97 0.03 -

06 09 0.00 092 0.08 054
07 09 - 0.97 0.03 -

08 09 067  0.88 012 0.78
09 09 060 079 021 0.69
11 09 100 0.67 032 084
14 09 071 059 041  0.65

Tableau V.7 — Tableau de performance pour les hopitaux ayant participé a I’estimation des hyperpa- ramétres
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ot . -

A
15 09 100 073 027 0.6
16 09 083 069 031 0.76
17 09 080 081 019 081
18 09 100 061 039 0.80
19 09 075 096 004 085
20 09 071 066 034 0.68
23 09 078 072 028 0.75
24 09 100 077 023 0.88
25 09 078 083 017 0.0
26 09 100 069 030 085
27 09 033 067 034 050
28 09 100 082 018 0091
29 09 033 071 029 052
30 09 100 052 048 0.76
31 09 100 084 015 092
32 09 100 077 023 0.88
33 09 060 050 050 055
34 09 100 080 020 0.90
35 09 100 083 017 092
36 09 050 076 024 0.3
37 09 100 066 034 083
38 09 100 081 019 0.90
39 09 075 061 038 0.68
40 09 050 059 041 054
41 09 100 057 043 0.78
42 09 100 082 017 0091
43 09 100 092 0.09 0096
44 09 100 088 012 094
45 09 100 087 013 094
46 09 - 0.80 020 -

Tableau V.8 — Tableau de performance pour les hopitaux ayant participé aI’estimation des hyperpa- ramétres

Sion prend le seuil de sélection du facteur de Bayes égale a 3, on distingue trois classifieurs pour tous les hopitaux : un
classifieur C; de 08 profils pour les hopitaux 03, 04, 11, 16, 17, 18, 20, 23, 24; un classifeur C; de 09 profils dont les 08
profils du classifieur C plus le profils "{Hemorragie = 1, SaignementV = 0}" pour le hopital 09 et un classifieur C3 de 09
profils dont les 08 profils du classifieur C; plus le profils "{Hemorragie = 1}" pour le reste des hopitaux. Par contre,
lorsqu’on prend un seuil de sélection supérieur ou égale & 10, on aun classifieur unique de 09 profils pour tous les hopitaux qui
ont participé a I’estimation des hyperparamétres. 11 s’agit du classifieur Cs. A la Figure V.2, nous avons une présentation
sous forme d’arbre de 1’ensemble des profils optimaux qui constituent le classifieur Cs.
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Total
Population

A

[Evoee ]

Nb CPN <3

> Age=30

> Parité >5; RR=5.89,

VPP=3.2%

NbCPN<3;

> RR=8.23, VPP=3.3%

Dystocie ; RR=6.43,
VPP=3.4%

-

Hémorragie ; RR=14.87,
VPP=6%

Pas Rupture PM

Pas Antécédent ; RR=5.49,
VPP=3.1%

Pas Hypertension Ges-
tationnelle ; RR=5.42,
VPP=3.1%

Pas Grossesse Multiple,
RR=5.54, VPP=3.1%

Pas Grossesse

Pas Hypertension Ges-
tationnelle ; RR=5.57,
VPP=3.1%

Multiple

Pas  Hypertension  Ar-
térielle Ch ; RR=5.40,
VPP=3%

Figure V.2 — Représentation sous forme d’arbre des profils a risque communs a tous les hopitaux

5.2 Présentation des résultats pour les hopitaux n’ayant pas participé a I’estima-
tion des hyperparametres

Pour les hdpitaux qui n’ont pas participé a I’élaboration du classifieur, il s’agira de construire un classifieur moyen dont
on pourra utiliser pour faire le classement dans tout nouveau hopital. La sélection de 1’ensemble optimal de profils se feraen
fonction de I’estimation de I’hyperparamétre n. Dans le tableau ci-dessous (Tableau V.9), on a présenté les résultats du
classement avec les valeurs prédictives positives en tenant compte de I’hétérogénéité des données. Le classifeur moyen obtenu est

identique au classifieur Cs présenté a la figure V.2.

: o : -

A
02 09 091 0.8 012 0.89
10 09 087 0.70 029 0.79
12 09 060 0.88 013 0.74
13 09 100 0.88 012 094
21 09 100 0.95 005 0.97
22 09 073 078 023 0.75

Tableau V.9 —Tableaude performance pour leshOpitaux n’ayantpasparticipé al’estimation des hyperparametres
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6 Discussion

Pour un usage clinique, les structures d’arbre de la figure V.1 et de la figure V.2 sont utilisées pour visualiser les profils
explorés. Chaque branche de I’arbre constitue un profil a risque dont le risque relatif associé est donné au niveau du nceud
terminal de la branche. Dans chaque nceud une paire "variable-modalité" est représentée. Chaque branche détermine une
partition de la sous-population a risque. Par exemple, selon lafigure V.2, les patientes qui présentent une hémorragie sont 14.87
fois plus susceptibles de mourir que la moyenne de la population. Pour les patientes qui ont une dystocie et qui ont eff ectué moins
de trois consultations prénatales présente un risque relatif de 6.43. Le RR passe & 8.23 pour les patientes qui ont été évacuée a
partir d’un autre établissement et qui ont moins de trois consultations prénatales pendant la grossesse. Des interprétations
similaires de I’arborescenceV.1 peuvent étre faites pour les branches qui identifient respectivement les patientes évacuées et agées
de plus de 30 ans ou ayant une parité supérieur a 5.

La régle de classement établie dans cette étude confirme que les patientes présentant une hémor- ragie, un accouchement
prolongé ou une parité supérieure ou égale a 5, doivent étre gérées avec une haute priorité par les professionnels de santé qualifiés
dans les services SOU complets [3], en particulier si la patiente est évacuée par un autre établissement de santé. Compte tenu de la
crise des ressources humaines au Mali et au Sénégal, la disponibilité de personnel qualifié (sages-femmes et médecins) est
problématique et de nombreuses taches sont déléguées au personnel de santé moins qualifi¢ (étudiants, matrones, sages-assistants).
Ces professionnels peuvent jouer un role crucial dans I’amélioration des résultats maternels dans les hdpitaux de référence s’ils
sont impliqués dans des taches appropriées et recoivent une formation adéquate. Plus précisément, nos résultats indiquent qu’ils
devraient étre for- més pour détecter les ruptures utérines et les hémorragies. Les taches et les actions requises sont assez précises et
simples : poser des questions sur la douleur et les contractions, ainsi que des saignements vaginaux, mesurer la pression artérielle,
jauge de protéines, détecter une perte de sang excessive et des convulsions. Méme le personnel de santé non qualifié pourrait
détecter, al’admission ou pendant le travail (accouchement), les signes d’alarme suivants : douleur aigué et perte de contractions, la
pression artérielle> 140/90 mmHg, protéinurie> 1, I’hémorragie, et ils doivent alors alerter immédiatement le personnel qualifié
si I’un de ces signes est détecté. La détection précoce de ces signes de complication, et la gestion immédiate des patientes par des
sages-femmes ou les médecins permettrait d’améliorer les résultats maternels [3, 5, 13].

Les profils définis par le modele de classement basé sur les regles d’association apportent des connais- sances utiles aux
professionnels des soins de santé dans les hdpitaux de référence au Mali et au Sénégal. Ils peuvent servir de référence dans leur
décisiondetraiterlespatientsquiaccouchentdansleséta- blissements de santé.




V.6 Discussion

~ Conclusion

Un eff et important de ’apprentissage statistique établie dans cette étude pourrait étre une iden- tification rapide par les
professionnels de lasanté qualifiés ou non-qualifiés des meresahautrisque de mortalité al’hopital quidoiventétreensuiteoff ert
des soins obstétricaux d’urgence de haute prio- rité. Cette stratégie devrait viser toutes les femmes enceintes fréquentant les
hopitaux de référence au Sénégal et au Mali. Elle devrait aussi viser & détecter et a gérer les complications mortelles par des
interventions fondées sur des preuves avec un suivi intensif des femmes qui ont un ante-partum césarienne d’urgence. Dans
d’autres contextes, d’autres études sont nécessaires pour évaluer I’impact de cette stratégie sur la réduction des taux de mortalité
maternelle, du temps d’accés au soins, de 1égalité globale et de la mortalité maternelle & I’hdpital. Cette stratégie off rira encore
plus d’avantages si elle est combinée avec des interventions améliorant le systéme de référence maternelle.
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Chapitre VI

Conclusion géneérale et perspectives

1 Conclusion générale

Dans cette analyse, nous avions comme objectifs : I’identification des profils caractéristiques des patientes décédées, la

modélisation de la probabilité de déces en tenant compte de I’eff et hdpital et la mis en place d’une régle de classement effi cace
permettant de trier les patientes a haut risque. Pour atteindre ces objectifs, nous avons choisi une approche basée sur les régles
d’association dans le but de contourner les diffi cultés liées a la faible occurrence de la modalité d’intérét de la variable réponse.
Jusque 14, les diff érentes méthodes statistiques proposées dans la littérature pour I’analyse de données déséquilibrées dans le cadre
d’une classification supervisée produisent : soit un classifieur fortement dépendant de 1’ensemble d’apprentissage, Soit un
classifieur effi cace mais sous forme d’une boite noire. Dans le domaine de I’intelligence artificielle, des algorithmes basés sur les
régles d’association, tels que CBA (Classification Based on Association), CMAR (Classification Based on Multiples
Associa- tion Rules) et CPAR (Classification Based on Prédictive Association Rules), ont été développés pour identifier les
profils corrélés avec la modalité d’intérét de la variable cible. Cependant ces algorithmes produisent un classifieur représenté par
unvaste ensemble de profils dont la plus part d’entre eux ne sont pas pertinents. Dans certains domaines tels que lamédecine, le
classifieur produit est diffi cile @ manipuler voire inutilisable. La procédure d’apprentissage statistique que nous avons présenté
dans cette analyse permet de prendre en compte les avantages des méthodes d’analyse qui lui ont précédé. La procédure permet de
construire un classifieur performant a partir d’un ensemble réduit et optimal de profils. Eneff et I’une des grandes diffi cultés avec
les regles d’association reste la production d’un vaste ensemble de profils. Dans le chapitre 111, nous avons proposé deux tests
d’hypothése : un test stochastique et un test asymptotique pour 1’élagage des profils redondants. Ceci permet a la fois de
supprimer une bonne partie des profils qui ne sont pas pertinents et de réduire considérablement I’en- semble des profils
candidats pour constituer la régle de classement.
Pour sélectionner I’ensemble optimal de profils, nous avons proposé les algorithmes [11.3 et 111.4 selon la taille du jeux de
données dont on dispose. Si la taille des données est suffi samment grande, on propose d’utiliser I’algorithme 111.3 sur un
ensemble de validation indépendant de I’ensemble d’ap- prentissage. Pour un jeux données de petite taille, on peut utiliser
I’algorithme 1.4 qui,apartird’un
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nombre fini d’échantillons bootstrap des données, sélectionne un ensemble optimal de profils. Ce qui nous permet de réduire
la forte dépendance du classifieur de I’ensemble d’apprentissage.

L’indicateur de performance principal pour la sélection des profils candidats reste la valeur prédic- tive positive. Et pour tenir
compte de Ieff et hopital dans la modélisation, nous avons eff ectué une estimation bayésienne empirique de la valeur
prédictive positive pour partager Iinformation entre les hopitaux. A ce niveau, nous avons proposé deux méthodes
d’estimation des hyperparamétres : la méthode d’estimation des moments combinée avec un algorithme de pondération
empirique et la méthode d’estimation du maximum de vraisemblance combinée avec un algorithme MM (Minimisation-
Maximisation).

En combinant les profils de ’ensemble réduit et optimal de profils, on construit un classifeur per- formant et facile a
interpréter par tout agent de santé maternelle. Il peut étre affiché sous forme de tableau ou de poster dans les salles
d’accouchement dans les hopitaux en Afrique subsaharienne pour aider les sages femmes dans une prise de décision rapide.

2 Perspectives

1. Introduire des covariables observables sur les clusters : Dansdes travauxavenir, nous allons
étendre notremodele enintroduisantune matrice de covariables M de dimensionnxg,
oun= Fm h=1 M est le nombre d’observations et g le nombre de caractéristiques observables sur
touslesclusters. Lenombredecovariablesestsupposéétrestrictementsupérieuraun(q>1).

3 -m -
H zYlOU,[Y,X]h _ U 211y 1393, pvox, 1 (U (), IY X 19 2 (1-1lpy = (y)w vV (X),[Y. X1
] k=1
‘ | eUJ’t Z _ F(Tu) -GU Z?l'u‘l'u_l -1—6U Z(l_ﬂu)‘[u_l ]I 'euZ
h WU = raya)N((1-m0)ww)  Oh h 011 %h

. logit(ny) = W*Bu

OUW =(U(X),Mi)x(q+1) €Stunvecteurdedimension (q+1), Mi désignantunvecteur ligne delamatrice M ety

estlevecteurdescoeffi cientsderégressionassociésauprofilU(X).

Leparamétrety est le paramétre qui gouverne lacorrélationentre les observations duméme

cluster h vérifiant le profil U(X). On montre que pour geux observations i et j vérifiant U(X)

dans un cluster h, on a corr(Yhni, Ynj) = —_—

T+1

2. Etude de la stabilité du classifteur : Dans un futur proche, nous nous intéresserons a la stabilité du
classifieur lorsque les données d’apprentissage subissent des modifications. Ceci semble étre un point important pour la
généralisation des résultats obtenus sur I’ensemble des centres de santé en Afrique Sub-Saharienne.
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3. Améliorer les performances du classifteur : Danscetravail, nousavonschoisi de classer

positive une observation t lorsqu’elle vérifie au moins un profil optimal (U;)" . i=1

.-
o1 s oy ()>0
o(t) = =1

H 0 sinon

Les résultats obtenus montrent un taux de faux positifs trés élevé. Ceci pourrait étre justifi¢ par le fait que la regle de
classement ¢() estune fonction des profils corrélésavec laclasse rare.

Par exemple les résultats obtenus a partir des données du projet QUARITE révelent un taux de faux positifs supérieur a
20% des patientes vivantes et représentant plus de 90% du taux d’erreur de classement (voir tableau V.6). La prise en
charge de ce groupe de patientes peut entrainer des colts trés élevésqui risquent de contrarier le bon fonctionnement
delastructure.









Résumé

L’objectif de cette thése est de proposer une méthodologie statistique permettant de formuler une régle de classement capable de
surmonter les difficultés qui se présentent dans le traitement des données lorsque la distribution a priori de la variable réponse est
déséquilibrée. Notre proposition est construite autour d’un ensemble particulier de régles d’association appelées "class association
rules".

Dans le chapitre Il, nous avons exposé les bases théoriques qui sous-tendent la méthode. Nous avons utilisé les indicateurs de
performance usuels existant dans la littérature pour évaluer un classifieur. A chaque "class association rule" est associée un classifieur
faible engendré par 1’antécédent de la regle que nous appelons profils. L’ idée de la méthode est alors de combiner un nombre réduit
de classifieurs faibles pour constituer une régle de classement performante.

Dans le chapitre 111, nous avons développé les différentes étapes de la procédure d’apprentissage statistique lorsque les observations
sont indépendantes et identiquement distribuées. On distingue trois grandes étapes : (1) une étape de génération d’un ensemble
initial de profils, (2) une étape d’élagage de profils redondants et (3) une étape de sélection d’un ensemble optimal de profils. Pour
la premiére étape, nous avons utilisé 1’algorithme "apriori" reconnu comme 1’un des algorithmes de base pour 1’exploration des régles
d’association. Pour la deuxiéme étape, nous avons proposé un test stochastique. Et pour la derniére étape un test asymptotique est
effectué sur le rapport des valeurs prédictives positives des classifieurs lorsque les profils générateurs respectifs sont emboités. Il en
résulte un ensemble réduit et optimal de profils dont la combinaison produit une regle de classement performante.

Dans le chapitre IV, nous avons proposé une extension de la méthode d’apprentissage statistique lorsque les observations ne sont
pas identiquement distribuées. Il s’agit précisément d’adapter la procédure de sélection de I’ensemble optimal lorsque les données
ne sont pas identiquement distribuées. L’idée générale consiste a faire une estimation bayésienne de toutes les valeurs prédictives
positives des classifieurs faibles. Par la suite, a 1’aide du facteur de Bayes, on effectue un test d’hypothése sur le rapport des valeurs
prédictives positives lorsque les profils sont embofités.

Dans le chapitre V, nous avons appliqué la méthodologie mise en place dans les chapitres précédents aux données du projet
QUARITE concernant la mortalité maternelle au Sénégal et au Mali.

bs clés : apprentissage statistique, classement, données déséquilibrées, estimation Bayésienne empirique, mortalité maternelle,
profils, regles d’association, sélection de profils, test d’hypothése

Abstract

The aim of this thesis is to design a supervised statistical learning methodology that can overcome the weakness of standard methods
when the prior distribution of the response variable is unbalanced. The proposed methodology is built using class association rules.
Chapter Il deals with theorical basis of statistical learning method by relating various classifiers performance metrics with class
association rules. Since the classifier corresponding to a class association rules is a weak classifer, we propose to select a small
number of such weak classifiers and to combine them in the aim to build an efficient classifier.

In Chapter I11, we develop the different steps of the statistical learning method when observations are independent and identically
distributed. There are three main steps : In the first step, an initial set of patterns correlated with the target class is generated using
"apriori* algorithm. In the second step, we propose a hypothesis test to prune redondant patterns. In the third step, an hypothesis
test is performed based on the ratio of the positive predictive values of the classifiers when respective generating patterns are nested.
This results in a reduced and optimal set of patterns whose combination provides an efficient classifier.

In Chapter IV, we extend the classification method that we proposed in Chapter 111 in order to handle the case where observations
are not identically distributed. The aim being here to adapt the procedure for selecting the optimal set of patterns when data are
grouped data. In this setting we compute the estimation of the positive predictive values as the mean of the posterior distribution
of the target class probability by using empirical Bayes method. Thereafter, using Bayes factor, a hypothesis test based on the ratio
of the positive predictive values is carried out when patterns are nested.

Chapter V is devoted to the application of the proposed methodology to process a real world dataset. We studied the QUARITE
project dataset on maternal mortality in Senegal and Mali in order to provide a decision making tree that health care professionals
can refer to when managing patients delivering in their health facilities.

Keywords : association rules, classification, empirical Bayesian estimation, hypothesis testing, maternal mortality, patterns, selection
profiles, statistical learning, unbalanced data




