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Chapitre I 
 

 

Introduction Générale 
 

 

 

 

1 Motivation 
 

En Afrique Sud du Sahara (ASS), la mortalité maternelle (MM) est parmi les plus élevées au monde. La réduction du 

taux de MM de trois quart entre 1990 et 2015, constitue le cinquième Objectif du Millénaire pour le Développement (OMD5) ; 

malheureusement, les progrès sont lents et l’atteinte des objectifs fixés est très hypothétique [20]. Depuis 1990, certains pays 

en Asie et en Afrique du Nord ont fait baisser de plus de moitié la mortalité maternelle. Il y a eu aussi des progrès en Afrique 

subsaharienne (5%). Mais, sur ce continent et contrairement aux pays développés où le risque à la naissance pour une femme de 

mourir pendant une grossesse ou peu de temps après est de 1 sur 3800, le risque de mortalité maternelle reste très élevé à 1 sur 39[1]. 

A l’échelle mondiale, pour la période 1995- 1998, on a enregistré 430 décès maternels pour 100 000 naissances vivantes. En Afrique 

subsaharienne, le taux de décès maternel est estimé à 975 pour 100 000 naissances vivantes contre 13 pour les pays industrialisés 

(WHO, 2000). 

Des études dans diff érents pays d’Afrique subsaharienne ont identifié plusieurs facteurs de risque indépendants qui diff èrent 

sensiblement entre les auteurs, probablement en raison des diff érences entre les populations d’étude, l’environnement, les variables 

recueillies et les méthodes statistiques utilisées. Ainsi, il reste diffi cile de fournir aux professionnels de la santé des pays d’Afrique 

subsaharienne des recommandations pour identifier les signes ou symptômes cliniques qui pourraient aider le personnel à 

détecter les patients à haut risque de décès à l’hôpital. Pourtant, ces critères pourront aider le per- sonnel à décider si un patient doit 

être traité comme un cas de haute priorité par les professionnels de santé qualifiés dans les soins obstétricaux d’urgence complets [3]. 

Bien que les critères de complications obstétricales graves sont proposés par l’Organisation mondiale de la Santé (OMS) comme 

facteurs pré- dictifs appropriés de mortalité maternelle [21], des diffi cultés subsistent dans leur identification, et il y a peu 

d’expérience avec l’utilisation de ces critères dans les pays à faible revenu [19]. 

 
Du point de l’apprentissage statistique supervisé, tout ensemble de données où la distribution a priori de la variable réponse 

est significativement diff érente de la distribution uniforme est considéré comme un jeu de données déséquilibrées. Cependant, la 

compréhension commune de la communauté 
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I.3 L’état de l’art 
 

 

| ∀  ∈  

∀  ƒ 

s Σ 

 

 

statistique est que les données déséquilibrées correspondent à des ensembles de données présentant un déséquilibre significatif, et 

dans certains cas un déséquilibre extrême. Plus précisément, cette forme de déséquilibre est considérée comme un déséquilibre 

entre les classes de la variable d’intérêt. On rencontre très souvent des déséquilibres d’ordre 1/100, 1/1 000 et 1/10 000 entre les 

classes, où dans chaque cas, une classe domine sévèrement une autre. De ce point de vue, on peut aborder l’analyse de la mortalité 

maternelle sous l’angle de données déséquilibrées. On dit que le décès maternel, considéré ici comme étant l’événement d’intérêt, 

est un événement rare par rapport à l’événement non-décès. 

 

2 Classification supervisée 
 

La classification supervisée consiste à classer de nouveaux objets en se basant sur l’observation d’exemples similaires. Elle 

est l’une des tâches typiques du domaine du data mining. Ici chaque objet est décrit par un couple (X, Y ) où X est une vecteur de p 

variables aléatoires pouvant être numériques, discrètes ou catégorielles. La variable X prend ses valeurs dans un domaine X 

produit de p domaines numériques, discrètes et catégoriels. La variable réponse Y prend ses valeurs dans le domaine catégoriel Y = 

{y1, . . . , ys}. 

Lorsqu’on traite un problème de classification supervisée, on considère la réalisation {(xi, yi), i = 1 : n} d’un échantillon Tn = (X1, 

Y1), · · · , (Xn, Yn) pour construire une règle RTn : X −→ Y qui permet une prédiction future de la variable réponse Y , en se 

basant sur l’observation de X seulement. 

 
En général on considère que Tn est une suite d’éléments aléatoires indépendantes et identiquement distribuées suivant une loi F 

inconnue définie sur X × Y. De plus la règle de classement qui réalise le minimum d’erreur de classement est la règle de 

Bayes définie par 

 

RTn (x) = argmax Pr(Y = y X = x) x X 
y∈Y 

 

Ce qui correspond à  

RTn 

 
(x) = y si 

 Pr(Y = y|X = x) 
> 1 y = y′ (I.1) 

Pr(Y = y′|X = x) 

où Pr(Y = y|X = x) est la probabilité conditionnelle estimée d’appartenance à y. 

Parmi les méthodes statistiques de classement on peut distinguer des approches non paramétriques comme la méthode des plus 

proches voisins et les arbres binaires de classement et des approches paramétriques comme l’analyse discriminante, la 

régression logistique et les réseaux de neurones. Ces approches sont basées sur une évaluation implicite ou explicite de la 

distribution conditionnelle Pr(Y = y|X = x). Par exemple, dans une analyse discriminante, on suppose une loi a priori [Y ] sur 

la variable Y. Puis on s’intéresse donc à loi de probabilité conditionnelle Pr(Y |X) définie par : 

– Pr(Y = y|X = x) = 
Pr(X = x|Y = y) Pr(Y = y) 

Pr(X = x|Y = yi) Pr(Y = yi) 

i=1 

si X est une variable discrète 
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s Σ 

∀  

Tn 
^ 

Tn 

1 2 1 2 

t 
Tn 

produit une partition de X en sous-ensembles dont chacune d’eux est associée à une classe de Y . 

 
 

– Pr(Y = y|X = x) = 
f (x|Y = y) Pr(Y = y) 

f (x|Y = yi) Pr(Y = yi) 

i=1 

si la loi de X conditionnellement à Y = y admet une 

densité 

L’analyse est basée sur la possibilité d’estimer la loi de probabilité conditionnelle Pr(X|Y ) à partir des données. Tandis que 

les arbres de classement aff ectent les objets dans les diff érentes classes en fonction de l’estimation non paramétrique de la loi 

de probabilité conditionnelle Pr(Y |X). 

A partir de la relation (I.1), on considère la famille des règles de classement indexée par t ∈ ]0, +∞[ et définie par 

 

 

La relation 

t   (x) = y si 
 Pr(Y = y|X = x) 

> t y
 

Pr(Y = y′|X = x) 
y′ (I.2) 

 

 
x Rx ⇔ 

 Pr(Y = y|X = x1) 
> t et 

 Pr(Y = y|X = x2) 
> t (x , x ) ∈  X × X

 

Pr(Y = y′|X = x1) Pr(Y = y′|X = x2) 
 

est une relation d’équivalence. Et donc Rt   (x) est constante sur la classe ẋ . Il en résulte que la règle 

 

Dans ce travail, nous abordons le problème de la classification supervisée lorsque la variable ré- ponse est binaire et que la 

distribution a priori de ses classes est déséquilibrée. On rencontre cette situation dans plusieurs domaines tels que la finance 

(identification de transactions de cartes de crédit frauduleuses ou demande de crédits défaillants), l’épidémiologie (diagnostic de 

cellules cancéreuses par la radiographie ou toute maladie rare), les sciences sociales (détection de comportement anormal), 

l’informatique (reconnaissance de la forme dans des données d’image ou catégorisation de textes), la bio-statistique 

(aff ectation d’un objet à sa famille d’appartenance). Ce problème n’est pas nouveau dans le domaine du data mining. Il a été 

rapporté plusieurs fois dans la littérature que la distribu- tion déséquilibrée des classes de la variable réponse aff aiblit 

lourdement le processus d’apprentissage, puisque le classifieur tend à se focaliser sur la classe prévalente en ignorant la classe 

rare. 

 

3 L’état de l’art 
 

Le problème de la classification supervisée dans une situation où l’événement d’intérêt est consi- déré comme un 

événement a priori rare n’est pas un problème nouveau dans le domaine du data mining. Dans un passé récent, plusieurs 

méthodes d’apprentissage d’un classifieur sur des données déséquilibrées ont été proposées dans la littérature [8]. La situation à 

ce jour semble fournir des mé- thodes multiples, chacune d’entre elles améliorant les méthodes existantes en ce qui concerne 

certains aspects, mais présentant des limites par rapport à d’autres aspects. Dans de nombreux cas, on ne sait pas clairement 

pourquoi une technique doit être préférée aux autres, et seules des raisons heuristiques 

R 

R 
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sont données pour justifier les propositions suggérées. 

 

 
3.1 Quelques méthodes de classement standard et leurs limites 

 
Dans une telle situation, le but de l’analyse est de produire un classifieur qui off rira une grande précision pour la classe 

minoritaire sans pour autant compromettre gravement l’exactitude de la classe majoritaire. Lorsqu’un algorithme d’apprentissage 

standard, paramétrique ou non-paramétrique, est appliqué aux données déséquilibrées, les règles d’induction qui décrivent la 

classe minoritaire sont souvent rares et plus faibles que celles de la classe majoritaire, puisque la classe minoritaire est souvent à la 

fois en infériorité numérique et sous-représentée. 

– La régression logistique, traditionnellement connue comme étant l’une des méthodes paramé- triques les plus usuelles 

pour une classification supervisée binaire, a pour objectif de modéliser le paramètre de la distribution de la variable 

réponse Y qui, pour une unité i donnée, prend la valeur 1 avec une probabilité π et 0 avec la probabilité 1 − π. Il est 

supposé que 

logit(π) = log 
 π 

= Xtβ 
1 − π 

où X est un vecteur de variables aléatoires et β un vecteur de paramètres. 

Le classement de nouvelles unités pourrait être obtenu par l’estimation de π par 
 

 
où β̂ est l’estimation du paramètre β. 

 
π = 

1 + eX
tβ̂  

On classe en Y = 1, les unités qui ont estimé π supérieur à un seuil (0.5 par défaut). Et lorsque nous sommes dans une 

situation où la probabilité de la classe d’intérêt (Y = 1) de la variable réponse tend vers zéro, alors le paramètre π 

est sous-estimé. 

La régression logistique est ineffi cace lorsqu’il s’agit de traiter des données déséquilibrées car la probabilité conditionnelle 

de la classe rare est sous-estimée [11]. 

 
– Le but de l’analyse discriminante linéaire consiste à chercher argmaxj∈ Dom(Y )f(x|y = j) Pr(Y = j), où f(x|y = j) est la densité 

d’une loi gaussienne de moyenne µj pour le groupe j et de matrice de covariance Σ = Σ1 = Σ0. Lorsque les paramètres de 

la distribution sont connus, la fonction de discrimination déduite de la règle de décision de Bayes est donnée par 

g (X) = −
 1 

(X − µ )tΣ−1(X − µ ) −
 1 

ln|Σ| − 
d 

ln2π + ln Pr(y = j) 

 

où d est la dimension de Dom(X). 

Pour estimer µj et Σj, on utilise habituellement la moyenne empirique µj et la matrice de 
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covariance de l’échantillon Σj. La matrice de covariance de l’échantillon est donnée par : 
 

nj 

Σ̂ 
j
 =

    1  
(X 

nj − 1 
i=1

 
− µ̂j )(Xji − µ̂j ) j = 0, 1 

 

où nj est le nombre d’observations de la classe y = j. 

En eff et Xie et Qiu ont montré dans [22] que l’ensemble d’apprentissage déséquilibré n’a pas d’eff ets sur la matrice de 

projection si les deux matrices de covariance de l’échantillon sont identiques. Mais si les deux matrices de covariance 

d’échantillonnage sont diff érentes, l’énorme déséquilibre dans la répartition des classes est très problématique pour 

l’analyse discriminante linéaire parce que la probabilité a priori de la classe majoritaire éclipse les diff érences dans les 

termes de la matrice de covariance d’échantillonnage. Toutefois, l’hypothèse de l’égalité des ma- trices de covariance 

d’échantillonnage est limitée à des cas particuliers dans des scénarios de la vie réelle. Par conséquent, nous devons 

considérer l’eff et de l’ensemble d’apprentissage déséqui- libré sur la performance de l’analyse discriminante linéaire dans 

la pratique. Et par conséquent on peut dire que la distribution a priori déséquilibrée de la variable Y nuit à la performance 

de l’analyse discriminante linéaire. 

 
– Le classifieur bayésien naïf donné par : 

 

d 

h(X) = argmaxy∈ {0,1} Pr(Y = y) Pr(Xi Y = y) 
i=1 

 

est fortement dominé par la classe y = 0 puisque l’estimation empirique de la probabilité Pr(y = 1) à partir de 

l’ensemble d’apprentissage Dn est très faible. Donc l’utilisation du clas- sifieur bayésien naïf n’est pas envigeasable 

puisqu’il produit une sous-estimation explicite de la probabilité conditionnelle Pr(Y = 1|X = x). 

– L’objectif des arbres de décision est de prédire la valeur d’une variable qualitative en fonction d’un ensemble de variables 

explicatives de nature quelconque. L’algorithme détermine la règle de classement en deux temps : (1) On commence par 

partitionner les données selon les moda- lités de l’attribut le plus discriminant, puis on répète l’opération localement sur 

chaque nœud ainsi obtenu jusqu’à la réalisation d’un critère d’arrêt. (2) On dérive la règle de classement en choisissant 

dans chaque nœud la modalité majoritaire de la variable à prédire, en général sim- plement la plus probable, dans chaque 

feuille (nœud terminal) de l’arbre. Le principal problème de cette procédure en présence de données déséquilibrées est 

que le partitionnement successif de l’espace des données résulte sur l’observation de moins en moins d’exemples de la 

classe rare occasionnant moins de feuilles décrivant la classe minoritaire et successivement des estimations plus faibles de 

la confiance. Ils fournissent ainsi une sous-estimation implicite de la probabilité 

ji 
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conditionnelle Pr(Y = 1|X = x) via la distribution des classes au niveau des feuilles terminales [4]. Les arbres de décision 

ne sont donc pas appropriés pour construire une règle de classement sur des données déséquilibrées. 

 
– Les réseaux de neurones ne sont pas non plus adaptables puisqu’ils produisent une estimation de la distribution a 

posteriori Pr(Y |X = x) qui est fortement dominée par la classe y = 0. 

 
Le principe de classement des diff érentes méthodes énumérées ci-dessus consiste à calculer un score prédictif pour chaque 

nouvelle observation puis comparer ce score avec un seuil t fixé a priori. Ce pendant les scores calculés à partir de données 

déséquilibrées sont très proches de zéro. Par conséquent ils dépassent rarement le seuil t fixé. 

 
 

3.2 Quelques solutions proposées pour la prise en charge des données déséquili- 

brées 

Plusieurs travaux ont été consacrés au problème de classement pour données déséquilibrées et même dans un passé récent, 

que ce soit du point de vue statistique conventionnelle en tant que telle ainsi que de l’apprentissage automatique. Certaines 

œuvres parmi eux envisageront l’amélioration de l’ajustement des modèles de régression pour produire une fonction de 

classification avec un faible biais de prédiction sans perdre des fonctionnalités intéressantes des méthodes classiques comme la 

capacité à évaluer la contribution de chaque variable dans les variations de la probabilité de la classe cible (méthodes de 

régression) ou de l’identification du motif de risque (arbre de décision). Dans l’en- semble, les méthodes visant à s’attaquer au 

problème de classification sur données dont la distribution de la variable réponse est déséquilibrée peuvent être divisées en deux 

grandes catégories : les mé- thodes préconisant un prétraitement des données et les méthodes intervenant au niveau du processus 

d’apprentissage. 

– Le prétraitement des données proposé par certaines méthodes pour traiter des données déséqui- librées consiste à simuler un 

ensemble d’apprentissage non déséquilibré conditionnellement aux données observées. Les techniques de simulation (ré-

échantillonnage) proposées dans la littéra- ture sont nombreuses et variées. On peut citer la méthode du sur-

échantillonnage avec rempla- cement qui consiste à dupliquer les observations de la classe rare et le sous-échantillonnage 

sans remplacement qui consiste à supprimer des observations de la classe dominante. La plupart des méthodes actuelles 

sont basées sur ces deux techniques d’échantillonnage. Elles permettent de réduire le degré de déséquilibre de 

l’échantillon d’apprentissage et par conséquent améliorer la précision globale du classifieur. Cependant le sous-

échantillonnage peut conduire à supprimer des données capitales pour la construction du classifieur. De même le sur-

échantillonnage augmente la vraisemblance du modèle ajusté puisqu’il crée des doublons dans l’échantillon d’apprentissage. 

Il faut noter aussi que le classifieur obtenu à partir de ces deux techniques est fortement dé- 
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pendant de l’ensemble d’apprentissage. Pour parer à cette éventualité, de nouvelles stratégies de sélection de nouvelles 

observations ont été proposées dans un passé récent. Pour plus de détails on peut consulter les travaux de Lee 

(1999,2000)[12, 13], les travaux de Chawal et al. (2002) qui ont proposé la méthode SMOTE (Synthetic Minority 

Oversampling Technique) ou bien les travaux de Menardi et al. (2012) qui ont proposé l’algorithme ROSE (Random 

Over-Sampling Exemples)[17]. 

– Les solutions préconisant un algorithme d’apprentissage sont nombreuses et variées. Parmi les plus  utilisées figure celle 

qui consiste à modifier le processus d’apprentissage en tenant compte des coûts de mauvais classements diff érents. Cette 

approche permet de donner plus de poids aux observations de la classe rare. Cette approche est utilisée lorsque la 

distribution déséquilibrée des classes est associée à des coûts de mauvais classement. Dans ce cas, une règle de classification 

minimisant le coût de mauvais classement moyen est établie. Certains classifieurs tels que les réseaux de neurones, les 

méthodes de régression, etc., produisent un score représentant le degrés d’appartenance d’une observation du domaine des 

covariables à une classe de la variable réponse. La règle de classement est définie par la spécification d’un seuil λ [6]. On 

peut faire varier le seuil λ de manière à ce que la règle de classification soit sensible par rapport à la classe faible- ment 

représentée. D’autres approches consistent à des techniques d’agrégation comme bagging, boosting ou forêts aléatoires 

(random forest), qui combinent plusieurs fonctions de classification avec un grand taux d’erreur individuel pour produire 

une nouvelle fonction de classification avec un plus petit taux d’erreur [2]. A ces dernières, on peut ajouter les méthodes 

consistant à as- socier le ré-échantillonnage de l’ensemble d’apprentissage avec la combinaison des classifieurs [9]. 

 
Ces diff érents processus d’apprentissage, bien qu’ils aient la faculté d’améliorer les performances des classifieurs en présence de 

la distribution déséquilibrée des classes de la variable réponse, ont le désa- vantage d’être lourds, et en plus le classifieur obtenu est 

sous forme d’une boîte noire. Il est diffi cile (impossible) d’identifier les profils qui ont contribué à la construction du 

classifieur. 

 

4 Classification supervisée et règles d’association 
 

Notre objectif est de proposer une méthode d’apprentissage statistique qui fournit un classifieur ef- ficace et permettant 

d’identifier les profils pertinents corrélés avec la classe cible de la variable réponse. Pour atteindre cet objectif, nous nous sommes 

tournés vers l’apprentissage des règles d’association qui est une méthode bien connue dans le domaine du data mining. Il est 

utilisé pour le traitement de grandes bases de données pour la découverte non supervisée de modèles locaux qui expriment des 

relations précieuses cachées et potentielles entre les variables d’entrée. En examinant les règles d’asso- ciation d’un point de vue de 

l’apprentissage statistique supervisé, un ensemble pertinent de classifieurs faibles est obtenu à partir duquel on tire une règle de 

classification qui fonctionne bien. Une telle ap- proche n’est pas réellement nouvelle puisqu’elle a déjà été prise en compte 

dans la littérature de 
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l’apprentissage automatique [14]. 

Des études récentes dans le domaine du data mining ont proposé une nouvelle approche de clas- sement appelé "classement 

associatif" qui a montré des taux d’erreur plus faibles que les algorithmes traditionnels tels que les arbres de décision. Cependant, 

parce que le nombre de règles d’association possibles en général est très grand, les algorithmes sont complexes et sujettes à un 

sur-ajustement. 

Lorsqu’il s’agit de traiter un problème de classification supervisée, on se focalise sur un sous-ensemble particulier de règles 

d’association communément appelé "Class Association Rules" (CAR). Quand on utilise les CARs pour classer un nouvel 

objet (i.e un objet ou individu qui n’a pas participé à la construction du sous-ensemble), il arrive que plus d’une règle soit 

éligible. C’est pour cette raison qu’une relation d’ordre est définie dans l’ensemble des CARs. Parmi les algorithmes de 

classement as- sociatif, l’algorithme CBA : ("Classification Based on Associations")[16], l’algorithme CMAR :("Clas- 

sification based on Multiple Association Rules")[15] et l’algorithme CPAR :("Classification base on Predictive 

Association Rules")[23] sont les plus utilisés dans la littérature. 

L’algorithme CBA génère premièrement un ensemble de règles d’association candidates à l’aide d’un seuil de support 

minimum et d’un seuil de confiance minimum. Ensuite il définit la relation d’ordre suivante sur l’ensemble des règles 

candidates. La règle ri précède la règle rj si 

– ri a une confiance plus élevée que celle de rj ; ou bien 

– si leurs confiances sont égales, ri a un support plus élevé que celui de rj ; ou bien 

– si leurs confiances et leurs supports sont égaux deux à deux, ri est généré avant rj. 

Pour prédire la classe d’un nouvel objet, la première règle vérifiée par l’objet est choisie pour la prédiction. 

L’algorithme CMAR est similaire à l’algorithme CBA par la méthode de générer l’ensemble des règles candidates mais aussi par 

la relation d’ordre établie sur ce dernier. Leur diff érence majeure se situe au niveau de la procédure d’élagage et le principe de 

classement d’un nouvel objet. Au niveau de la procédure d’élagage, l’algorithme CMAR utilise une structure d’arbre plus 

effi cace [7] et un test du chi2 (χ2) pour élaguer les règles redondantes et les informations bruyantes. Au niveau du principe de 

classement, CMAR sélectionne le sous-ensemble de règles vérifiées par le nouvel objet. 

– si toutes les règles du sous-ensemble ont la même classe, l’objet est aff ecté à cette classe. 

– sinon, on divise les règles en groupe selon la classe correspondante et on aff ecte l’objet à la classe la plus représentée [15]. 

L’algorithme CPAR combine les avantages du classement associatif et des algorithmes précédents. Au lieu de générer les règles 

de la même façon que les deux algorithmes précédents, CPAR adopte un algorithme plus général (FOIL) [18] pour générer des 

règles à partir des données d’apprentissage. En outre, CPAR génère et teste plus de règles que les algorithmes CBA et CMAR pour 

éviter de manquer des règles importantes. Pour éviter aussi le sur-ajustement, CPAR calcule la précision attendue appélée 

l’estimation d’erreur attendue de Laplace pour évaluer la précision de chaque règle [5]. La précision attendue est définie par 

LaplaceAccuracy = (nc + 1)/(ntot + k) 
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où k est le nombre des classes de la variable réponse, nc est le nombre d’observations dans la classe c 

prédite par la règle et ntot est le nombre total d’observations. 

L’algorithme CPAR utilise les k meilleures règles pour la prédiction de la classe d’une observation. 

 

La procédure que nous proposons dans cette thèse s’inspire des algorithmes précédemment cités. Nous adoptons la méthode 

utilisée dans les algorithmes CBA et CMAR pour générer les règles, mais aussi le test d’indépendance pour élaguer les règles qui 

ne sont pas corrélées avec la variable réponse. Nous avons utilisé la mesure de l’entropie pour discrétiser les variables numériques 

au lieu de l’utiliser dans la procédure de génération des règles telle qu’elle a été utilisée dans CPAR. 

La diff érence majeure entre la procédure que nous proposons et les algorithmes précédents se situe au niveau de la recherche de 

l’ensemble optimal des profils qui seront combinés pour construire un classifieur. L’idée principale de la procédure consiste à 

utiliser les outils de la statistique inférentielle pour sélectionner un ensemble réduit et optimal de profils. Dans la procédure, 

nous avons utilisé des mesures statistiques telles que la sensibilité et la spécificité pour réduire l’ensemble des profils candidats 

et ensuite nous avons utilisé la valeur prédictive positive pour sélectionner l’ensemble réduit et optimal de profils qui définiront 

un classifieur. 
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Chapitre II 
 

 

Apprentissage d’un classifieur binaire par règles 

d’association 

 

1 Introduction 

Dans le présent travail, nous proposons une approche consistant à déterminer les profils, expression d’interactions entre les 

covariables, corrélés avec la variable réponse pour construire une fonction de classement. Cette approche est en étroite liaison avec 

la notion de règles d’association. Des approches similaires ont été proposées dans la littérature du domaine de l’intelligence 

artificielle ces dernières années [6–8]. L’idée principale consiste à rechercher un ensemble optimal de profils à partir d’un 

ensemble de profils fréquents. La stratégie consiste à élaguer les profils redondants et les profils de faible performance en se 

basant essentiellement sur les mesures statistiques suivantes : la sensibilité, la spécificité et les valeurs prédictives. Le présent 

travail vise à insérer cette approche dans le cadre de la statistique traditionnelle et à montrer la pertinence de son application dans 

un problème réel. 

 
2 Profils et classement basé sur un profil 

On considère un couple de variables aléatoires (Y, X), où Y est une variable de Bernoulli et X = (Xj)j=1:p est une suite 

finie de p variables aléatoires où chaque Xj est une variable non numérique à qj  modalités mh(j), h(j) = 1 : qj ; j = 1 : p. 

 

2.1 Profil 

Déftnition 1. On appelle profil toute suite finie d’événements Xj = mh(j) 
j∈ J 

, où J ⊆ 1 : p et mh(j) 

est une modalité de la variable Xj. 

La longueur du profil 
.
Xj = mh(j)

Σ

j∈ J 
est égale à la taille (cardinal) de l’ensemble J ⊂ 1 : p. Pour 

simplifier les notations dans la suite, on écrit m
Xj  

pour désigner la modalité m de la variable X h(j) j 

et on note 
.

m
Xj 

Σ
 

 
 

j∈ J pour désigner le profils 
.
Xj = mh(j) 

Σ

j∈ J 
.
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Un profil peut être vu comme la réalisation conjointe de |J| variables (Xj)j∈ J . Plus la taille du profil est grande, plus le 

nombre de variables conjointement réalisées augmente. Dans le domaine de l’intelligence  artificielle et de l’apprentissage 

automatique, un profil est plus connu sous le nom d’item- 

set. Un profil de taille k est un k-itemset. Un profil 
.

m
Xj 

Σ
 

 
j∈ J 

peut être compris comme l’expression 

d’une interaction entre les diff érentes variables non numériques (Xj)j∈ J qui le définissent. La taille 

d’un profil est équivalente à la complexité d’une interaction dans un modèle paramétrique tel que la régression logistique. La 

gestion des interactions existant entre les covariables est l’un des avantages d’un profil par rapport aux modèles paramétriques. 

Un profil est pertinent lorsque sa probabilité d’occurrence est significative. 

Déftnition  2.  Soient 
.

mXl 

Σ
 

 
 
 
l∈ L 

et 
.

m
Xj 

Σ
 

 
 
 
j∈ J 

deux profils. On dit que 
.

m
Xj 

Σ
 

 
 
 
j∈ J 

 
est emboîté dans 

.
m

Xl 

Σ  
 

l∈ L 
si les conditions suivantes sont vérifiées. 

a) L ⊂  J 
b) ∀  l ∈  L, ∀ h ∈  {1 : ql} ∃  ! j ∈  J, ∃  ! k ∈  {1 : qj } tel que  mXl   = m

Xj
 

h k 

Ils sont disjoints si L ∩ J = ∅ . 
 

 

2.2 Classement associé à un profil et paramètres de performance 

On peut associer à tout profil U = 
.

m
Xj 

Σ
 

 
 

j∈ J 
une fonction indicatrice φ(·, U ) définie par : 

 

φ(X, U ) = 1l 
j∈ J 

X (X) 
Xj =mh 

 

Par définition φ(·, U ) est un classifieur binaire. φ(X, U ) = 1 si tous les événements [Xj  = m
Xj 

] sont conjointement réalisés. Dans le domaine 

de l’intelligence artificielle, on appelle couverture du profil 

U  = 
.

m
Xj 

Σ
 

 
j∈ J la probabilité Pr {φ(X, U ) = 1} et on appelle support du profil U  = 

.
m

Xj 
Σ

 
la 

j∈ J 

probabilité Pr {φ(X, U ) = 1, Y = 1}. 

 
Dans cette analyse, nous nous plaçons dans le cadre de la statistique pour aborder le problème. A chaque profil U , un seul 

classifieur φ(X, U ) lui est associé. Par la suite, on peut remarquer que la pertinence d’un profil est étroitement liée avec la 

performance du classifieur qui lui est associé. Ainsi on peut donc utiliser les indicateurs de performance des classifieurs 

associés pour sélectionner un ensemble réduit de profils pertinents dont on se servira pour construire une règle de classement 

effi cace. Cependant plusieurs indicateurs de performance ont été proposés dans la littérature pour évaluer les performances d’un 

classifieur donné. Parmi les plus utilisés figure l’erreur de classement. L’erreur de classement Err(U, Y ) d’un classifieur φ(X, U ) 

engendré par un profil U est définie par : 

 
Err(U, Y ) = Pr {φ(X, U ) ƒ= Y } = Pr {φ(X, U ) = 1, Y = 0} + Pr {φ(X, U ) = 0, Y = 1} 

h 
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On peut en déduire alors l’expression suivante : 

 
Err(U, Y ) = Pr {Y = 1} + Pr {φ(X, U ) = 1} − 2 Pr {Y = 1, φ(X, U ) = 1} 

On constate que l’erreur de classement est gouverné par le support Pr {Y = 1, φ(X, U ) = 1} du profil U . L’erreur de classement est 

une fonction décroissante du support du profil. Pour deux profils de même couverture, l’erreur de classement décroît avec le 

support des profils. Par conséquent, plus le support du profil est élevé meilleur est le profil. On s’intéressera alors aux profils 

pour lesquels les classifieurs associés réalisent des probabilités Pr(Y = 1, φ(X, U ) = 1) supérieurs à un seuil s0. 

 
Pour un classifieur binaire, on considère en particulier la sensibilité et la spécificité définie par 

 

 

Sensib(U, Y ) = 
Pr(φ(X, U ) = 1, Y = 1) 

Pr(Y = 1) 
 

 

Spécif(U, Y ) = 
Pr(φ(X, U ) = 0, Y = 0) 

Pr(Y = 0) 
 

On observe que la sensibilité croît avec la probabilité Pr(φ(X, U ) = 1, Y = 1). Deux autres pa- ramètres pourront aider à 

l’évaluation de la qualité du classifieur φ(X, U ) donc à la sélection du classifieur dans un ensemble de classifieurs : la valeur 

prédictive positive (VPP) et la valeur prédictive négative (VPN). 

V P P (U, Y ) = 

 

V P N (U, Y ) = 

 
On peut établir les relations suivantes : 

Pr(φ(X, U ) = 1, Y = 1) 
 

 

Pr(φ(X, U ) = 1) 

Pr(φ(X, U ) = 0, Y = 0) 
 

 

Pr(φ(X, U ) = 0) 

 

 

Sensib(U, Y ) = V P P (U, Y ) 
Pr(φ(X, U ) = 1) 

Pr(Y = 1) 
 

Spécif(U, Y ) = 1 − [1 − V P P (U, Y )] 
Pr(φ(X, U ) = 1) 1 − 

Pr(Y = 1) 

Pr(φ(X, U ) = 1) 
V P N (U, Y ) = [1 − V P P (U, Y )] 

Pr(φ(X, U ) = 0)
 

Pour deux profils U1 et U2 de même probabilité d’occurrence (couverture), la spécificité croît avec la valeur prédictive 

positive du classifieur. Il en résulte que parmi les profils U de même couverture Pr(φ(X, U ) = 1), on pourra s’intéresser à ceux 

pour lesquels les valeurs prédictives positives des clas- sifieurs associés sont au dessus d’un seuil c0 . 

 
La valeur prédictive positive d’un profil est communément appelée confiance dans le domaine de 
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l’intelligence artificielle et de l’apprentissage automatique. En plus de la valeur prédictive positive (VPP) et de la valeur 

prédictive négative (VPN), on peut aussi baser la sélection des profils sur les paramètres suivants : 

Le rapport de vraisemblance positif du profil U que nous notons par RV P () est défini par : 

 

RV P (U, Y ) =
 Pr(φ(X, U ) = 1|Y = 1) 

Pr(φ(X, U ) = 1|Y = 0) 
 

on a alors  

 

RV P (U, Y )  = 

 
Pr {Y = 0} Pr {φ(X, U ) = 1, Y = 1} 

Pr {Y = 1} Pr {φ(X, U ) = 1, Y = 0} 
 

= 
 V P P (U, Y ) Pr {Y = 0} 

1 − V P P (U, Y ) Pr {Y = 1} 

Le rapport de vraisemblance négatif du profil U que nous notons par RV N () est défini par : 

 

RV N = 
P r(φ(X, U ) = 0|Y = 1) 

Pr(φ(X, U ) = 0|Y = 0) 
 

on a alors  

 

RV N (U, Y ) = 

 
Pr {Y = 0} Pr {φ(X, U ) = 0} − Pr {φ(X, U ) = 0, Y = 0} 

Pr {Y = 1} Pr {φ(X, U ) = 0, Y = 0} 
 

= 
1 − V P N (U, Y ) Pr {Y = 0} 

V P N (U, Y ) Pr {Y = 1} 
 

 
On a aussi RV P (U, Y ) = 

 

Sensibilite(U, Y ) 
 

 

1 − Specificite(U, Y ) 

 
. Et donc RV P (U, V ) > 1 entraîne que le clas- 

sifieur φ(X, U ) a de meilleurs indicateurs de performance que le classifieur de même sensibilité qui 

consiste à classer positive au hasard toute nouvelle observation. C’est à dire sur une courbe ROC [2], la courbe du classifieur 

φ(X, U ) se situe au dessus de la première bissectrice. 

 
Le risque relatif du profil U que nous notons RR() est défini par : 

 

RR(U, Y ) =
 Pr(Y = 1|φ(X, U ) = 1) 

Pr(Y = 1|φ(X, U ) = 0) 
 

On peut établir que 
 

RR(U, Y ) = V P P (U, Y )
  1 − Pr {φ(X, U ) = 1} 

 
Pr {Y = 1} − Pr {Y = 1, φ(X, U ) = 1} 

Notons par tt1 le groupe d’objets vérifiant le profil U et tt0 le groupe d’objets ne vérifiant pas le profil 
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h 

2      

2 

 

 
U . Le risque relatif est une mesure statistique qui permet de comparer la probabilité d’occurrence 

de l’événement [Y  = 1] dans tt1  par rapport à tt0. Le profil  U  = 
.

mXl 

Σ
 

 
 

l∈ L 
est un profil à risque 

[4] pour Y si le risque relatif excède un seuil τ donné. La probabilité d’occurrence de l’événement 

[Y = 1] dans tt1 est τ fois plus importante que la probabilité d’occurrence de l’événement [Y = 1] dans tt0. Dans la suite, 

nous nous intéresserons alors aux profils U pour lesquels la probabilité d’oc- currence de [Y = 1] dans tt1 est τ fois plus 

importante que la probabilité d’occurrence de [Y = 1] dans tt0. Par défaut le paramètre τ est supérieur à un (τ > 1). Le sous-

ensemble de profils U pour lequel la probabilité conditionnelle Pr([Y = 1]|[φ(Xi, U ) = 1]) est plus élevée que la probabilité 

condi- tionnelle Pr([Y = 1]|[φ(Xi, U ) = 0]) constitue un ensemble potentiel pour construire un bon classifieur. 

Les critères conventionnels d’évaluation utilisés, tels que la précision globale ou le taux d’erreur, ne fournit pas 

suffi samment d’informations dans le cas de l’apprentissage déséquilibré. En eff et, des mesures d’évaluation plus performantes, 

telles que les courbes ROC (receiver operating characteristc), les courbes de précision-sensibilité et les courbes de coûts, sont 

nécessaires à l’évaluation concluante d’un classifieur en présence de données déséquilibrées. L’expression de l’ aire en dessous de 

la courbe ROC d’un classifieur généré par un profil U est donnée par : 

 

 
AU C(U, Y ) = 

 
1(Sensib(U, Y ) + Spécif(U, Y )) si Sensib(U, Y ) + Spécif(U, Y ) ≥ 1 

  
1 − 1 (Sensib(U, Y ) + Spécif(U, Y )) si Sensib(U, Y ) + Spécif(U, Y ) < 1 

 

L’aire sous la courbe ROC (AUC) est une mesure utile pour évaluer la performance d’un profil. La comparaison des AUC de 

diff érents profils peut établir une relation de domination entre les profils. On peut l’utiliser alors pour la sélection d’un sous 

ensemble optimal de profils. 

 
A partir de cette section, il apparaît clairement que les principaux paramètres d’apprentissage d’un classifieur basé sur un 

ensemble optimal de profils sont le support et la valeur prédictive positive. Ils permettent de gérer à la fois l’erreur de classement et 

la sensibilité du classifieur. Dans toute la suite, nous nous intéressons aux profils dont le support est supérieur à un seuil s0 et la 

valeur prédictive positive (confiance) est supérieure à c0. 
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Dans la littérature de la classification associative (classification supervisée basée sur les règles d’association), plusieurs 

mesures de performance ont été proposées pour l’extraction de règles d’asso- ciation [3]. Une étude comparative exhaustive de 

plusieurs mesures de performance a été menée dans [9]. La plupart des mesures de performance sont destinées à découvrir les 

profils les plus fréquents. Raison pour laquelle la majeur partie d’entre elles ne sont pas appropriées lorsqu’il s’agit de traiter un 

problème de classification supervisée sur des données déséquilibrées. Le support et la confiance restent les mesures de performance 

les plus utilisées dans les algorithmes d’extraction des règles d’association basés sur la sélection des profils fréquents. Dans ces 

algorithmes, généralement le support est utilisé pour trouver les profils fréquents suivant sa propriété d’anti-monotonicité [1, 4]. 

Quant à la confiance elle est utilisée pour générer les règles à partir des profils fréquents et à les filtrer à l’aide d’un seuil de 

confiance minimum. 

 
 

Selon ses propriétés, chaque mesure est utile pour certaines applications, mais pas pour d’autres [12]. Ces mesures peuvent 

produire des informations contradictoires sur l’intérêt et la pertinence d’un profil. Un exemple bien connu d’une telle mesure 

controversée est le support. D’une part, il est grandement utilisé à des fins de filtrage dans les algorithmes d’extraction [1, 10], 

puisque sa propriété d’anti-monotonicité simplifie le vaste ensemble de profils qui doit être exploré. D’autre part, il a 

presque tous les défauts qu’un utilisateur souhaite éviter par exemple la variabilité de la valeur sous l’hypothèse 

d’indépendance [11]. 

 
 

A notre connaissance, seuls la sensibilité connue sous le nom de support local, le risque relatif et l’odds ratio ont été 

utilisés pour la recherche d’un ensemble optimal de profil dans le cadre d’un problème de classification supervisée sur des 

données déséquilibrées par Li et al.[5]. En présence de données déséquilibrées, le support Pr{φ(X, U ) = 1, Y = 1} d’un profil U 

serait guère fréquent lorsque la classe d’intérêt {Y = 1} est rare. C’est pourquoi Li et al. ont définit le support local (sensibilité) 

Pr{φ(X, U ) = 1 | Y = 1} comme étant le support d’un profil dans le groupe d’observations vérifiant 

{Y = 1} puisque le support local vérifie la propriété d’anti-monotonicité du support. Ainsi un profil U est fréquent lorsque son 

support local est supérieure à un seuil minimum fixé. Leurs résultats ont montré que la sensibilité et le risque relatif sont des 

mesures statistiques pertinentes pour la sélection de profils optimaux lorsqu’on traite des données déséquilibrées. 

 

 

 
Les algorithmes d’extraction de règles d’association basés sur les profils fréquents produisent en général un vaste ensemble 

de règles d’association dont la majeur partie sont triviales et sans intérêts. Pour construire un classifieur performant à partir du 

vaste ensemble de règles d’association explorées, nous allons donc établir une stratégie d’élagage des profils redondants et une 

stratégie de réduction de l’ensemble des profils fréquents et non redondants. 
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h h 

h h 

h h 

=   V P P (U , Y )  + 
Pr(φ(X, U ) = 1) 

1 − 
Pr(φ(X, U ) = 1) 

 

 

2.3 Profils redondants et sélection de profils 

A l’instar des méthodes standards de classement, la procédure de sélection de profils que nous proposons s’intéressera en 

particulier aux profils qui sont corrélés avec la variable réponse. 

Proposition  1.  Soient  U  = 
.

mXl 

Σ
 

 

l∈ L 
et  U ′ = 

.
m

Xj 
Σ

 
 

j∈ J 
deux profils. Si U ′ est emboîté dans U 

alors : 

1. Pr {φ(X, U ) = 1, Y = 1} ≥ Pr {φ(X, U ′) = 1, Y = 1} 

2. Pr {φ(X, U ) = 0, Y = 0} ≤ Pr {φ(X, U ′) = 0, Y = 0} 

Preuve. Pour simplifier les expressions, on note φ(X, U ) par φU et φ(X, U ′) par φU ′ . 

Par hypothèse U ′ est emboité dans U donc on a 

 
{φU = 1} ⊃  {φU ′ = 1} et {φU = 0} ⊂  {φU ′ = 0} 

 

On en déduit que : 

 

{φU = 1} ⊃  {φU ′ = 1} ⇒  {φU = 1, Y = 1} ⊃  {φU ′ = 1, Y = 1} ⇒  Pr {φU = 1, Y = 1} ≥ Pr {φU ′ = 1, Y = 1} 

 
{φU = 0} ⊂  {φU ′ = 0} ⇒  {φU = 0, Y = 0} ⊂  {φU ′ = 0, Y = 0} ⇒  Pr {φU = 0, Y = 0} ≤ Pr {φU ′ = 0, Y = 0} 

 

Déftnition  3.  Soient  U = 
.

mXl 

Σ
 

 

 
l∈ L 

et  U ′ = 
.

m
Xj 

Σ
 

 

 
j∈ J 

 

deux profils tels que U ′ soit emboîté dans 

U . On dit que le profil U ′ est redondant par rapport à U , si le(s) indicateur(s) de performance de la fonction de classement φ(·, U 

) générée par le profil U est (sont) plus élevé(s) que le(s) indicateur(s) de performance de la fonction de classifieur φ(·, U ′) 

générée par le profil U ′. 

 

Proposition  2.  Soient  U  = 
.

mXl 

Σ
 

 

 
l∈ L 

et  U ′ = 
.

m
Xj 

Σ
 

 

 
j∈ J 

 
deux profils. Si U ′ est emboîté dans U 

alors la valeur prédictive positive du classifieur généré par le profil U est comprise entre 

. 
′ Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 

Σ
 

M in 

 
et 

V P P (U , Y ) , 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ′) = 1) 

 

M ax 

 

Preuve. On a 

.

V P P (U ′, Y ) , 
Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 

 
 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ′) = 1) 

 

 

V P P (U, Y ) = 
 

V P P (U, Y ) = 

Pr(Y = 1, φ(X, U ) = 1) 
 

 

Pr(φ(X, U ) = 1) 

Pr(Y = 1, φ(X, U ) = 1, φ(X, U ′) = 1) 

Pr(φ(X, U ) = 1) 

 

 

Pr(Y = 1, φ(X, U ) = 1, φ(X, U ′) = 0) 
+ 

Pr(φ(X, U ) = 1) 

Pr(Y = 1, φ(X, U ′) = 1) 
= 

Pr(φ(X, U ) = 1) 

Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ) = 1, φ(X, U ′) = 1) 
+ 

Pr(φ(X, U ) = 1) 

′ Pr(φ(X, U ′) = 1) 
 

Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 
Σ

 
 

 

 

Pr(φ(X, U ′) = 1) 
Σ

 
 

 

 

 Pr(φ(X, U ) = 1) − Pr(φ(X, U ′) = 1) 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ′) = 1) 

Σ 
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Pr(φ(X,U )=1)−Pr(φ(X,U ′)=1) 

h h 

Pr(φ(X, U ′) = 1) 
,
 

 
 
 

′ 

On obtient une combinaison convexe de V P P (U, Y ) et Pr(Y =1,φ(X,U)=1)−Pr(Y =1,φ(X,U )=1) par rapport à 
Pr(φ(X, U ′) = 1) 

 
 

Pr(φ(X, U ) = 1) 

 
. On 

en déduit que V P P (U, Y est comprise entre 

, 
Pr(Y = 1, φ(X, U ′) = 1) 

 
 

Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 
,

 
 

 
 

 
 

 
 

et 

Max 

 
Pr(Y = 1, φ(X, U ′) = 1) 

Pr(φ(X, U ′) = 1) 
,
 

 
Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 

 
 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ) = 1) 
 

 

 

En résumé de la proposition 2, on a 

1. Si V P P (Y, U ′) < 
Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 

 
 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ′) = 1) 
 

alors V P P (Y, U ′) < V P P (Y, U ). C’est à dire que U ′ est redondant par rapport à U . Par conséquent, on peut 

éliminer le plus long puisque sa sensibilité est plus faible et son erreur de classement est plus forte. Par contre 

 

 

2. Si V P P (Y, U ′) > 
Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 

 
 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ′) = 1) 
 

alors V P P (Y, U ′) > V P P (Y, U ). Il est préférable de garder le profil U ′ au profit du profil 

U , puisque les indicateurs de performance du profil U sont meilleurs que ceux du profil U . 

Proposition  3.  Soient  U = 
.

mXl 

Σ
 

 

 
l∈ L 

et  U ′ = 
.

m
Xj 

Σ
 

 

 
j∈ J 

 

deux profils tels que U ′ soit emboîté dans 

U. . Alors Pr {φ(X, U ) = 1} = Pr {φ(X, U ′) = 1} si et seulement si 1. Pr {φ(X, U ) = 

1, Y = 1} = Pr {φ(X, U ′) = 1, Y = 1} 

2. Pr {φ(X, U ) = 0, Y = 0} = Pr {φ(X, U ′) = 0, Y = 0} 

Preuve. Supposons que Pr {φU = 1} = Pr {φU ′ = 1}. On a 

 
Pr {φU = 1} = Pr {φU = 1, Y = 1} + Pr {φU = 1, Y = 0} Pr 

{φU ′ = 1} = Pr {φU ′ = 1, Y = 1} + Pr {φU ′ = 1, Y = 0} 

 

On obtient  
Pr {φU = 1, Y = 1} + Pr {φU = 1, Y = 0} = Pr {φU ′ = 1, Y = 1} + Pr {φU ′ = 1, Y = 0} (a) 

 

Puisque [φU ′ = 1] ⊂  [φU = 1] alors 

 

Pr {φU = 1, Y = 1} − Pr {φU ′ = 1, Y = 1} ≥ 0 (b) 

 
Pr {φU = 1, Y = 0} − Pr {φU ′ = 1, Y = 0} ≥ 0 (c) 

 

On peut déduire de (a), (b) et (c) les égalités suivantes : 

 

Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} (1) 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ) = 1) 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ) = 1) 

, , 

Min 
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h h 

 

 
Pr {φU ′ = 1, Y = 0} = Pr {φU = 1, Y = 0} (∗ ) 

 

Par ailleurs on a  

Pr {φU ′ = 1, Y  = 0} = Pr {Y  = 0} − Pr {φU ′ = 0, Y  = 0}  (∗ ∗ ) 

Pr {φU = 1, Y  = 0} = Pr {Y  = 0} − Pr {φU = 0, Y  = 0} (∗  ∗  ∗ ) 

En faisant la différence membre à membre des égalités (∗ ∗ ) et (∗  ∗  ∗ ) et en tenant compte de l’égalité (∗ ), on obtient 
 

Pr {φU ′ = 0, Y = 0} = Pr {φU = 0, Y = 0} (2) 

 

 

 
Supposons maintenant que les égalités suivantes soient vraies : 

 
Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} (1) 

Pr {φU ′ = 0, Y = 0} = Pr {φU = 0, Y = 0} (2) 

 

De l’égalité (2) on déduit 

 

Pr {Y = 0} − Pr {φU = 1, Y = 0} = Pr {Y = 0} − Pr {φU ′ = 1, Y = 0} 

 

On obtient alors les égalités suivantes  
Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} Pr 

{φU = 1, Y = 0} = Pr {φU ′ = 1, Y = 0} 

 
En faisant les sommes membres à membres des deux égalités on obtient : 

 

Pr {φU = 1, Y = 1} + Pr {φU = 1, Y = 0} = Pr {φU = 1} Pr 

{φU ′ = 1, Y = 1} + Pr {φU ′ = 1, Y = 0} = Pr {φU ′ = 1} 

D’où  
Pr {φU = 1} = Pr {φU ′ = 1} 

 
 

 
 

Lorsqu’on divise par Pr(Y = 1) les deux termes de l’égalité 1 de la proposition 3, on obtient que le profil U ′ est redondant 

par rapport au profil U selon la définition 3. Le même résultat est obtenu en divisant les deux termes de l’égalité 2 par 

Pr(Y = 0). 

 

Corollaire  1.  Soient  U = 
.

mXl 

Σ
 

 
 

l∈ L 
et  U ′ = 

.
m

Xj 
Σ

 

 
 

j∈ J 

 
deux profils tels que U ′ soit emboîté dans 

U . Les propositions suivantes sont équivalentes : 
 

1. 

Pr {φ(X, U ) = 1} = Pr 
.

φ(X, U ′) = 1
Σ
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2. 

  V P P (U, Y ) = V P P (U ′, Y ) 

  
Pr {φ(X, U ) = 1, Y  = 1} = Pr {φ(X, U ′) = 1, Y  = 1} 

3. 

  V P N (U, Y ) = V P N (U ′, Y ) 

  
Pr {φ(X, U ) = 0, Y  = 0} = Pr {φ(X, U ′) = 0, Y  = 0} 

4. 

  RV P (U, Y ) = RV P (U ′, Y ) 

  
Pr {φ(X, U ) = 1, Y  = 1} = Pr {φ(X, U ′) = 1, Y  = 1} 

5. 

  RV N (U, Y ) = RV N (U ′, Y ) 

  
Pr {φ(X, U ) = 1, Y  = 1} = Pr {φ(X, U ′) = 1, Y  = 1} 

6. 

  Err(U, Y ) = Err(U ′, Y ) 

  
Pr {φ(X, U ) = 1, Y  = 1} = Pr {φ(X, U ′) = 1, Y  = 1} 

7. 

  RR(U, Y ) = RR(U ′, Y ) 

  
Pr {φ(X, U ) = 1, Y  = 1} = Pr {φ(X, U ′) = 1, Y  = 1} 

 

 

Preuve. Pour simplifier les expressions, on note par φ(X, U ) par φU et φ(X, U ′) par φU ′ . 

 
1) Montrons que 1. est équivalent à 2. 

Supposons que 1. est vrai 

D’après la proposition 3, si Pr {φU = 1} = Pr {φU ′ = 1} alors 

 
Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} 
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Si on divise les termes respectives de cette dernière égalité par Pr {φU = 1} et Pr {φU ′ = 1} respectivement, on obtient 

 
Pr {φU = 1, Y = 1} 

=
 Pr {φU ′ = 1, Y = 1} 

Pr {φU = 1} Pr {φU ′ = 1} 
 

Réciproquement : supposons que 2. soit vrai 

Si 2. est vrai alors on a V P P (U, Y ) − V P P (U ′, Y ) = 0 

D’où 
 

 
 

On en déduit que 

Pr {φU = 1, Y = 1} [Pr {φU ′ = 1} − Pr {φU = 1}] 
= 0

 

Pr {φU = 1} Pr {φU ′ = 1} 

 

Pr {φU ′ = 1} − Pr {φU = 1} = 0 

 

 
2) Montrons que 1. est équivalent à 3. 

Supposons que 1. soit vrai 

On a Pr {φU = 1} = 1 − Pr {φU = 0} et Pr {φU ′ = 1} = 1 − Pr {φU ′ = 0} Donc 

 
Pr {φU = 1} = Pr {φU ′ = 1} ⇒  Pr {φU = 0} = Pr {φU ′ = 0} 

 
D’après la proposition 3, on a aussi Pr {φU = 1} = Pr {φU ′ = 1} entraîne que 

 
Pr {φU = 0, Y = 0} = Pr {φU ′ = 0, Y = 0} 

 
En divisant les termes respectives de l’égalité ci-dessus par Pr {φU = 0} et Pr {φU ′ = 0} respectivement, on obtient 

 
 Pr {φU  = 0, Y = 0} P r {φU = 0, Y  = 0} 

= 
Pr {φU = 0} Pr {φU ′ = 0} 

 

Réciproquement : supposons que 2. soit vrai 

Si 3.1 est vrai alors V P N (U, Y ) − V P N (U ′, Y ) = 0. On obtient donc 
 

P r {φU = 0, Y = 0} [Pr {φU ′ = 0} − Pr {φU = 0}] 
= 0 

Pr {φU 

= 0} Pr {φU ′ = 0} 
 

Il en résulte que 

 

Pr {φU ′ = 0}   =    Pr {φU = 0} 

1 − Pr {φU ′ = 1}   =   1 − Pr {φU = 1} 

 

d’où  
Pr {φU ′ = 1} = Pr {φU = 1} 

 

 
3) Montrons que 1. est équivalent à 4. 

On suppose que 1. est vrai 

Par définition on a 
Pr {Y = 0} Pr {φU = 1, Y = 1}  

RV P (U, Y ) = 
Pr {Y = 1} Pr {Y = 0} − Pr {φU = 0, Y = 0} 

 

Et d’après la proposition 3, on a Pr {φU = 1} = Pr {φU ′ = 1} entraîne que 

 
Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} et Pr {φU = 0, Y = 0} = Pr {φU ′ = 0, Y = 0} 
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Donc si on remplace Pr {φU = 1, Y = 1} par Pr {φU ′ = 1, Y = 1} et Pr {φU = 0, Y = 0} par Pr {φU ′ = 0, Y = 0} dans l’expression de RV 

P (U, Y ), on obtient 

 
 
 

D’où 

RV P (U, Y ) = 
P r {Y = 0} Pr {φU ′ = 1, Y = 1}  

Pr {Y = 1} Pr {Y = 0} − Pr {φU ′ = 0, Y = 0} 

 

RV P (U, Y ) = RV P (U ′, Y ) 
 

Réciproquement : supposons que 4. soit vrai 

Si 4. est vrai alors RV P (U, Y ) − RV P (U ′, Y ) = 0. Il en résulte que 

 
  Pr {φU = 1, Y = 1} 

−
  Pr {φU ′ = 1, Y = 1} 

= 0
 

Pr {Y = 0} − Pr {φU = 0, Y = 0} Pr {Y = 0} − Pr {φU ′ = 0, Y = 0} 
 

Puisque Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} on en déduit donc que Pr {φU = 0, Y = 0} = Pr {φU = 0, Y = 0}. D’après la 

proposition 3, on a donc 

Pr {φU = 1} = Pr {φU ′ = 1} 

 
4) Montrons que 1. est équivalent à 5. 

On suppose que 1. est vrai 

 

Par définition on a  
Pr {Y = 0} Pr {Y = 1} − Pr {φU = 1, Y = 1} 

RV N (U, Y ) = 
Pr {Y = 1} Pr {φU = 0, Y  = 0} 

Et d’après la proposition 3, on a Pr {φU = 1} = Pr {φU ′ = 1} entraîne que 

 
Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} et Pr {φU = 0, Y = 0} = Pr {φU ′ = 0, Y = 0} 

 
Donc si on remplace Pr {φU = 1, Y = 1} par Pr {φU ′ = 1, Y = 1} et Pr {φU = 0, Y = 0} par Pr {φU ′ = 0, Y = 0} dans l’expression de RV 

N (U, Y ), on obtient 

RV N (U, Y ) = 
P r {Y = 0} Pr {Y = 1} − Pr {φU ′ = 1, Y = 1} 

 
D’où 

Pr {Y = 1} Pr {φU ′ = 0, Y = 0} 

RV N (U, Y ) = RV N (U ′, Y ) 

 
Réciproquement : supposons que 5. soit vrai 

Si 5. est vrai alors RV N (U, Y ) − RV N (U ′, Y ) = 0. On peut en déduire que 
 

Pr {Y = 1} − Pr {φU = 1, Y = 1} 
−

 Pr {Y = 1} − Pr {φU ′ = 1, Y = 1} 
= 0

 

Pr {φU = 0, Y = 0} Pr {φU ′ = 0, Y = 0} 
 

Puisque Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1}, on obtient donc que Pr {φU = 0, Y = 0} = Pr {φU ′ = 0, Y = 0}. D’où 

 
Pr {φU = 1} = Pr {φU ′ = 1} 

 
d’après la proposition 3 

 

5) Montrons que 1. est équivalent à 6. 

On suppose que 1. est vrai 

On a 

Err(U, Y ) = Pr {Y = 1} + Pr {φU = 1} − 2 Pr {φU = 1, Y = 1} (1) 

 
Err(U ′, Y ) = Pr {Y = 1} + Pr {φU ′ = 1} − 2 Pr {φU ′ = 1, Y = 1} (2) 

Si Pr {φU = 1} = Pr {φU ′ = 1} alors Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} (proposition 3) 
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Il en résulte des égalités précédentes que  

Err(U, Y ) = Err(U ′, Y ) 

 
 

Réciproquement : supposons que 6. soit vrai 

Si on les différences membre à membres des égalités (1) et (2) ci-dessus, on obtient 
 

Pr {φU = 1} − Pr {φU ′ = 1} = Err(U, Y ) − Err(U ′, Y ) + 2(Pr {φU = 1, Y = 1} − Pr {φU ′ = 1, Y = 1}) 

 
donc si 6. est vrai alors Pr {φU = 1} − Pr {φU ′ = 1} = 0 

 
6) Montrons que 1. est équivalent à 7. 

On suppose que 1. est vrai 

On a 
 

Pr {φU = 1} = Pr {φU ′ = 1} ⇔ 1 − Pr {φU = 1} = 1 − Pr {φU ′ = 1} 

⇔ Pr {φU = 0} = Pr {φU ′ = 0} 

 

alors 
Pr {φU = 0} 

=
 Pr {φU ′ = 0} 

 

(1) 
Pr {φU = 1} Pr {φU ′ = 1} 

 
D’autre part, on a Pr {φU = 1} = Pr {φU ′ = 1} entraîne que (a) 

Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1} 

(b)  Pr {φU = 0, Y = 0} = Pr {φU ′ = 0, Y = 0} 

d’aprés la proposition 3. Puisque Pr {φU = 0} = Pr {φU ′ = 0} et Pr {φU = 0, Y = 0} = Pr {φU ′ = 0, Y = 0} alors 

 

 

Pr {φU = 0, Y = 1} = Pr {φU ′ = 0, Y = 1} 

 

On en déduit que 
 Pr {φU = 1, Y = 1} 

=
 Pr {φU ′ = 1, Y = 1} 

 
 

(2) 
Pr {φU = 0, Y = 1} Pr {φU ′ = 0, Y = 1} 

En faisant les produit membre à membre des égalités (1) et (2) on obtient 

 
Pr {φU = 0} Pr {φU = 1, Y = 1} 

= 
P r {φU ′ = 0} Pr {φU ′ = 1, Y = 1} 

 

Il en résulte que 

Pr {φU = 1} Pr {φU = 0, Y = 1} Pr {φU ′ = 1} Pr {φU ′ = 0, Y = 1} 

RR(U, Y ) = RR(U ′, Y ) 

 
Réciproquement : supposons que 7. soit vrai alors RR(U, Y ) − RR(U ′, Y ) = 0. Donc 

 

V P P (U, Y ) V P P (U ′, Y ) 

1 − V P N (U, Y ) 
− 

1 − V P N (U ′, Y ) 
= 0

 

 
d’où V P P (U, Y ) = V P P (U ′, Y ). 

On a donc V P P (U, Y ) = V P P (U ′, Y ) et Pr {φU = 1, Y = 1} = Pr {φU ′ = 1, Y = 1}. Il en résulte que 

 
Pr {φU = 1} = Pr {φU ′ = 1} 
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Proposition  4.  Soient  U = 
.

mXl 

Σ
 

 

 
l∈ L 

et  U ′ = 
.

m
Xj 

Σ
 

 

 
j∈ J 

 
deux profils tels que U ′ soit emboîté dans 

U . Si Pr {φ(X, U ) = 1, Y = 1} = Pr {φ(X, U ′) = 1, Y = 1} alors 

1. V P P (U, Y ) ≤ V P P (U ′, Y ) 

2. V P N (U, Y ) ≤ V P N (U ′, Y ) 

3. RV P (U, Y ) ≤ RV P (U ′, Y ) 

4. RV N (U, Y ) ≥ RV N (U ′, Y ) 

5. Err(U, Y ) ≥ Err(U ′, Y ) 

6. RR(U, Y ) ≤ RR(U ′, Y ) 

Preuve.  Pour simplifier les expressions, on note par φ(X, U ) par φU  et φ(X, U ′) par φU′ . 

1) Montrons que V P P (U, Y ) ≤ V P P (U ′, Y ) 

On a U ′ emboîté dans U entraîne que {φU  = 1} ⊃  {φU′   = 1}. Donc 

1 
 

 

Pr {φU = 1} 
≤ 

1 

Pr {φU′   = 1} 
 

Si l’égalité Pr {φU  = 1,Y  = 1} = Pr {φU′   = 1,Y  = 1} est vérifiée alors 

 
Pr {φU = 1,Y = 1} 

Pr {φU = 1} 
= 

Pr {φU′   = 1,Y  = 1} 

Pr {φU = 1} 

≤ 
 Pr {φU′   = 1,Y  = 1} 

Pr {φU′   = 1} 

 
 

 
(1) 

 

On obtient donc  
V P P (U, Y ) ≤ V P P (U ′, Y ) 

 

2) Montrons que V P N (U, Y ) ≤ V P N (U ′, Y ) 

On a U ′ emboîté dans U entraîne que {φU  = 1} ⊃  {φU′   = 1}. Donc 

1 
 

 

Pr {φU′   = 0} 
≤ 

1 

Pr {φU = 0} 
 

Par ailleurs si on a Pr {φU  = 1,Y  = 1} = Pr {φU′   = 1,Y  = 1} alors 

 
Pr {φU  = 0,Y  = 1} = Pr {φU′   = 0,Y  = 1} 

 

On en déduit que 

 

 

donc 

 

Pr {φU  = 0} − Pr {φU  = 0,Y  = 0} = Pr {φU′   = 0} − Pr {φU′   = 0,Y  = 0} 

 

1 − 
Pr {φU = 0,Y = 0} 

Pr {φU  = 0} 

Pr {φU = 0,Y = 0} 

Pr {φU = 0} 

≥   1 − 
Pr {φU′   = 0,Y  = 0} 

Pr {φU′   = 0} 

≤ 
Pr {φU′   = 0,Y  = 0} 

Pr {φU′   = 0} 

On obtient donc 
 

V P N (U, Y ) ≤ V P V (U ′, Y ) 
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3) Montrons que RV P (U, Y ) = RV P (U ′, Y ) 

Par définition on a 

RV P (U, Y )   = 
1 − Pr {Y = 1} 

Pr {Y = 1} 

Pr {φU = 1, Y = 1} 

Pr {Y = 0} − Pr {φU = 0, Y = 0} 
 

= 
1 − Pr {Y = 1} Pr {φU  = 1, Y = 1} 

Pr {Y = 1} 
 

= 
1 − Pr {Y = 1} 

Pr {Y = 1} 

Pr {φU = 1, Y = 0} 
 

Pr {φU = 1, Y = 1} 

Pr {φU = 1} − Pr {φU = 1, Y = 1} 

 
 
 

donc si Pr {φU  = 1, Y  = 1} = Pr {φU′   = 1, Y  = 1} et U ′ emboîté dans U alors 

 
Pr {φU  = 1} − Pr {φU  = 1, Y  = 1} ≥ Pr {φU′   = 1} − Pr {φU′   = 1, Y  = 1} 

 

donc 

RV P (U, Y ) ≤ 
 1 − Pr {Y  = 1} Pr {φU′   = 1, Y  = 1}  

 
d’où 

Pr {Y  = 1} Pr {φU′   = 1} − Pr {φU′   = 1, Y  = 1} 

RV P (U, Y ) ≤ RV P (U ′, Y ) 

 

 

4) Montrons que RV N (U, Y ) ≥ RV N (U ′, Y ) Par 

définition on a 

RV N (U, Y ) = 
1 − Pr {Y = 1} Pr {Y = 1} − Pr {φU = 1, Y = 1} 

Pr {Y = 1} Pr {φU = 0, Y = 0} 

par hypothèse Pr {φU  = 1, Y  = 1} = Pr {φU′   = 1, Y  = 1} on a alors 
 

RV N (U, Y ) =  
 1 − Pr {Y  = 1} Pr {Y  = 1} − Pr {φU′   = 1, Y  = 1} 

Pr {Y = 1} Pr {φU = 0, Y = 0} 

Par ailleurs U ′ emboîté dans U entraîne que Pr {φU  = 0, Y  = 0} ≤ Pr {φU′   = 0, Y  = 0}. On en déduit que 
 

RV N (U, Y ) ≥ 
 1 − Pr {Y  = 1} Pr {Y  = 1} − Pr {φU′   = 1, Y  = 1} 

Pr {Y  = 1} Pr {φU′   = 0, Y  = 0} 
 

d’où  
RV N (U, Y ) ≥ RV N (U ′, Y ) 

 

 

5) Montrons que Err(U, Y ) ≥ Err(U ′, Y ) Par 

définition on a 

Err(U, Y ) = Pr {Y = 1} + Pr {φU = 1} − 2 Pr {φU = 1, Y = 1} 
 

 
Err(U ′, Y ) = Pr {Y  = 1} + Pr {φU′   = 1} − 2 Pr {φU′   = 1, Y  = 1} 

 

 
Par hypothèse on a Pr {φU  = 1, Y  = 1} = Pr {φU′   = 1, Y  = 1} donc 

 
Err(U, Y ) − Err(U ′, Y ) = Pr {φU  = 1} − Pr {φU′   = 1} 
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et puisque U ′ est emboité dans U alors Pr {φU  = 1} ≥ Pr {φU′   = 1}. On obtient donc 

 
Err(U, Y ) ≥ Err(U ′, Y ) 

 
 

6) Montrons que RR(U, Y ) ≤ RR(U ′, Y ) 

On a 

Pr {φU = 0,Y = 1} = Pr {Y = 1} − Pr {φU = 1,Y = 1} 

Puisqu’on a Pr {φU  = 1,Y  = 1} = Pr {φU′   = 1,Y  = 1}, on obtient alors implique aussi 

 
Pr {φU  = 0,Y  = 1} = Pr {Y  = 1} − Pr {φU′   = 1,Y  = 1} 

 

D’où 

Pr {φU  = 0,Y  = 1} = Pr {φU′   = 0,Y  = 1} 

Puisque que U ′ est emboîté dans U , on en déduit que 

Pr {φU = 0,Y = 1} Pr 

{φU = 0} 

 

≥ 
Pr {φU′   = 0,Y  = 1} 

Pr {φU′   = 0} 

 
 

 
(2) 

Si on fait le rapport membre à membre des inégalités (1) et (2), il en résulte que 

 
RR(U, Y ) ≤ RR(U ′, Y ) 

 

 

Il découle de la proposition 4 que lorsque les fonctions de classification générées par deux profils emboîtés ont la même 

sensibilité et des spécificités diff érentes alors la fonction de classification gé- nérée par le profil le plus long a une erreur de 

classement plus faible, une valeur prédictive positive (confiance) plus élevée, un rapport de vraisemblance positif plus élevé, un 

rapport de vraisemblance négatif plus faible et un risque relatif plus élevé que celui de la fonction de classification générée par le 

profil le plus court. De plus U ′ emboîté dans U implique que la fonction de classification générée par U ′ a une spécificité plus élevée 

que celle de la fonction de classification générée par U . Par conséquent on préférera le profil le plus long puisque ses indicateurs de 

performance (sensibilité, spécificité et erreur de classement ) sont meilleurs. 

 

Proposition  5.  Soient  U = 
.

mXl 

Σ
 

 

 
l∈ L 

et  U ′ = 
.

m
Xj 

Σ
 

 

 
j∈ J 

 
deux profils tels que U ′ soit emboîté dans 

U . Si Pr {φ(X, U ) = 0, Y = 0} = Pr {φ(X, U ′) = 0, Y = 0} alors 

1. V P P (U, Y ) ≥ V P P (U ′, Y ) 

2. V P N (U, Y ) ≥ V P N (U ′, Y ) 

3. RV P (U, Y ) ≥ RV P (U ′, Y ) 

4. RV N (U, Y ) ≤ RV N (U ′, Y ) 

5. Err(U, Y ) ≤ Err(U ′, Y ) 

6. RR(U, Y ) ≥ RR(U ′, Y ) 
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Preuve. 1) Montrons que V P P (U, Y ) ≥ V P P (U ′, Y ) Par 

définition 
Pr {φU  = 1,Y = 1} 

= 
Pr {φU = 1,Y = 1} 

Pr {φU = 1} 

et 

Pr {φU = 1,Y = 1} + Pr {φU = 1,Y = 0} 

 Pr {φU′   = 1,Y  = 1} 
=  

  Pr {φU′   = 1,Y  = 1}  

Pr {φU′   = 1} Pr {φU′   = 1,Y  = 1} + Pr {φU′   = 1,Y  = 0} 
 

Comme Pr {φU  = 0,Y  = 0} = Pr {φU′   = 0,Y  = 0}, on sait que Pr {φU  = 1,Y  = 0} = Pr {φU′   = 1,Y  = 0} 

 

et en plus si a, b, c sont des réels positifs et a ≥ c on a a ≥ c . On peut déduire de ces deux conditions que 
a+b c+b 

Pr {φU  = 1,Y  = 1} 
≥ 

Pr {φU′   = 1,Y  = 1} 
 

(1) 

 
On obtient donc 

Pr {φU = 1} Pr {φU′   = 1} 

V P P (U, Y ) ≥ V P P (U ′, Y ) 

 
2) Montrons que V P N (U, Y ) ≥ V P N (U ′, Y ) Par 

définition 
Pr {φU  = 0,Y = 0} 

= 
Pr {φU = 0,Y = 0} 

Pr {φU = 0} 

et 

Pr {φU = 0,Y = 1} + Pr {φU = 0,Y = 0} 

 Pr {φU′   = 0,Y  = 0} 
=  

  Pr {φU′   = 0,Y  = 0}  

Pr {φU′   = 0} Pr {φU′   = 0,Y  = 1} + Pr {φU′   = 0,Y  = 0} 

Puisque U ′ est emboîté dans U alors Pr {φU′   = 0,Y  = 1} ≥ Pr {φU  = 0,Y  = 1}. 

d’où 
Pr {φU  = 0,Y  = 0} 

≥ 
Pr {φU′   = 0,Y  = 0} 

Pr {φU = 0} 

puisque Pr {φU′   = 0,Y  = 0} = Pr {φU  = 0,Y  = 0} donc 

Pr {φU′   = 0} 

 

V P N (U, Y ) ≥ V P N (U ′, Y ) 

 

3) Montrons que RV P (U, Y ) ≥ RV P (U ′, Y ) Par 

définition on a 

RV P (U, Y ) = 
1 − Pr {Y = 1} 

Pr {Y = 1} 
et 

Pr {φU = 1, Y = 1} 

Pr {Y = 0} − Pr {φU = 0, Y = 0} 

RV P (U 
′
, Y ) =  

 1 − Pr {Y  = 1} Pr {φU′   = 1, Y  = 1}  

Pr {Y  = 1} Pr {Y  = 0} − Pr {φU′   = 0, Y  = 0} 

par hypothèse on Pr {φU  = 0, Y  = 0} = Pr {φU′   = 0, Y  = 0} donc le signe de RV P (U, Y ) − RV P (U ′ , Y ) dépend du signe Pr {φU1 

= 1, Y  = 1} − Pr {φU′   = 1, Y  = 1} 

or on a le profil U ′ emboîte dans le profil U . Ceci entraîne que 

 
Pr {φU1 = 1, Y  = 1} − Pr {φU′   = 1, Y  = 1} ≥ 0 

 

d’où  
RV P (U, Y ) ≥ RV P (U ′, Y ) 

 

4) Montrons que RV N (U, Y ) ≤ RV N (U ′, Y ) Par 

définition 

RV N (U, Y ) = 
1 − Pr {Y = 1} Pr {Y = 1} − Pr {φU = 1, Y = 1} 

Pr {Y = 1} Pr {φU = 0, Y = 0} 
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et 

RV N (U 
′
, Y ) =  

1   − Pr {Y  = 1} Pr {Y  = 1} − Pr {φU′   = 1, Y  = 1} 

Pr {Y  = 1} Pr {φU′   = 0, Y  = 0} 

par  hypothèse  on  Pr {φU  = 0, Y  = 0} =  Pr {φU′   = 0, Y  = 0} donc  le  signe  de  RV N (U, Y ) − RV N (U ′ , Y )  dépend  du signe Pr 

{φU′   = 1, Y  = 1} − Pr {φU  = 1, Y  = 1} 

or on a le profil U ′ emboîte dans le profil U . Ceci entraîne que 

 
Pr {φU′   = 1, Y  = 1} − Pr {φU  = 1, Y  = 1} ≤ 0 

 

d’où 

RV N (U, Y ) ≤ RV P (U, Y ) 

 

5) Montrons que Err(U, Y ) ≤ Err(U ′, Y ) On 

a 

Pr {φU  = 0, Y = 0} = 1 − Pr {Y = 1} − Pr {φU  = 1} + Pr {φU  = 1, Y = 1} 

Pr {φU  = 1, Y = 1} = Pr {φU  = 0, Y = 0} + Pr {φU  = 1} + Pr {Y = 1} − 1 

si on remplace Pr {φU = 1, Y = 1} par son expression dans Err(U, Y ), on obtient 
 

Err(U, Y ) = −2 Pr {φU = 0, Y = 0} − Pr {φU = 1} − Pr {Y = 1} − 2 

de même on a 
 

Err(U ′, Y ) = −2 Pr {φU′   = 0, Y  = 0} − Pr {φU′   = 1} − Pr {Y  = 1} − 2 

et puisque on a par hypothèse que Pr {φU  = 0, Y  = 0} = Pr {φU′   = 0, Y  = 0} alors 

 
Err(U, Y ) − Err(U ′, Y ) = − Pr {φU  = 1} + Pr {φU′   = 1} 

 
par ailleurs − Pr {φU  = 1} + Pr {φU′   = 1} ≤ 0 puisque U ′ est emboité dans U . d’où 

 
Err(U, Y ) − Err(U ′, Y ) ≤ 0 

 
 

6) Montrons que RR(U, Y ) ≥ RR(U ′, Y ) 

On a 
Pr {φU = 0,Y = 1} 

= 
Pr {φU = 0} − Pr {φU = 0,Y = 0} 

Pr {φU = 0} 

et 

Pr {φU = 0} 

 Pr {φU′   = 0,Y  = 1} 
=  

 Pr {φU′   = 0} − Pr {φU′   = 0,Y  = 0} 

Pr {φU′   = 0} Pr {φU′   = 0} 

 
en tenant compte que   Pr {φU  = 0,Y  = 0} = Pr {φU′   = 0,Y  = 0} et Pr {φU  = 0} ≤ Pr {φU′   = 0}, on a 

 
Pr {φU  = 0,Y  = 0} 

≥ 
Pr {φU′   = 0,Y  = 0} 

Pr {φU  = 0} Pr {φU′   = 0} 
 

et il s’en suit que  
Pr {φU  = 0,Y  = 1} 

≤ 
Pr {φU′   = 0,Y  = 1} 

 
d’où 

Pr {φU = 0} 

 
Pr {φU = 0} 

 

Pr {φU = 0,Y = 1} 

Pr {φU′   = 0} 

 

≥ 
Pr {φU′   = 0} 

Pr {φU′   = 0,Y  = 1} 

 

 
(2) 

en faisant le produit membre à membre des inégalités (1) et (2) on obtient que RR (U ′, Y ) ≤ RR (U, Y ) 
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Il résulte de la proposition 5 que si on a deux profils U et U ′ emboîtés tels que les fonctions de classification qui leurs sont 

associées ont des spécificités égales alors non seulement la sensibilité de la fonction de classification générée par U est plus élevée à 

cause de l’emboîtement mais aussi son erreur de classement est plus faible, sa valeur prédictive positive (confiance) est plus 

forte, son rapport de vraisemblance positif est plus élevé, son rapport de vraisemblance négatif est plus faible et son risque relatif 

est plus élevé que ceux de la fonction de classification générée par U ′. On peut élaguer le profil U ′ qui est de plus grande taille. 

Cette proposition a été utilisée par Jiuyong Li et al [4] en premier en se basant sur la propriété anti-monotone du support. 

 

 
 

3 Règles d’association binaires et classifieur associé à un profil 

3.1 Règle d’association 

Déftnition  4.  Considérons  U  =  
.

mXl 

Σ
 

 

 
l∈ L 

et  U ′  =  
.

m
Xj 

Σ
 

 

 
j∈ J 

 

deux profils disjoints. Une règle 

 

 
Pr 

k∈ L∪ J 

1l 
.
Xk = mXk 

Σ 
= 1 

 

et Pr 

 
1l Xj 

j∈ J 

= m
Xj 

Σ 
= 1    | 

 
1l Xl 

l∈ L 

= mXl 
Σ 

= 1 

 

sont significatives 

(supérieurs aux seuil s0 et c0 respectivement). On appelle U l’antécédent de la règle et U ′ la conséquence de la règle. 

Une règle d’association U → U ′ exprime le fait que non seulement il y a une forte probabilité que les événements  
Y 

1l 
.
Xj = 

m
Xj 

Σ 
= 1  et 

Y 
1l 
.
Xl = mXl 

Σ 
= 1  aient lieu simultanément mais aussi 

que l’événement 

 
Y 

1l 
.
Xj = m

Xj 
Σ 

= 1

 

ait une forte probabilité d’occurrence conditionnellement à 
j∈ J 

l’événement 
Y 

1l 
.
Xl = mXl 

Σ 
= 1 . 

l∈ L 

Déftnition  5.  Considérons une règle d’association U → U ′ où  U = 
.

mXl 

Σ
 

 
 

 
l∈ L 

et  U = 
.

m
Xj 

Σ
 

 
 

 
j∈ J 

 

. La 

 
probabilité Pr 

k∈ L∪ J 

1l 
.
Xk = mXk 

Σ 
= 1

ΣΣ 

est appelé le support de la règle d’association et la probabilité 

conditionnelle Pr 

.Σ
Y 

1l 

.
X 

 

 

= m
Xj 

Σ 
= 1

Σ 

| 

Σ
Y 

1l 
.
X 

 

 

= mXl 
Σ 

= 1

ΣΣ 

est sa confiance. 

 

  

Il apparaît que le classifieur associé à un profil est une implication de la forme [φ(X, U ) = 1] → [Y = 1] dès lors qu’on 

exige que Pr(φ(X, U ) = 1, Y = 1) > s0 et Pr(Y = 1|φ(X, U ) = 1) > c0. Une telle règle d’association est dite binaire. 

l∈ L j∈ J 

l∈ L j∈ J 

j∈ J l∈ L 

j 

l 
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Σ 

 

 

3.2 Classifieur basé sur un ensemble de profils 

Dans un apprentissage statistique par règles d’association binaires, l’apprentissage automatique se résume en deux étapes. La 

première consiste à générer l’ensemble des profils Uλ défini par : 

Uλ = 

.

U = 
.

m
Xj 

Σ
 

 
 

j∈ J 
; Pr(Y = 1, φ(X, U ) = 1) > s0, Pr(Y = 1|φ(X, U ) = 1) > c0

Σ

 

 

où λ = (s0, c0) est le paramètre qui spécifie l’ensemble Uλ. 

Le paramètre c0 représente le seuil de confiance minimum et le paramètre s0 représente le seuil de support minimum. Dans la 

pratique, on pourra étendre le paramètre λ en ajoutant le paramètre r0 représentant le seuil de risque relatif minimum et le 

paramètre l0 représentant la longueur ou taille maximale d’un profil. 

La deuxième étape consiste à implémenter l’ensemble des fonctions indicatrices ttλ défini par : 

 
ttλ = { φ(X, U ); U ∈  Uλ } 

Lorsque la probabilité de la classe d’intérêt tend vers zero, la sensibilité du classifieur associé à un profil U (i.e., φ(X, U )) peut 

être faible. En considérant un ensemble de profils, on peut espérer aboutir à un classifieur avec une meilleure sensibilité sans trop 

détériorer le niveau de spécificité. Etant donné un ensemble de profils ttλ pour un λ fixé, la fonction 

φ(X, λ, k) = 1l  
U ∈ Uλ 

φ(X, U ) > k  k ∈  {1, · · · , |Uλ|} 

 

définit également un classifieur. 

 
 

4 Conclusion 

L’objectif de cette analyse est de défendre une méthodologie permettant de mettre en place une fonction de classement 

binaire lorsqu’il s’agit d’une tâche de classification supervisée où la classe cible est un événement rare. Cet objectif est atteint par le 

recours à des règles d’association pour explorer les données afin d’identifier les profils qui sont corrélés avec la classe cible. 

Des profils pertinents sont sélectionnés sur la base de leurs sensibilités et spécificités, de leurs valeurs prédictives positives ou 

négatives, de leurs rapports de vraisemblance positifs ou négatifs et de leurs risques relatifs pour constituer un ensemble 

optimal de profils. 

Dans la suite, nous allons mettre en place un algorithme d’apprentissage statistique pour établir une règle de classement 

(classifieur) basé sur un ensemble optimal de profils lorsque : (1) nous disposons d’un ensemble d’observations indépendantes et 

identiquement distribuées ; (2) les observations ne sont pas indépendantes et identiquement distribuées. 
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Annexe A 
 

 

Annexe Chapitre II 

 
 

A Preuve de la proposition 1 

 
Preuve. Par hypothèse U ′ est emboité dans U donc on a : 

 
Pr {φU  = 1} ≥ Pr {φU ′  = 1} et Pr {φU  = 0} ≤ Pr {φU ′  = 0} De ces 

deux inégalités, on déduit que : 

Pr {φU  = 1} ≥ Pr {φU ′  = 1} ⇒  Pr {φU  = 1, Y  = 1} ≥ Pr {φU ′  = 1, Y  = 1} 

 

Pr {φU  = 0} ≤ Pr {φU ′  = 0} ⇒  Pr {φU  = 0, Y  = 0} ≤ Pr {φU ′  = 0, Y  = 0} 
 

 
 

B Preuve de la proposition 3 

 
Preuve. Supposons que Pr {φU  = 1} = Pr {φU ′  = 1}. On a 

 
Pr {φU = 1} = Pr {φU = 1, Y = 1} + Pr {φU = 1, Y = 0} Pr {φU ′  = 1} = Pr 

{φU ′  = 1, Y  = 1} + Pr {φU ′  = 1, Y  = 0} 

On obtient 

 
Pr {φU  = 1, Y  = 1} + Pr {φU  = 1, Y  = 0} = Pr {φU ′  = 1, Y  = 1} + Pr {φU ′  = 1, Y  = 0} Pr {φU  = 1, Y  = 1} − Pr 

{φU ′  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 0} − Pr {φU  = 1, Y  = 0} 
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C Preuve du Corollaire 1 
 

 

{ } {  }U  
    U  

 

 

Puisque [φU ′  = 1] ⊂  [φU  = 1] alors 

Pr {φU  = 1, Y  = 1} − Pr {φU ′  = 1, Y  = 1} ≥ 0 (a) 

Pr {φU  = 1, Y  = 0} − Pr {φU ′  = 1, Y  = 0} ≥ 0 (b) 

On peut déduire de (a) et (b) les égalités suivantes : 

 
Pr {φU  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 1} 

Pr {φU ′  = 1, Y  = 0} = Pr {φU  = 1, Y  = 0} ⇔ Pr {φU ′  = 0, Y  = 0} = Pr {φU  = 0, Y  = 0} 

 
Supposons maintenant que les égalités suivantes soient vraies : 

 

Pr {φU  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 1} Pr {φU ′  = 0, 

Y  = 0} = Pr {φU  = 0, Y  = 0} 

Puisque Pr {φU ′  = 0, Y  = 0} = Pr {φU  = 0, Y  = 0} ⇔ Pr {φU  = 1, Y  = 0} = Pr {φU ′  = 1, Y  = 0}, 

on a alors les égalités suivantes 

 
Pr {φU  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 1} Pr {φU  = 1, 

Y  = 0} = Pr {φU ′  = 1, Y  = 0} 

En faisant les sommes membres à membres des deux égalités on obtient : 

 
 

 

 

 

D’où 

Pr {φU = 1, Y = 1} + Pr {φU = 1, Y = 0} = Pr {φU = 1} Pr {φU ′  = 1, Y  = 1} 

+ Pr {φU ′  = 1, Y  = 0} = Pr {φU ′  = 1} 

Pr {φU  = 1} = Pr {φU ′  = 1} 

 
 

 

C Preuve du Corollaire 1 

Preuve. 1) Montrons que V P P (U, Y ) = V P P (U ′, Y ) Par 

définition on a : 

Pr {φU = 1} = Pr {φU 
 Pr φ = 1, Y = 1 P r φ = 1, Y = 1 

′  = 1}  ⇒  = 
Pr {φU  = 1} Pr {φU ′  = 1} 
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Et d’après la proposition 2 on a 

 
Pr {φU  = 1} = Pr {φU ′  = 1} ⇒  Pr {φU  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 1} 

 

Donc on a 

 
Pr {φU  = 1} = Pr {φU ′  = 1}   ⇒  

 
 Pr {φU = 1, Y = 1} 

Pr {φU = 1} 

 
= 

 Pr {φU ′  = 1, Y  = 1} 

Pr {φU ′  = 1} 
 
 
 

2) Montrons que V P N (U, Y ) = V P N (U ′, Y ) 

On a Pr {φU  = 1} = 1 − Pr {φU  = 0} et Pr {φU ′  = 1} = 1 − Pr {φU ′  = 0} Donc 

Pr {φU  = 1} = Pr {φU ′  = 1}   ⇒    Pr {φU  = 0} = Pr {φU ′  = 0} 

⇒ 
P r {φU = 0, Y = 0} 

=
 Pr {φU = 0, Y = 0} 

 
 

Et d’après la proposition 2 on a 

Pr {φU = 0} Pr {φU ′  = 0} 

 

Pr {φU  = 1} = Pr {φU ′  = 1} ⇒  Pr {φU  = 0, Y  = 0} = Pr {φU ′  = 0, Y  = 0} 

 

On en déduit que 

 
Pr {φU  = 1} = Pr {φU ′  = 1}   ⇒  

 
P r {φU = 0, Y = 0} Pr 

{φU = 0} 

 
= 

 Pr {φU ′  = 0, Y  = 0} 

Pr {φU ′  = 0} 

 

 

3) Montrons que RV P (U, Y ) = RV P (U ′, Y ) Par 

définition on a 

1  
RV P (U, Y ) = 

− Pr {Y = 1} Pr {φU = 1, Y = 1}  

 
 

Et d’après la proposition 2 on a 

Pr {Y = 1} Pr {Y = 0} − Pr {φU = 0, Y = 0} 

 

RV P (U, Y ) = 
 1 − Pr {Y  = 1} Pr {φU ′  = 1, Y  = 1}  

 
 

D’où 

Pr {Y  = 1} Pr {Y  = 0} − Pr {φU ′  = 0, Y  = 0} 

RV P (U, Y ) = RV P (U ′, Y ) 

 

 
4) Montrons que RV N (U, Y ) = RV N (U ′, Y ) 
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′ 

 

 

Par définition on a 

1  
RV N (U, Y ) = 

 
− Pr {Y = 1} Pr {Y = 1} − Pr {φU = 1, Y = 1} 

 
 

Et d’après la proposition 2, on a 

Pr {Y = 1} Pr {φU = 0, Y = 0} 

 

RV N (U, Y ) = 
 1 − Pr {Y  = 1} Pr {Y  = 1} − Pr {φU ′  = 1, Y  = 1} 

 
 

D’où 

Pr {Y = 1} Pr {φU ′  = 0, Y  = 0} 

RV N (U, Y ) = RV N (U ′, Y ) 

 

5) Montrons que Err(U, Y ) = Err(U ′, Y ) Par 

définition on a 

 

Err(U, Y ) = Pr {Y = 1} + Pr {φU = 1} − 2 Pr {φU = 1, Y = 1} 

 

Err(U , Y ) = Pr {Y  = 1} + Pr {φU ′  = 1} − 2 Pr {φU ′  = 1, Y  = 1} 

 
Si Pr {φU  = 1} = Pr {φU ′  = 1} alors Pr {φU  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 1} (proposition 2) Il 

en résulte des égalités précédentes que 

Err(U, Y ) = Err(U ′, Y ) 

 

 
 

6) Montrons que RR(U, Y ) = RR(U ′, Y ) On a 

par hypothèse 

 

Pr {φU  = 1} = Pr {φU ′  = 1}   ⇔   1 − Pr {φU  = 1} = 1 − Pr {φU ′  = 1} 

⇔   Pr {φU  = 0} = Pr {φU ′  = 0} 

 

alors 
 Pr {φU  = 0} 

= 
P   r {φU ′  = 0} 

 

(1) 
Pr {φU  = 1} Pr {φU ′  = 1} 

 

D’aprés la proposition 1, si on a Pr {φU  = 1} = Pr {φU ′  = 1} alors (a)  Pr {φU  = 1, Y  = 

1} = Pr {φU ′  = 1, Y  = 1} 

(b)  Pr {φU  = 0, Y  = 0} = Pr {φU ′  = 0, Y  = 0} 
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Puisque Pr {φU  = 0} = Pr {φU ′  = 0} alors 

Pr {φU  = 0, Y  = 0} = Pr {φU ′  = 0, Y  = 0}   ⇔   Pr {φU  = 0, Y  = 1} = Pr {φU ′  = 0, Y  = 1} 

 

On en déduit que  
P   r {φU  = 1, Y  = 1} 

= 
P   r {φU ′  = 1, Y  = 1} 

 
 

(2) 
Pr {φU  = 0, Y  = 1} Pr {φU ′  = 0, Y  = 1} 

 

 

En faisant le produit les produit membre à membre des égalités (1) et (2) on obtient 

 
 Pr {φU  = 0} Pr {φU  = 1, Y  = 1} 

= 
P   r {φU ′  = 0} Pr {φU ′  = 1, Y  = 1} 

Pr {φU  = 1} Pr {φU  = 0, Y  = 1} Pr {φU ′  = 1} Pr {φU ′  = 0, Y  = 1} 
 
 

Il en résulte que 
 
 

RR(U, Y ) = RR(U ′, Y ) 
 

 
 

 

 

 

D Preuve de la proposition 4 

Preuve. 1) Montrons que V P P (U, Y ) ≤ V P P (U ′, Y ) Par 

hypothèse on a : 
1 1 

Pr {φU  = 1} 
≤ 

Pr {φU ′  = 1} 

Si l’égalité Pr {φU  = 1,Y  = 1} = Pr {φU ′  = 1,Y  = 1} est vérifiée alors 
 
 

P r {φU = 1,Y = 1} Pr 

{φU = 1} 
= 

 Pr {φU ′  = 1,Y  = 1} 

Pr {φU = 1} 

 
 

 
On obtient donc 

P   r {φU ′  = 1,Y  = 1} 

Pr {φU ′  = 1} 
(1) 

V P P (U, Y ) ≤ V P P (U ′, Y ) 

 
2) Montrons que V P N (U, Y ) ≤ V P N (U ′, Y ) Par 

hypothèse on a : 
1 1 

Pr {φU ′  = 0} 
≤ 

Pr {φU  = 0} 

≤ 
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D Preuve de la proposition 4 
 

 

− ≥ − 

 

 

par ailleurs on a 

 
Pr {φU  = 1,Y  = 1} = Pr {φU ′  = 1,Y  = 1} ⇒  Pr {φU  = 0,Y  = 1} = Pr {φU ′  = 0,Y  = 1} 

 
 

 
 

donc 

⇒  Pr {φU  = 0} − Pr {φU  = 0,Y  = 0} = Pr {φU ′  = 0} − Pr {φU ′  = 0,Y  = 0} 

 
 

 
 
 
 
 
 

On obtient donc 

1 
 Pr {φU = 0,Y = 0} 

Pr {φU = 0} 

Pr {φU = 0,Y = 0} Pr 

{φU = 0} 

1 
P   r {φU ′  = 0,Y  = 0} 

Pr {φU ′  = 0} 

 Pr {φU ′  = 0,Y  = 0} 

Pr {φU ′  = 0} 

V P N (U, Y ) ≤ V P V (U ′, Y ) 

 
3) Montrons que RV P (U, Y ) = RV P (U ′, Y ) Par 

définition on a 

 
RV P (U, Y ) = 1− Pr {Y = 1} Pr {φU = 1, Y = 1}  

Pr {Y = 1} Pr {Y = 0} − Pr {φU = 0, Y = 0} 
 

= 
 1 − Pr {Y = 1} Pr {φU = 1, Y = 1} 

Pr {Y = 1} Pr {φU = 1, Y = 0} 
 

= 
 1 − Pr {Y = 1} Pr {φU = 1, Y = 1}  

Pr {Y = 1} Pr {φU = 1} − Pr {φU = 1, Y = 1} 
 
 
 

donc si Pr {φU  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 1} et U ′ emboîté dans U alors 

Pr {φU  = 1} − Pr {φU  = 1, Y  = 1} ≥ Pr {φU ′  = 1} − Pr {φU ′  = 1, Y  = 1} 

 

donc  
1  

RV P (U, Y ) ≤ 
− Pr {Y  = 1} Pr {φU ′  = 1, Y  = 1}  

 
d’où 

Pr {Y  = 1} Pr {φU ′  = 1} − Pr {φU ′  = 1, Y  = 1} 

RV P (U, Y ) ≤ RV P (U ′, Y ) 

 
4) Montrons que RV N (U, Y ) ≥ RV N (U ′, Y ) 

≤ 
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′ 

 

 

Par définition on a 

1  
RV N (U, Y ) = 

 
− Pr {Y = 1} Pr {Y = 1} − Pr {φU = 1, Y = 1} 

Pr {Y = 1} Pr {φU = 0, Y = 0} 
 

par hypothèse Pr {φU  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 1} on a alors 
 

1  
RV N (U, Y ) = 

− Pr {Y  = 1} Pr {Y  = 1} − Pr {φU ′  = 1, Y  = 1} 

Pr {Y = 1} Pr {φU = 0, Y = 0} 
 

par ailleurs U ′ emboîté dans U entraîne que Pr {φU  = 0, Y  = 0} ≤ Pr {φU ′  = 0, Y  = 0}. On en déduit que 
1  

RV N (U, Y ) ≥ − Pr {Y  = 1} Pr {Y  = 1} − Pr {φU ′  = 1, Y  = 1} 

 
d’où 

Pr {Y = 1} Pr {φU ′  = 0, Y  = 0} 

RV N (U, Y ) ≥ RV N (U ′, Y ) 

 
5) Montrons que Err(U, Y ) ≥ Err(U ′, Y ) Par 

définition on a 

 

Err(U, Y ) = Pr {Y = 1} + Pr {φU = 1} − 2 Pr {φU = 1, Y = 1} 

 

Err(U , Y ) = Pr {Y  = 1} + Pr {φU ′  = 1} − 2 Pr {φU ′  = 1, Y  = 1} 

 
Par hypothèse on a Pr {φU  = 1, Y  = 1} = Pr {φU ′  = 1, Y  = 1} donc 

Err(U, Y ) − Err(U, Y ) = Pr {φU  = 1} − Pr {φU ′  = 1} 

et puisque U ′ est emboité dans U alors Pr {φU  = 1} ≥ Pr {φU ′  = 1}. On obtient donc 

Err(U, Y ) ≥ Err(U ′Y ) 

 
6) Montrons que RR(U, Y ) ≤ RR(U ′, Y ) 

L’égalité Pr {φU  = 1,Y  = 1} = Pr {φU ′  = 1,Y  = 1} implique aussi 

 

Pr {φU = 0,Y = 1} = Pr {Y = 1} − Pr {φU = 1,Y = 1} 

=   Pr {Y  = 1} − Pr {φU ′  = 1,Y  = 1} 

=   Pr {φU ′  = 0,Y  = 1} 
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D Preuve de la proposition 4 
 

 

a+b 
   c  

 

 

d’où  
 Pr {φU = 0,Y = 1} 

Pr {φU = 0} 

 
= 

P   r {φU ′  = 0,Y  = 1} 

Pr {φU = 0} 

 Pr {φU ′  = 0,Y  = 1} 

Pr {φU ′  = 0} 
(2) 

 

 

Si on fait le rapport membre à membre des inégalités (1) et (2), il en résulte que 

 
RR(U, Y ) ≤ RR(U ′, Y ) 

 
 

 

 

E Preuve de la proposition 5 

Preuve. 1) Montrons que V P P (U, Y ) ≥ V P P (U ′, Y ) Par 

définition 
Pr {φU = 1,Y = 1} 

=
  Pr {φU = 1,Y = 1}  

Pr {φU = 1} 

et 

Pr {φU = 1,Y = 1} + Pr {φU = 1,Y = 0} 

P   r {φU ′  = 1,Y  = 1} 
= 

  Pr {φU ′  = 1,Y  = 1}  

Pr {φU ′  = 1} Pr {φU ′  = 1,Y  = 1} + Pr {φU ′  = 1,Y  = 0} 
 
 

On sait que Pr {φU  = 0,Y  = 0} = Pr {φU ′  = 0,Y  = 0} ⇔ Pr {φU  = 1,Y  = 0} = Pr {φU ′  = 1,Y  = 0} 

 

et en plus si a, b, c sont des réels positifs et a ≥ c on a a  ≥ c+b . On peut déduire de ces deux 

conditions que  
P   r {φU  = 1,Y  = 1} 

≥ 
 Pr {φU ′  = 1,Y  = 1} 

 
 
 
(1) 

 
On obtient donc 

Pr {φU = 1} Pr {φU ′  = 1} 

V P P (U, Y ) ≥ V P P (U ′, Y ) 

 
2) Montrons que V P N (U, Y ) ≥ V P N (U ′, Y ) Par 

définition 
Pr {φU = 0,Y = 0} 

=
  Pr {φU = 0,Y = 0}  

Pr {φU = 0} 

et 

Pr {φU = 0,Y = 1} + Pr {φU = 0,Y = 0} 

P   r {φU ′  = 0,Y  = 0} 
= 

  Pr {φU ′  = 0,Y  = 0}  

Pr {φU ′  = 0} Pr {φU ′  = 0,Y  = 1} + Pr {φU ′  = 0,Y  = 0} 

≥ 



45 

Annexe Chapitre II 
 

 

 

 

Puisque U ′ est emboîté dans U alors Pr {φU ′  = 0,Y  = 1} ≥ Pr {φU  = 0,Y  = 1}. d’où 
 Pr {φU  = 0,Y  = 0} 

≥ 
P   r {φU ′  = 0,Y  = 0} 

Pr {φU  = 0} Pr {φU ′  = 0} 

puisque Pr {φU ′  = 0,Y  = 0} = Pr {φU  = 0,Y  = 0} donc 
 

V P N (U, Y ) ≥ V P N (U ′, Y ) 

 
3) Montrons que RV P (U, Y ) ≥ RV P (U ′, Y ) Par 

définition on a 

1  
RV P (U, Y ) = 

− Pr {Y = 1} Pr {φU = 1, Y = 1}  

Pr {Y = 1} 

et 

Pr {Y = 0} − Pr {φU = 0, Y = 0} 

RV P (U ′, Y ) = 
1 
 − Pr {Y  = 1} Pr {φU ′  = 1, Y  = 1}  

Pr {Y  = 1} Pr {Y  = 0} − Pr {φU ′  = 0, Y  = 0} 

par hypothèse on Pr {φU  = 0, Y  = 0} = Pr {φU ′  = 0, Y  = 0} donc le signe de RV P (U, Y )−RV P (U ′, Y ) dépend du signe Pr {φU 1 = 

1, Y  = 1} − Pr {φU ′  = 1, Y  = 1} 

or on a le profil U ′ emboîte dans le profil U . Ceci entraîne que 

 
Pr {φU 1 = 1, Y  = 1} − Pr {φU ′  = 1, Y  = 1} ≥ 0 

 

d’où  
RV P (U, Y ) ≥ RV P (U ′, Y ) 

 

4) Montrons que RV N (U, Y ) ≤ RV N (U ′, Y ) Par 

définition 

RV N (U, Y ) =
 1 − Pr {Y = 1} Pr {Y = 1} − Pr {φU = 1, Y = 1} 

Pr {Y = 1} 

et 

Pr {φU = 0, Y = 0} 

RV N (U ′, Y ) = 
1 
 − Pr {Y  = 1} Pr {Y  = 1} − Pr {φU ′  = 1, Y  = 1} 

Pr {Y  = 1} Pr {φU ′  = 0, Y  = 0} 

par hypothèse on Pr {φU  = 0, Y  = 0} = Pr {φU ′  = 0, Y  = 0} donc le signe de RV N (U, Y )−RV N (U ′, Y ) dépend du signe Pr {φU ′  = 1, Y  = 1} 

− Pr {φU  = 1, Y  = 1} 

or on a le profil U ′ emboîte dans le profil U . Ceci entraîne que 

 
Pr {φU ′  = 1, Y  = 1} − Pr {φU  = 1, Y  = 1} ≤ 0 

 

d’où  
RV N (U, Y ) ≤ RV P (U, Y ) 
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E Preuve de la proposition 5 
 

 

′ 

′ 

 

 

5) Montrons que Err(U, Y ) ≤ Err(U ′, Y ) On a 

Pr {φU = 0, Y = 0} = 1 − Pr {Y = 1} − Pr {φU = 1} + Pr {φU = 1, Y = 1} 

Pr {φU = 1, Y = 1} = Pr {φU = 0, Y = 0} + Pr {φU = 1} + Pr {Y = 1} − 1 

si on remplace Pr {φU = 1, Y = 1} par son expression dans Err(U, Y ), on obtient 

 
Err(U, Y ) = −2 Pr {φU = 0, Y = 0} − Pr {φU = 1} − Pr {Y = 1} − 2 

 

de même on a 

 
Err(U , Y ) = −2 Pr {φU ′  = 0, Y  = 0} − Pr {φU ′  = 1} − Pr {Y  = 1} − 2 

 

et puisque on a par hypothèse que Pr {φU  = 0, Y  = 0} = Pr {φU ′  = 0, Y  = 0} alors 

Err(U, Y ) − Err(U , Y ) = − Pr {φU  = 1} + Pr {φU ′  = 1} 

par ailleurs − Pr {φU  = 1} + Pr {φU ′  = 1} ≤ 0 puisque U ′ est emboité dans U . d’où 

Err(U, Y ) − Err(U ′, Y ) ≤ 0 

 
6) Montrons que RR(U, Y ) ≥ RR(U ′, Y ) On a 

Pr {φU = 0,Y = 1} 
= 

P r {φU = 0} − Pr {φU = 0,Y = 0} 
Pr {φU = 0} 

et 

Pr {φU = 0} 

P   r {φU ′  = 0,Y  = 1} 
= 

P   r {φU ′  = 0} − Pr {φU ′  = 0,Y  = 0} 

Pr {φU ′  = 0} Pr {φU ′  = 0} 
 

en tenant compte que  Pr {φU  = 0,Y  = 0} = Pr {φU ′  = 0,Y  = 0} et Pr {φU  = 0} ≤ Pr {φU ′  = 0}, on a 
P   r {φU  = 0,Y  = 0} 

≥ 
 Pr {φU ′  = 0,Y  = 0} 

 
et il s’en suit que 

Pr {φU = 0} Pr {φU ′  = 0} 

P   r {φU  = 0,Y  = 1} 
≤ 

 Pr {φU ′  = 0,Y  = 1} 

 
d’où 

Pr {φU = 0} Pr {φU ′  = 0} 

  Pr {φU  = 0}  
≥ 

  Pr {φU ′  = 0}  (2) 
Pr {φU  = 0,Y  = 1} Pr {φU ′  = 0,Y  = 1} 

en faisant le produit membre à membre des inégalités (1) et (2) on obtient que RR (U ′, Y ) ≤ RR (U, Y ) 
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Annexe Chapitre II 
 

 

 

 

 

 
 

 

F Preuve de la proposition 2 
 

Preuve. On a 

Pr(Y = 1, φ(X, U ) = 1) 
= 

Pr(φ(X, U ) = 1) 

= 

 
 

Pr(Y = 1, φ(X, U ) = 1, φ(X, U ′) = 1) 
+ 

Pr(φ(X, U ) = 1) 

Pr(Y = 1, φ(X, U ′) = 1) 
+ 

Pr(φ(X, U ) = 1) 

 

 

Pr(Y = 1, φ(X, U ) = 1, φ(X, U ) = 0) Pr(φ(X, 

U ) = 1) 

Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ) = 1, φ(X, U ′) = 1) Pr(φ(X, U ) = 

1) 
Pr(Y = 1, φ(X, U ′) = 1) Pr(φ(X, U ′) = 1) 

= 
Pr(φ(X, U ′) = 1) Pr(φ(X, U ) = 1) 

+
 

Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) Pr(φ(X, U ) 

= 1) 
Pr(Y = 1, φ(X, U ′) = 1) Pr(φ(X, U ′) = 1) 

= 
Pr(φ(X, U ′) = 1) Pr(φ(X, U ) = 1) 

+
 

Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 
Σ 

Pr(φ(X, U ′) = 1) 
Σ

 
 

  

Pr(φ(X, U ) = 1) − Pr(φ(X, U ) = 1) 
1 

Pr(φ(X, U ) = 1) 

 
 

On obtient une combinaison convexe de 

Pr(Y = 1, φ(X, U ) = 1) 

Pr(Y = 1, φ(X, U ) = 1) 
 

 

Pr(φ(X, U ) = 1) 

 

par rapport à 
Pr(φ(X, U ′) = 1) 

 
 

Pr(φ(X, U ) = 1) 

 

. On 

en déduit que 
Pr(φ(X, U ) = 1) 

est compris entre 

 

 

M in 

 
et 

M ax 

Pr(Y = 1, φ(X, U ′) = 1) 

Pr(φ(X, U ′) = 1) 
,
 

 
Pr(Y = 1, φ(X, U ′) = 1) 

Pr(φ(X, U ′) = 1) 
,
 

Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 
 

 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ) = 1) 

 
Pr(Y = 1, φ(X, U ) = 1) − Pr(Y = 1, φ(X, U ′) = 1) 

 
 

Pr(φ(X, U ) = 1) − Pr(φ(X, U ) = 1) 
 

 

− 

. 

. 

Σ 

Σ 
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F Preuve de la proposition 2 
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Chapitre III 
 

 

Classifieur basé sur un ensemble de profils 

lorsque les données sont indépendantes et 

identiquement distribuées 

 

1 Introduction 
 

Dans cette thèse, nous proposons une méthode de classement basée sur les règles d’association binaire dans le but 

d’améliorer les performances d’une règle de classement lorsque la classe cible de la variable réponse binaire est faiblement 

représentée. Généralement dans une telle situation, la règle de classement a une forte spécificité. Donc pour améliorer les 

performances de la règle de classement, nous nous intéressons plus aux profils de classement dont les classifieurs associés ont des 

sensibilités fortes. 

A travers les indices de performances présentés au chapitre II, on peut affi rmer que l’apprentissage du classifieur associé à un 

profil est fortement dépendant de la valeur prédictive positive (VPP). Généralement on estime ce dernier par le maximum de 

vraisemblance. Mais dans une situation où le support (la couverture) du profil est trop faible, il est recommandé d’estimer la 

VPP par une forme corrigée de Laplace [11] définie par 

V P P (U, Y ) =
  Pr {φ(X, U ) = 1, Y = 1} + 1  

Pr {φ(X, U ) = 1, Y = 1} + Pr {φ(X, U ) = 1, Y = 0} + |Dom(Y )| 

Dans la suite, nous verrons qu’il est possible d’avoir une interprétation Bayésienne de la formule de Laplace. 

Soit Dn = (yi, xi) un ensemble fini d’éléments générés de façon aléatoire par la loi du couple (Y, X), où Y est une variable 

binaire et X = (Xj)j=1:p est un vecteur de variables aléatoires, où la variable Xj peut être numérique ou catégorielle. A l’aide 

des outils statistiques présentés dans le chapitre II, nous présentons un algorithme d’apprentissage dont les performances sont 

comparables avec d’autres méthodes très connues pour un classement binaire. 
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III.3 Prétraitement des données : discrétisation des covariables numériques 

 

 

λ 

λ 

 

 

 

 

 

2 Algorithme d’apprentissage d’un classifieur basé sur un ensemble 

de profils 

Dès qu’un phénomène, qu’il soit physique, biologique ou autre, est trop complexe ou encore trop bruité pour accéder à une 

description analytique débouchant sur une modélisation déterministe, un ensemble d’approches est élaboré afin d’en décrire au 

mieux le comportement à partir d’une série d’observations. On appelle apprentissage statistique l’ensemble d’approches élaboré 

[5]. C’est une combinaison à la fois de l’apprentissage automatique et de la statistique [26]. L’apprentissage automa- tique consiste 

à utiliser des ordinateurs pour optimiser un modèle de traitement de l’information selon certains critères de performance à partir 

d’observations. Tandis que la statistique permet de formaliser le processus, de garantir sa qualité et éventuellement de suggérer de 

nouvelles techniques. Cependant le principe de l’apprentissage reste le même, mais la démarche est diff érente selon que la taille 

du jeu de données est grande ou petite. 

 
2.1 Présentation de l’algorithme de construction du classifieur 

Lorsque la taille des données est suffi samment grande, on adoptera l’approche Apprentissage/Validation/Test 

pour la sélection d’un ensemble optimal de profils. Cette approche consiste à subdiviser les données de manière aléatoire en 

trois ensembles : un ensemble d’apprentis- sage, un ensemble de validation et un ensemble test. L’apprentissage statistique que 

nous proposons peut être résumée par les diff érentes étapes suivantes : 

1. Discrétiser toutes les variables numériques par une méthode de discrétisation (au choix) 

2. A partir d’un ensemble d’apprentissage : 

(a) Spécifier le paramètre d’apprentissage λ = (s0, c0, l0) 

(b) Générer un ensemble Uλ de profils 

(c) Elaguer les profils redondants dans Uλ pour constituer un petit ensemble 

 
U1 = {[φ(X, U ) = 1] → [Y = 1]; U ∈  Uλ} 

3. A partir d’un ensemble de validation : 

(a) Réévaluer l’ indicateur de performance VPP (ou RVP ou RVN) de toutes les règles dans 
1 
λ 

(b) Supprimer les profils dont le RVP est inférieur à un (1) 

(c) Parmi les profils dans U1 qui sont emboîtés, ne retenir que le profil dont le VPP (ou le RVP ou le RVN) est le 

plus significatif. 

U 
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont 

indépendantes et identiquement distribuées 
 

 

Σ λ 

λ 

 

 

4. Au sortir de l’étape 3, on dispose alors d’un ensemble de profils U2 tel que |U2 | ≤ |U1 |. 
λ λ λ 

5. Définir la règle de classement (classifieur) φ d’une observation X par 

 

 

 
φ(X, λ) = 

 
 

 
1 si 

 
|U2 | 

 

m=1 

 
 

φ(X, Um 

 

 
) > 0 

  
0 sinon 

Le classifieur φ(X, λ) est un cas particulier du classifieur défini au chapitre II à la section 3.2 où on a choisi k égal à zéro. On 

choisit alors de classer positive une observation X lorsqu’elle vérifie au moins un profil parmi ceux qui sont dans 

l’ensemble U2 . 

Dans tout ce qui suit, on fixe à un le nombre minimum de profils à vérifier pour qu’une observation soit classée positive. 

 

 
 

3 Prétraitement des données : discrétisation des covariables numé- 

riques 

Un ensemble de données pour un classement est normalement sous la forme d’un tableau de don- nées qui est décrit par un 

ensemble de variables distinctes. La plupart des applications réelles (données réelles) pour une classification supervisée 

comportent à la fois des variables numériques (continues) et des variables nominales (catégorielles). Certaines méthodes de 

classement, particulièrement l’algo- rithme d’apprentissage des règles d’association, exigent que toutes les covariables soient 

nominales. Ainsi il est nécessaire de convertir les variables continues en des variables discrètes. L’idée consiste à transformer 

chaque variable numérique Xj en une variable catégorielle X∗ . La variable X∗  est obtenue 
j j 

en subdivisant le domaine des valeurs de Xj  en qj  intervalles m
Xj 

, h = 1 : qj . La variable X ∗  sera 
h j 

utilisée à la place de Xj pour construire le classifieur. 

En général une variable continue est une variable dont le domaine de définition est totalement ordonné. La discrétisation 

doit être choisie de manière à apporter des informations de classification utiles sans modifier les classes auxquelles les 

observations du domaine de la variable appartiennent. En général, une discrétisation est simplement une condition logique, en 

termes d’une ou plusieurs valeurs évaluées, qui sert à partitionner les données en au moins deux sous-ensembles. Supposons que 

Xj soit une variable numérique et l’intervalle [a, b] soit son domaine. Une partition πXj    sur [a, b] est définie comme le sous-

ensemble des k intervalles suivants 

 
πXj   = {[xj0, xj1), [xj1, xj2), . . . , [xj(k−1), xjk]} 

où xj0 = a, xj(i−1) < xji pour i = 1 : k et xjk = b. Ainsi la discrétisation est le processus qui produit 
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III.3 Prétraitement des données : discrétisation des covariables numériques 

 

 

 

 

une partition πXj   sur [a, b]. 

 

 
Plusieurs méthodes de discrétisation des variables numériques ont été étudiées dans la littérature. On peut, par exemple, 

considérer des combinaisons linéaires de plusieurs variables et comparer le ré- sultat avec un seuil (Breiman et al., 1984)[7]. Il est 

aussi possible d’éviter le seuillage en formant une condition qui compare les valeurs de deux ou plusieurs variables directement. 

Cependant le nombre de telles expressions possibles rend l’espace de recherche très vaste. 

La méthode de discrétisation d’une variable numérique la plus simple reste la méthode de largeur d’in- tervalle égale (Equal 

Interval Width Method). Elle consiste à partitionner son domaine en intervalles de largeur égales. 

 
Une méthode de discrétisation de variable numérique par la discrétisation adaptative a été propo- sée dans [8]. La méthode 

consiste à diviser d’abord le domaine de la variable en deux intervalles de largeur égale et un processus d’apprentissage est lancé 

pour générer les règles. Ensuite, la qualité des règles est testée en évaluant les performances des règles. Si la mesure de performance 

est inférieure à un seuil fixe, l’un des intervalles est subdivisé en outre, et le processus est répété. Le principal incon- vénient de 

cette méthode, cependant, est la répétition du processus d’apprentissage jusqu’à ce que le niveau de performance finale soit 

atteint. 

 

 
Une discrétisation basée sur l’entropie marginale maximale a été introduite dans [30]. Ce procédé consiste à diviser le 

domaine de la variable numérique de telle sorte que la fréquence d’échantillonnage dans chaque intervalle soit approximativement 

égale. Ce procédé est généralement appelé la méthode par intervalle de fréquence égale (Equal Frequency per Interval Method). 

Le seul paramètre fourni par l’utilisateur est le nombre d’intervalles à induire sur le domaine d’origine. La discrétisation par la 

mesure de l’entropie utilise les bornes du domaine de la variable pour induire les intervalles sou- haités. Cette méthode de 

sélection d’un point de coupure est utilisée dans l’algorithme ID3 [23], dans l’algorithme CART [6], et d’autres [15]. 

 
Lorsque nous traitons un problème de classification supervisée, il est naturel de penser à discrétiser les variables numériques en 

fonction de la variable réponse. Ceci constitue l’un des points faibles des diff érentes méthodes de discrétisation citées 

précédemment. Ce concept est pris en compte par la méthode de discrétisation avec la classe-entropie comme critère pour 

sélectionner le meilleur point de coupure [13]. Dans tout ce qui suit, nous avons utilisé la méthode de discrétisation dont le critère 

d’arrêt est basé sur le principe de la longueur de description minimum plus connu sous le nom de MDLP (Minimum Description 

Length Principle). Cette méthode est initiée par Fayyad et Irani [13, 14]. La méthode est présentée comme une méthode effi cace 

pour la discrétisation pour l’apprentissage des arbres de décision et du classifieur de Bayes Naïf [2] (voir l’annexe B pour plus 

de détails). 
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont 

indépendantes et identiquement distribuées 
 

 

S 

 
 

4 Extraction d’un ensemble initial de profils 
 

L’ensemble des profils Uλ, généré au départ pour l’apprentissage du classifieur, est caractérisé par c0, une estimation de la 

VPP, et s0, une estimation du support. L’un des plus connus algorithmes d’exploration des règles d’association, utilisant c0 et 

s0 pour l’extraction des règles les plus fréquentes, reste l’algorithme "apriori". Il est l’un des algorithmes d’extraction de règles 

d’association qui a utilisé en premier l’élagage basé sur le support pour contrôler systématiquement la croissance exponentielle 

des règles candidates. C’est la raison pour laquelle, nous avons choisi de l’utiliser pour la suite. On pouvait utiliser d’autres 

algorithmes d’extraction de règles fréquentes existant dans la littérature par exemple l’algorithme "FP-Growth"(FPtree 

structure) [17]. Un choix de l’algorithme d’extraction est laissé à l’utilisateur. Ci-après (Tableau III.1), nous présentons un 

pseudo code de la partie de génération des profils fréquents par l’algorithme "apriori". Soit Ck l’ensemble des profils de longueur k 

candidats, D l’ensemble de toutes les observations et Fk l’ensemble des profils fréquents et de longueur k. 

 

Algorithme : Génération de règles fréquentes par l’algorithme "apriori" 

– Entrées : D un ensemble d’observations, s0 un support minimum et c0 une confiance minimum 

– Sorties : Uλ un ensemble de profils fréquents 

 
1 : k=1 

2 : Fk = {Trouver tous les 1-itemsets fréquents} 3 : 

répéter 

4 : k=k+1 

5 : Ck = apriori-gen(Fk−1 ). {Générer les profils candidats} 6 :

 pour chaque observation t ∈  D faire 

7 : Ct = subset(Ck , t). {Identifier tous les candidats contenus dans t} 8 :

 pour chaque profil candidat c ∈  Ct faire 

9 : supp(c) = supp(c) + 1. {Incrémenter le compte du support} 
 

10 : si t.class = c.class faire { t.class : la classe associée à l’observation t} 

11 : conf (c) = conf (c) + 1. {Incrémenter le compte de la confiance} 

12 : ftn si  

13 : ftn pour  

14 : ftn pour  

15 : Fk ={c ∈  Ck | supp(c) ≥ s0 ; conf(c)/supp(c) ≥ c0 } 

{Extraire les profils fréquents de taille k} 16 : 

jusqu’à Fk = ∅  

17 : Retourner : Uλ = k Fk 

 

 
Tableau III.1 – Algorithme de génération des règles fréquentes ("apriori") 

 

Pour la suite, nous nous intéresserons aux profils générés à partir de l’algorithme "apriori" qui sont corrélés avec la variable 

réponse et qui vérifient les conditions d’apprentissages suivantes : support ≥ s0, 
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λ 

h h 

h h 

0 1 

 

 

confiance ≥ c0, risque relatif ≥ r0, taille ≤ l0. Cette étape de l’algorithme est élaborée sur l’échantillon d’apprentissage. Au sortir de 

cette phase, un vaste ensemble Uλ, λ = (s0, c0, r0, l0) contenant à la fois des profils redondants et des profils de faibles performances, 

est généré. Il est donc nécessaire d’élaborer une procédure d’élagage des profils redondants pour réduire le vaste ensemble Uλ à un 

ensemble U1 

ne contenant que des profils fréquents et non redondants. 

 

 
5 Elagage des profils redondants 

 
Dans cette section, nous nous intéressons aux profils qui sont liés à la variable réponse. La sup- pression des profils qui ne 

sont pas corrélés à la variable réponse et des profils redondants permettra de sélectionner un ensemble réduit de profils dont on 

pourra se servir pour construire un classifieur performant. 

Soient U1  = 
.

m
Xj 

Σ
 

 
 
 

j∈ J 
et U2  = 

.
mXl 

Σ
 

 
 
 

l∈ L 

 
deux profils tels que U2 soit emboîté dans U1. L’ap- 

plication des résultats théoriques précédents nécessite de faire un test d’hypothèse sur l’égalité des 

couvertures, sur l’égalité des supports ou sur l’égalité des spécificités de deux profils emboîtés. Pour cela, il est possible de faire 

un test stochastique 

 

 

 

5.1 Test stochastique (randomisé) pour la sélection entre deux profils emboîtés 
 

En principe, si l’égalité n’est pas vérifiée sur un échantillon donné, on peut affi rmer qu’elle n’est pas vérifiée sur la 

population dont est issu l’échantillon. Par contre on ne peut pas en dire autant lorsqu’elle est vraie sur un échantillon. C’est la 

raison pour laquelle un test stochastique (ou test ran- domisé) est nécessaire. 

On note par φ(X, U1) = 
Y 

1l 
.
Xj = m

Xj 
Σ 

et φ(X, U2) = 
Y 

1l 
.
Xl = mXl 

Σ 
les fonctions de clas- 

sement générées respectivement par U1 et U2. Puisque U2 est emboîté dans U1, on a [φ(X, U2) = 1] ⊂  

[φ(X, U1) = 1]. 
 

(a) Soit le paramètre θ1 défini par θ1 = Pr(φ(X, U1) = 1) − Pr(φ(X, U2) = 1). Nous voulons tester si oui ou non θ1 est 

nulle i.e décider entre les deux hypothèses 

 

H1 : θ1 = 0 vs H1 : θ1  ƒ= 0 

 
Nous allons considérer la variable aléatoire définie par 

 
Z1(X) = φ(X, U1) − φ(X, U2) 

j∈ J l∈ L j∈ J l∈ L 
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  1 si φ(X, U1) = 1 et φ(X, U2) = 0 

0 1 

  1 si 1l (φ(X, U1) = 1, Y  = 1]) = 1 et 1l (φ(X, U2) = 1, Y  = 1]) = 0 

0 1 

  1 si 1l ([φ(X, U1) = 0, Y  = 0]) = 0 et 1l ([φ(X, U2) = 0, Y  = 0]) = 1 

 

 

Puisque [φ(X, U2) = 1] ⊂ [φ(X, U1) = 1], on peut écrire 
 

 
Z1(X) = 

  
0 si φ(X, U1) = φ(X, U2) 

 

 

 

(b) Pour tester l’égalité des sensibilités de U1 et U2, on considère le paramètre θ2 défini par 

θ2 = Pr([φ(X, U1) = 1, Y = 1]) − Pr([φ(X, U2) = 1, Y = 1]). Les hypothèses à tester sont : 
 

H2 : θ2 = 0 vs H2 : θ2 0 

 

On peut associer au test la variable aléatoire Z2(X) définie par 

 

Z2(X) = 1l ([φ(X, U1) = 1, Y = 1]) − 1l ([φ(X, U2) = 1, Y = 1]) 

Puisque [φ(X, U2) = 1, Y = 1] ⊂  [φ(X, U1) = 1, Y = 1], on peut écrire 
 

 
Z2(X) = 

  
0 si 1l (φ(X, U1) = 1, Y  = 1]) = 1l ([φ(X, U2) = 1, Y  = 1]) 

 

 

 

(c) Pour tester l’égalité des spécificités de U1 et U2, on considère le paramètre θ3 défini par θ3 = Pr([φ(X, U2) = 0, 

Y = 0]) − Pr([φ(X, U1) = 0, Y = 0]). L’ hypothèse nulle et son al- ternative sont données par : 

H3 : θ3 = 0 vs H3 : θ3  ƒ= 0 
 

La variable aléatoire Z3(X) associée au test est définie par 

 

Z3(X) = 1l ([φ(X, U2) = 0, Y = 0]) − 1l ([φ(X, U1) = 0, Y = 0]) 

Puisque [φ(X, U2) = 0, Y = 0] ⊃  [φ(X, U1) = 0, Y = 0], on peut écrire 
 

 
Z3(X) = 

  
0 si 1l ([φ(X, U1) = 0, Y  = 0]) = 1l ([φ(X, U2) = 0, Y  = 0]) 

 

Les variables (Zk(X))k=1:3 sont donc des variables aléatoires de Bernoulli de paramètre (θk)k=1:3. 
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i=1 

i=1 

i=1 
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.
Σ
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.
Σ
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.
Σ
 

.
Σ
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.
Σ
 

.
Σ
 

0 

0 

.
Σ
 

1 

.
Σ
 

1 

i=1 

1 

.
Σ
 

1 

Pr 
.
rejeter Hk|Hk

Σ    
=    Pr 

.
ϕk(Dn) = 1 | Hk

Σ 
+ Pr 

.
ϕk(Dn) = 1 − γk , µ ≥ 1 − γk | Hk

Σ
 

=    Pr 
.

ϕk(Dn) = 1 | Hk
Σ 

+ Pr 
.

ϕk(Dn) = 1 − γk | Hk
Σ 

Pr 
.

µ ≥ 1 − γk | Hk
Σ
 

Zk(Xi) = 0 | Hk 

Pr 
.
rejeter Hk|Hk

Σ    
=    Pr 

.
ϕk(Dn) = 1 | Hk

Σ 
+ Pr 

.
ϕk(Dn) = 1 − γk , µ ≥ 1 − γk | Hk

Σ
 

=    Pr 
.

ϕk(Dn) = 1 | Hk
Σ 

+ Pr 
.

ϕk(Dn) = 1 − γk | Hk
Σ 

Pr 
.

µ ≥ 1 − γk | Hk
Σ
 

 

 

On considère une suite d’éléments aléatoires Dn = (Xi, Yi)i∈ 1:n indépendants et identiquement distribués, où Yi est 

une réalisation d’une variable de Bernoulli Y et Xi est une suite finie de p réalisations d’un vecteur de variables aléatoires 

non numériques (Xj)j=1:p à qj  modalités m
Xj 

; h = 1 : qj , j = 1 : p. Puisque les observations (Xi)i=1:n  sont indépendantes alors 

les Zk(Xi)i=1:n  constituent 

des réalisations indépendantes. Donc la somme 
Σn Zk(Xi) est une réalisation d’une variable aléatoire 

suivant la loi binomiale BN(n, θk). Nous considérons le test stochastique défini comme suit : Pour tout 
k = 1 : 3 

 

ϕk (Dn) = 

 
1 si 

Σn
 Zk(Xi) > 0 

  
1 − γk si  

Σn Zk(Xi) = 0 et 0 < γk ≤ 1 
 

On tire un nombre µ uniformément réparti entre 0 et 1. Si µ ≥ 1 − γk on rejette Hk et si µ < 1 − γk 

on accepte Hk avec 0 < γk ≤ 1. L’application du test stochastique s’eff ectue comme suit : 

– Si ϕk(Dn) = 1 : rejeter Hk 

– Si ϕk(Dn) = 1 − γk : rejeter Hk avec une probabilité γk i.e. on génère une valeur µ uniforme sur 0 et 1. Si µ ≥ 1 − γk, on 

rejette Hk, sinon on accepte. 

Le niveau du test est obtenu en calculant 

 
 

 

 
= Pr 
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i=1 

0 

Zk(Xi) > 0 | Hk

Σ

 

 

 
+ Pr 

 

 
n 

 

 
i=1 

0 

Zk(Xi) = 0 | Hk

Σ

 

0 

 

 

Pr (µ ≥ 1 − γk) 

 

=   1 − Pr 

 

 
=   1 − Pr 

 

n 

 

 
i=1 

n 

 

 

i=1 

Zk(Xi) = 0 | Hk

Σ

 

Zk(Xi) = 0 | Hk

Σ

 

.
Σn

 

 
 

 

+ Pr 

 

 
+ Pr 
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i=1 
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i=1 

 
 

Zk(Xi) = 0 | Hk

Σ

 

Zk(Xi) = 0 | Hk

Σ 

Σ 
 

 

 

(1 − Pr (µ < 1 − γk)) 

 

 
γk 

   
 

 
 

Et on obtient la puissance du test en calculant 
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1 

Zk(Xi) > 0 | Hk

Σ

 

 

 
+ Pr 
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i=1 

1 

Zk(Xi) = 0 | Hk

Σ

 

1 

 

 

Pr (µ ≥ 1 − γk) 

 

= 1 − Pr 

 

 

.
Σn

 

.
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Zk(Xi) = 0 | Hk

Σ

 

Σ 
 

 

 

+ Pr 

 

n 

 

 
i=1 

Zk(Xi) = 0 | Hk

Σ

 

 

(1 − Pr (µ < 1 − γk)) 

   
 

 

= 1 − (1 − θk)n(1 − γk) 

i=1 

Pr (µ < 1 − γk) 1 = 1 − Pr 
Zk(Xi) = 0 | Hk 

i=1 

= 1 0 =   γk puisque Pr 

= 1 0 

i=1 

0 0 0 0 

0 1 1 1 

= 1 − Pr 
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0 

0 

0 

λ 

0 1 

0 1 

0 1 

 

 

 

 

 
 

5.2 Algorithme de la procédure d’élagage 
 

En se basant sur les résultats présentés dans la section précédente, on peut proposer une procédure d’élagage des profils 

redondants comme suit. 

 

Algorithme : Procédure d’élagage des profils redondants 

– Entrées : R un ensemble de profils 

– Sorties : R′ un ensemble de profils non redondants 
 

1 : On se donne R un ensemble de profils 

2 : pour tout profil U ∈  R faire 

3 : SU  = subset(U, R) {le sous-ensemble de profils de R emboîtés dans U } 

 
4 : pour tout profil U ′ ∈  SU faire 

5 : Tester H1 : Pr {φ(X, U ) = 1} = Pr {φ(X, U ′) = 1} vs H1 : Pr {φ(X, U ) = 1} = 

 

 

 

 
Pr {φ(X, U ′) = 1} 

 

6 : Si H1 est vraie, S′
U = delete(U ′, SU ) {supprimer U ′ de SU en vertu de la proposition 3.} 

 
7 : Sinon 
8 : Tester H2 : Pr {φ(X, U ) = 1,Y = 1} = Pr {φ(X, U ′) = 1,Y = 1} contre son opposée H2 

 

9 : Si H2 est vraie, S′
U = delete(U, SU ) {supprimer U de SU en vertu de la proposition 4.} 

 
10 : Tester H3 : Pr {φ(X, U ) = 0,Y = 0} = Pr {φ(X, U ′) = 0,Y = 0} contre son opposée H3 

 

11 : Si H3 est vraie, S′
U = delete(U ′, SU ) {supprimer U ′ de SU selon la proposition 5.} 

 
12 : ftn si 

13 : ftn pour U ′ 
14 : ftn pour U 

15 : Retourner R′ = 
S

U ∈R S
′
U 

 

 

 
Tableau III.2 – Algorithme d’élagage des profils redondants 

 

 

Le test stochastique présenté ci-dessus est applicable quelle que soit la taille des données d’analyse. 

Habituellement, l’ensemble U1 contient un grand nombre de profils, certainement plus qu’il en faut 

pour construire une fonction de classification qui est effi cace et facile à mettre en œuvre. 
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p1+p4 p1+p2 p1 p1+p2+p4+p5 

 ∇ 4   

    

 

  

∇  

 
 

6 Détermination d’un ensemble optimal de profils 

 
6.1 Lorsque les données sont de grande taille 

 
D’une manière générale, on peut utiliser un test comparant les valeurs prédictives positives de deux profils emboîtés pour 

sélectionner le profil le plus adéquat. Ce test est basé sur la normalité asymptotique du logarithme de rapport des valeurs 

prédictives positives des deux profils emboîtés. 

 

 
6.1.1 Test d’hypothèse asymptotique pour la sélection d’un ensemble optimal de proftls 

Proposition  6.  Soient U1 = 
.

m
Xj 

Σ
 

 
 

j∈ J 
et U2 = 

.
m

Xj 
Σ

 

 
 

j∈ L 
deux profils emboîtés tels que J ⊂ L. 

Soient V̂ P P (U1, Y ) et V̂ P P (U2, Y ) les estimateurs empiriques de V P P (U1, Y ) et V P P (U2, Y ) res- 
. 

V̂ P P (U1, Y ) 
Σ

 
pectivement. La variable aléatoire log 

loi normale centrée de variance 
V̂ P P (U2, Y ) 

est asymptotiquement distribuée suivant une 

 

 

 

Σ = 
i=1 

pi∇ 2 − 
6 

 

i=1 

2 

pi∇ i 

 

où 

∇ 1 
 1       +    1       − 1  −  1  

 ∇ 2         1   1  

 
   

p1+p2 

 

 

p1+p2+p4+p5  
 

 ∇ 3 0 
 =   

 
 

  1  
5 p1+p2+p4+p5 

∇ 6 0 
 

 

 

 

 

Preuve. Soit le vecteur aléatoire (Y, φ(X, U1), φ(X, U2)). On considère les événements suivants : 

 
E1 = {Y = 1, φ(X, U1) = 1, φ(X, U2) = 1} E2 = {Y = 1, φ(X, U1) = 1, φ(X, U2) = 0} 

E3 = {Y = 1, φ(X, U1) = 0, φ(X, U2) = 0} E4 = {Y = 0, φ(X, U1) = 1, φ(X, U2) = 1} 

E5 = {Y = 0, φ(X, U1) = 1, φ(X, U2) = 0} E6 = {Y = 0, φ(X, U1) = 0, φ(X, U2) = 0} 

dont les probabilités de réalisation sont p1, p2, p3, p4, p5 et p6 respectivement avec 
 

6 

− 

1 
p1+p4 

6 

   

  1  
p1+p2+p4+p5 

 

Σ 
Σ 
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pi = 1 
i=1 
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n 

−→ 

. Σ 

− 

− 

n 
n 

p1+p4 p1+p2 p1 p1+p2+p4+p5 

1 

2 

  

 

 

Compte tenu du fait que U2 soit emboîté dans U1, on a 

 
p1 = Pr(Y = 1, φ(X, U2) = 1) p4 = Pr(Y = 0, φ(X, U2) = 1) 

p3 = Pr(Y = 1, φ(X, U1) = 0) p6 = Pr(Y = 0, φ(X, U1) = 0) 

 
On note par IEk , k = 1 : 6 la fonction indicatrice de l’événement Ek. La distribution de Bernoulli généralisée de 

paramètres θ = (p1, . . . , p6) de la variable aléatoire Z = (IE1 , . . . , IE6 ) admet comme matrice de variance covariance la 

matrice 

 
Λ(θ) = diag(θ) − θT θ 

Soit (Zi)i=1:n une suite indépendante de distribution la Bernoulli généralisée. Si on considère 
 

θ̂    = 
 1 Σ 

Z 

 

l’estimateur empirique de θ, le théorème central limite permet de dire que 
√

n 
.

θ̂n − θ
Σ 

N (0, Λ(θ)) 
L 

 
 

Par ailleurs nous avons 
 

V P P (U , Y ) =
 Pr{Y = 1, φ(X, U1) = 1} 

=
  p1 + p2  

Pr{φ(X, U1) = 1} p1 + p2 + p4 + p5 
 

V P P (U , Y ) = 
P r{Y = 1, φ(X, U2) = 1} 

=
 p1  

 
d’où 

Pr{φ(X, U2) = 1} p1 + p4 

VP P (U1, Y )  (p1 + p4)(p1 + p2)  
= 

 
Soit la fonction 

V P P (U2, Y ) p1(p1 + p2 + p4 + p5) 

 

 

On a 

g(θ) = log 
 V P P (U1, Y ) 

V P P (U2, Y ) 

     1      +    1      − 1  −  1  

     1   1  

 

p1+p2 
 

 

 

p1+p2+p4+p5 
 

 

0 
∇ g(θ) =   

 

  1  
p1+p2+p4+p5 

0 

1 
p1+p4 

i=1 i=1 

   

  1  
p1+p2+p4+p5 

− 

i 
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i 

.
Σ
 

Σ 
∇  ∇  ∇

 ∇  

 ̂

p.s 

. 
L 

L 

n −→ 

T 

 

T 

 

 

En utilisant la Méthode Delta Multivariée, on démontre que 

√
n 
.

g(θ̂   ) − g(θ)
Σ   

L
 N 

.
0, T ∇ g(θ)Λ(θ)∇ g(θ)

Σ
 

 

où 

 

∇ g(θ)Λ(θ)∇ g(θ) = ∇ g(θ)diag(θ)∇ g(θ) − (θ∇ g(θ)) (θ∇ g(θ)) 

 

 

 

avec 

 

 

= 
i=1 

pi∇
2 − 

6 
 

i=1 

2 

pi∇ i 

  
∇ 1   

 

∇ g(θ) = . 

∇ 6 

6 

Etant donné que pi = 1, alors T g(θ)Λ(θ) g(θ) > 0 puisque c’est une variance du vecteur ( 1, . . . , 6) 
i=1 

qui n’est pas colinéaire avec le vecteur 1l = (1, . . . , 1). 
 
 

L’application : θ −→ ∇ g(θ) est continue de même que l’application : θ −→ Λ(θ). Et puisque θn 

converge en presque sûrement vers θ, on obtient alors 
 

T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n) − −→   ∇ g(θ)Λ(θ)∇ g(θ) 

 

Grâce au théorème de Slutsky, on peut conclure que 

√
n 
.

g(θ̂n) − g(θ)
Σ

 
 

 

T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n) 

 
 
−→ N(0, 1) 

 

V  
Sous l’hypothèse que 

P P (U1, Y ) 
= 1, si la taille de l’échantillon est suffi samment grande alors 

V P P (U2, Y ) 

 
 

. 

√
n 
.

g(θ̂n)
Σ

 

T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n) 

 

−→ N(0, 1) 

 

Ce qui nous permet de construire une stratégie de sélection du profil le plus adéquat. Si on note par 

q1−α/2  le quantile d’ordre 1 − α/2 de la loi normale centrée réduite, on peut eff ectuer les tests suivants. 

 
1. Test 1 : 

6 

. 

T T 

Σ 
Σ 
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n 
, q1−α/2 

λ 

g(θn) ≥ q1−α/2 

g(θn) ≤ −q1−α/2 

g(θn) < −q1−α/2 

 

 

(a) Sélectionner le profil U1 si 

 

^ 

. 
T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n) 

 

 
 

 
 

 

(b) Sélectionner le profil U2 si 

 

^ 

. 
T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n) 

 

 
 

 
 

 

(c) Choisir au hasard entre U1 et U2 si 

g(θ̂n) ∈  

 

−q1−α/2 

. 
T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n) 

 

 

. 
T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n)  

 
 

 

Cette troisième étape du test utilise le principe du test stochastique (test randomisé) où on génère une réalisation b 

d’une variable de Bernoulli de paramètre 1/2. On sélectionne U1 si b = 1 sinon on sélectionne U2. 

 
2. Test 2 : 

 

 

(a) Sélectionner le profil U2 si 

 

^ 

. 
T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n) 

 

 

 

 
 

 

(b) sinon Sélectionner le profil U1 

 

Le Test 2 permet de favoriser les profils les plus courts. Les résultats présentés dans cette analyse sont obtenus en utilisant le Test 2. 

 

 

 

6.1.2 Algorithme 
 

A partir d’un ensemble de validation, nous cherchons à réduire l’ensemble U1 en utilisant la valeur prédictive positive comme 

paramètre de comparaison. Les indicateurs de performance tels que les rapports de vraisemblance positifs (RVP) ou les 

rapports de vraisemblance négatifs (RVN) peuvent également être utilisés. 

n 
n 

n 

n 
n 

n 
n 
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λ 

λ 

λ 

λ 

λ 

n 

^ ^  ̂

 ̂

λ 

10 :   Si il existe C ′ ∈  S tel que g(θn) < −q1−α/2 
n 

λ λ 

λ λ 

 

 
 

Algorithme : Réduction de l’ensemble U1 

– Entrées : D un ensemble d’observation ; U1 un ensemble de règles non redondantes 

– Sorties : U2 un ensemble optimal de profils 
 

1 : pour tout profil C ∈  U1 faire 

2 : S = is.subset(C, U1 ) {le sous-ensemble des profils emboîtés dans C} 3 : pour 

tout profil C′ ∈  S faire 

4 : Evaluer les indicateurs suivants 

5 : θ̂n  = (p1, . . . , p6|D) 
 

6 : g(θn) = log(V P P (C, Y |θn)) − log(V P P (C , Y |θn)) 7 : Λ(θ̂n) 

= diag(θ̂n) − θ̂t θ̂n 

8 : ∇ n = ∇ g(θn) 9 

: ftn pour 

^ 

. 

∇ t Λ(θ̂n)∇ n 

 
 

 

11 : 

U2 = delete(C, U1 ) {Supprimer le profil C} 

 
 

12 : Sinon  
U2 = delete(S, U1 ) {Supprimer le sous-ensemble S} 

 
 

13 : ftn si 

14 : ftn pour 

15 : Résultat U2 

 

 
Tableau III.3 – Algorithme de réduction de l’ensemble non redondant 

 
 

Le processus d’apprentissage, tel qu’il a été décrit jusqu’ici requiert une grande base de données qu’il faudra échantillonner en trois 

sous-ensembles (apprentissage, validation et test) de tailles suffi samment grandes. Habituellement dans la tâche de l’apprentissage 

automatique, il est courant que le nombre d’observations disponibles ne permettent pas une subdivision des données en trois 

échantillons, un pour l’apprentissage, un pour la validation et un pour le test. Le recours à l’échantillon de validation permet 

d’évaluer les paramètres de performance sur un échantillon diff érent mais issu de la même distribution que l’échantillon 

d’apprentissage. On peut envisager alors une procédure bootstrap. 

 

6.2 Lorsque les données sont de taille petite 
 

Lorsqu’on ne dispose pas de données suffi santes pour une subdivision en trois sous-ensembles : apprentissage, validation 

et test, on peut recourir à une procédure de bootstrap pour la validation du 

n 
n 

′ 

faire 
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III.6 Détermination d’un ensemble optimal de proftls 
 

 

. 

n 
^ −̂
  n

 

On a g(θ̂n) un estimateur de la quantité g(θ) et σ̂n  = 
 1  
.

T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n)
Σ 

un estimateur de 

l’écart type de g(θ̂n) − g(θ). On note par g(θ̂ ∗  ) une estimation de g(θ) et σ̂ ∗   une estimation de l’écart 

type de g(θ̂ ∗  ) − g(θ̂n) toutes deux calculées à partir d’un échantillon bootstrap. En particulier σ̂ ∗   est 

n n 

.
g(θ̂ ∗  ) − g(θ̂n)

Σ 
/σ̂ ∗   estime la distribution bootstrap de 

.
g(θ̂n) − g(θ)

Σ 
/σ̂n  sous l’hypothèse nulle [16]. 

n 

précision du niveau du test sans modifier la puissance du test [4, 16]. 

n 

−→ 

 

 

classifieur. En eff et lorsque n,la taille de l’échantillon, est petite, la condition 

S = 

√
n 
.

g(θ̂n) − g(θ)
Σ

 

T ∇ g(θ̂n)Λ(θ̂n)∇ g(θ̂n) 

 
L 

N(0, 1) 

 

n’est plus assurée. D’où la nécessité de recourir à un test d’hypothèse bootstrap. 

 

 
6.2.1 Test d’hypothèse boostrap pour la sélection d’un ensemble optimal de proftls 

 
Le bootstrap est une technique de ré-échantillonnage bien connue dans la littérature [9, 10]. Le principe fondamental du 

bootstrap est de substituer à la distribution inconnue F , dont est issu l’échan- tillon d’apprentissage, la distribution empirique Fn 

qui donne un poids 1/n à chaque réalisation. Ainsi on obtient un échantillon de taille n dit échantillon bootstrap selon la 

distribution empirique Fn par n tirages aléatoires avec remise parmi les n observations initiales. 

 
La statistique d’intérêt S a une distribution d’échantillonnage notée FS. Cette distribution dépend de la distribution ttZ de la 

variable aléatoire Z dont les valeurs observées sont z1, . . . , zn. On écrit FS(s, ttZ), où ttZ est la distribution de Bernoulli 

généralisée de la variable Z. La distribution ttZ, quant à elle, dépend de la distribution FX de la variable aléatoire X dont les 

observations sont x1, . . . , xn. On note ttZ(z, FX). En résumé, la distribution FS dépend de la réalisation z de la variable Z et de la 

distribution FX de la variable X. On écrit FS(s, z, FX). 

Puisque FX  est inconnue, on travaille avec une estimation de FX  que l’on note F̂X   et qui est la 

distribution empirique Fn des données {x1, . . . , xn}. Le fait de remplacer FX par Fn va donner une distribution 

d’échantillonnage FS également modifiée. On écrit FS(s, z, Fn) au lieu de FS(s, z, Fx). Remplacer FX par Fn et générer un 

échantillon de taille n selon la distribution Fn revient de même que de tirer avec remise n éléments de l’ensemble de do.nnées 

originales {x1, . . . , xn}. 
 

 

 

 

 

l’estimation empirique bootstrap de l’écart type de g(θ∗  ) g(θ ). Alors la distribution bootstrap de 
 

Baser le test d’hypothèse sur la distribution bootstrap de 
.

g(θ̂ ∗  ) − g(θ̂n)
Σ 
/σ̂ ∗   permet d’améliorer la 

 

Pour appliquer le test bilatéral bootstrap de H0 : g(θ) = 0 au niveau α, on eff ectue les instructions suivantes : commence par 

1. Calculer la valeur de la statistique S pour l’échantillon de départ : soit s0 la valeur observée. 

2. Simuler B échantillons de taille n observations tirées de façon aléatoire avec remise à partir de 

n 

n 

n n 

n n 
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont 

indépendantes et identiquement distribuées 

 

 

b 

b 

^ ĝ(θ  

) −g(θ )n σb 

B 

B 
b=1 

b 0 

 

 

l’ensemble de données originales, et obtenir ainsi B valeurs simulées de s∗  de S : 
 

b 

s∗  = n 
^n 

3. Calculer la p − value bootstrap 

 

, b = 1, . . . , B 

p∗  =
 1 Σ 

I(s∗  > s ) On 

peut formuler alors la règle de décision suivante : 

1. Test 1. 
 

 
(a) Sélectionner le profil U2 si p∗  < α/2 

 
(b) Sélectionner le profil U1 si p∗  > 1 − α/2 

 
(c) Choisir au hasard entre U1 et U2 si p∗  ∈  [ α/2, 1 − α/2 ] 

Cette troisième étape du test utilise le principe du test stochastique (test randomisé) où on génère une réalisation b 

d’une variable de Bernoulli de paramètre 1/2. On sélectionne U1 si b = 1 sinon on sélectionne U2. 

 

2. Test 2 : 
 

 
(a) Sélectionner le profil U2 si p∗  < α/2 

 
(b) sinon Sélectionner le profil U1 

 

 
Le Test 2 permet de favoriser les profils les plus courts. Les résultats présentés dans cette analyse sont obtenus en utilisant le Test 2. 

 

 

 

 
6.2.2 Algorithme 

 
 

L’algorithme d’apprentissage statistique, adapté au bootstrap, est le suivant : 
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III.6 Détermination d’un ensemble optimal de proftls 
 

 

λ 

λ 

λ 

λ 

λ 

n 

^ ^  ̂

σ = 

^ ^ 

n 

^ ^  ̂

− 

λ 

8 : ∇ n =.∇ g(θ̂n) 

n n 

14 : Λ(θ̂b ) = diag(θ̂b ) − (θ̂b )tθ̂b
 

g(θ̂b ) − g(θ̂n) 

n n n n 

b 

18 : ftn pour 

= 
B 

I(sb > s ) 

 

 
 

Algorithme : Réduction de l’ensemble U1 

– Entrées : D un ensemble d’observation ; U1 un ensemble de règles non redondantes, α = 0.05 le niveau du test et B le 

nombre d’échantillon bootstrap (20 par défaut). 

– Sorties : U2 un ensemble optimal de profils 
 

1 : pour tout profil C ∈  U1 faire 

2 : S = is.supset(C, U1 ) {le sous-ensemble des profils emboîtés dans C} 3 : pour 

tout profil C′ ∈  S faire 

4 : Evaluer les indicateurs suivants 

5 : θ̂n  = (p1, . . . , p6|D) 
 

6 : g(θn) = log(V P P (C, Y |θn)) − log(V P P (C , Y |θn)) 7 :

 Λ(θ̂n) = diag(θ̂n) − θ̂t θ̂n 

 
 

^n 1 
.
∇ t Λ(θ̂n)∇ n

Σ
 

10 : s0 = g(θn)/σn 

11 : pour tout échantillon boostrap Db faire 

12 : θ̂b   = (p1, . . . , p6|Db) 
b b ′ b 

13 : g(θn) = log(V P P (C, Y |θn)) − log(V P P (C , Y |θn)) 

n . n nΣ n 

16 : σb  = 

. 
1 
.
∇ t Λ(θ̂b )∇ n

Σ
 

^ 

 

17 : s∗  = 
.

g(θ̂b ) − g(θ̂n)
Σ 

/σ̂ b
 

 

19 : Calculer la p value 
B 

20 : ∗   1 Σ 
∗  

0
 

 

21 : si 
 

p∗  < α/2 faire 
 

22 : U2 = delete(C, U1 ) {Supprimer le profil C} 
λ λ 

23 : sinon 
24 : U2 = delete(C′, U1 ) {Supprimer le profil C’} 

λ λ 

25 : ftn si 

26 : ftn pour 

27 : ftn pour 

28 : Résultat U2 

 

 
Tableau III.4 – Algorithme de réduction de l’ensemble non redondant lorsque l’échantillon d’appren- tissage est de petite 

taille 

b=1 

b=1 

′ 

15 : ∇ n = ∇  n 

n n 

p 

9 : 
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont 

indépendantes et identiquement distribuées 

 

 

 
 

7 Application à des données de la littérature 

Toutes les données que nous avons utilisé pour l’application de l’algorithme d’apprentissage sont issues du répertoire 

d’apprentissage automatique UCI (UCI Machine Leraning Repository) [3]. Toutes les analyses relatives à la méthode de 

classement proposée ont été réalisées dans l’environnement de programmation R [25]. L’exploration des règles d’association a 

été faite en utilisant le package arules [1]. Nous avons également utilisé le package rpart [28], la package partykit [18], le package 

e1071 [22] et le package DMwR [29] pour comparer notre approche avec celles existantes dans la littérature. 

 
7.1 Données Adult Data Set 

Les données d’application sont extraites de la base de données du bureau de recensement de 1994 [19]. Elles contiennent 

essentiellement des sujets âgés de plus de 16 ans et ayant à la fois un revenu brut ajusté supérieur à 1 et un volume horaire de travail 

positif. Au total, elles contiennent 45222 sujets hormis les données manquantes. Les sujets sont échantillonnés sur deux 

ensembles : un ensemble d’ap- prentissage de 30162 sujets (2/3 de données totales) et un ensemble test de 15060 sujets. Les 

données contiennent 14 covariables dont 5 sont continues et 8 sont nominales dont une variable réponse binaire indexant le revenu 

annuel d’un sujet à plus de $ 50K ou moins. L’objectif visé dans cette analyse est de trouver un profil prédictif du niveau de 

revenu d’un sujet donné. 

Pour évaluer la procédure d’apprentissage des règles d’association binaire, nous allons eff ectuer plu- sieurs expériences en sur-

échantillonnant ou en sous-échantillonnant le jeu de données census. Pour obtenir un ensemble de données déséquilibrées, on 

commence par sélectionner toutes les observations de la classe prévalente ; ensuite on se fixe une proportion α de la classe rare. 

Soit n le nombre d’ob- servations de la classe prévalente. On sélectionne n′ = nα/(1 − α) observations de la classe rare. On 

obtient ainsi, un échantillon de n + n′ observations avec une proportion α de la classe rare. 

Dans tout ce qui suit, nous avons fixé le paramètre de la taille maximale des règles à 4, le paramètre du risque relatif minimal 

égal à 1 et le paramètre de la p-value minimale associée au test exact de Fisher égale à 0.05. Après avoir construit notre 

échantillon déséquilibré, on se fixe un seuil de sup- port minimale (minsup) et un seuil de valeur prédictive positive minimale 

(minconf). Ces derniers nous permettront de générer l’ensemble de règles d’association fréquentes R. Pour chaque expérience, on 

subdivise aléatoirement l’échantillon en deux parties : apprentissage et validation. Un ensemble test est utilisé pour évaluer les 

performances du classifieur. Cependant, on peut évaluer deux types d’erreurs de classement : l’erreur de classement lorsque la 

distribution de l’ensemble d’apprentissage est diff érente de la distribution de l’ensemble test et l’erreur de classement lorsque la 

distribution de l’ensemble d’apprentissage est identique à la distribution de l’ensemble test. 

 
7.1.1 Performances du classifteur lorsque la distribution de l’échantillon test est iden- 

tique à celui de l’échantillon d’apprentissage 



 

 

 
 
 
 
 
 
 
 
 
 

Proportions Nb profils dans Uλ Erreur.cl Uλ Nb profils dans U2 
λ Sensibilité Spécificité Erreur.clt Minsup Minconf 

 76 0.22 12 0.68 0.81 0.19  

 129 0.28 10 0.69 0.78 0.22  

 110 0.25 15 0.70 0.78 0.23  

 69 0.19 14 0.60 0.83 0.17  

 92 0.24 12 0.72 0.80 0.20  

<=50K >50K 101 0.27 16 0.71 0.81 0.19 0.001 0.028 

0.993 0.007 130 0.32 12 0.80 0.77 0.23  

 145 0.30 11 0.74 0.81 0.19  

 126 0.35 17 0.74 0.74 0.26  

 101 0.24 06 0.62 0.83 0.17  

 110 0.22 13 0.74 0.81 0.19  

 104 0.23 11 0.60 0.81 0.19  

 61 0.19 10 0.67 0.83 0.17  

 62 0.19 10 0.67 0.85 0.16  

 69 0.21 11 0.72 0.82 0.18  

 34 0.08 04 0.49 0.93 0.08  

 91 0.23 09 0.71 0.83 0.17  

<=50K >50K 81 0.21 09 0.61 0.85 0.15 0.002 0.06 

0.985 0.015 70 0.19 10 0.71 0.83 0.17  

 59 0.22 15 0.80 0.78 0.22  

 67 0.21 08 0.72 0.84 0.16  

 91 0.24 11 0.70 0.80 0.20  

 69 0.21 09 0.72 0.83 0.18  

 92 0.23 07 0.60 0.89 0.12  

 

Tableau III.5 – Performance prédictive sur 12 expériences : (0.7% & 1.5%) 

III.7
 

A
p

p
lic

a
tio

n
 à

 d
e

s
 d

o
n

n
é

e
s

 d
e

 la
 litté

r
a

tu
r

e
 

67 



 

 

68 

 

 

 

 

 

 

 

Proportions Nb profils dans Uλ Erreur.cl Uλ Nb profils dans U2 
λ Sensibilité Spécificité Erreur.clt Minsup Minconf 

 56 0.23 22 0.79 0.77 0.23  

 64 0.25 19 0.77 0.79 0.21  

 43 0.19 15 0.68 0.84 0.17  

 55 0.26 09 0.68 0.83 0.17  

 35 0.19 06 0.48 0.92 0.10  

<=50K >50K 44 0.20 10 0.67 0.86 0.14 0.005 0.10 

0.97 0.03 35 0.22 09 0.70 0.83 0.17  

 66 0.25 16 0.71 0.81 0.20  

 51 0.20 11 0.75 0.83 0.18  

 59 0.24 11 0.68 0.81 0.19  

 58 0.24 16 0.80 0.77 0.23  

 50 0.26 13 0.81 0.77 0.23  

 67 0.20 21 0.76 0.80 0.20  

 83 0.22 24 0.77 0.78 0.22  

 69 0.20 15 0.73 0.83 0.18  

 74 0.16 20 0.66 0.86 0.16  

 73 0.20 14 0.70 0.83 0.18  

<=50K >50K 50 0.20 14 0.71 0.83 0.17 0.01 0.23 

0.93 0.07 50 0.16 16 0.63 0.88 0.14  

 63 0.18 20 0.67 0.83 0.18  

 50 0.16 19 0.64 0.86 0.16  

 55 0.20 16 0.72 0.83 0.17  

 67 0.20 17 0.73 0.83 0.18  

 75 0.18 18 0.67 0.83 0.18  

 

Tableau III.6 – Performance prédictive sur 12 expériences : (3% & 7%) 
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Proportions Nb profils dans Uλ Erreur.cl Uλ Nb profils dans U2 
λ Sensibilité Spécificité Erreur.clt Minsup Minconf 

 62 0.23 19 0.67 0.86 0.17  

 56 0.22 20 0.78 0.78 0.22  

 62 0.23 17 0.63 0.83 0.20  

 60 0.22 18 0.68 0.83 0.19  

 49 0.23 22 0.75 0.78 0.23  

<=50K >50K 40 0.20 10 0.58 0.88 0.16 0.025 0.4 

0.85 0.15 54 0.23 21 0.70 0.83 0.19  

 59 0.23 18 0.61 0.86 0.18  

 33 0.19 13 0.64 0.86 0.18  

 44 0.21 18 0.73 0.80 0.21  

 65 0.23 20 0.67 0.86 0.17  

 46 0.23 11 0.64 0.86 0.18  

 58 0.20 17 0.65 0.88 0.16  

 66 0.20 22 0.68 0.83 0.20  

 62 0.20 21 0.67 0.86 0.18  

 66 0.20 21 0.68 0.83 0.20  

 46 0.18 18 0.61 0.88 0.18  

<=50K >50K 64 0.20 23 0.65 0.88 0.16 0.03 0.5 

0.80 0.20 53 0.18 18 0.65 0.88 0.17  

 75 0.22 19 0.68 0.83 0.20  

 57 0.18 19 0.65 0.88 0.16  

 49 0.19 19 0.68 0.84 0.19  

 58 0.18 20 0.67 0.86 0.18  

 67 0.22 20 0.74 0.81 0.20  

 

Tableau III.7 – Performance prédictive sur 12 expériences : (15% & 20%) 
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Chapitre III. Classifteur basé sur un ensemble de proftls lorsque les données sont 

indépendantes et identiquement distribuées 
 

 

 

Avec un diagramme-boîtes en parallèle, nous avons représenté, pour chaque série de 100 valeurs des diff érentes mesures de 

performances (sensibilité, spécificité et erreur de classement), la distribution de celles-ci de manière très simplifiée avec la médiane 

(trait épais), une boîte qui s’étend du quartile 0.25 au quartile 0.75, et des moustaches qui s’étendent par défaut jusqu’à la valeur 

distante d’au maximum 

1.5 fois la distance inter-quartile. 
 

 

 

 

 

 
 

Figure III.1 – Distribution de la sensibilité estimée sur 100 échantillons 
 

 

 

 

 

 

 
 

Figure III.2 – Distribution de la spécificité estimée sur 100 échantillons 
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III.7 Application à des données de la littérature 

 
 
 
 
 
 

 
 
 

Figure III.3 – Distribution de l’erreur de classement estimée sur 100 échantillons 

 
 

7.1.2 Performances du classifteur lorsque la distribution de l’échantillon test est diffé- 

rente de celui de l’échantillon d’apprentissage 
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Proportions Nb profils dans Uλ Erreur.cl Uλ Nb profils dans U2 
λ Sensibilité Spécificité Erreur.clt Minsup Minconf 

 80 0.24 12 0.71 0.77 0.24  

 101 0.26 14 0.78 0.73 0.25  

 80 0.23 11 0.74 0.78 0.23  

 47 0.20 13 0.70 0.82 0.20  

 93 0.24 07 0.57 0.83 0.23  

<=50K >50K 46 0.21 14 0.73 0.83 0.20 0.001 0.028 

0.993 0.007 113 0.27 14 0.72 0.73 0.27  

 71 0.21 12 0.55 0.83 0.23  

 94 0.23 13 0.74 0.79 0.22  

 51 0.20 08 0.54 0.85 0.22  

 102 0.23 04 0.46 0.91 0.19  

 53 0.19 06 0.49 0.90 0.20  

 53 0.19 08 0.58 0.89 0.18  

 67 0.20 16 0.66 0.83 0.21  

 40 0.19 10 0.64 0.84 0.21  

 59 0.18 16 0.66 0.86 0.18  

 100 0.23 16 0.74 0.77 0.23  

<=50K >50K 53 0.19 13 0.69 0.84 0.19 0.002 0.06 

0.985 0.015 46 0.17 08 0.57 0.93 0.16  

 64 0.18 14 0.65 0.86 0.18  

 73 0.19 12 0.59 0.85 0.21  

 60 0.18 11 0.61 0.90 0.17  

 74 0.18 14 0.65 0.89 0.17  

 97 0.21 13 0.74 0.83 0.19  

 

Tableau III.8 – Performance prédictive sur 12 expériences : (0.7% & 1.5%) 

C
h

a
p

itr
e

 III. C
la

s
s

ifte
u

r
 b

a
s

é
 s

u
r

 u
n

 e
n

s
e

m
b

le
 d

e
 p

r
o

ftls
 lo

r
s
q

u
e

 le
s

 d
o

n
n

é
e

s
 s

o
n

t 

in
d

é
p

e
n

d
a

n
te

s
 e

t id
e

n
tiq

u
e

m
e

n
t d

is
tr

ib
u

é
e

s
 



 

 

 

 

 

 

 

 

 

 

 
 

Proportions Nb profils dans Uλ Erreur.cl Uλ Nb profils dans U2 
λ Sensibilité Spécificité Erreur.clt Minsup Minconf 

 74 0.26 20 0.66 0.81 0.23  

 75 0.24 18 0.82 0.75 0.24  

 63 0.22 16 0.76 0.81 0.20  

 68 0.24 12 0.67 0.79 0.24  

 61 0.21 11 0.58 0.88 0.19  

<=50K >50K 61 0.22 16 0.77 0.80 0.21 0.005 0.1 

0.97 0.03 51 0.21 10 0.70 0.82 0.21  

 74 0.27 20 0.75 0.76 0.25  

 51 0.21 11 0.70 0.82 0.21  

 85 0.25 14 0.72 0.80 0.22  

 62 0.24 15 0.77 0.77 0.23  

 71 0.24 21 0.80 0.75 0.24  

 73 0.20 25 0.75 0.81 0.20  

 71 0.22 23 0.74 0.83 0.19  

 76 0.20 24 0.75 0.81 0.20  

 85 0.22 24 0.75 0.81 0.20  

 75 0.20 20 0.66 0.86 0.18  

<=50K >50K 73 0.20 20 0.74 0.83 0.19 0.01 0.23 

0.93 0.07 71 0.18 19 0.66 0.86 0.18  

 71 0.21 23 0.76 0.80 0.21  

 71 0.18 22 0.66 0.86 0.18  

 67 0.20 20 0.73 0.84 0.18  

 76 0.20 20 0.66 0.86 0.18  

 79 0.22 18 0.68 0.83 0.21  

 

Tableau III.9 – Performance prédictive sur 12 expériences : (3% & 7%) 
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Proportions Nb profils dans Uλ Erreur.cl Uλ Nb profils dans U2 
λ Sensibilité Spécificité Erreur.clt Minsup Minconf 

 56 0.20 16 0.66 0.86 0.18  

 65 0.22 19 0.76 0.81 0.20  

 62 0.22 17 0.66 0.86 0.18  

 59 0.22 14 0.65 0.89 0.17  

 55 0.22 17 0.66 0.86 0.18  

<=50K >50K 52 0.21 21 0.70 0.81 0.21 0.025 0.4 

0.85 0.15 60 0.22 21 0.74 0.81 0.21  

 56 0.22 22 0.75 0.81 0.20  

 52 0.23 15 0.60 0.86 0.20  

 58 0.22 20 0.77 0.79 0.22  

 64 0.22 18 0.66 0.86 0.18  

 56 0.22 17 0.75 0.81 0.20  

 62 0.21 20 0.72 0.84 0.18  

 65 0.21 21 0.76 0.81 0.20  

 59 0.21 21 0.74 0.82 0.20  

 75 0.22 22 0.74 0.83 0.19  

 54 0.18 17 0.65 0.89 0.17  

<=50K >50K 62 0.20 22 0.66 0.87 0.18 0.03 0.5 

0.80 0.20 54 0.20 20 0.68 0.84 0.20  

 58 0.20 22 0.75 0.81 0.20  

 54 0.18 19 0.65 0.89 0.17  

 46 0.18 18 0.64 0.89 0.17  

 56 0.20 19 0.74 0.82 0.20  

 70 0.22 25 0.74 0.83 0.19  

 

Tableau III.10 – Performance prédictive sur 12 expériences : (15% & 20%) 
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Avec un diagramme-boîtes en parallèle, nous avons représenté, pour chaque série de 100 valeurs des diff érentes mesures de 

performances (sensibilité, spécificité et erreur de classement), la distribution de celles-ci de manière très simplifiée avec la médiane 

(trait épais), une boîte qui s’étend du quartile 0.25 au quartile 0.75, et des moustaches qui s’étendent par défaut jusqu’à la valeur 

distante d’au maximum 

1.5 fois la distance inter-quartile. 
 

 

 

 

 

 
 

Figure III.4 – Distribution de la sensibilité estimée sur 100 échantillons 
 

 

 

 

 

 

 
 

Figure III.5 – Distribution de la spécificité estimée sur 100 échantillons 
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Figure III.6 – Distribution de l’erreur de classement estimée sur 100 échantillons 

 

 
7.2 Comparaison de la méthode d’apprentissage avec des méthodes alternatives 

Le classement binaire basé sur la régression logistique ou les arbres binaires de régression implique l’ajustement d’un modèle 

paramétrique ou non paramétrique aux probabilités conditionnelles Pr(Y = y|X = x) où y ∈  Dom(Y ) et x ∈  Dom(X). Notons 

par Pr(Y = y|X = x, D) la probabilité ajustée aux données D et considérée comme un score. Dans ces cas, le classifieur φ est 

alors défini par la donnée d’un seuil λ ∈ ]0, 1[ par 

φ(x λ) = 
1 si Pr(Y = y|X = x, D) > λ 

0 sinon 

Dans le cas de l’analyse discriminante ou des réseaux bayésiens comme le réseau bayésien naïf on considère une loi a priori π 

pour la distribution de probabilité des classes et on ajuste un modèle paramétrique ou non paramétrique aux lois 

conditionnelles de X sachant que Y = y. Notons par Pr(X = x|Y = y) la densité conditionnelle de X sachant Y = y selon 

que X est discrète ou non. Le classifieur est obtenu à partir de la loi a posteriori de Y sachant que X = x qui est définie par 
 Pr(x|Y = y, D)π(y) 

Pr(x|D) 
considérée comme un score où Pr(x|Y = y, D) est la loi ajustée en utilisant 

les données D et Pr(x|D) est la loi marginale de X correspondant au couple (Pr(x|y, D), π(y)). Ce 

classifieur est alors défini, pour λ > 0 fixé, par 

 

φ(x λ) = 
1 si Pr(Y = y|X = x, D)π(y) > λ 

0 sinon 
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Il se pose alors la question de sélectionner un classifieur optimal sur la base d’un compromis sur des mesures de performance 

comme la sensibilité , la spécificité, le taux d’erreur, etc. La courbe ROC et la mesure AUC sont généralement utilisées pour 

réaliser cet objectif. Cette démarche peut être étendue aux méthodes d’agrégation de classifieur comme le boosting d’arbre binaire 

de classement ou le random forest. Généralement ces méthodes utilisent un seuil λ = 0.5 par défaut. Très souvent le classifieur 

φ(x|λ) associé au seuil λ = 0.5 ne fournit pas de meilleurs performances. Ainsi pour comparer notre méthode de classement à 

ces diff érentes méthodes, nous considérons la stratégie suivante : 

1. Nous identifions le seuil optimal pour chaque méthode associant un score à une observation. C’est à dire le seuil qui 

produit le classifieur dont les mesures de performance fournit le meilleur compromis. 

2. Nous comparons alors les classifieurs ainsi obtenus à notre classifieur. Les résultats obtenus sont présentés dans les 

tableaux ci-dessous. 

Les résultats présentés ci-dessous sont obtenus en utilisant le package caret[20] (classification and regression training) dans 

l’environnement de programmation R. Ce dernier contient un riche ensemble de fonctions de modélisation à la fois pour la 

classification et la régression. Le package caret permet d’éliminer la diff érence syntaxique située entre un grand nombre 

d’algorithme pour la construction et la prédiction de modèles. Il contient un ensemble d’approches raisonnables semi-

automatisées pour l’optimisation des valeurs des paramètres d’apprentissage. A l’aide du package caret, on peut donc trouver, 

pour la plus part des méthodes (classification ou régression), le classifieur optimal qui ajuste le mieux les données 

d’apprentissage grâce à sa fonction train. La fonction train est utilisée pour sélec- tionner les valeurs du(des) paramètre(s) 

d’apprentissage du modèle et/ou d’estimer les performances du modèle en utilisant une méthode d’échantillonnage. En utilisant 

une méthode d’échantillonnage telle que le bootstrap ou la validation croisée, un ensemble d’observations est simulé 

conditionnellement aux données d’apprentissage. A chaque ensemble échantillonné correspond un classifieur. Pour chaque 

combinaison de paramètres d’apprentissage candidats, un modèle est ajusté aux données échantillon- nées et ensuite est utilisé 

pour la prédiction. La performance du modèle est estimée en agrégeant les prédictions du modèle sur les données échantillonnées. 

Ces performances estimées sont utilisées pour évaluer laquelle des combinaisons des paramètres d’apprentissage est appropriée. 

Pour des données de grande taille telles que les données "Adult Dataset" nous avons choisi la validation croisée comme mé- thode 

d’échantillonnage et pour les données de petite taille, par exemple les données "Credit Approval Dataset", nous avons utilisé le 

bootstrap comme méthode de ré-échantillonnage. 

 
Le taux d’erreur de classement est la mesure de performance généralement associée aux algorithmes d’apprentissage 

automatique. Dans le contexte des ensembles de données symétriques et des ensembles de données avec des coûts de mauvais 

classement égaux, il est raisonnable d’utiliser le taux d’erreur comme mesure de performance. Par contre lorsque les données sont 

déséquilibrées ou lorsqu’elles sont associées à des coûts d’erreur inégaux, il est plus approprié d’utiliser la courbe ROC ou 

d’autres 
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techniques similaires (Ling et Li, 1998 ; Drummond & Holte, 2000 ; Provost & Fawcett, 2001 ; Bradley, 1997 ; Turney 1996 ). 

L’aire sous la courbe ROC (AUC) est une mesure utile de la performance du classificateur car elle est indépendante du 

critère de décision choisi et aux changements de la distribution des classes [12]. La comparaison des AUC peut établir une 

relation de domination entre les classifieurs. 

Le score de Pierce constitue aussi une mesure de performance conçue pour la prévision d’événements climatiques rares afin de 

pénaliser les modèles ne prévoyant jamais ces événements ou encore générant trop de fausses alertes. Le modèle idéal prévoit tous les 

événements rares sans fausse alerte. Le score de Pierce : Sensibilité + Spécif icité − 1, compris entre -1 et 1, évalue la qualité d’un 

modèle de prévision. Si ce score est supérieur à 0, le taux de bonnes prévisions est supérieur à celui des fausses alertes et plus il 

est proche de 1, meilleur est le modèle. 

Dans la suite, nous avons choisi de comparer notre méthode à des méthodes alternatives qui associent un score à chaque 

observation. Pour ces méthodes il est donc possible de construire leurs courbes ROC. Pour chaque méthode alternative, on peut 

produire un ensemble de classifieurs et puis sélectionner le classifieur le plus pertinent suivant un critère de sélection à l’aide de 

la fonction train du package caret. Dans cette analyse nous avons choisi la précision (taux de bien classés) comme critère 

de sélection. Par la suite, nous allons comparer les performances des meilleurs classifieurs sélectionnés avec les performances de 

notre classifeur. Les résultats sont présentés sous forme de tableaux. 

 

 

 

 

 

7.2.1 Données Adult Data Set 
 

 
1. Lorsque la distribution de l’échantillon test est identique à celui de l’échantillon 

d’apprentissage 
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On peut constater à partir des graphes ci-dessus que lorsque la proportion d’observations posi- tives devient de plus en 

plus grande, les courbes ROC se rapprochent de plus en plus. 
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Distributions 

"0" - "1" 

ARM CART CTREE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 0,700 0,779 0,222 0,740 0,479 0,105 1,000 0,007 0,552 0,105 0,593 0,878 0,124 0,736 0,471 

0.985 - 0.015 0,671 0,821 0,181 0,746 0,492 0,152 1,000 0,014 0,576 0,152 0,793 0,777 0,222 0,785 0,570 

0.970 - 0.030 0,644 0,807 0,198 0,726 0,451 0,450 0,948 0,067 0,699 0,398 0,812 0,766 0,232 0,789 0,578 

0.930 - 0.070 0,754 0,799 0,204 0,776 0,553 0,530 0,948 0,083 0,739 0,478 0,797 0,805 0,196 0,801 0,602 

0.850 - 0.150 0,791 0,774 0,223 0,782 0,565 0,467 0,949 0,127 0,708 0,416 0,813 0,818 0,183 0,815 0,631 
 

Distributions 

"0" - "1" 

ARM Naive Bayes SMOTE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 0,700 0,779 0,222 0,74 0,479 0,814 0,719 0,279 0,766 0,533 0,547 0,770 0,231 0,659 0,317 

0.985 - 0.015 0,671 0,821 0,181 0,746 0,492 0,799 0,761 0,238 0,780 0,560 0,696 0,821 0,181 0,758 0,517 

0.970 - 0.030 0,644 0,807 0,198 0,726 0,451 0,842 0,750 0,247 0,796 0,592 0,716 0,755 0,247 0,736 0,471 

0.930 - 0.070 0,754 0,799 0,204 0,776 0,553 0,850 0,760 0,233 0,805 0,610 0,783 0,772 0,227 0,778 0,555 

0.850 - 0.150 0,791 0,774 0,223 0,782 0,565 0,832 0,785 0,207 0,808 0,617 0,805 0,792 0,207 0,798 0,597 
 

Distributionss 

"0" - "1" 

ARM Boosting Random forests 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 0,700 0,779 0,222 0,740 0,479 0,756 0,793 0,208 0,774 0,549 0,698 0,851 0,150 0,774 0,549 

0.985 - 0.015 0,671 0,821 0,181 0,746 0,492 0,766 0,814 0,187 0,790 0,580 0,799 0,794 0,205 0,796 0,593 

0.970 - 0.030 0,644 0,807 0,198 0,726 0,451 0,823 0,801 0,199 0,812 0,624 0,791 0,780 0,220 0,786 0,571 

0.930 - 0.070 0,754 0,799 0,204 0,776 0,553 0,842 0,804 0,193 0,823 0,646 0,804 0,794 0,204 0,799 0,598 

0.850 - 0.150 0,791 0,774 0,223 0,782 0,565 0,836 0,828 0,171 0,832 0,664 0,780 0,833 0,176 0,806 0,613 

 

Tableau III.11 – Performances prédictives des méthodes alternatives 
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On peut constater que notre méthode d’apprentissage (ARM) est plus performante que la mé- thode CART. Du point de 

vue de l’aire en dessous de la courbe ROC (AUC) et du score de Pierce (PSS), la méthode ARM enregistre des valeurs 

largement au dessus des valeurs de la méthode CART. Elle produit également des sensibilités plus élevées variant entre 

62% et 80% tandis que la méthode CART enregistre des sensibilités entre 10% et 50%. Par contre la méthode CART 

est plus spécifique (95%-100%) et admet des erreurs de classement plus faibles (7%-12%) contre (77%-81%) et (18%-

22%) respectivement pour la méthode ARM. 

Le classifieur naïf de Bayes, malgré qu’il produit des sensibilités, des AUC et des PSS plus élevés que ceux produits par la 

méthodes ARM, enregistre de forts taux d’erreurs de classement entre 21% et 28% avec des spécificités plus petites que 

celles de la méthodes ARM. 

Les résultats présentés dans le tableau III.11 ci-dessus montrent une forte équivalence entre la méthode ARM et les 

méthodes SMOTE, Boosting et forêts aléatoires. Réputées d’être les meilleurs méthodes de classement en terme de 

performance, la méthode boosting et la méthode des forêts aléatoires présentent des performances sensiblement égales 

aux performances de la méthode ARM. 

 

 

 
2. Lorsque la distribution de l’échantillon test est différente de celui de l’échantillon 

d’apprentissage 

 
A ma connaissance, les performances d’un classifeur binaire sont généralement évaluées à partir d’un ensemble test dont la 

distribution est identique à celle de l’ensemble d’apprentissage qui a servis à construire le classifieur. Nous voulons évaluer 

les performances de la méthode d’appren- tissage statistique et de les comparer avec les performances des méthodes 

alternatives lorsque la distribution de l’échantillon d’apprentissage est diff érente de la distribution de l’ensemble test. 
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De même on peut constater aussi, à partir des graphes ci-dessus, que lorsque la proportion d’ob- servations positives 

devient de plus en plus grande, les courbes ROC se rapprochent de plus en plus. 
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Distributions 

"0" - "1" 

ARM CART CTREE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 0,729 0,763 0,245 0,746 0,492 0,248 0,995 0,189 0,621 0,243 0,555 0,922 0,168 0,738 0,477 

0.985 - 0.015 0,594 0,866 0,201 0,730 0,46 0,168 0,999 0,205 0,584 0,167 0,637 0,874 0,184 0,756 0,511 

0.970 - 0.030 0,697 0,750 0,263 0,724 0,447 0,493 0,948 0,164 0,720 0,441 0,840 0,761 0,220 0,800 0,601 

0.930 - 0.070 0,752 0,800 0,212 0,776 0,552 0,525 0,948 0,156 0,736 0,473 0,811 0,804 0,194 0,808 0,615 

0.850 - 0.150 0,754 0,799 0,212 0,776 0,553 0,724 0,858 0,175 0,791 0,582 0,819 0,816 0,183 0,817 0,635 
 

Distributions 

"0" - "1" 

ARM Naive Bayes SMOTE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 0,729 0,763 0,245 0,746 0,492 0,814 0,775 0,216 0,794 0,589 0,649 0,705 0,309 0,677 0,354 

0.985 - 0.015 0,594 0,866 0,201 0,730 0,460 0,829 0,773 0,213 0,801 0,602 0,728 0,776 0,236 0,752 0,504 

0.970 - 0.030 0,697 0,750 0,263 0,724 0,447 0,831 0,776 0,211 0,804 0,607 0,649 0,855 0,196 0,752 0,504 

0.930 - 0.070 0,752 0,800 0,212 0,776 0,552 0,835 0,770 0,214 0,802 0,605 0,793 0,768 0,226 0,780 0,561 

0.850 - 0.150 0,754 0,799 0,212 0,776 0,553 0,825 0,784 0,206 0,804 0,609 0,825 0,754 0,229 0,790 0,579 
 

Distributions 

"0" - "1" 

ARM Boosting Random forests 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 0,729 0,763 0,245 0,746 0,492 0,806 0,807 0,193 0,806 0,613 0,733 0,809 0,210 0,771 0,542 

0.985 - 0.015 0,594 0,866 0,201 0,730 0,460 0,820 0,807 0,190 0,814 0,627 0,793 0,775 0,220 0,784 0,568 

0.970 - 0.030 0,697 0,750 0,263 0,724 0,447 0,823 0,812 0,185 0,818 0,635 0,800 0,794 0,205 0,797 0,594 

0.930 - 0.070 0,752 0,800 0,212 0,776 0,552 0,839 0,817 0,177 0,828 0,656 0,788 0,800 0,203 0,794 0,588 

0.850 - 0.150 0,754 0,799 0,212 0,776 0,553 0,831 0,832 0,169 0,831 0,663 0,808 0,808 0,191 0,808 0,616 

 

Tableau III.12 – Performances prédictives des méthodes alternatives 
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Ici aussi on obtient des résultats analogiques aux résultats obtenus lorsque la distribution de l’ensemble 

d’apprentissage est identique à la distribution de l’ensemble test. On observe que la méthode d’apprentissage ARM 

est plus performante que la méthode CART. Du point de vue de l’aire en dessous de la courbe ROC (AUC) et du 

score de Pierce (PSS), la méthode ARM enregistre des valeurs largement au dessus des valeurs de la méthode CART. 

Elle produit également des sensibilités plus élevées variant entre 59% et 75% tandis que la méthode CART enregistre des 

sensibilités entre 16% et 72%. Par contre la méthode CART est plus spécifique et admet des erreurs de classement plus 

faibles sur tous les échantillons simulés. 

Dans le cas où la distribution d’apprentissage est diff érente de la distribution test, les indices de performances du 

classifieur naïf de Bayes sont meilleurs que les indices de performance de la méthode d’apprentissage ARM sur tous les 

échantillons simulés sauf au niveau de la spécificité où on a enregistré des taux sensiblement égaux. On peut constater aussi 

que la méthode Boosting domine largement la méthode ARM sur tous les échantillons en plus elle enregistre des taux 

d’erreur inférieurs à 20% des scores de Pierce supérieurs à 61% . Tandis que la méthode des forêts aléatoires enregistre 

des taux d’erreurs inférieurs à 22% et des scores de Pierce compris entre 54 − 61%. Là où la méthode ARM enregistre 

des taux d’erreurs supérieurs à 20% et des scores de Pierce inférieurs à 55%. 

 

 

 
– ARM : Association Rules Mining ; CART : Classification And Regression Tree ; CTREE : Condi- tional tree ; Naive 

Bayes : Naive Bayes Classifier ; SMOTE : Synthetic Minority Oversampling Technique, 

 

 

 

 

 

 

 
7.2.2 Données Credit Approval Data Set 

 
 
 

Le jeu de données "credit approval" concerne des demandes de carte de crédit [24]. Tous les noms et valeurs des variables ont 

été modifiés pour protéger la confidentialité des données. Les données contiennent au total 690 observations incluant les 

données manquantes. Elles sont constituées d’un mélange de 6 variables numériques, de 9 variables non-numériques et d’une 

variable réponse binaire ("+","-"). L’objectif visé dans cette analyse est de trouver un profil prédictif d’approbation d’une carte 

crédit à un sujet donné. 
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On constate également que lorsque la proportion d’observations positives devient de plus en plus grande, les courbes ROC 

se rapprochent de plus en plus. 
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Distributions 

"-" "+" 

ARM CART CTREE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 1.000 0.852 0.147 0.926 0.852 - - - - - 1.000 0,966 0,033 0,983 0,966 

0.985 - 0.015 1.000 0.832 0.166 0.916 0.832 - - - - - 1.000 0,947 0,052 0,974 0,947 

0.970 - 0.030 0.909 0.714 0.280 0.811 0.632 0,727 0,964 0,043 0,845 0,691 0,909 0,947 0,055 0,928 0,856 

0.930 - 0.070 0.889 0.818 0.177 0.853 0.707 0,556 0,983 0,047 0,770 0,539 1,000 0,866 0,125 0,933 0,866 

0.850 - 0.150 0.857 0.765 0.221 0.811 0.622 0,889 0,801 0,186 0,845 0,690 0,889 0,801 0,186 0,845 0,690 

0.700 - 0.300 0.935 0.625 0.283 0.780 0.560 0,928 0,801 0,161 0,864 0,729 0,948 0,790 0,163 0,869 0,738 

 
Distributions 

"-" "+" 

ARM Naive Bayes SMOTE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 1.000 0.852 0.147 0.926 0.852 1.000 0,992 0,008 0,996 0,992 1.000 0,992 0,008 0,996 0,992 

0.985 - 0.015 1.000 0.832 0.166 0.916 0.832 1.000 0,997 0,003 0,998 0,997 1.000 0,997 0,003 0,998 0,997 

0.970 - 0.030 0.909 0.714 0.280 0.811 0.632 1,000 0,933 0,065 0,966 0,933 1,000 0,933 0,065 0,966 0,933 

0.930 - 0.070 0.889 0.818 0.177 0.853 0.707 0,889 0,933 0,070 0,911 0,822 0,889 0,933 0,070 0,911 0,822 

0.850 - 0.150 0.857 0.765 0.221 0.811 0.622 0,825 0,840 0,162 0,832 0,665 0,825 0,840 0,162 0,832 0,665 

0.700 - 0.300 0.935 0.625 0.283 0.780 0.560 0,784 0,905 0,132 0,844 0,689 0,784 0,905 0,132 0,844 0,689 

 
Distrbutions 

"-" "+" 

ARM Boosting Random Forests 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 1.000 0.852 0.147 0.926 0.852 1.000 1,000 0,000 1,000 1,000 1.000 1,000 0,000 1,000 1,000 

0.985 - 0.015 1.000 0.832 0.166 0.916 0.832 1.000 0,994 0,006 0,997 0,994 1.000 1,000 0,000 1,000 1,000 

0.970 - 0.030 0.909 0.714 0.280 0.811 0.632 1,000 1,000 0,000 1,000 1,000 1,000 1,000 0,000 1,000 1,000 

0.930 - 0.070 0.889 0.818 0.177 0.853 0.707 1,000 0,992 0,008 0,996 0,992 1,000 1,000 0,000 1,000 1,000 

0.850 - 0.150 0.857 0.765 0.221 0.811 0.622 0,889 0,888 0,112 0,889 0,777 1,000 0,997 0,002 0,998 0,997 

0.700 - 0.300 0.935 0.625 0.283 0.780 0.560 0,915 0,874 0,113 0,895 0,789 0,993 0,992 0,008 0,992 0,985 

 

Tableau III.13 – Performances prédictives des méthodes alternatives par bootstrap 

C
h

a
p

itr
e

 III. C
la

s
s

ifte
u

r
 b

a
s

é
 s

u
r

 u
n

 e
n

s
e

m
b

le
 d

e
 p

r
o

ftls
 lo

r
s
q

u
e

 le
s

 d
o

n
n

é
e

s
 s

o
n

t 

in
d

é
p

e
n

d
a

n
te

s
 e

t id
e

n
tiq

u
e

m
e

n
t d

is
tr

ib
u

é
e

s
 



III.7 Application à des données de la littérature 

87 

 

 

 

 

7.2.3 Données Pima Indians Diabetes Data Set 
 
 
 
 
 

Le jeu de données "pima-indians-diabetes" est constitué par des femmes d’au moins 21 ans d’origine indienne Pima auxquelles 

on a administré un test pour le diabète [27]. L’échantillon est constitué de 8 variables numériques et d’une variable réponse 

binaire qui prend la valeur 1 si le test est positif. Il contient au total 768 observations. L’objectif de l’analyse est de déterminer si 

oui ou non la patiente présente des signes de diabète selon les normes de l’organisation mondiale de la santé. 
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On constate de même que lorsque la proportion d’observations positives devient de plus en plus grande, les courbes 

ROC se rapprochent de plus en plus. 
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Distributions 

"-" "+" 

ARM CART CTREE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 0.007 1.000 0.824 0.175 0.912 0.824 - - - - - - - - - - 

0.985 - 0.015 0.875 0.846 0.154 0.860 0.721 - - - - - 0,50 0,954 0,053 0,727 0,454 

0.970 - 0.030 0.933 0.786 0.210 0.859 0.719 - - - - - 0,333 0,954 0,064 0,644 0,287 

0.930 - 0.070 0.711 0.782 0.223 0.746 0.492 - - - - - 0,684 0,732 0,271 0,708 0,416 

0.850 - 0.150 0.784 0.602 0.370 0.693 0.482 0,250 0,978 0,131 0,614 0,228 0,807 0,574 0,391 0,690 0,381 

0.700 - 0.300 0.785 0.682 0.287 0.733 0.466 0,477 0,900 0,227 0,688 0,377 0,836 0,634 0,305 0,735 0,470 

 
Distributions 

"-" "+" 

ARM Naive Bayes SMOTE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 1.000 0.824 0.175 0.912 0.824 1.000 0,962 0,038 0,981 0,962 1.000 0,962 0,038 0,981 0,962 

0.985 - 0.015 0.875 0.846 0.154 0.860 0.721 0,750 0,900 0,102 0,825 0,650 0,750 0,900 0,102 0,825 0,650 

0.970 - 0.030 0.933 0.786 0.210 0.859 0.719 0,733 0,834 0,169 0,784 0,567 0,733 0,834 0,169 0,784 0,567 

0.930 - 0.070 0.711 0.782 0.223 0.746 0.492 0,789 0,730 0,266 0,760 0,519 0,789 0,730 0,266 0,760 0,519 

0.850 - 0.150 0.784 0.602 0.370 0.693 0.482 0,784 0,748 0,246 0,766 0,532 0,784 0,748 0,246 0,766 0,532 

0.700 - 0.300 0.785 0.682 0.287 0.733 0.466 0,762 0,736 0,256 0,749 0,498 0,762 0,736 0,256 0,749 0,498 

 
Distributions 

"-" "+" 

ARM Boosting Random Forests 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 1.000 0.824 0.175 0.912 0.824 1.000 0,984 0,016 0,992 0,984 1.000 1,000 0,000 1,000 1,000 

0.985 - 0.015 0.875 0.846 0.154 0.860 0.721 1,000 0,928 0,071 0,964 0,928 1,000 1,000 0,000 1,000 1,000 

0.970 - 0.030 0.933 0.786 0.210 0.859 0.719 0,800 0,758 0,241 0,779 0,558 1,000 1,000 0,000 1,000 1,000 

0.930 - 0.070 0.711 0.782 0.223 0.746 0.492 0,737 0,778 0,225 0,758 0,515 1,000 1,000 0,000 1,000 1,000 

0.850 - 0.150 0.784 0.602 0.370 0.693 0.482 0,716 0,824 0,193 0,770 0,540 1,000 1,000 0,000 1,000 1,000 

0.700 - 0.300 0.785 0.682 0.287 0.733 0.466 0,822 0,724 0,246 0,773 0,546 1,000 1,000 0,000 1,000 1,000 

 

Tableau III.14 – Performances prédictives des méthodes alternatives par bootstrap 
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Les résultats obtenus à partir des données "Pima Indians Diabetes Dataset" et "Credit Approval Dataset" montrent que, 

même en présence d’un jeux de données de petite taille, la méthode ARM reste toujours meilleur que la méthode CART de 

même que la méthode CTREE dont, pour les données "Credit Approval Dataset", les taux d’erreur peuvent aller jusqu’à 39% et 

les scores de Pierce inférieurs à 47% tandis que la méthode ARM enregistre des scores supérieurs à 47%. Ce pendant elles enregistrent 

des scores de même ordre de grandeur pour les données "Pima Indians Diabetes Dataset" mais avec des taux d’erreur plus 

élevés pour la méthode ARM. Il faut noter aussi que pour les deux jeux de données les indicateurs de performance 

(sensibilité, spécificité, AUC et PSS) décroissent et le taux d’erreur croît au fure et à mesure que la proportion 

d’observations positives augmente. 

 

 

 

 

 
7.2.4 Données Breast Cancer Data Set 

 

 
Les données obtenues à partir du diagnostique de Wisconsin du cancer du sein (WDBC), fourni par le Centre Hospitalier 

Universitaire de Wisconsin, a été dérivé d’un groupe d’images par aspiration à l’aiguille fine (FNA) de la poitrine [21]. Une 

programmation génétique avec diff érentes tailles de la population a été utilisée pour cette étude. L’objectif est d’identifier la 

classe "benign" ou "malignant" de chaque numéro. Les échantillons arrivent périodiquement comme le Dr Wolberg rapporte ses 

cas cliniques. La base de données reflète donc ce regroupement chronologique des données. Chaque variable à l’exception de la 

première a été convertie en 11 attributs numériques primitifs avec des valeurs allant de 0 à 10. Il y a 16 valeurs manquantes. Les 

données contiennent 699 observations sur 11 variables, l’une étant une variable de caractère, 9 étant ordonnées ou 

nominales, et une classe cible. 
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On peut remarquer également que lorsque la proportion d’observations positives devient de plus en plus grande, les 

courbes ROC se rapprochent de plus en plus. 
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Distributions 

"-" "+" 

ARM CART CTREE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 1,000 0,964 0,036 0,982 0,964 - - - - - 1.000 0,989 0,011 0,994 0,989 

0.985 - 0.015 1,000 0,908 0,091 0,954 0,908 0,857 0,993 0,009 0,925 0,850 1.000 0,964 0,035 0,982 0,964 

0.970 - 0.030 1,000 0,883 0,114 0,942 0,883 0,643 0,993 0,018 0,818 0,636 1.000 0,966 0,033 0,983 0,966 

0.930 - 0.070 1,000 0,858 0,132 0,929 0,858 0,879 0,984 0,023 0,932 0,863 0,97 0,971 0,029 0,970 0,941 

0.850 - 0.150 0,987 0,858 0,123 0,922 0,845 0,962 0,968 0,033 0,965 0,930 0,987 0,953 0,042 0,970 0,940 

0.700 - 0.300 0,995 0,858 0,101 0,926 0,853 1,000 0,948 0,036 0,974 0,948 1,000 0,948 0,036 0,974 0,948 

 
Distributions 

"-" "+" 

ARM Naive Bayes SMOTE 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0,993 - 0,007 1,000 0,964 0,036 0,982 0,964 1,000 1,000 0,000 1,000 1,000 1,000 1,000 0,000 1,000 1,000 

0,985 - 0,015 1,000 0,908 0,091 0,954 0,908 1,000 0,993 0,007 0,996 0,993 1,000 0,993 0,007 0,996 0,993 

0,970 - 0,030 1,000 0,883 0,114 0,942 0,883 1,000 0,977 0,022 0,988 0,977 1,000 0,977 0,022 0,988 0,977 

0,930 - 0,070 1,000 0,858 0,132 0,929 0,858 1,000 0,977 0,021 0,988 0,977 1,000 0,977 0,021 0,988 0,977 

0,850 - 0,150 0,987 0,858 0,123 0,922 0,845 0,987 0,971 0,027 0,979 0,958 0,987 0,971 0,027 0,979 0,958 

0,700 - 0,300 0,995 0,858 0,101 0,926 0,853 0,995 0,971 0,023 0,983 0,966 0,995 0,971 0,023 0,983 0,966 

 
Distributions 

"-" "+" 

ARM Boosting Random Forests 

sensib spécf err.cl auc pss sensib spécif err.cl auc pss sensib spécif err.cl auc pss 

0.993 - 0.007 1,000 0,964 0,036 0,982 0,964 1,000 1,000 0,000 1,000 1,000 1,000 0,000 1,000 1,000 1,000 

0.985 - 0.015 1,000 0,908 0,091 0,954 0,908 1,000 0,993 0,007 0,996 0,993 1,000 1,000 0,000 1,000 1,000 

0.970 - 0.030 1,000 0,883 0,114 0,942 0,883 1,000 0,993 0,007 0,996 0,993 1,000 1,000 0,000 1,000 1,000 

0.930 - 0.070 1,000 0,858 0,132 0,929 0,858 1,000 0,991 0,008 0,996 0,991 1,000 1,000 0,000 1,000 1,000 

0.850 - 0.150 0,987 0,858 0,123 0,922 0,845 0,987 0,989 0,012 0,988 0,976 1,000 1,000 0,000 1,000 1,000 

0.700 - 0.300 0,995 0,858 0,101 0,926 0,853 0,989 0,977 0,019 0,983 0,966 1,000 1,000 0,000 1,000 1,000 

 

Tableau III.15 – Performances prédictives des méthodes alternatives à partir de 20 échantillons bootstrap 
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Les résultats obtenus à partir des données "Breast Cancer Dataset" confirment donc que en pré- sence de données de petite 

taille et déséquilibrées, la méthode ARM domine la méthode CART et enregistre des performances sensiblement équivalentes 

aux performances obtenues à partir des mé- thodes de classement telles que la méthode Boosting et la méthode des forêts 

aléatoires. 

 
Il ressort de cette analyse que notre méthode d’apprentissage est largement plus performante que la méthode CART. Ce 

pendant elle est comparable à la méthode CTREE, le classifieur naif de Bayes, la méthode SMOTE, le boosting d’arbres de 

classement et la méthode random forest. Du point de vue de la sensibilité, de la spécificité, de l’aire en dessous de la courbe 

ROC et du score de Pierce, notre méthode d’apprentissage à les même ordres de valeur que les méthodes citées précédemment. 

Par contre elle enregistre une erreur de classement supérieur à celles des autres méthodes de l’ordre de 10−1 à 10−2. 

Par ailleurs, on peut remarquer que si CART et CTREE permettent de fournir un outil d’aide à la décision (arbre de décision) 

permettant de visualiser des profils pertinents cela n’est pas le cas des méthodes comme le boosting et les forêts aléatoires qui 

parfois ont des performances supérieures à ceux obtenues par la méthode d’apprentissage étudiée dans la thèse. D’où l’avantage de 

cette dernière sur les autres car elle permet d’avoir des performances sensiblement égales aux méthodes comme le boosting et les 

forêts aléatoires mais aussi elle permet de visualiser les profils les plus pertinents pour construire une règle de classement. 

 

8 Conclusion 

La procédure permet de surmonter l’impuissance des méthodes de régression qui sous-estiment les probabilités 

conditionnelles de l’apparition de la classe cible lorsque la fréquence des instances qui appartiennent à cette classe est très 

faible. De plus les interactions d’attributs qui sont fortement corrélées avec la classe cible sont spécifiées, ainsi la fonction de 

classification n’apparaît pas comme une boîte noire. Néanmoins il faut remarquer qu’une étape de prétraitement des données est 

nécessaire avant d’eff ectuer la procédure car il est supposé que les variables soient évaluées sur une échelle non numérique. 
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Annexe B 
 

 

Annexe Chapitre III 

 
 

A.1 Discrétisation par la Méthode de largeur d’intervalle égale 

La technique de discrétisation la plus simple est celle dont le domaine de la variable discrétisée est le plus petit possible. i.e., 

|πA|=2. La plus simple discrétisation, pas nécessairement la meilleure, est la discrétisation binaire. Bien qu’il existe une infinité 

de discrétisations binaires pour n’importe quel intervalle, toute variable numérique dans un ensemble de n observations peut 

seulement prendre au plus n valeurs distinctes. Ainsi, au plus n − 1 discrétisations binaires sont pratiquement possibles. La 

méthode la plus simple pour discrétiser une variable numérique consiste à partitionner son domaine en intervalles de largeur 

égale. On l’appelle la Méthode de largeur d’intervalle égal (Equal Interval Width Method). 

 

A.2 Discrétisation par la méthode par intervalle de fréquence égale 

Plusieurs algorithmes de discrétisation basés sur la méthode de largeur d’intervalle égale (Equal Interval Width Method) ou 

sur la méthode par intervalle de fréquence égale (Equal Frequency per Interval Method) ont été étudiés dans plusieurs papiers. 

Parmi ces derniers on peut citer l’algorithme ChiMerge de Kerber [? ] qui utilise la statistique du χ2 pour discrétiser une variable 

numérique. On peut citer aussi l’algorithme Chi2 [? ] qui est une amélioration de l’algorithme ChiMerger sur le choix du critère 

d’arrêt α. 

 

 
 

A.3 Discrétisation par la mesure de l’entropie 

Supposons que nous avons un ensemble S de N observations. Pour discrétiser une variable numé- rique A, nous choisissons 

le « meilleur » point de coupure TA de son domaine de définition en évaluant tous les points de coupure candidats. Premièrement il 

faut ordonner les observations dans l’ordre crois- sant des valeurs de la variable A et le point milieu entre chaque paire successive 

d’observations dans la séquence ordonnée est considéré comme un point de coupure potentiel. Ainsi pour chaque variable 
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numérique, on aura N − 1 points de coupure potentiels (si on suppose que les observations n’ont pas des valeurs de A identiques). 

Pour chaque point de coupure T , les données sont partitionnées en deux ensembles et l’entropie de la partition obtenue peut 

être alors calculée. 

L’ensemble S peut être vu comme un ensemble d’événements réalisé par une ou plusieurs variables. A chaque événement Ei 

est associée une probabilité P (Ei, S). En général ces probabilités sont non- uniformes, à l’événement Ei on associe la 

probabilité P (Ei, S), mais de somme égale à 1 car toutes les réalisations possibles sont prises en comptes. La quantité 

d’information Ii d’un événement simple Ei est définie comme le logarithme de base 2 de la probabilité de l’événement P 

(Ei, S) : 

 

Ii = log2P (Ei, S) 

 
L’entropie Ent(Ei, S) de l’événement Ei est l’opposé de Ii (Ent(Ei, S) = −Ii). L’entropie peut être vue comme l’"incertitude". 

Obtenir une quantité d’informations d’un événement c’est perdre la même quantité d’incertitudes de l’événement, ainsi Ii et 

Ent(Ei, S) ne diff érent que par le signe. Par définition Ii est toujours négative. Elle varie entre −∞ et 0 puisque P (Ei, S) est une 

probabilité. Intuitivement, plus l’événement est improbable, plus l’incertitude augmente. A partir de la définition précédente, on 

peut alors définir l’entropie d’un ensemble d’événements. L’entropie d’un ensemble S est l’entropie moyenne de tous les 

événements de l’ensemble. Elle est calculée en pondérant chacune des entropies Ent(Ei, S) par la probabilité P (Ei, S) de 

l’événement. 

Ent(S) = − 
Σ 

P (Ei, S)Ent(Ei, S) = − 
Σ 

P (Ei, S)log2P (Ei, S) 

Le choix de la mesure logarithmique est justifié par le désir d’une entropie additive. Nous voulons que l’algèbre de notre 

mesure reflète les règles de probabilité. C’est à dire que lorsque nous recevons un ensemble d’événements indépendants, nous 

aimerions pouvoir dire que l’entropie totale reçue est la somme des entropies individuelles. Mais la probabilité conjointe 

d’événements indépendants est le produit des probabilités des événements, et donc nous devons prendre le logarithme afin que la 

pro- babilité conjointe des événements indépendants puisse contribuer de façon additive à l’entropie acquise. 

 

 
 

A.4 Discrétisation par la méthode MDLP 
 

Ici les événements d’intérêt sont spécialement les classes des observations d’un ensemble S. Sup- posons qu’il y ait k 

classes : C1, . . . , Ck et notons par P (Ci, S) la proportion d’observation dans S de classe Ci. Pour calculer l’entropie d’une classe 

donnée après que l’ensemble S est partitionné en deux sous-ensembles S1 et S2, nous prenons la moyenne pondérée des 

entropies des partitions. 

Déftnition 6. Pour un ensemble S d’observations, une variable A, et une valeur de coupure T . Supposons S1 ⊂  S le 

sous-ensemble des observations dans S dont les valeurs correspondantes de A 

i i 
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≤ 

 
 

 

 

 

sont plus petites que T et S2 = S − S1. L’entropie de la partition indicée par T , notée par E(A, T, S), est définie par 
E(A, T, S) = 

|S1| 
Ent(S ) + 

|S2| 
Ent(S ) 

N 
1 

N 
2
 

où N = |S| est le nombre d’observations dans l’ensemble S. 

Le meilleur point de coupure parmi tous les points de coupure candidats est le point de coupure 

TA pour lequel 

TA = argmim E(A, T, S) 
T 

Ceci détermine une discrétisation binaire de la variable A. Fayyad et Irani [? ] ont montré que la valeur TA de la variable A qui 

minimise la classe-entropie E(A, TA, S) pour un ensemble d’apprentissage S doit toujours être une valeur (une borne) entre deux 

observations de classes diff érentes dans la séquence des observations ordonnées. L’ensemble S est alors subdivisé en deux sous-

ensembles par le point de coupure TA. Une suite de points de coupure est obtenue en appliquant de manière récursive la même 

méthode de discrétisation binaire pour chacun des sous-ensembles nouvellement produits jusqu’à ce que la condition suivante 

soit réalisée : 

ttaint(A, T, S) 
 log2(N − 1) 

+ 
∆ 
 

N 

(A, T ; S) 

N 
 

où ttaint(A, T ; S) = Ent(S) − E(A, T ; S), ∆(A, T ; S) = log2(3
k − 2) − [k1Ent(S1) − k2Ent(S2)], et k,k1 et k2 sont les 

nombres de classes représentées dans les ensembles S,S1 et S2 respectivement[? ]. Cette méthode de discrétisation d’une 

variable numérique est généralement appelée le principe de la longueur de description minimal (Minimal Description 

Length Principle). 
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Chapitre IV 
 

 

Classifieur basé sur un ensemble de profils 

lorsque les observations ne sont pas 

identiquement distribuées 

 

1 Introduction 
 

L’apprentissage statistique présenté dans la première partie de cette analyse (voir chapitre III) est élaboré sous l’hypothèse 

d’indépendance et de distribution identique (i.i.d) des éléments aléatoires (Yi, Xi)i=1,...,n qui ont généré les observations. Dans le 

présent chapitre, nous cherchons à adapter notre procédure d’apprentissage dans une situation où les données, en plus d’être 

déséquilibrées, sont réparties entre m clusters (groupes ou blocs) tirés aléatoirement à partir d’une population donnée. On suppose 

que chaque cluster admet une distribution [Y, X]h; h ∈  {1, · · · , m} indépendantes des autres. Etant donné que l’indicateur de 

performance au tour duquel la procédure d’apprentissage a été éla- borée est la valeur prédictive positive, nous proposons un 

estimateur Bayésien de la valeur prédictive positive de tout profil U conditionnellement à la distribution [Y, X]h des observations 

dans un cluster h donné. Cette approche nous permet de tenir en compte l’eff et du cluster dans les résultats de l’analyse. 

 
Les méthodes d’analyse classiques permettant de traiter des données groupées (essais multicen- triques) introduisent en 

général la variable d’échantillonnage (groupe, cluster ou centre) comme va- riables explicatives en autorisant les interactions. 

Cependant elles ont des limites : (1) Lorsque le nombre de groupes est important, les introduire tous dans le modèle devient 

problématique. (2) Puisque l’un des groupes est utilisé comme groupe de référence, on ignore les écarts de chaque groupe à la 

moyenne. (3) Les groupes participant à l’essai constituent un échantillon d’une population plus large de groupes, on peut 

souhaiter faire des prédictions pour un groupe n’ayant pas participé à l’essai. (4) On peut aussi souhaiter avoir une mesure 

d’hétérogénéité entre les groupes. 

 
Le modèle Bêta-binomiale figure parmi les méthodes alternatives les plus utilisées dans la littéra- 
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h 

h 

h h h 

h 

h h 

  

Σ
Y |θU , [Y, X]h

Σ    
=   Bernoulli 

.
θU 

Σ
 

Y 

 

 

ture. Ce dernier permet à la fois d’estimer l’espérance de la probabilité de succès conditionnellement à un profil U (X) dans la 

population et sa variabilité d’un groupe à un autre. De plus, il permet d’inférer sur la probabilité de succès conditionnellement à 

l’événement [U (X) = 1] dans n’importe quel groupe, pas seulement ceux échantillonnés. 

 

2 Modèle hiérarchique pour le calcul des valeurs prédictives posi- 

tives 

Nous étudions dans ce chapitre un modèle statistique correspondant au cas où les données sont générées par une suite (Yi, 

Xi)i=1:n d’éléments aléatoires non identiquement distribués. Il en résulte alors une hétérogénéité des données dont il faudrait 

tenir compte dans le modèle statistique sur lequel l’analyse du classifieur sera basée. 

Nous considérons ici la situation particulière où la suite (Yi, Xi)i=1:n est structurée suivant une partition 

de m sous-ensembles (Yih, Xih)h=1:m telles que les éléments de la suite (Yih, Xih)i=1:nh soient indépen- 
i=1:nh 

dants et de même loi [Y, X]h. Nous supposons que les éléments de la suite [Y, X]L = {[Y, X]h, h = 1 : m} sont générés de façon 

indépendante suivant une loi µ sur l’ensemble P rob(Y, X) des lois de probabilités sur Dom(Y ) × Dom(X) muni de la tribu 

associée à la topologie de la convergence faible. Si on se donne U (X), un profil défini par X, on a alors 

– [Y |θU , [Y, X]h] = Bernoulli(θU ), où θU = Pr(Y = 1|U (X) = 1, [Y, X]L = [Y, X]h) 
   

–  la suite 
.

θU 
Σ

 
 
 h=1:m 

  

est un échantillon iid. 

On considère désormais que la suite θU  = 
.

θU 
Σ

 
 
 h=1:m est issue de la loi Bêta de paramètres (αU , βU ). 

On désigne par 
Σ
Y, θU , [Y, X]L

Σ 
et 

Σ
θU , [Y, X]L

Σ 
les lois de probabilité respectives de 

.
Y, θU , [Y, X]L

Σ 
et 
.

θU , [Y, X]L
Σ

. 
Le principe de la factorisation permet d’écrire 

Σ
Y, θU , [Y, X]L

Σ 
= 

Σ
Y |θU , [Y, X]L

Σ Σ
θU , [Y, X]L

Σ
 

Σ
Y, θU , [Y, X]L

Σ 
= 

Σ
Y |θU , [Y, X]L

Σ Σ
θU |[Y, X]L

Σ Σ
[Y, X]L

Σ
 

h

Y

=1 

Σ
Y, θU , [Y, X]h

Σ
 

 

 

= 
h=1 

.Σ
Y |θU , [Y, X]h 

Σ Σ
θU |[Y, X]h

Σ
 [[Y, X]h]

Σ
 

On peut remplacer la loi 
Σ

θU |[Y, X]h

Σ 
par la loi 

Σ
θU |αU , βU 

Σ 
dans l’expression précédente puisqu’il 

s’agit de la même distribution. Pour réduire la complexité du problème, nous allons nous intéresser 

pour la suite à la distribution 
Σ

Y |θU , [Y, X]h

Σ 
et à la distribution 

Σ
θU |αU , βU 

Σ
. Le modèle hiérarchique 

h h 

à étudier est alors le suivant : 

 
 

 

  

Σ
θU |αU , βU 

Σ 
= Beta(αU , βU ) 

h h 

m 

h h 
h h h 

m m 
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| 

h 

h 

h 

h 

U U 1 
Y = y|θU , α θU |α dθU

 

h U 
Γ(αU + βU + 1) h 

= 

  

 
 

 

 

Ce modèle permet d’estimer la probabilité Pr(Y = 1|U (X), [Y, X]h) qui n’est rien d’autre que la valeur prédictive positive (VPP) du 

profil U (X) sous la contrainte [Y, X]h. 

 

Proposition 7.  Si Y  est une variable binaire telle que Y |θU , [Y, X]h ∼  Bernoulli 
.

θU 
Σ 

où θU |αU , βU 
h h h 

est une variable aléatoire de loi Beta(αU , βU ) alors on a 
 

Pr(Y = 1 U (X)) =
  αU 

 

αU + βU 

 

(IV.1) 

 

Σ
θU |Y = y, αU , βU 

Σ 
= Beta(αU + y, βU + 1 − y) (IV.2) 

 

 
 

Preuve. 

On a  
Pr(Y  = 1|U (X))   =   E 

.
Y |θU 

Σ
 

=   E 
.

E 
.

Y |θU , [Y, X]h
ΣΣ

 

=   E 
.

θU 
Σ

 

 

Par ailleurs, on a 

 
Σ 

 
 

Σ 
Σ

Y = y|θU , αU , βU 
Σ Σ

θU |αU , βU 
Σ

 

θU |Y = y, α , β ∫ Σ 
 

 

h h 
Σ Σ Σ 

 

       
 

        
 

On en déduit alors que 

Σ
θU |Y = y, α , β 

Σ 
=

 Γ(αU + y)Γ(βU − y + 1) 
θ

αU +y−1
(1 − θ

 

 

 
)βU −y 

 
 

 

 

 

 
 

On a E(θU |α , β ) =
  αU 

 et Var(θU |α , β ) =
  αU βU 

 

h U U αU + βU 
    αU  αU +βU 

h U U αU + βU (αU + βU )(αU + βU + 1) 

L’application (αU , βU ) −→  
γ
   1  

αU +βU +1 

 étant injective, on peut envisager de reparamétrer la 

famille de loi Bêta par la moyenne πU et le paramètre γU appelé paramètre de dispersion. Pour πU 

fixé, le paramètre γU détermine la forme de la densité. Nous retiendrons dans la suite du travail cette paramétrisation de la 

famille des lois Bêta. 

h U U h U U h 0 

h U U h U U h 0 

h 

πU = 

U = 

, β , β 

U h 
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h h 

h 

h 

h 

h 

h 

h 

h 

Σ Σ 

Σ 

Σ 

h U Γ(πU τU )Γ((1−πU )τU ) h h h 

Y 

 
 

3 Lois a posteriori des paramètres relatifs aux clusters : approche 

Bayésienne empirique 

Pour alléger les notations dans cette section, on pose τU = 1/γU − 1. Dans la suite, nous avons choisi d’écrire le modèle en 

fonction des paramètres {πU , τU }. Cependant les résultats seront présentés en fonction des paramètres {πU , γU }. On pose le 

modèle suivant : 

  

Σ 

Y |θU , [Y, X]h

Σ
 

 

 

= 
k=1 

U 
Σ1l[Y =1](y)δ{1,[Y,X]h}(U (X),[Y,X]h) 

. 

 
1 − θU 

Σ(1−1l[Y =1](y))δ{1,[Y,X]h}(U (X),[Y,X]k) 

 

  
Σ

θU |π , τ  
Σ 

= 
  Γ(τU )   

.
θU 

ΣπU τU −1 .
1 − θU 

Σ(1−πU )τU −1 
1l
 .

θU 
Σ 

 

3.1 Détermination de la loi a posteriori du paramètre θU par une approche Bayé- 

sienne empirique 

Dans une approche bayésienne complète, la détermination de la loi a posteriori de θU 

 

 
nécessite 

la spécification d’une loi a priori pour le couple (πU ,γU ). En défaut de la spécification d’une telle loi a priori, on peut adopter 

une approche empirique pour la détermination a posteriori du vecteur (θU )h=1:m et de ses éléments marginaux. 

 
3.2 Loi a posteriori : approche bayésienne empirique 

La méthode de Bayes empirique est très souvent utilisée lorsqu’il s’agit d’un problème d’estimation de paramètres multiples 

où les relations connues (i.i.d.) entres les composantes du vecteur de para- 

mètres inconnus 
.

θU 
Σ

 
 
h=1:m 

suggèrent de partager les informations entre les diff érentes réalisations 

similaires du couple (Y, X) pour obtenir une meilleure estimation de chaque paramètre θU . L’ap- 

proche de Bayes empirique a été classée en deux catégories par Morris, C.N.[1983][7] dont : le cas non paramétrique (voir [8] pour plus de 

détails) et le cas paramétrique. 

Dans le cas paramétrique, on suppose que la loi a priori du paramètre θU est dans une classe pa- 

ramétrique θU |πU , γU , où les hyperparamètres πU et γU sont inconnus. L’idée principale consiste à estimer les 

hyperparamètres d’abord et de les replacer dans la loi a priori avant d’estimer la loi a posteriori (pour plus de détails, 

consulter [2, 3]). 

 
On considère, (Yi, Xi)i=1:nh , une suite de nh réalisations indépendantes de [Y, X]h. On note 

nh 

nhU = 1l (U (Xi) = 1) le nombre d’observations i telles que U (Xi) = 1. On suppose que nhU est 
i=1 

nhU 

un entier connu et supérieur strictement à un. On note ShU = 1l (Yi = 1, U (Xi) = 1) une variable 
i=1 

aléatoire qui détermine le nombre d’observations i telles que U (Xi) = 1 et Yi = 1. On suppose que 

h 

m 

θ 

U [0,1] 

. 
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h 

h 

h 

h 

^ ^ ^ ^ 

h 

h 
^ 

^  ̂

^ ^ 

h 

h h 

θU |S 
h h 

 

 

(ShU |θU )h=1:m est une suite de variables aléatoires indépendantes mais pas nécessairement identique- ment distribuées. Pour 

tout cluster h donné, on suppose que 

Σ
ShU |θU 

Σ 
= Binomiale(nhU , θU ) 

 

L’objectif est de trouver une estimation ponctuelle pour θU à partir des observations ShU . On 

commence par déterminer la loi a posteriori de θU |πU , γU qui dépend des données par ShU . La loi a 

posteriori est donnée par : 

 
Σ 

 

 

Σ 
Σ

ShU |θU 
Σ Σ

θU |πU , γU 
Σ

 

 

 

En supposant que les hyperparamètres πU et γU sont inconnus, nous les estimerons à partir de la distribution marginale de 

toutes les données, [ShU |πU , γU ]. On obtient la distribution a posteriori estimée : 
Σ

θU |ShU , π̂ U , γ̂ U 

Σ
 

où πU et γU sont des fonctions de ShU (i.e., πU (ShU ) et γU (ShU )). Ces estimateurs sont habituellement 

obtenus par la méthode du maximum de vraisemblance (MLE) ou la méthode des moments (MOM) à partir de la distribution 

marginale [ShU |πU , γU ]. Une fois les estimateurs {πU , γU } obtenus, nous pouvons estimer alors θU comme étant la moyenne de 

la distribution a posteriori estimée. Notons que, θ̂U  dépend de toutes les données par le biais de π̂U  et γ̂ U . Dans cette analyse, nous 

proposons d’estimer 

les hyperparamètres πU et γU par la méthode des moments. 
 

 

 
 

4 Estimation des hyperparamètres πU et γU 
 

4.1 Estimation par la méthode des moments 
 

Le principe de la méthode des moments consiste à estimer les paramètres recherchés en égalisant certains moments 

théoriques (qui dépendent de ces paramètres) avec leurs contreparties empiriques. L’égalisation se justifie par la loi des grands 

nombres qui implique que l’on peut "approcher" une espérance mathématique par une moyenne empirique. On est donc 

amené à résoudre un système d’équations. 

 

 
4.1.1 Moments des variables ShU et θU 

 
Etant donné que la loi a priori de θh|πU , γU est connue (la loi Bêta), il est possible de déterminer les expressions explicites de ses 

moments d’ordre un et deux. Nous commencerons par donner l’expression 

h 

, π , γ = hU U U 
[ShU |πU , γU ] 



  IV.4 Estimation des hyperparamètres πU et γU  

111 

 

 

γU γU 

γU γU 

h 

h 

h 

h 

nhU 

 

. Σ 

U

 

h U U U U 

 S 

hU 

S 

hU 

−1 2 

 

 

des moments d’ordre n. Ensuite nous en déduirons les moments d’ordre un, deux, trois et quatre. 

.. 
U 

Σn Σ 
 
Γ 

Σ
 1−γU 

Σ   
Γ 

Σ 
π U (1−γU ) 

+ n
Σ 

 
 

  

 

E θh |πU , γU =  

Γ 
Σ 

πU (1−γU ) 
Σ  

 Γ 
Σ

 1−γU + n
Σ 

 

 

On obtient alors : 

E 
.

θU |πU , γU 
Σ    

=   πU 
 

E 

..
θU 

Σ2 
|π , γ 

Σ 

= π2 + γ π 

 
(1 − π ) 

 

Nous déduisons des moments de θU les moments suivants : 

E (ShU )   =   E 
Σ
E 
.

ShU |θU , πU , γU 
ΣΣ

 

=   E 
.

E 
.

ShU |θU 
Σ 

|πU , γU 
Σ

 

= nhU πU 

 

 
Var(ShU ) = E[Var(ShU |πU , γU )] + Var[E(ShU |πU , γU )] 

= nhU πU (1 − πU ) + γU πU (1 − πU )nhU (nhU − 1) 

 
Nous supposons que les observations de nhU sont strictement supérieures à 1 (i.e. nhU > 1). On obtient alors 

  E(ShU ) = nhU πU 

  E[(ShU )2] = nhU πU (1 − πU + nhU πU ) + γU πU (1 − πU )nhU (nhU − 1) 

En faisant la diff érence membre à membre des deux égalités ci-dessus, on obtient les égalités suivantes 
E   ShU = π 

  
E 
. 

n
hU  

n
hU 

−1 

Σ 
= πU  + γU πU (1 − πU ) 

4.1.2 Estimation de πU et γU 

 

Dans ses travaux, Griffi ths a montré que lorsque les nhU sont inégaux, l’estimation des paramètres πU et γU par des moments 

empiriques pondérés produit de meilleurs estimateurs que lorsque on utilise des moments empiriques non pondérés [4]. 

U U 
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. Σ 

− 

. Σ 

m 

m 

m 

^ ^ 

. Σ 

. Σ 

U 

nhU 

, vU = 

U 
wU nhU 

h=1 vU nhU nhU −1 U 

Les estimateurs des moments pondérés dépendent du choix des poids {whU ,vhU }. Il est très connu de 

nhU nhU 
U U nhU 

 
 

Si on suppose que les variables 
S hU 

sont indépendantes et de variances non nulles de même 
nhU 

que les variables 
S hU ShU − 1 

, il est alors désirable d’utiliser leurs moments empiriques pondérés 
nhU  nhU 1 

dans le but d’obtenir de meilleurs estimateurs de πU et de γU . 
Soit 

Σ whU 
. 

S hU 
Σ Σ 

WU = 

 
et 

h=1 
wU 

nhU 
, wU =  

h=1 

whU (IV.3) 

Σ v hU 
. 

S hU ShU − 1 
Σ Σ 

     

les moments empiriques respectifs de 

.
 ShU 

Σ 

et 

. 
S hU ShU − 1 

Σ

, où w 
 

et v 
 

représente les coeffi - 
nhU nhU nhU − 1 

hU hU 

cients de pondération respectifs. Dans la suite, on verra comment ils sont choisis. 

En définissant les statistiques des équations (IV.3) et (IV.4) égales à leurs valeurs théoriques et en ré- solvant les équations qui en 

résultent par rapport à πU et γU , nous obtenons les estimateurs suivants : 
 

^ = 
Σ whU ShU  

 

 

 

(IV.5) 

 

 

Σm  vhU   
. 

S   hU  ShU −1 
Σ 

− π̂ 2 

  

  
^U 

πU (1 − πU ) 

 
 

la littérature que si {whU ,vhU } sont choisis proportionnellement aux variances respectives de 
S hU 

 
nhU 

et 
 ShU  ShU − 1 

alors W 
nhU nhU − 1 

et SU ont les plus petites variances parmi tous les estimateurs linéaires 

sans biais de πU et γU respectivement. Si nous pondérons chaque variable  
 ShU 

 
nhU 

et chaque variable 

 ShU ShU − 1 
par l’inverse de sa variance (supposée être connue) alors W nhU nhU − 1 et SU sont les estimateurs 

linéaires sans biais et de variance minimum de πU et de π2 + γU πU (1 − πU ) respectivement. Les poids 

correspondants sont : 

Var 

.
 ShU 

Σ   

= 
 πU (1 − πU ) 

+ γ π
 

(1 − π  ) 

.

1 − 
  1   

Σ

 

Σ

Var 

.
 ShU 

ΣΣ−1 
  nhU  

πU (1 − πU ) + γU πU (1 − πU )(nhU − 1) 

(IV.6) = γ 

h=1 

h=1 

h=1 hU n hU n vU 
h=1 

h=1 
vU n hU n hU − 1 

h=1 

m 

m 

π 

SU = vhU (IV.4) 

U 

U 

U 

= 
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.
S
 

h h h 

.
S
 

h h 

.
S
 

h h h 

hU h h h h 

− πU + γU πU (1 − πU ) 

n n − 1 [n (n − 1)]2 

hU hU hU 

n n − 1 
n (n − 1) 

θh |πU , γU + 2(nhU − θh 
|πU , γU 

ShU ShU − 1 2 h U πU (1 − γU ) + 2γU 

1 + γU 1 + 2γU 

hU 

hU hU 

hU hU 

 

Var 

. 
 ShU ShU − 1 

Σ    

=   E 

Σ. 
S   hU ShU − 1 

Σ2
Σ Σ

E 

. 
S   hU ShU − 1 

ΣΣ
 
2 

nhU nhU − 1 nhU nhU − 1 
− 

nhU nhU − 1 

2
Σ 

2

 

=   E 

Σ. 
S   hU ShU − 1 

Σ Σ Σ2 

avec 

E 

Σ. 
S   hU ShU − 1 

Σ2
Σ

 

  

 
  1  Σ

E 
.

S4    
Σ 

  

 
2E 

.
S3 

 
Σ 

+ E 
.

S2    
ΣΣ 

    

 

E 2 |θU 
Σ 

= nhU 

 
θU + nhU (nhU − 1) 

.
θU 

Σ2
 

E 3 |θU 
Σ 

= nhU θU + 2nhU (nhU − 1) 
.

θU 
Σ2 

+ n (n 
hU 

− 1)(nhU − 2) 
.

θU 
Σ

 
3 

 

 

E 4 |θU 
Σ 

= nhU θU + 4nhU (nhU − 1) 
.

θU 
Σ2 

+ 4n (n − 1)(n 
hU hU 

− 2) 
.

θU 
Σ3

 

+ nhU (nhU − 1)(nhU 

− 2)(nhU − 3) 
.

θU 
Σ

 
4 

 

 

 

donc 

E 

Σ.
S2 

 
− ShU 

Σ2 
|θU 

Σ 

= n 

 

 
(nhU − 1) 

Σ.
θU 

Σ2 
+ 2(n − 2) 

.
θU 

Σ3 
+ (n 

 
− 2)(nhU − 3) 

.
θU 

Σ4
Σ

 

 
 
 

E 

Σ. 
 ShU ShU − 1 

Σ2
Σ

 

  

  1 
Σ

E 

.. 
U 

Σ2 
Σ 

  
2)E 

..
 

U 
Σ3 

Σ 

+ (nhU − 2)(nhU − 3)E 

..
θU 

Σ  
|π 

4 
 

 
, γU 

ΣΣ 

 

 

Σ.   Σ  Σ 
 

 
  

E 

..
θU 

Σ2 
|π 

 

 
  

, γ 

Σ 

Σ    
 

  

 

 
+ (n − 2)(n − 3)

 πU (1 − γU ) + 2γU πU (1 − γU ) + 3γU 
Σ

 

 

Puisque πU (1 − πU ) est constant (indépendant de h), alors nous considérons pour whU la valeur suivante : 

whU =
  nhU  

1 + γU (nhU − 1) 
(IV.7) 

1 + γU 
1 + 2(nhU − 2) 

hU (n hU n 
= 

hU n hU n 
E 

h 

hU hU hU hU 

h 

h 

hU hU hU hU 
hU hU hU hU 

h 

h 

n hU n hU − 1 

= − 

= 

U 

− 1 

− 1) 

hU hU 

hU hU hU 

U 
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^ ^ 

^ 

^ 

^ 

^ 

k=1 

hU hU − nhU nhU −1 

 

 

et pour vhU la valeur suivante : 

1 
vhU  = 

E 

Σ. 
 S S −1 

Σ2
Σ 

Σ 

 
 

(IV.8) 
Σ2 

 

Cependant l’ estimation du paramètre whU et du paramètre vhU est compliquée par le fait que tous les deux paramètres dépendent 

des paramètres πU et γU inconnus. Une manière de les estimer consisterait 

à remplacer πU et γU par leurs estimations respectives πU et γU dans les équations (IV.7) et (IV.8). 

Cependant, lorsque m le nombre de cluster n’est pas suffi samment grand, la loi des grands nombres ne s’applique pas et par conséquent, les 

moments empiriques WU et SU n’approchent pas suffi samment 

bien les moments théoriques. En plus le signe de γU dépend de la suite (ShU , nhU ). Les estimateurs 

ainsi obtenus peuvent avoir tendance à sortir du support des paramètres (voir annexe C). 

Pour parer à cette diffi culté, une méthode de pondération empirique a été proposée en premier par Kleinman en [1973][6] puis 

améliorée par Tchuang-Stein en [1993][1] pour l’estimation de whU . A partir 

de cet algorithme, une estimation de πU a été déduite. Nous nous sommes inspirés de cette méthode 

 

 

 

 
 

4.1.3 Algorithme de la méthode de Pondération Empirique 
 
 

On propose de choisir une valeur initiale γ0 = 0 ou γ0 = 1 du paramètre γU pour obtenir les valeurs initiales w0 et v0 

de whU et vhU respectivement. Ensuite on utilise les équations (IV.5) et 

(IV.6) pour obtenir les estimations de πU et de γU . A partir de cette estimation de γU , notée γU , on 

calcule le couple {whU ,vhU } à partir des équations (IV.7) et (IV.8). Et enfin on utilisera ces poids empiriques pour former de 

nouvelles estimations de WU et SU . On répète cette itération jusqu’à ce 

que les diff érences entre deux itérations consécutives d’estimations WU , SU et γU soient à la fois plus 

petites qu’une certaine valeur prédéterminée, par défaut 10−6. Pour des soucis de programmation, nous proposons de 

réinitialiser à 10−6 les estimations négatives de γU au lieu de 0 comme proposé par Kleinman. 

Pour des raison de programmation, nous avons ajouté la masse de Dirac au point 0 de nhU dans le calcul des statistiques WU 

et SU . Dans la simulation, il n’est pas évident d’avoir toutes les statistiques 

(nhU )k supérieures strictement à 1. En utilisant cette astuce, nous nous assurons que les dénomi- 

nateurs de ShU /[nhU + δ0(nhU )] et ShU (ShU − 1)/[nhU (nhU − 1)δ0(nhU (nhU − 1)) + δ0(nhU (nhU − 1))] soient toujours égaux à 

1 si nhU est égale à un ou zéro. Dans le cas où nhU = 0, on sait que ShU est presque sûrement nulle. Ceci nous permet de 

pouvoir faire des estimations de πU et de γU même s’il existe des réalisations (Yi, Xi)i=1:nh de [Y, X]h pour lesquelles le profil 

U (X) n’a pas été observé (U (X) = 0). 

pour établir l’ algorithme d’estimation de πU et de γU décrit ci-dessous. 

π2 + γU πU (1 − πU ) U 



  IV.4 Estimation des hyperparamètres πU et γU  

114 

 

 

U U U 

U U 

γ 

Y 
|
 

m 

m 

K h=1 nhU +δ0(nhU ) 

K h=1 nhU (nhU −1)δ0(nhU (nhU −1))+δ0(nhU (nhU −1)) 

h=1 

h=1 

 
τ + j 

 
 

(πτ + k)   

 

 
 

Algorithme : Méthode de pondération empirique 

 

on suppose avoir observé les statistiques suivantes : (ShU )h=1:H et (nhU )h=1:H 

on commence par donner une valeur initiale γU = 0 ou γU = 1 et le nombre d’itérations maximum de la procédure : maxiter = 

100 (par défaut) 
on initialise 

- WU = 1 
ΣH

 
  ShU  

- SU = 1 
ΣH

 
  ShU (ShU −1)  

Déclarer une variable booléenne cond.arret (condition d’arrêt) initialisée à vrai et une variable 

t initialisée à 0. 

Tant que cond.arret est toujours vrai faire : 
initialiser : t = t + 1 ; γt = γU ; πt = WU et St = SU 

calculer en fonction de πt et γt le couple {whU , vhU } 
En suite calculer les statistiques : 

- WU = 
Σm

  whU  

.
  ShU 

Σ
 

  

- SU = 
Σm

 
vhU 

.
  ShU (ShU −1) 

Σ
 

 
 

 

 

Puis on associe πU = WU et γU = 

- si γU < 0 ⇒ γU = 10−6 

 
U 

πU (1−πU ) 

cond.arret = {|γU − γt | > 10−6, |πU − πt | > 10−6, |SU − St | > 10−6, t < maxiter} 
U U U 

ftn tant que 
 

 
Tableau IV.1 – Algorithme de la méthode de pondération empirique 

 

 
4.2 Estimation des hyperparamètres par la méthode du maximum de vraisem- 

blance 

Pour simplifier les notations, on a choisi d’omettre l’indice U sur les paramètres π et γ. De plus on considère le 

changement de paramètre τ = 1 − 1. 

 
4.2.1 Vraisemblance des paramètres 

 
On a 

 

[(Sh)h=1:m |π, τ ] = 

m 

[Sh π, τ ] 
h=1 

= 
Y 

.
sh 

Σ 
     Γ(τ ) Γ(πτ + sh) Γ((1 − π)τ + nh − sh) 

h=1 nh Γ(τ + nh) Γ(πτ ) Γ((1 − π)τ ) 

Y 
.

sh 

Σ 
nYh−1  

   1    
 

sYh−1 
 

    

 
nh−Ysh−1 

 
 

 

 

 

   

 

l=0 k=0 j=0 h n  
h=1 

l=0 k=0 j=0 h n 
h=1 

nhU (nhU −1)δ0(nhU (nhU −1))+δ0(nhU (nhU −1)) 

SU −π2 

vU 

nhU +δ0(nhU ) wU 

= ((1 − π)τ + l)  
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Σ Σ Σ 

x 

 

 

La vraisemblance des paramètres π et τ est donnée par : 

L(π, τ )  = 
Σ
 log 

..
sh 

ΣΣ 

−

 

 

 
nh−1 

 
 
log(τ + j) + 

 
sh−1 

 
 
log(πτ + k) + 

 
nh−sh−1 

log((1 − π)τ + l)  

h=1  h j=0 k=0 l=0  
 

L’optimisation de la vraisemblance L(π, τ ) est très compliquée à implémenter. Il n’est pas possible de trouver une solution 

analytique. Cependant plusieurs algorithmes itératifs ont été proposés dans la littérature pour venir à bout cette diffi culté. 

Dans cette analyse, nous proposons d’utiliser un algorithme MM. 

 
 

4.2.2 Présentation du principe et des éléments d’un algorithme MM 

 
Nous allons utiliser l’algorithme MM (Minimisation-Maximisation) pour estimer les paramètres π et τ . Les algorithmes 

MM ont pour objectif de substituer à un problème d’optimisation numérique d’une fonction f compliquée à implémenter par 

celui de l’optimisation d’une fonction auxiliaire g dont l’optimum correspond à un optimum local de f. La fonction 

auxiliaire g est telle que 

 
f(x)  ≥  g(x|x′) x ∈  ∆ × D 

f(x) = g(x|x) 

On observe que si pour x0 fixé et x1 = argmax g(x|x0), alors on a f(x1) ≥ g(x1|x0) ≥ g(x0|x0) = f(x0) Il en résulte que les 

algorithmes MM sont des algorithmes monotones. Les algorithmes MM procèdent en deux étapes. La première étape consiste 

à trouver la fonction g telle que 

 

L(π, τ ) ≥ g(π, τ |π′, τ ′) (IV.9) 

L(π, τ ) = g(π, τ |π, τ ) ∀  (π, τ ) (IV.10) 

La deuxième étape consiste à trouver un couple (π, τ ) qui maximise la fonction g(π, τ |π′, τ ′). 

^ ^ 

′ ′

 

(π, τ ) = argmax g(π, τ |π , τ ) 
^ ^ 

(π,τ ) 

 

4.2.3 Proposition de la fonction auxiliaire et ses propriétés 

 
Proposition 8. Soient L(π, τ ) la log-vraisemblance du couple des paramètres (π, τ ) et (π′, τ ′) une valeur connue des 

paramètres (π, τ ). La fonction auxiliaire g(π, τ |π′, τ ′) définie par 

g(π, τ |π′, τ ′) = A(π′, τ ′)[log(π) + log(τ )] + B(π′, τ ′)[log(1 − π) + log(τ )] − (τ − τ ′)C(τ ′) + D(π′, τ ′) vérifie les conditions 

(IV.9) et (IV.10). 

n 
m 
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. Σ 

Σ Σ     

m Σ     

. 
Σ
 . 

m 
. 

Σ
 

Σ Σ     

. 
Σ
 . Σ 

m 
. 
Σ
 

. 
Σ
 . Σ 

m 
. 

Σ
 

m 
. 
Σ
 

m 
. 

Σ
 

Σ Σ 

ΣΣ Σ 

Σ 

ΣΣ Σ 

Σ 

Σ 

 

 

Preuve. Puisque la fonction −log(x) est convexe, on a : 

 
−log(τ + j) ≥ −log(τ ′ 

 
 
 

+ j) − 

 

 
(τ − τ ′) 

 
 

τ ′ + j 
 

En utilisant la concavité de la fonction log(x), on obtient 
 

π′τ ′ 

log(πτ + k) ≥ 
π′τ ′ + k 

log 
π′τ ′ + k 

π′τ ′ 
πτ 

  k  
+ 

π′τ ′ + k 
log 

π′τ ′ + k 
k 

k 
 

(1 − π′)τ ′ 
log((1 − π)τ + l) ≥ 

(1 − π)′τ ′ + l 
log 

On peut donc poser 

(1 − π′)τ ′ + l 

(1 − π′)τ ′ 
(1 − π)τ 

  l  
+ 

(1 − π′)τ ′ + l 
log

 

(1 − π′)τ ′ + l 
l 

l 

 

g(π, τ |π′, τ ′)    =    
Σ
 

 
log 

sh 
−

 

nh 

nh−1 

log(τ ′ + j) − (τ − τ ′) 
Σ
 

nh−1 

1  

τ ′ + j 
h=1 h=1 j=0 h=1 j=0 

+ 
Σ 

1l(sh ≥ 1) 

.
sΣh−1 

 

π′τ ′ 
 

π′τ ′ + k 

Σ

log 

 

π′τ ′ + k 

π′τ ′ 
πτ 

ΣΣ 

+ 
Σ
 

sh−1 

k  

π′τ ′ + k 

 

log 

.
π′τ ′ + k

Σ
Σ

 

h=1 
 

 

+ 
h=1 

 

1l(nh > sh) 

k=0 

nh−sh−1 

 

 
l=0 

 

(1 − π′)τ ′ 
 

 

(1 − π)′τ ′ + l 

Σ

log 

h=1 k=0 
 

(1 − π′)τ ′ + l 

(1 − π′)τ ′ 
(1 − π)τ 

ΣΣΣ 

+ 
Σ 

1l(nh > sh) 

nh−sh−1
  l 

 

(1 − π′)τ ′ + l 

 

log 

.
(1 − π′)τ ′ + l

Σ
Σ

 

h=1 l=0 

 

On peut réécrit la fonction g(π, τ |π′, τ ′) de telle sorte que les paramètres π et τ soient séparés. On obtient 
 

g(π, τ |π′, τ ′)    =    
Σ
 

 
log 

sh 
−

 

nh 

nh−1 

log(τ ′ + j) − (τ − τ ′) 
Σ
 

nh−1 

1  

τ ′ + j 
h=1 h=1 j=0 h=1 j=0 

 
 

+ 
h=1 

 

1l(sh ≥ 1 

sh−1 

 

 
k=0 

 

π′τ ′ 
 

π′τ ′ + k 

Σ

log 

 

π′τ ′ + k 

π′τ ′ 
+ log(π) + log(τ )

ΣΣ

 

+ 
Σ 

1l(sh ≥ 1) 

sh−1
  k 

 

π′τ ′ + k 

 

log 

.
π′τ ′ + k

Σ
Σ

 

h=1 
 

 

+ 
h=1 

 
 

1l(nh > sh) 

k=0 

nh−sh−1 

 

 
l=0 

 
(1 − π′)τ ′ 

 

 

(1 − π)′τ ′ + l 

Σ

log 

 
(1 − π′)τ ′ + l 

 

 

(1 − π′)τ ′ 
+ log(1 − π) + log(τ )

ΣΣ

 

+ 
Σ 

1l(nh > sh) 

nh−sh−1
  l 

 

(1 − π′)τ ′ + l 

 

log 

.
(1 − π′)τ ′ + l

Σ
Σ

 

h=1 l=0 

 

Si on pose 
 

 

 
A(π′, τ ′) = 

Σ

h=1 

 

 

 

1l (sh ≥ 1) 

 

 

 

sh−1 

 

 
k=0 

 

 

π′τ ′ 
 

π′τ ′ + k 

 
B(π′, τ ′) = 

Σ

h=1 

m 

 
1l (nh ≥ sh) 

 
nh−1 

nh−sh−1 

 

 
l=0 

(1 − π′)τ ′ 
 

 

(1 − π)′τ ′ + l 

C(τ ′) = 
    1  

τ ′ + j 
h=1  j=0 

m 

m 

m 

. . 

. 

m .. m m 

. m 

m .. m m 

Σ Σ 

Σ 

Σ 

Σ 
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Σ 
. ΣΣ 

Σ 
. 
Σ
 

m 
. 

Σ
 . ΣΣ 

m 
. 

Σ
 

 δ  
1 

^ 

^ 

   2 
 1  

τ 

δ2τ τ 2 

ΣΣ 
Σ 

 

D(π′, τ ′) = 
Σ
 

 

 
log 

 
sh 

−
 

nh 

 
nh−1 

log(τ ′ + j) + 
Σ
 

 

 
1l(sh ≥ 1) 

.
sΣh−1 

 
π′τ ′ 

 

π′τ ′ + k 

 

 

log 

 
π′τ ′ + k π′τ ′ 

h=1 

m 

+ 
h=1 

 

1l(sh ≥ 1) 

h=1 j=0 

sh−1
  k 

 

π′τ ′ + k 
k=0 

 

log 

h=1 

.
π′τ ′ + k

Σ
Σ 

+ 

Σ

h=1 

k=0 
 

 

1l(nh > sh) 

 
nh−sh−1 

 

 
l=0 

 
(1 − π′)τ ′ 

 

 

(1 − π)′τ ′ + l 

 

log 

 
(1 − π′)τ ′ + l 

 

 

(1 − π′)τ ′ 

+ 
Σ 

1l(nh > sh) 

nh−sh−1
  l 

 

(1 − π′)τ ′ + l 

 

log 

.
(1 − π′)τ ′ + l

Σ
Σ

 

h=1 l=0 

 

Il en résulte que 

 
g(π, τ |π′, τ ′)    =    Cste − (τ − τ ′)C(τ ′) + A(π′, τ ′)[log(π) + log(τ )] + B(π′ , τ ′)[log(1 − π) + log(τ )] 

 

 
 

On a 
 
 

L(π, τ ) ≥ g(π, τ |π′, τ ′) 

En plus lorsque on pose π = π′ et τ = τ ′, on obtient 

 
L(π, τ ) = g(π, τ |π, τ ) 

 

 

 

 

Les couples candidats sont l’ensemble des couples annulant les dérivées partielles de la fonction 

g(π, τ |π′, τ ′). 
 

 δ 
g(π, τ |π′, τ ′) = 

 1 
A(π′, τ ′) −

 1 
B(π′, τ ′) 

δπ π 1 − π 

g(π, τ |π′, τ ′) =  −C(τ ′) + 
Σ

A(π′, τ ′) + B(π′, τ ′)
Σ

 

 

Il en résulte que 

 

 

 

 

 

En plus on a 

 
A(π′, τ ′) 

π = 
A(π′, τ ′) + B(π′, τ ′) 

A(π′, τ ′) + B(π′, τ ′) 
τ = 

C(τ ′) 

 

(IV.11) 

 

 
(IV.12) 

 

δ2 
′ ′ 

 
 

1 ′ ′ 1 ′ ′ 
 

  

δ2π 
g(π, τ |π , τ )  =  − 

π2 
A(π , τ ) − 

(1 − π)2 
B(π , τ ) (IV.13) 

δ  
g(π, τ |π′, τ ′)  =  − 

Σ
A(π′, τ ′) + B(π′, τ ′)

Σ 
(IV.14) 

 

Par conséquent on a  
δ2 

′ ′ ′ 
 

 

δ2τ 
g(π, τ |π , τ ) = −C(τ ) ≤ 0 
^ ^ 

m .. m 
m 

δτ 
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^ 

^ ^ 

^ ^ 
. Σ

 

^ ^ 

. Σ 

. Σ . Σ 

. Σ . Σ 
←
 
← 

. Σ 

g(π, τ |π , τ ) = − 

2 

 

 

et 
δ2 

′ ′ 
 

 

 

. 
(1 − π̂ 2)A(π ′, τ ′) + π̂ 2B(π ′, τ ′) 

Σ
 

δ π 
^ ^  

 

^ (1 − π) 
 

Le couple (π, τ ) donnée par les équations (IV.11) et (IV.12) est donc un maximum local de la fonction g(π, τ |π′, τ ′). En se servant 

des équations (IV.9) et (IV.10), on obtient L (π, τ ) ≥ L π′, τ ′ . Le couple (π, τ ) maximisant la vraisemblance est atteint 

lorsque la condition d’arrêt (??) est obtenue. ^ ^ 
 
 
 
 
 
 

4.2.4 Algorithme 
 
 

La phase de maximisation consiste à maximiser la fonction g(π, τ |π′, τ ′). Cette dernière partie correspond à l’algorithme 

numérique itératif de newton pour optimiser la fonction g. Le principe de l’algorithme est le suivant : 

 
 

Algorithme : MM (Minimisation-Maximisation) 
 

 
 

– Entrées : D = {(sh, nh); h = 1 : m} un ensemble d’observations ; π0, τ 0 valeurs initiales des 

paramètres à estimer et maxiter le nombre d’itération maximum. 

– Sortie : le couple (π, τ ) 

Variables déclarées : 
– cond.arret : une variable booléenne initialisée à vrai 

– t : étape itérative initialisée à 0 

– πt, τ t ← π0, τ 0 

Tant que cond.arret est vrai faire : 

On itère t t + 1  et π(t−1), τ (t−1) π(t), τ (t) 

A 
.

π(t−1), τ (t−1)
Σ

 
 

– π(t) ← 

 

– τ (t) ← 

A 
.
π(t−1), τ (t−1)

Σ 
+ B 

.
π(t−1), τ (t−1)

Σ
 

A 
.

π(t−1), τ (t−1)
Σ 

+ B 
.

π(t−1), τ (t−1)
Σ

 
 

 

 
cond.arret ← 

ftn tant que 

C τ (t−1) 

...
π(t) − π(t−1)

Σ2 
+ 
.

τ (t) − τ (t−1)
Σ2 

+ 1 1

Σ 

& (t < maxietr)

Σ

 

résultats : 
.

π(t), τ (t)
Σ

 

 

 
Tableau IV.2 – Algorithme MM (Minimisation-Maximisation) 

2 

π 2 
≤ 0 
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γU 
.
+

 

h 

h γU γU 

ShU  + π̂U  

. 
  1    − 1

Σ
 

U 

| 

γU 

 
 

5 Eléments pour la formulation d’un classifieur individuel pour les 

groupes 

 
 
 

Soit U (X) un profil donné. Nous observons ShU co-occurrences dans nhU observations pertinentes pour un cluster h donné. 

Nous modélisons le nombre de co-occurrences par une loi Binomiale(nhU , θU ) 

et θU par une loi Beta(πU (1 − γU )/γU , (1 − πU )(1 − γU )/γU ) de manière hiérarchique pour partager 

l’information entre les clusters similaires. De manière plus formelle, nous proposons le modèle suivant : 

 
ShU ∼ Binom(nhU , θU ) 

 

θU ∼ Beta 

.
 πU (1 − γU ) 

,
 (1 − πU )(1 − γU ) 

Σ
 

 

Sous ces hypothèses, on a 

E 
.

θU |[Y, X]h, πU , γU 
Σ    

= 

 
 
 

1 

Pr (Y = 1 U (X) = 1, [Y, X]h) 
0 

Σ
θU |[Y, X]h, πU , γU 

Σ
 

 

 
dθU 

E 
.

θU |[Y, X]  , π  , γ  
Σ    

= ShU + πU 

.
 1 − 1

Σ
 

 
 

 

h h U U 
nhU 

1 − 1
Σ

 

 

La valeur prédictive positive a posteriori est donnée par 

V P P (U, Y, h) = E 
.

E 
.

θU |Y, π̂ U , γ̂ U 

ΣΣ
 

 

Puisqu’on n’a pas supposé une loi a priori sur les hyperparamètres πU et γU , alors leurs estimations sont faites à partir des 

données ([Y, X]h)h=1:m. Par conséquent la valeur prédictive positive a posteriori obtenue est un estimateur empirique de Bayes de 

la valeur prédictive positive du classifieur φ(X, U ) généré par le profil U (X). 

 

V P P (U, Y, h) = .   γ̂U Σ 

 
nhU + − 1 

γ̂U 

Pour chaque profil U (X) fixé, on a une suite (V P P (U, Y, h))h=1:m dont chaque V P P (U, Y, h) dépend des observations de la 

loi [Y, X]h. V P P (U, Y, h) est une estimation de la valeur prédictive positive du profil U (X) dans le cluster h en tenant compte 

de ses fréquences dans les autres clusters. On peut 

écrire V P P (U, Y, h) sous la forme d’une combinaison linéaire convexe de
 ShU 

et de π . : 
nhU 

U
 

V P P (U, Y, h) = 
 ShU   

.

1 − 
  (1 − γ̂ U )/γ̂ U  

Σ 

+ π̂  

 
 

. 
  (1 − γ̂ U )/γ̂ U  

Σ
 

 

 
^ ^ ^ ^ 

nhU + (1 − γU )/γU nhU + (1 − γU )/γU nhU 

1 
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^ 

| } 

 
 

La statistique
 ShU 

 

nhU 

 

représente la valeur prédictive positive du profil U (X) dans le cluster h indépen- 

damment des autres clusters. Tandis que πU représente la valeur prédictive positive du profil U (X) 

dans la population. 

V P P (U, Y ) = πU 
 

Pour prédire la classe d’une observation dans un cluster h spécifié, on pourra utiliser la statistique V P P (U, Y, h). Par contre, 

lorsqu’il s’agira de prédire la classe d’une observation dant le cluster n’est pas spécifié ou n’a pas participé à l’estimation des 

paramètres πU et γU , on pourra se servir de la statistique V P P (U, Y ). 

 
Pour adapter la procédure d’apprentissage étudiée dans le chapitre II à une analyse hiérarchique, nous allons construire 

l’algorithme de la recherche de l’ensemble optimal au tour de la valeur prédictive positive V P P (U, Y, h) du classifieur U (X) 

pour un cluster h donné. 

Si on note par φh (U ,X) = δh(C)U (X) le classifieur généré par le profil U pour le cluster h et par D = {(yi, xi, ci); i = 1 : 

n} l’ensemble des observations du triplet de variables (Y, X, C). On peut interpréter la sensibilité du classifieur φh (U 

,X) pour le cluster h, Pr {φh (U ,X) = 1 | Y = 1,D}, comme une fonctionnelle de la loi a posteriori de φh (U, X) 

conditionnellement aux données D et à Y = 1. Tenant compte que 

 

 

 

on a 

Pr {φh (U ,X) = 1 Y = 1,D = V P P (U, Y, h)
 Pr {φh (U ,X) = 1 | D}

 
Pr {Y = 1 | D} 

Pr {φh (U ′,X) = 1 | Y = 1,D} 
 

 

Σ 
Pr {φh (U ′,X) = 1 | D} 

Σ Σ 
V P P (U ′, Y, h) 

Σ
 

 
  

Pr {φh (U ,X) = 1 | Y = 1,D} Pr {φ (U ,X) = 1 | D} V P P (U, Y, h) 
 

D’où l’interprétation du quotient Pr {φh 

(U ′,X) = 1 | Y = 1,D} 
 

 

V P P (U ′, Y, h) 
comme un facteur de Bayes. Comme U ′ 

V P P (U, Y, h) 
≺  U alors 

Pr {φh 
′ 

(U ,X) = 1 | Y = 1,D} 
≤ 1. Plus grand est le facteur de Bayes, donc en faveur du classifieur 

Pr {φh (U ′,X) = 1 | Y = 1,D} 
 

 

φ (U ,X), plus proche de 1 sera le quotient 
Pr {φh (U ,X) = 1 | Y = 1,D} 

. Suivant le point de vue 

exprimé par Kass & Raftery (1995) [5] à savoir, ”Le facteur de Bayes est un résumé des preuves 

fournies par les données en faveur d’une théorie scientifique par un modèle statistique, par opposition aux théories alternatives”, 

on considère la grille ci-dessous pour interpréter le facteur de Bayes en faveur ou non du classifieur associé au profil le 

plus détaillé U ′ ≺ U : 
 

Facteur de Bayes Interprétation 

1-3.2 on ne peut pas soutenir que le profil U ′ est un meilleur classifieur que U 

3.2-10 on peut soutenir que U ′ est un meilleur classifieur que U 

10-100 On peut fortement soutenir que U ′ est un meilleur classifieur que U 

≥ 100 il n’y pas de doute que U ′ est un meilleur classifieur que U 

= 
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^ ^ 

n 

n 

^ 
^
 

λ 

 
 

6 Algorithme de la procédure d’apprentissage 
 

L’adoption de l’algorithme d’apprentissage au cas où les données sont hétérogènes nécessite au préalable  un prétraitement 

des données. En premier lieu, il faut discrétiser les variables numériques, si il en existe, en utilisant l’une des méthodes étudiées au 

chapitre III. En deuxième lieu, il faut subdiviser les données en trois sous-ensembles : un ensemble d’apprentissage, un ensemble 

de validation et un ensemble test. La procédure de construction du classifieur peut être résumée en deux grandes étapes. Une fois 

que nous avons fini de construire le classifieur, il nous reste à évaluer ses performances sur l’ensemble test. Ceci constitue la 

troisième étape de la procédure d’apprentissage. 

1. Etape 1 : A partir d’un ensemble d’apprentissage 

(a) Générer un ensemble de profils fréquents Uλ, en utilisant le paramètre d’apprentissage 

λ = (s0, c0, l0) 

(b) Elaguer les profils redondants dans l’ensemble Uλ 

(c) Sélectionner les profils qui sont significativement corrélés avec la variable réponse (test fisher) 

2. Etape 2 : A partir d’un ensemble de validation 
 

(a) Pour chaque profil U : Estimer πU et γU (par MOM ou MLE) 
 

(b) Pour chaque cluster h 

i. Estimer la valeur prédictive positive a posteriori de chaque profil U 
Σ 

Yiδh (ci) φ (U, xi) + πU 

. 

− 1

Σ

  1  
 
 

   
γU 

V P P (U, Y, h) = i=1 
Σ . Σ 

 

 

i=1 

δh (ci) φ (U, xi) + 
γ̂U   

− 1 

 

ii. Si il existe deux profils U et U ′ tels que U ′ soit emboîté dans U : 

A. Calculer le facteur de Bayes 
 

 

BF (U ′, U ) = 
V P P (U ′, Y, h) 

 
 

V P P (U, Y, h) 
 

B. On supprime le profil U si BF (U ′, U ) ≥ 100. Sinon on supprime le profil U ′. 

(c) fin pour 

Au sortir des étapes 1 et 2, on obtient un ensemble optimal de profils Uh. 
 

3. Etape 3 : A partir d’un ensemble test 

(a) Pour chaque cluster h 

1 
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Σ λ 

λ 

λ 

 

 

i. Définir la règle de classement (classifieur) φ d’une observation X par 

 

 

 
φ(X, λ) = 

  1 si 

 
|Uh| 

 

j=1 

 
 

φ(X, Uj) > 0 

  
0 sinon 

Le classifieur φ(X, λ) est un cas particulier du classifieur défini au chapitre II à la section 

3.2 où on a choisi k égale à zéro. On choisit alors de classer positive une observation X 

lorsqu’elle vérifie au moins un profil parmi ceux qui sont dans l’ensemble Uh. 

La première étape consiste à générer Uλ un ensemble de profils à la fois fréquents et significativement corrélés avec la variable 

réponse, où λ est un paramètre d’apprentissage à spécifier par l’utilisateur. D’ailleurs  c’est pour des raisons d’insuffi sance de 

mémoire que le paramètre λ est utilisé. Sinon l’idéal est de générer tous profils existant dans l’ensemble d’apprentissage. Dans la 

deuxième étape, il est aussi question d’estimation les paramètres π et γ pour chaque profil appartenant à Uλ et de construire un 

ensemble Uh spécifique à chaque cluster h. 

Cette procédure nécessite de subdiviser des données en trois sous-ensembles : apprentissage, validation et test. Il faut subdiviser les 

données de telle sorte que tous les clusters soient représentés dans chaque sous-ensemble avec la même proportion que dans 

l’ensemble de départ. 
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< 1 ⇒ 
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Annexe C 
 

 

Annexe Chapitre IV 

 

 
B.1 Existence de l’estimation des moments des paramètres d’une 

Bêta-Binomiale 

 

Généralement on pose 

Sk 
=

 1 Σ 
Y

 

 
 

On a 

nk nk 
ki 

i=1 

.Σ 
 Sk 

Σ2
Σ

 
 

 

 1 Σ 
.Σ 

 Sk 
Σ2

 
 

 

.Σ 
S   k 

Σ2
ΣΣ   

p.s 
 

 
 

    
 

E 

.Σ 
 Sk 

Σ2
Σ

 

 

 1  
E 
.

E 
.

S2 
ΣΣ 

= 
 1  

E 
.

n θ (1 − θ ) + n2θ2
Σ

 

= 
 1  

π + 
n  k  − 1 .

π(1 − π)γ + π2
Σ

 

 

On obtient par la suite 

 1 Σ 
E 

.Σ 
 Sk 

Σ2
Σ

 

 
 1 m 

= π 
 1 

Σ 

+
 

Σ
π(1 − π)γ + π2 

Σ 
. 

 1  Σ
m

 

.

1 −  1 
ΣΣ

 

m 
k=1 

nk 
m 

k=1 
nk 

m 
k=1 

nk 

 

Si on remplace le terme à gauche de l’équation par sa valeur empirique, on obtient 

 1 Σm 
 

. 
 Sk  

Σ2 
− π̂  

. 
 1   Σm

 

 
 

 

  1  
Σ 

− π̂ 2 
.

1 −  1   Σm   1 
Σ

 

γ = 
π̂ (1 − π̂ ) 

Σ 
1  Σm

 
.

1 −  1  
ΣΣ 

m 

m 

k 

k n k n 
k=1 k n 

k n k n k n 

m 

m 

Var − E 

= 

nk 
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. 
Σ
 Σ 

Σ1  
. Σ 

         
m m 

Σ 
^
 

^ 

h 

≥ 

 

 

Par ailleurs, on a  
π(1 − π) 

Σ 
 1  Σ

m
 

 

 

.

1 − 
 1  

ΣΣ 

≥ 0 
 

^ ^ 

k=1 k 

Donc le signe de γ dépend de son numérateur. Or si on pose ^ 

 1 m 1  

a  = 0 
m 

k=1 
nk 

m 

b = 
m 

k=1 

 Sk 2 
0 

nk 
 

on obtient 
b − 

.
π̂ a + π̂ 2(1 − a)

Σ
 

 
 

 

γ̂  = 
π̂ (1 − π̂ ) 

Σ 
 1   Σm

 
.

1 −   1  
ΣΣ 

 

On a πa + π2(1 − a) ∈  [π2, π] car c’est une combinaison linéaire convexe. A l’aide de l’inégalité de la 

varian

^

ce, on

^ 

a aussi 

^ ^

 . Σ2           

1 Σ Sk 1 
≤ b ≤ 

Σ Sk 

 

Puisque 

m 
k=1 

nk 

 
m 

m 
k=1 

nk 

 
alors b ∈  [π2, π]. 

 1  Sk 
= π 

m 
k=1 

nk 

Le signe de

^ 

γ d

^

épend donc de la suite (Sk , nk). Cette équation des moments, comme d’autres proposées 

dans la littérature, n’admettent pas toujours une solution dans ]0, 1[×]0, 1[ ; d’où le recourt à une méthode de pondération 

empirique. 

 

B.2 Estimation par simulation des performances des estimateurs 

obtenus par la méthode de pondération empirique 

B.2.1 Organisation des simulations 

Avant d’étudier les propriétés statistiques des estimateurs, nous allons décrire la simulation d’un échantillon Bêta-binomial. Nous 

simulons un échantillon Bêta-binomial de la manière suivante : 

1. On se donne nU , l’ensemble des observations d’étude vérifiant le profil U (X). Nous supposons avoir disposé de nU 

observations constituées à partir de m réalisations de la variable [Y, X]L, où chaque réalisation [Y, X]h de [Y, X]L est 

une suite d’observations indépendantes (Yi, Xi)i=1:nh de taille nh. 

2. On génère m réalisations (θU )h=1:m d’une loi Bêta de paramètres αU et βU donnés. Ensuite on construit une suite 

(nhU )h=1:m telle que 
Σ 

nhU = nU . 

m n 

m k=1 nk 

≥ 
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3. Pour chaque h, on simule nhU observations d’une loi de Bernoulli de probabilité de succès 
θU . Ainsi pour chaque couple (αU , βU ), nous pouvons disposer des statistiques (ShU ) et 

h 

(nhU )h=1:m. 

h=1:m 

 

 

On appelle l’échantillon (ShU , nhU )h=1:m un échantillon Bêta-Binomial puisqu’il est obtenu à partir d’une combinaison 

d’une loi Bêta et d’une loi Binomiale. 

 

 

 

 

 
B.2.2 Présentation et analyse des résultats 

 

Pour étudier des propriétés statistiques des estimations, on suppose avoir nU = 100000 observations constituées à partir de m = 50 

réalisations de [Y, X]L. On se fixe une valeur de 0.007 pour le paramètre πU et on fait varier le paramètre γU avec les valeurs 

suivantes :0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75. Nous avons fait le choix de ces valeurs pour simuler des 

données semblables à nos données réelles. Par exemple, pour le couple πU = 0.007 et γU = 0.01, un aperçu de la forme de la 

densité de la loi Bêta associée est représentée ci dessous. 

 

 

 

 
 

 

Figure A.1 – Forme de la densité de Bêta 
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Figure A.2 – Forme de la densité de Bêta 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pour chaque combinaison (πU , γUj) ; j = 1 : 10, on en déduit un couple (αU , βU ) à partir duquel un échantillon Bêta-

Binomial (ShU , nhU )h=1:m est généré. Ainsi à chaque couple (πU , γU ) correspond un échantillon Bêta-Binomial. En combinant 

les valeurs de πU et de γU , nous simulons 10 échantillons Bêta-Binomial sur lesquels les paramètres πU et γU seront estimés. Dans le 

tableau A.1, nous présentons les estimations obtenues à partir des équations des moments proposées par Kleinman que nous notons 

MOMK, les estimations obtenues à partir des équations des moments proposées dans cette analyse que nous notons par MOMG et 

les estimations obtenues par la méthode du maximum de vraisemblance notées EMV, pour des valeurs de πU et γU fixées. 
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^ 

 ̂

^  ̂

 

 
 

 
MOMK MOMG EMV 

π γ π γ π γ π γ 
U U ^U ^U ^U ^U ^U ^U 

 

 

0.007 0.0050 0.0062 0.0029 0.0062 0.0029 0.0061 0.0045 

0.007 0.0075 0.0088 0.0055 0.0088 0.0054 0.0088 0.0058 

0.007 0.0100 0.0080 0.0086 0.0080 0.0090 0.0080 0.0073 

0.007 0.0250 0.0079 0.0205 0.0079 0.0202 0.0079 0.0213 

0.007 0.0500 0.0091 0.0522 0.0091 0.0511 0.0090 0.0636 

0.007 0.0750 0.0045 0.0532 0.0045 0.0526 0.0045 0.0437 

0.007 0.1000 0.0077 0.2118 0.0077 0.2072 0.0080 0.1455 

0.007 0.2500 0.0070 0.3013 0.0070 0.2946 0.0064 0.3395 

0.007 0.5000 0.0018 0.0707 0.0018 0.0697 0.0017 0.1860 

0.007 0.7500 0.0197 0.9866 0.0197 0.9666 0.0156 0.8187 

 

 

Tableau A.1 – Valeurs estimées des paramètres π et γ 

 

A travers ce tableau, on constate que, pour les deux méthodes MOMK et MOMG, nous avons la même estimation de π 

quelque soient les valeurs du couple (π,γ). Ceci est justifié par le fait que nous avons utilisé le même estimateur de π dans les 

deux méthodes. On constate aussi que la valeur estimée de π par la méthode EMV est peu diff érente de la valeur estimée de π par 

les deux premières méthodes. Cependant on note une diff érence entre les trois approches aux niveaux des estimations de γ. Les 

résultats présentés dans le tableau ci-dessus ne nous permettent pas de départager les trois méthodes. Par contre, on peut comparer 

les trois approches en calculant les racines carrées des erreurs quadratiques moyennes des estimateurs en procédant par 

simulation. 

 
Nous considérons les valeurs d’apprentissage suivantes : πU = 0.007 et γU = (0.005, 0.05). Pour chaque couple (πU , γU ) 

fixé, nous porterons nos simulations sur les couples suivants : (nU = 20 000, m = 10), (nU = 50 000, m = 50), (nU = 100 000, m = 

100), (nU = 200 000, m = 150), (nU = 300 000, 

m = 200), (nU = 400 000, m = 250), (nU = 500 000, m = 300), (nU = 600 000, m = 350) et 

(nU = 700 000, m = 400). Pour chaque couple (nU , m) fixé, on simule B = 250 échantillons Bêta- Binomial sur lesquels on 

estime π et γ pour chaque échantillon. Et à la fin on calcule la racine carrée de l’erreur quadratique moyenne correspondante de chaque 

paramètre dans chaque méthode. Les résultats obtenus sont présentés dans les tableaux ci-dessous. 
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B=250 

 

 

 

RMSE (γ) 

 

 
B=250 

 

 

 

RMSE (γ) 

 

 
B=250 

 

 

 

RMSE (γ) 

 

 

n=20.000, m=10 n=50.000, m=50 n=100.000, m=100 

 

 

 

 
 

 

 
 

 
n=200.000, m=150 n=300.000, m=200 n=400.000, m=250 

 

 
 

 

 
 

 

 

 
n=500.000, m=300 n=600.000, m=350 n=700.000, m=400 

 

 

Tableau A.2 – Racines carrées des erreurs quadratiques moyennes des estimateurs de π = 0.007 et γ = 0.005 

A
n

n
e

x
e

 C
h

a
p

itr
e

 IV
 

 MOMK MOMG EMV  MOMK MOMG EMV  MOMK MOMG EMV 

RMSE (π) 0.00193 0.00193 0.00193  0.00105 0.00106 0.00105  0.00075 0.00075 0.00075 
 0.00407 0.00337 0.00315  0.00238 0.00204 0.00152  0.00155 0.00147 0.00121 

 

 MOMK MOMG EMV  MOMK MOMG EMV  MOMK MOMG EMV 

RMSE (π) 0.00055 0.00055 0.00055  0.00048 0.00048 0.00049  0.00041 0.00041 0.00041 
 0.00126 0.00114 0.00087  0.00095 0.00088 0.00067  0.00091 0.00091 0.00064 

 

 MOMK MOMG EMV  MOMK MOMG EMV  MOMK MOMG EMV 

RMSE (π) 0.00037 0.00037 0.00037  0.00040 0.00040 0.00040  0.00037 0.00037 0.00036 
 0.00088 0.00075 0.00060  0.00072 0.00070 0.00056  0.00067 0.00065 0.00049 

 



 

 

^ 

^ 

^ 

 

 

 

 

 

 

 
 

 

 

B=250 

 

 

 

RMSE (γ) 

 

 
B=250 

 

 

 

RMSE (γ) 

 

 
B=250 

 

 

 

RMSE (γ) 

 

 

n=20.000, m=10 n=50.000, m=50 n=100.000, m=100 

 
 

 

 
 

 

 
 

 
n=200.000, m=150 n=300.000, m=200 n=400.000, m=250 

 

 
 

 

 
 

 

 

 
n=500.000, m=300 n=600.000, m=350 n=700.000, m=400 

 

 

Tableau A.3 – Racines carrées des erreurs quadratiques moyennes des estimateurs de π = 0.007 et γ = 0.05 
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 MOMK MOMG EMV  MOMK MOMG EMV  MOMK MOMG EMV 

RMSE (π) 0.00557 0.00560 0.00542  0.00248 0.00248 0.00244  0.00185 0.00186 0.00184 
 0.03650 0.03622 0.04707  0.02239 0.02210 0.02024  0.01952 0.01936 0.01538 

 

 MOMK MOMG EMV  MOMK MOMG EMV  MOMK MOMG EMV 

RMSE (π) 0.00147 0.00147 0.00147  0.00129 0.00130 0.00129  0.00122 0.00122 0.00122 
 0.01686 0.01640 0.01134  0.01700 0.01540 0.01077  0.01403 0.01385 0.00971 

 

 MOMK MOMG EMV  MOMK MOMG EMV  MOMK MOMG EMV 

RMSE (π) 0.00115 0.00115 0.00115  0.00104 0.00104 0.00104  0.00091 0.00091 0.00092 
 0.01286 0.01255 0.00948  0.01057 0.01056 0.00833  0.01115 0.01112 0.00762 
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θ h 
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h 

 ̂

Γ(πxτx)Γ((1 − πx)τx) 

Y Σ 

 

 

Les résultats présentés dans le tableau A.2 et le tableau A.3 montrent une convergence des erreurs 

quadratiques moyennes de πU et γU vers zéro pour toutes les trois méthodes. On peut constater aussi 

que la méthode d’estimation par le maximum de vraisemblance (EMV) est meilleur que les deux autres méthodes puisqu’elle 

enregistre la plus petite erreur quadratique moyenne sur les neufs échantillons simulés. Elle est suivie par la méthode MOMG 

qui a la deuxième plus petite erreur quadratique moyenne. En pratique, on suggère donc d’estimer les hyperparamètres par la 

méthode du maximum de vraisemblance. 
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Chapitre V 
 

 

Application à la Mortalité Maternelle dans les 

hôpitaux de référence au Sénégal et au Mali 

 

1 Introduction 

Selon l’Organisation Mondiale de la Santé (OMS), chaque année 585 000 femmes meurent dans le monde suite à des 

complications liées à la grossesse, à l’accouchement ou au post-partum [15]. Pour réduire cette mortalité, les politiques de santé 

adoptées par de nombreux pays d’Afrique subsaharienne reposent en grande partie sur la disponibilité des services de Soins 

Obstétricaux d’Urgence (SOU), incluant la césarienne et la transfusion sanguine, dans les hôpitaux de référence au niveau des 

districts ou régions sanitaires. Par contre, l’accès à ces services est très variable d’une région à une autre, avec une grande disparité 

entre milieu rural et urbain (Starrs, 1987). Des études réalisées en Afrique de l’Ouest, dans le cadre du suivi et de l’évaluation 

des interventions, ont révélé des taux de Mortalité Maternelle (MM) élevés et variables d’un hôpital à un autre au sein d’un 

même pays, mais aussi d’un pays à un autre [7, 9, 11–13, 20, 21]. 

Les résultats des études concernant les causes de la MM dans les pays en développement montre que, de tous les décès 

maternels qui surviennent en Afrique, 75% seraient dus à des complications obstétricales directes qui sont : les hémorragies 

(cause principale de la mortalité maternelle reconnue mondialement), les infections puerpérales, les dystocies, les troubles 

hypertensifs de la grossesse et les avortements clandestins [17]. Les causes indirectes les plus couramment rencontrées en 

Afrique subsaharienne sont essentiellement l’anémie, le paludisme, l’hépatite virale et le sida. Un facteur de risque  de la MM se 

définit comme une caractéristique plus fréquente chez les mères qui meurent que celles qui ne meurent pas (OMS, 1991). Les 

facteurs qui prédisposent aux événements mortels de la maternité peuvent être regroupés en deux grandes catégories : les facteurs 

individuels liés aux femmes et les facteurs reliés au système de santé ou facteurs institutionnels. 

Facteurs individuels : De nombreuses études dans les pays en développement ont montré que la primi-parité, d’autant plus 

qu’elle concerne une femme plus jeune, et la grande multi-parité sont des facteurs de risque importants de complication 

sévère, indépendamment de l’âge [4, 14]. Ce dernier est un facteur de risque majeur chez les patientes d’âges extrêmes 

(inférieurs à 16 ou 
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supérieurs à 35 ans) identifié depuis longtemps. Même si le rôle d’un espace inter génésique court (inférieur à 2 ans) sur la 

Mortalité Maternelle a été peu étudié, il représente un facteur de risque retrouvé très présent chez les femmes de 

l’Afrique de l’Ouest. 

Facteurs institutionnels : Les études qui traitent des facteurs liés aux services de santé sont pour la plupart observationnelles et 

limitées à des comparaisons entre pays [19]. Elles révèlent cependant que le niveau de MM est plus élevé dans les pays où les 

femmes ont le moins accès aux services de santé équipés et de bonne qualité [2]. Parmi les femmes qui utilisent les 

services de santé, la mortalité reste élevée dans certains hôpitaux. Peu d’études ont été réalisées dans ce contexte. La seule 

étude recensée qui analyse la relation possible entre les données institutionnelles et la MM, a été réalisée dans un pays 

développé : les états Unis d’Amérique [18]. La particularité de cette étude réside dans l’utilisation d’une analyse 

multivariée de la famille des modèles linéaires généralisés, la régression de poisson, pour estimer le risque relatif, entre 

la disponibilité des Soins Obstétricaux d’Urgence (SOU), des médecins spécialisés en SOU et le taux de Mortalité 

Maternelle Humaine. 

Les grandes stratégies qui devraient permettre de réduire le taux de mortalité maternelle sont connues : le recours aux soins 

obstétricaux essentiels tels que l’accouchement assisté par du personnel qualifié et le recours à des services off rant des soins 

obstétricaux d’urgence en cas de complication obstétri- cale sont les principales mesures recommandées [3]. Plusieurs pays ont 

adopté des feuilles de route qui constituent un cadre national structuré de la planification des programmes et des activités qui 

visent à réduire la mortalité. Leur mise en œuvre se heurte à des problèmes structurels qui aff ectent les systèmes de santé de la 

plupart des pays de l’ASS et en premier lieu le problème récurrent du financement. La question des ressources humaines est 

en passe de devenir le défi majeur qui limite déjà la capacité de ces systèmes de santé de faire face à des problèmes de santé déjà 

existants et à d’autres à venir. 

 
Des études dans diff érents pays d’Afrique subsaharienne ont identifié plusieurs facteurs de risque indépendants qui diff èrent 

sensiblement entre les auteurs, probablement en raison des diff érences entre les populations d’étude, l’environnement, les variables 

recueillies et les méthodes statistiques utilisées. Ainsi, il reste diffi cile de fournir aux professionnels de la santé des pays d’Afrique 

subsaharienne des recommandations pour identifier les signes ou symptômes cliniques qui pourraient aider le personnel à détecter 

les patients à haut risque de décès à l’hôpital. C’est dans ce contexte que le projet QUARITE a été mis en place. 

Le projet QUARITE est un essai randomisé par grappes multicentrique international destiné à évaluer l’effi cacité d’un programme 

d’amélioration de la qualité des soins au Sénégal et au Mali, comparé avec un groupe contrôle (soins habituels) sans intervention 

extérieure [6]. Le critère d’évaluation primaire de l’essai est la mortalité maternelle en milieu hospitalier. Avec environ 80 000 

naissances survenant chaque année dans 46 hôpitaux de référence, QUARITE est l’un des plus grands essais randomisés par 

grappes dans la santé maternelle et périnatale jamais entrepris dans les pays à faibles revenus. 
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Ainsi, le processus expérimental donne une occasion unique d’évaluer la mortalité maternelle en milieu hospitalier à partir d’un 

grand nombre de centres, dans une variété de contextes, et en tenant compte des diff érentes caractéristiques de la mère et de 

l’hôpital. Dans cette analyse, il est question de mesurer la mortalité maternelle dans les hôpitaux de référence au Mali et au Sénégal 

avant la mise en œuvre du programme d’amélioration de la qualité des soins et d’évaluer les prédicteurs de mortalité à l’hôpital 

chez les patients qui fréquentent ces établissements de santé. 

 

 

2 Présentation des données et objectifs de l’étude 

 
Les données de l’étude ont été recueillies au cours de l’exécution du projet QUARITE dans sa phase de pré-intervention qui 

s’est déroulée du 1er Octobre 2007 au 30 Septembre 2008 au Sénégal et du 1er Novembre 2007 au 31 Octobre 2008 au Mali. Les 

données considérées sont issues d’un échantillonnage à deux niveaux : un niveau hôpital et un niveau patiente. Les hôpitaux qui 

ont participé à la collecte des données ont été tirés au hasard parmi ceux de leurs pays : (1) disposant d’un bloc opératoire 

fonctionnel, (2) pratiquant au moins 800 accouchements par an, (3) ayant un consentement signé par le chef de service de la 

maternité et le directeur de l’établissement. Au total 46 hôpitaux de référence, dont 24 au Sénégal et 22 au Mali, ont été enrôlés dans 

l’étude. La population ciblée est l’ensemble des femmes enceintes qui sont prises en charge dans les hôpitaux de référence. Sont 

incluses, les femmes admises pour un accouchement et les patientes dirigées secondairement vers un des hôpitaux concernés par 

l’étude. Elles sont exclues : les femmes admises après un accouchement à domicile et les femmes prises en charge dans une autre 

structure. Au total 89 518 patientes sont incluses parmi lesquelles 617 sont décédées. Soit un taux de 0.7%. L’hôpital constitue 

l’unité de randomisation et d’intervention pendant que la patiente admise pour un accouchement représente l’unité 

d’analyse. 

 

Seules les données patientes sont analysées dans ce travail. L’échantillon d’étude est constitué de 89518 patientes décrites 

par 24 variables explicatives réparties en trois groupes : un premier groupe de sept variables décrivant l’état de la patiente avant 

la grossesse en cours, un deuxième groupe de onze variables portant sur l’état d’avancement de la grossesse et un troisième 

groupe de six variables relatant le cours de l’accouchement. Plus une variable réponse binaire. Elle prend la valeur 1 si la 

patiente décède avant d’être autorisée à quitter l’hôpital (617 patientes) et 0 sinon (88 901 patientes). L’analyse des données a 

deux objectifs. Dans un premier temps, on cherche à : (1) Identifier les profils caractéristiques des patientes décédées sans tenir 

compte de l’échantillonnage au niveau hôpital ; (2) Elaborer une règle de classification performante et facile à comprendre 

comme un arbre de décision ou une régression logistique. Et dans un deuxième temps, on cherche à : (1) Identifier les profils 

caractéristiques des patientes décédées sachant que les hôpitaux de références sont échantillonnés à partir d’un ensemble 

d’hôpitaux éligibles ; (2) Elaborer une règle de classification performante et facile à comprendre comme un arbre de décision ou 

une régression logistique selon l’hôpital. 
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3 Prétraitement des données 

 
 

Parmi les 24 variables explicatives de l’échantillon, nous avons 21 variables catégorielles et 3 va- riables numériques dont 

l’âge de la patiente, la parité (le nombre d’accouchements précédents la grossesse en cours) et le nombre de consultations 

prénatales pour la grossesse en cours. Pour se mettre dans les conditions d’application de l’algorithme d’apprentissage du chapitre 

II, nous avons discrétisé les variables numériques en utilisant la méthode du principe de la longueur de description minimal ou 

"Minimal Description Length Principle" (voir annexe B). Ci-dessous, nous présentons la liste des variables explicatives et 

leurs modalités respectives selon les groupes d’appartenance. 

 

 
 

Variables modalités 

Historique des antécédents médicaux    

Groupe d’âge (en années) < 30 ≥ 30 

Parité (nombre d’accouchements) < 5 ≥ 5 

Hypertension artérielle chronique 0 1  

Cardiaque chronique / Insuffisance rénale 0 1  

Broncho-pneumopathie chronique 0 1  

Drépanocytose 0 1  

Antécédent césarienne 0 1  

 

Tableau V.1 – Liste des variables : historique des antécédents médicaux 
 

 

 

 
 

Variables modalités 

Grossesse en cours  

Hypertension gestationnelle 0    1 

Pré-éclampsie/éclampsie 0    1 

Saignement vaginal (près du terme) 0    1 

Anémie chronique Sévère 0    1 

Diabète gestationnel 0    1 

Rupture prématurée des membranes 0    1 

Tractus urinaire infection / pyélonéphrite 0    1 

VIH / SIDA 0    1 

Paludisme 0    1 

Grossesse multiple 0    1 

Nombre de consultations prénatales < 3, =3, ≥ 4 

 

Tableau V.2 – Liste de variables : Grossesse en cours 
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Variables modalités 

Travail et accouchement  

Evacuer par un autre établissement de santé 0 1 

Induction du travail 0 1 

Mode d’accouchement  

voie vaginale 0 

forceps / ventouse 1 

urgence avant l’accouchement césarienne 2 

intrapartum accouchement par césarienne 3 

césarienne élective 4 

Hémorragie post-partum antécédent ou immédiat 0 1 

Travail prolongé / dystocique 0 1 

Rupture utérine 0 1 

 

Tableau V.3 – Liste des variables : Travail et accouchement 

 

 

 

 

 

 

 

4 Analyse des données sous l’hypothèse que la population est ho- 

mogène 

 

4.1 Echantillonnage des données 

 

 
L’apprentissage statistique que nous proposons dans cette analyse nécessite de subdiviser la base de données en trois 

échantillons de même taille : Apprentissage, V alidation et T est. Les échantillons sont obtenus de manière à ce qu’une partie des 

Hopitaux serve à l’apprentissage et à la validation du modèle et l’autre partie des clusters soit utilisée pour tester la performance 

du modèle. On note n le nombre total des patientes inclues dans l’étude et m = 46 le nombre total d’hôpitaux. 

 

 
En fonction de la valeur m0 donnée, soit l’échantillon T est est constitué exclusivement d’hôpitaux qui n’ont pas servi à 

l’élaboration du classifieur ; soit il contient un faible taux d’observations des hôpitaux qui ont participé à la construction du 

classifieur. Ce procédé permet, à l’aide du classifieur, de faire des prédictions plus tard sur des hôpitaux qui n’ont pas 

participé à l’étude. Pour la suite, nous nous sommes fixés de manière arbitraire une valeur m0 égale à 36. 
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λ 

 

 
 

Algorithme : Echantillonnage des données 

– Entrées : D un ensemble d’observation ; m le nombre de clusters dans D, m0 un entier supérieur à m/2 

– Sorties : Echantillons : T rain, V alid, T est 

 
1 : n : le nombre d’observations dans D 

2 : n0 = ⌊ n/2 + 0.5⌋  

3 : k = tirage aléatoire sans remise de m0 clusters parmi les m clusters dans D 

4 : n1 : le nombre d’observations dans les k clusters 

5 : T est = les observations qui ne sont pas dans les k clusters 6 : Si (n1 > 2 

∗  n0) faire 

7 : Sub = tirage aléatoire sans remise de (2 ∗  n0) observations parmi les n1 observations 8 : T est = Ajouter dans 

l’échantillon Test les (n1 − 2 ∗  n0) observations restantes 

9 : sinon Sub : permuter les n1 observations 10 : Fin 

si 

11 : T rain = la première moitié des observations dans Sub constitue l’ensemble d’apprentissage 12 : V alid = la deuxième 

moitié des observations dans Sub constitue l’ensemble validation  

 

 

Tableau V.4 – Algorithme d’échantillonnage 

 
 

4.2 Construction du classifieur 

A partir de l’ensemble d’apprentissage, on a appliqué la procédure "apriori" (algorithme III.1) du package "arules" 

avec le paramètre d’apprentissage λ = (s0, c0, l0). Au support minimum s0, on a aff ecté les valeurs suivantes : 9.10−4, 1.10−3, 

2.10−3 et 3.10−3. A la valeur prédictive positive minimale c0 on a alloué les valeurs suivantes : 5%, 4%, 3% et 2%. Et on a fixé la 

longueur maximale l0 à 5. 

Pour chaque combinaison des trois paramètres, on génère un ensemble de profils fréquents (Uλ). Puis à l’aide de la procédure 

d’élagage (algorithme III.2), on supprime tous les profils redondants dans 

Uλ pour obtenir un ensemble de profils U1 de taille plus petite. En général, l’ensemble U1 est très 

vaste au point qu’on ne peut pas s’en servir pour construire un classifieur effi cace. On se sert alors de l’algorithme III.3 pour 

réduire l’ensemble U1 . Cette étape de la procédure permet de supprimer tous les profils dans U1 de faibles performances. On 

obtient alors un ensemble U2 contenant les profils de 
λ λ 

meilleurs performances et non redondants. De cet ensemble, on pourra alors déduire un classifieur φ performant. L’ensemble 

Test servira à calculer les performances du classifieur (sensibilité, spécificité et erreur de classement). 

 
La combinaison des diff érents paramètres conduit à la construction de 16 règles de classement (classifieurs). Le meilleur 

classifieur est sélectionné à partir de cet ensemble (voir tableau ci-dessous ??) en variant la sensibilité de chaque classifieur par 

rapport à sa spécificité. Toutes les analyses relatives à la méthode de classification proposée ont été réalisées dans 

l’environnement de programmation R 
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λ 

 

 

[16]. L’exploitation des règles d’association a été faite en utilisant le package arules [1, 10]. 

 

4.3 Recherche d’un classifieur optimal 

Les 16 classifieurs considérés sont des classifieurs binaires discrets [8]. Ils produisent chacun un seul point dans l’espace ROC 

(Receiver Operating Characteristics). Offi ciellement, un point dans l’espace ROC est meilleur qu’un autre si il est au nord-ouest 

(sensibilité élevée, 1-spécificité faible) par rapport à l’autre. Relativement au classifieur, plus l’aire en-dessous de la courbe ROC 

est élevée, meilleur est le classifieur. 

Habituellement, pour comparer des classifieurs, on compare les taux d’erreur de classement associés. Cependant, dans le contexte 

où la distribution des classes de la variables réponse est déséquilibrée, il est plus approprié d’utiliser l’aire en-dessous de la courbe 

ROC. L’aire sous la courbe ROC, communément notée AUC, a une propriété statistique importante. Le AUC d’un classifieur 

peut être traduit comme suit : la probabilité de classer une observation positive choisie de manière aléatoire est plus élevée que 

celle d’une observation négative choisie au hasard. A ces deux indicateurs de performance on a associé le score de Pierce afin de 

disqualifier les classifieurs générant trop de fausses alertes. Pour choisir le meilleur, on compare en premier lieu les scores de 

Pierce (PSS). On choisit les cinq meilleurs classifieurs. Ensuite on compare leurs AUC, puis leurs erreurs de classement, leurs 

sensibilités et leurs spécificités avant de comparer les tailles de leurs ensembles optimaux de profils U2 . 

 

Paramètres d’apprentissage Profils Performances 

Support min VPP (conf) min Taille Uλ Taille U2 
λ Sensibilité Spécificité Erreur AUC PSS 

9.10−04 0.03 5988 44 0.81 0.79 0.21 0.80 0.60 

9.10−04 0.04 3971 34 0.78 0.85 0.15 0.81 0.63 

9.10−04 0.05 2957 18 0.66 0.92 0.09 0.79 0.58 

1.10−03 0.03 5054 40 0.84 0.78 0.22 0.81 0.62 

1.10−03 0.04 3373 27 0.75 0.86 0.14 0.80 0.61 

1.10−03 0.05 2518 15 0.61 0.92 0.08 0.77 0.53 

2.10−03 0.03 1522 13 0.79 0.80 0.20 0.79 0.59 

2.10−03 0.04 1152 03 0.39 0.98 0.03 0.69 0.37 

2.10−03 0.05 1050 03 0.39 0.98 0.03 0.69 0.37 

3.10−03 0.03 725 04 0.65 0.86 0.14 0.76 0.51 

3.10−03 0.04 610 02 0.46 0.94 0.06 0.70 0.40 

3.10−03 0.05 610 02 0.46 0.94 0.06 0.70 0.40 

 

Tableau V.5 – Tableau des performances des 12 ensembles optimaux obtenus à partir du test asymp- totique 

 

Le classifieur dont les performances sont représentées à la ligne 07 du tableau V.5 est le meilleur classifieur selon les critères 

de sélection énumérés précédemment. Dans le tableau V.6, nous représen- tons la matrice de confiance qui lui est associée. 
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λ 

 

 
 Observations sensibilité spécificité erreur clmt 

P
ré

di
ct

io
ns

 

 non oui  

 

 
0.789 

 

 

 
0.797 

 

 

 
0.204 

non 

oui 

 

23610 

 
6017 

 

45 

 
168 

 

total 
 

29627 
 

213 

 

Tableau V.6 – Matrice de confusion du classifieur optimal par test asymptotique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Structure de l’arbre constitué par les profils de risque composant le classifieur 

optimal 

 
 
 
 

 
Une structure d’arbre peut être utilisée pour visualiser les règles de l’ensemble optimal (U2 ) des profils à risque qui 

constituent la règle de classement (classifieur optimal). Cette arborescence permet de présenter la règle de classement sous une 

forme facile à comprendre comme un arbre de décision. Chaque branche de l’arbre constitue un profil à risques dont le risque 

relatif associé est donné au niveau de la feuille terminale de la branche. 
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Pas Paludisme ; RR=6.99, 

VPP=3.3% 

Pas Drépanocy- 

tose ; RR= 6.91, 

VPP=3.3% 

Pas Drépanocytose ; 

RR=6.32, VPP=3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.1 – Représentation de l’arbre des profils à risque 

 

 

 

 

 

 

 

Dans cette analyse, nous avons posé une hypothèse forte à savoir que les observations sont toutes indépendantes et 

identiquement distribuées. Ce n’est pas tout à fait exact puisque les données de l’étude (QUARITE) sont obtenues à partir 

d’un essai multicentrique randomisé. Supposer donc que les distributions des observations dans les diff érents hôpitaux de 

référence sont identiques peut avoir une forte influence sur les résultats de l’analyse. Il serait donc judicieux d’analyser les 

données en tenant compte de l’eff et aléatoire au niveau des hôpitaux. 

Age ≥ 30 

Parité ≥ 5 

Hémorragie 

Pas Saignement Va- ginal 

; RR=6.33, VPP=3% 

Pas Rupture PM ; 

RR=6.57, VPP=3.1% 

Pas Induction ; RR=10.06, 

VPP=3.4% 

Pas Saignement Va- ginal ; 

RR=10.03, VPP=3.5% 

Pas Dréponocytose 

Pas Paludisme 

Pas Paludisme 

Pas Saignement Va- ginal ; 

RR=26.54, VPP=11.7% 

Mode Accouche- 

ment 3 

Nb CPN < 3 

Evacuée 

Pas Diabéte Gesta- 

tionnel ; RR= 6.24, 

VPP=3% 

Pas VIH ; RR= 6.74, 

VPP=3.2% 

Total 

Population 

Pas Saignement Va- ginal 

Pas Saignement 

Vaginal 
Hémorragie 

Pas Hypertension ar- 

térielle Ch ; RR=6.87, 

VPP=3.3% 

Pas Hyperten- sion 

Artérielle Ch ; 

RR=23.98, 

VPP=9.1% 

Nb CPN<3 ; RR=25.79, 

VPP=12% 
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5 Analyse des données sous l’hypothèse que la population est hété- 

rogène 

 
Dans cette deuxième partie de l’analyse, nous considérons la méthode de sélection de l’ensemble optimal en utilisant le 

facteur de Bayes. On choisit 40 hôpitaux de manière aléatoire dont il faudra subdiviser en trois sous ensembles : 

Apprentissage, Validation et Test, de tels sorte que chaque sous- ensemble contient les 40 hôpitaux avec la même proportion. Les 

6 hôpitaux restants seront ajoutés à l’ensemble test construit précédemment. 

Pour générer l’ensemble des profils non redondants et significativement corrélés avec la variable ré- ponse, nous avons considéré 

les paramètres d’apprentissage suivant : s0 = 2.10−3, c0 = 0.03 et l0 = 5. Ce choix est dû au fait que ces paramètres ont fourni le 

meilleur classifieur dans le cas iid. Au sortir de la première étape de la procédure d’apprentissage, on a obtenu un ensemble de 

1522 profils non redondants et significativement corrélés avec la variable réponse. 

 

 

 

 

5.1 Présentation des résultats pour les hôpitaux ayant participé à l’estimation des 

hyperparamètres 

 
Pour chaque hôpital participant à l’élaboration du classifieur (à l’estimation des hyperparamètres de la Bêta-Binomiale), la 

sélection de l’ensemble optimal de profils est eff ectuée en fonction de la valeur prédictive positive a posteriori. Dans les 

tableaux ci-dessous (Tableau V.7 et Tableau V.8), on a présenté les résultats du classement avec les valeurs prédictives 

positives a posteriori. 

 
 

Hopital taille Uh sensib spécif erreur auc 
  λ  

01 09 1.00 0.98 0.02 0.99 

03 09 0.92 0.78 0.22 0.85 

04 09 0.92 0.54 0.45 0.73 

05 09 - 0.97 0.03 - 

06 09 0.00 0.92 0.08 0.54 

07 09 - 0.97 0.03 - 

08 09 0.67 0.88 0.12 0.78 

09 09 0.60 0.79 0.21 0.69 

11 09 1.00 0.67 0.32 0.84 

14 09 0.71 0.59 0.41 0.65 
 

Tableau V.7 – Tableau de performance pour les hôpitaux ayant participé à l’estimation des hyperpa- ramètres 
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Hopital taille Uh sensib spécif erreur auc 
  λ  

15 09 1.00 0.73 0.27 0.86 

16 09 0.83 0.69 0.31 0.76 

17 09 0.80 0.81 0.19 0.81 

18 09 1.00 0.61 0.39 0.80 

19 09 0.75 0.96 0.04 0.85 

20 09 0.71 0.66 0.34 0.68 

23 09 0.78 0.72 0.28 0.75 

24 09 1.00 0.77 0.23 0.88 

25 09 0.78 0.83 0.17 0.80 

26 09 1.00 0.69 0.30 0.85 

27 09 0.33 0.67 0.34 0.50 

28 09 1.00 0.82 0.18 0.91 

29 09 0.33 0.71 0.29 0.52 

30 09 1.00 0.52 0.48 0.76 

31 09 1.00 0.84 0.15 0.92 

32 09 1.00 0.77 0.23 0.88 

33 09 0.60 0.50 0.50 0.55 

34 09 1.00 0.80 0.20 0.90 

35 09 1.00 0.83 0.17 0.92 

36 09 0.50 0.76 0.24 0.63 

37 09 1.00 0.66 0.34 0.83 

38 09 1.00 0.81 0.19 0.90 

39 09 0.75 0.61 0.38 0.68 

40 09 0.50 0.59 0.41 0.54 

41 09 1.00 0.57 0.43 0.78 

42 09 1.00 0.82 0.17 0.91 

43 09 1.00 0.92 0.09 0.96 

44 09 1.00 0.88 0.12 0.94 

45 09 1.00 0.87 0.13 0.94 

46 09 - 0.80 0.20 - 
 

Tableau V.8 – Tableau de performance pour les hôpitaux ayant participé à l’estimation des hyperpa- ramètres 

 
 

Si on prend le seuil de sélection du facteur de Bayes égale à 3, on distingue trois classifieurs pour tous les hôpitaux : un 

classifieur C1 de 08 profils pour les hôpitaux 03, 04, 11, 16, 17, 18, 20, 23, 24 ; un classifeur C2 de 09 profils dont les 08 

profils du classifieur C1 plus le profils "{Hemorragie = 1, SaignementV = 0}" pour le hôpital 09 et un classifieur C3 de 09 

profils dont les 08 profils du classifieur C1 plus le profils "{Hemorragie = 1}" pour le reste des hôpitaux. Par contre, 

lorsqu’on prend un seuil de sélection supérieur ou égale à 10, on a un classifieur unique de 09 profils pour tous les hôpitaux qui 

ont participé a l’estimation des hyperparamètres. Il s’agit du classifieur C3. A la Figure V.2, nous avons une présentation 

sous forme d’arbre de l’ensemble des profils optimaux qui constituent le classifieur C3. 
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Age ≥ 30 

Nb CPN ≤ 3 ; 

RR=8.23, VPP=3.3% 

Parité ≥ 5 ; RR=5.89, 

VPP=3.2% 

Hémorragie ; RR=14.87, 

VPP=6% 

Total 

Population 

Evacuée 

 

 
Pas Antécédent ; RR=5.49, 

VPP=3.1% 

Pas Hypertension Ges- 

tationnelle ; RR=5.42, 

VPP=3.1% 

Pas Grossesse Multiple, 

RR=5.54, VPP=3.1% 

Pas Hypertension Ges- 

tationnelle ; RR=5.57, 

VPP=3.1% 

 

 

 

 

 

 

 
 

 

 

 

 
 

Figure V.2 – Représentation sous forme d’arbre des profils à risque communs à tous les hôpitaux 

 

 

 
5.2 Présentation des résultats pour les hôpitaux n’ayant pas participé à l’estima- 

tion des hyperparamètres 

 
Pour les hôpitaux qui n’ont pas participé à l’élaboration du classifieur, il s’agira de construire un classifieur moyen dont 

on pourra utiliser pour faire le classement dans tout nouveau hôpital. La sélection de l’ensemble optimal de profils se fera en 

fonction de l’estimation de l’hyperparamètre π. Dans le tableau ci-dessous (Tableau V.9), on a présenté les résultats du 

classement avec les valeurs prédictives positives en tenant compte de l’hétérogénéité des données. Le classifeur moyen obtenu est 

identique au classifieur C3 présenté à la figure V.2. 

 
Hopital taille U2 sensib spécif erreur auc 

  λ  

02 09 0.91 0.88 0.12 0.89 

10 09 0.87 0.70 0.29 0.79 

12 09 0.60 0.88 0.13 0.74 

13 09 1.00 0.88 0.12 0.94 

21 09 1.00 0.95 0.05 0.97 

22 09 0.73 0.78 0.23 0.75 
 

Tableau V.9 – Tableau de performance pour les hôpitaux n’ayant pas participé à l’estimation des hyperparamètres 

Nb CPN ≤ 3 

Pas Rupture PM 

Pas Grossesse 

Multiple 

Dystocie ; RR=6.43, 

VPP=3.4% 

Pas Hypertension Ar- 

térielle Ch ; RR=5.40, 

VPP=3% 
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6 Discussion 

 

Pour un usage clinique, les structures d’arbre de la figure V.1 et de la figure V.2 sont utilisées pour visualiser les profils 

explorés. Chaque branche de l’arbre constitue un profil à risque dont le risque relatif associé est donné au niveau du nœud 

terminal de la branche. Dans chaque nœud une paire "variable-modalité" est représentée. Chaque branche détermine une 

partition de la sous-population à risque. Par exemple, selon la figure V.2, les patientes qui présentent une hémorragie sont 14.87 

fois plus susceptibles de mourir que la moyenne de la population. Pour les patientes qui ont une dystocie et qui ont eff ectué moins 

de trois consultations prénatales présente un risque relatif de 6.43. Le RR passe à 8.23 pour les patientes qui ont été évacuée à 

partir d’un autre établissement et qui ont moins de trois consultations prénatales pendant la grossesse. Des interprétations 

similaires de l’arborescenceV.1 peuvent être faites pour les branches qui identifient respectivement les patientes évacuées et âgées 

de plus de 30 ans ou ayant une parité supérieur à 5. 

 

 

La règle de classement établie dans cette étude confirme que les patientes présentant une hémor- ragie, un accouchement 

prolongé ou une parité supérieure ou égale à 5, doivent être gérées avec une haute priorité par les professionnels de santé qualifiés 

dans les services SOU complets [3], en particulier si la patiente est évacuée par un autre établissement de santé. Compte tenu de la 

crise des ressources humaines au Mali et au Sénégal, la disponibilité de personnel qualifié (sages-femmes et médecins) est 

problématique et de nombreuses tâches sont déléguées au personnel de santé moins qualifié (étudiants, matrones, sages-assistants). 

Ces professionnels peuvent jouer un rôle crucial dans l’amélioration des résultats maternels dans les hôpitaux de référence s’ils 

sont impliqués dans des tâches appropriées et reçoivent une formation adéquate. Plus précisément, nos résultats indiquent qu’ils 

devraient être for- més pour détecter les ruptures utérines et les hémorragies. Les tâches et les actions requises sont assez précises et 

simples : poser des questions sur la douleur et les contractions, ainsi que des saignements vaginaux, mesurer la pression artérielle, 

jauge de protéines, détecter une perte de sang excessive et des convulsions. Même le personnel de santé non qualifié pourrait 

détecter, à l’admission ou pendant le travail (accouchement), les signes d’alarme suivants : douleur aiguë et perte de contractions, la 

pression artérielle> 140/90 mmHg, protéinurie> 1, l’hémorragie, et ils doivent alors alerter immédiatement le personnel qualifié 

si l’un de ces signes est détecté. La détection précoce de ces signes de complication, et la gestion immédiate des patientes par des 

sages-femmes ou les médecins permettrait d’améliorer les résultats maternels [3, 5, 13]. 

Les profils définis par le modèle de classement basé sur les règles d’association apportent des connais- sances utiles aux 

professionnels des soins de santé dans les hôpitaux de référence au Mali et au Sénégal. Ils peuvent servir de référence dans leur 

décision de traiter les patients qui accouchent dans les éta- blissements de santé. 
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7 Conclusion 

Un eff et important de l’apprentissage statistique établie dans cette étude pourrait être une iden- tification rapide par les 

professionnels de la santé qualifiés ou non-qualifiés des mères à haut risque de mortalité à l’hôpital qui doivent être ensuite off ert 

des soins obstétricaux d’urgence de haute prio- rité. Cette stratégie devrait viser toutes les femmes enceintes fréquentant les 

hôpitaux de référence au Sénégal et au Mali. Elle devrait aussi viser à détecter et à gérer les complications mortelles par des 

interventions fondées sur des preuves avec un suivi intensif des femmes qui ont un ante-partum césarienne d’urgence. Dans 

d’autres contextes, d’autres études sont nécessaires pour évaluer l’impact de cette stratégie sur la réduction des taux de mortalité 

maternelle, du temps d’accès au soins, de légalité globale et de la mortalité maternelle à l’hôpital. Cette stratégie off rira encore 

plus d’avantages si elle est combinée avec des interventions améliorant le système de référence maternelle. 
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Chapitre VI 
 

 

Conclusion générale et perspectives 

 
 

1 Conclusion générale 
 

Dans cette analyse, nous avions comme objectifs : l’identification des profils caractéristiques des patientes  décédées, la 

modélisation de la probabilité de décès en tenant compte de l’eff et hôpital et la mis en place d’une règle de classement effi cace 

permettant de trier les patientes à haut risque. Pour atteindre ces objectifs, nous avons choisi une approche basée sur les règles 

d’association dans le but de contourner les diffi cultés liées à la faible occurrence de la modalité d’intérêt de la variable réponse. 

Jusque là, les diff érentes méthodes statistiques proposées dans la littérature pour l’analyse de données déséquilibrées dans le cadre 

d’une classification supervisée produisent : soit un classifieur fortement dépendant de l’ensemble d’apprentissage, soit un 

classifieur effi cace mais sous forme d’une boîte noire. Dans le domaine de l’intelligence artificielle, des algorithmes basés sur les 

règles d’association, tels que CBA (Classification Based on Association), CMAR (Classification Based on Multiples 

Associa- tion Rules) et CPAR (Classification Based on Prédictive Association Rules), ont été développés pour identifier les 

profils corrélés avec la modalité d’intérêt de la variable cible. Cependant ces algorithmes produisent un classifieur représenté par 

un vaste ensemble de profils dont la plus part d’entre eux ne sont pas pertinents. Dans certains domaines tels que la médecine, le 

classifieur produit est diffi cile à manipuler voire inutilisable. La procédure d’apprentissage statistique que nous avons présenté 

dans cette analyse permet de prendre en compte les avantages des méthodes d’analyse qui lui ont précédé. La procédure permet de 

construire un classifieur performant à partir d’un ensemble réduit et optimal de profils. En eff et l’une des grandes diffi cultés avec 

les règles d’association reste la production d’un vaste ensemble de profils. Dans le chapitre III, nous avons proposé deux tests 

d’hypothèse : un test stochastique et un test asymptotique pour l’élagage des profils redondants. Ceci permet à la fois de 

supprimer une bonne partie des profils qui ne sont pas pertinents et de réduire considérablement l’en- semble des profils 

candidats pour constituer la règle de classement. 

Pour sélectionner l’ensemble optimal de profils, nous avons proposé les algorithmes III.3 et III.4 selon la taille du jeux de 

données dont on dispose. Si la taille des données est suffi samment grande, on propose d’utiliser l’algorithme III.3 sur un 

ensemble de validation indépendant de l’ensemble d’ap- prentissage. Pour un jeux données de petite taille, on peut utiliser 

l’algorithme III.4 qui, à partir d’un 
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nombre fini d’échantillons bootstrap des données, sélectionne un ensemble optimal de profils. Ce qui nous permet de réduire 

la forte dépendance du classifieur de l’ensemble d’apprentissage. 

L’indicateur de performance principal pour la sélection des profils candidats reste la valeur prédic- tive positive. Et pour tenir 

compte de l’eff et hôpital dans la modélisation, nous avons eff ectué une estimation bayésienne empirique de la valeur 

prédictive positive pour partager l’information entre les hôpitaux. A ce niveau, nous avons proposé deux méthodes 

d’estimation des hyperparamètres : la méthode d’estimation des moments combinée avec un algorithme de pondération 

empirique et la méthode d’estimation du maximum de vraisemblance combinée avec un algorithme MM (Minimisation- 

Maximisation). 

En combinant les profils de l’ensemble réduit et optimal de profils, on construit un classifeur per- formant et facile à 

interpréter par tout agent de santé maternelle. Il peut être affi ché sous forme de tableau ou de poster dans les salles 

d’accouchement dans les hôpitaux en Afrique subsaharienne pour aider les sages femmes dans une prise de décision rapide. 

 
2 Perspectives 

1. Introduire des covariables observables sur les clusters : Dans des travaux à venir, nous allons 

étendre notre modèle en introduisant une matrice de covariables M de dimension n × q, 

où n = 
Σm nh est le nombre d’observations et q le nombre de caractéristiques observables sur 

tous les clusters. Le nombre de covariables est supposé être strictement supérieur à un (q > 1). 
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logit (πU ) = WtβU 

où W = (U (X), Mi)n×(q+1) est un vecteur de dimension (q + 1), Mi désignant un vecteur ligne de la matrice M et βU 

est le vecteur des coeffi cients de régression associés au profil U (X). 

Le paramètre τU est le paramètre qui gouverne la corrélation entre les observations du même 

cluster h vérifiant le profil U (X). On montre que pour deux observations i et j vérifiant U (X) 
1 

dans un cluster h, on a corr(Yhi, Yhj) ≥ 
τ + 1 

. 

 

2. Etude de la stabilité du classifteur : Dans un futur proche, nous nous intéresserons à la stabilité du 

classifieur lorsque les données d’apprentissage subissent des modifications. Ceci semble être un point important pour la 

généralisation des résultats obtenus sur l’ensemble des centres de santé en Afrique Sub-Saharienne. 
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Conclusion générale et perspectives 

 

 

3. Améliorer les performances du classifteur : Dans ce travail, nous avons choisi de classer 

positive une observation t lorsqu’elle vérifie au moins un profil optimal (Ui)
M . 

 

 

 
φ(t) = 

  1 si 
Σ

i=1 

 

φUi (t) > 0 

 
0 sinon 

Les résultats obtenus montrent un taux de faux positifs très élevé. Ceci pourrait être justifié par le fait que la règle de 

classement φ() est une fonction des profils corrélés avec la classe rare. 

Par exemple les résultats obtenus à partir des données du projet QUARITE révèlent un taux de faux positifs supérieur à 

20% des patientes vivantes et représentant plus de 90% du taux d’erreur de classement (voir tableau V.6). La prise en 

charge de ce groupe de patientes peut entraîner des coûts très élevés qui risquent de contrarier le bon fonctionnement 

de la structure. 
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Résumé 
L’objectif de cette thèse est de proposer une méthodologie statistique permettant de formuler une règle de classement capable  de 

surmonter les difficultés qui se présentent dans le traitement des données lorsque la distribution a priori de la variable réponse est 

déséquilibrée. Notre proposition est construite autour d’un ensemble particulier de règles d’association appelées "class association 

rules". 

Dans le chapitre II, nous avons exposé les bases théoriques qui sous-tendent la méthode. Nous avons utilisé les indicateurs de 

performance usuels existant dans la littérature pour évaluer un classifieur. A chaque "class association rule" est associée un classifieur 

faible engendré par l’antécédent de la règle que nous appelons profils. L’idée de la méthode est alors de combiner un nombre réduit 

de classifieurs faibles pour constituer une règle de classement performante. 

Dans le chapitre III, nous avons développé les différentes étapes de la procédure d’apprentissage statistique lorsque les observations 

sont indépendantes et identiquement distribuées. On distingue trois grandes étapes : (1) une étape de génération d’un ensemble 

initial de profils, (2) une étape d’élagage de profils redondants et (3) une étape de sélection d’un ensemble optimal de profils. Pour 

la première étape, nous avons utilisé l’algorithme "apriori" reconnu comme l’un des algorithmes de base pour l’exploration des règles 

d’association. Pour la deuxième étape, nous avons proposé un test stochastique. Et pour la dernière étape un test asymptotique est 

effectué sur le rapport des valeurs prédictives positives des classifieurs lorsque les profils générateurs respectifs sont emboîtés. Il en 

résulte un ensemble réduit et optimal de profils dont la combinaison produit une règle de classement performante. 

Dans le chapitre IV, nous avons proposé une extension de la méthode d’apprentissage statistique lorsque les observations ne sont 

pas identiquement distribuées. Il s’agit précisément d’adapter la procédure de sélection de l’ensemble optimal lorsque les données 

ne sont pas identiquement distribuées. L’idée générale consiste à faire une estimation bayésienne de toutes les valeurs prédictives 

positives des classifieurs faibles. Par la suite, à l’aide du facteur de Bayes, on effectue un test d’hypothèse sur le rapport des valeurs 

prédictives positives lorsque les profils sont emboîtés. 

Dans le chapitre V, nous avons appliqué la méthodologie mise en place dans les chapitres précédents aux  données  du  projet  

QUARITE concernant la mortalité maternelle au Sénégal et au Mali. 

Mots clés : apprentissage statistique, classement, données déséquilibrées, estimation  Bayésienne  empirique,  mortalité  maternelle, 

profils, règles d’association, sélection de profils, test d’hypothèse 

Abstract 
The aim of this thesis is to design a supervised statistical learning methodology that can overcome the weakness of standard methods 

when the prior distribution of the response variable is unbalanced. The proposed methodology is built using class association rules. 

Chapter II deals with theorical basis of statistical learning method by relating various classifiers performance metrics with class 

association rules. Since the classifier corresponding to a class association rules is a weak classifer, we  propose to select a small    

number of such weak classifiers and to combine them in the aim to build an efficient classifier. 

In Chapter III, we develop the different steps of the statistical learning method when observations are independent and identically 

distributed. There are three main steps : In the first step, an initial set of patterns correlated with the target class is generated using 

"apriori" algorithm. In the second step, we propose a hypothesis test to prune redondant patterns. In the third step, an hypothesis 

test is performed based on the ratio of the positive predictive values of the classifiers when respective generating patterns are nested. 

This results in a reduced and optimal set of patterns whose combination provides an efficient classifier. 

In Chapter IV, we extend the classification method that we proposed in Chapter III in order to handle the case where observations 

are not identically distributed. The aim being here to adapt the procedure for selecting the optimal set of patterns when data are 

grouped data. In this setting we compute the estimation of the positive predictive values as the mean of the posterior distribution 

of the target class probability by using empirical Bayes method. Thereafter, using Bayes factor, a hypothesis test based on the ratio 

of the positive predictive values is carried out when patterns are nested. 

Chapter V is devoted to the application of the proposed methodology to process a real world dataset. We studied the QUARITE 

project dataset on maternal mortality in Senegal and Mali in order to provide a decision making tree that health care professionals 

can refer to when managing patients delivering in their health facilities. 

Keywords : association rules, classification, empirical Bayesian estimation, hypothesis testing, maternal mortality, patterns, selection 

profiles, statistical learning, unbalanced data 


