
HAL Id: tel-01508189
https://tel.archives-ouvertes.fr/tel-01508189

Submitted on 14 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Routage des Transactions dans les Bases de Données à
Large Echelle

Idrissa Sarr

To cite this version:
Idrissa Sarr. Routage des Transactions dans les Bases de Données à Large Echelle. Informatique [cs].
Université Pierre et Marie Curie (Paris VI), 2010. Français. <tel-01508189>

https://tel.archives-ouvertes.fr/tel-01508189
https://hal.archives-ouvertes.fr

No d’ordre: 000

THÈSE

présentée devant

l’Université Pierre et Marie Curie (Paris VI)

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Mention INFORMATIQUE

par

Idrissa SARR

Équipe d’accueil : Bases de Données
École Doctorale : EDITE

Composante universitaire : LABORATOIRE D’INFORMATIQUE DE PARIS 6

Titre de la thèse :

Routage des Transactions dans les Bases de Données à Large
Echelle

date de soutenance prévue : 07 octobre 2010

Rapporteurs : Esther PACITTI Professeure à l’Université de Montpellier 2
Rachid GUERRAOUI Professeur à l’EPFL

Examinateurs : Pierre SENS Professeur à l’UPMC
Stéphane GANÇARSKI Maître de Conférences à l’UPMC (HDR)
Gabriel ANTONIU Chargé de Recherche à l’INRIA de Rennes (HDR)
Samba NDIAYE Maître Assistant à l’UCAD

Directeur de thèse : Anne DOUCET Professeure à l’UPMC
Encadrant : Hubert NAACKE Maître de Conférences à l’UPMC

Table des matières

1 Introduction 5
1.1 Motivations . 5
1.2 Objectifs et Contexte de la thèse . 6
1.3 Problématiques . 6
1.4 Contributions . 7
1.5 Organisation du manuscrit . 10

2 Systèmes répartis à grande échelle 13
2.1 Applications Web 2.0 . 13
2.2 Notions de système distribués . 14
2.3 Les propriétés requises des systèmes distribués 16

2.3.1 Transparence . 16
2.3.2 Passage à l’échelle . 16
2.3.3 Disponibilité . 17
2.3.4 Autonomie . 18

2.4 Etude de quelques systèmes distribués . 19
2.4.1 Systèmes P2P . 19
2.4.2 Les grilles informatiques ou grid . 21
2.4.3 Le cloud . 22
2.4.4 Exemple d’utilisation des systèmes distribués à large échelle 23

2.5 Implémentation d’un système distribué avec un middleware 25
2.5.1 Catégories de Middleware . 26

2.6 Modèle d’architecture pour la gestion des données à large échelle 28

3 Gestion des transactions dans les bases de données répliquées 29
3.1 Notions de transactions . 30
3.2 Bases de données réparties et répliquées . 32

3.2.1 Objectifs et principes des bases de données réparties 32
3.2.2 Mécanismes de réplication . 32

3.3 Gestion des transactions dans les bases de données répliquées 35
3.3.1 Gestion des transactions et passage à l’échelle en taille 36
3.3.2 Gestion des transactions et disponibilité 44
3.3.3 Gestion transparente des transactions avec transparence et autonomie . . . 47

1

Table des matières

3.4 Discussion . 49
3.4.1 Modèle de réplication pour les bases de données à large échelle 49
3.4.2 Modèle de middleware pour les bases de données distribuées et répliquées . 50

4 Architecture d’un Système de Routage des Transactions 53
4.1 Modèle et concepts . 53

4.1.1 Modèle de transactions et de données . 53
4.1.2 Ordre de précédence des transactions . 55
4.1.3 Structuration des métadonnées . 57

4.2 Définition générale des composants de l’architecture 58
4.2.1 Impact des besoins applicatifs sur l’architecture 58
4.2.2 Modèle de communication . 60
4.2.3 Architecture détaillée . 61

4.3 Description de la structure des métadonnées . 66
4.3.1 Description et structure des métadonnées 66
4.3.2 Implémentation du catalogue . 67

4.4 Conclusion . 71

5 Routage des transactions 73
5.1 Routage des transactions . 74

5.1.1 Définition du graphe de rafraîchissement et du plan d’exécution 74
5.1.2 Algorithme générique de routage . 75
5.1.3 Algorithmes de routage pessimiste . 76
5.1.4 Algorithme de routage hybride . 81
5.1.5 Discussion . 88

5.2 Gestion des métadonnées . 89
5.2.1 Gestion des métadonnées avec verrouillage 90
5.2.2 Gestion des métadonnées sans verrouillage 90
5.2.3 Etude comparative des deux méthodes de gestion du catalogue 92

5.3 Conclusion . 93

6 Tolérance à la dynamicité des noeuds 95
6.1 Gestion des déconnexion prévue . 96
6.2 Gestion des pannes . 98

6.2.1 Modèle et détection de pannes . 98
6.2.2 Tolérance aux pannes . 99
6.2.3 Majoration du temps de réponse . 103

6.3 Gestion contrôlée de la disponibilité . 104
6.4 Conclusion . 106

7 Validation 107
7.1 Evaluation de la gestion du catalogue . 107

7.1.1 Surcharge de la gestion du catalogue dans DTR 108

2

Table des matières

7.1.2 Surcharge de la gestion du catalogue dans TRANSPEER 111
7.1.3 Analyse de la surcharge du catalogue . 113

7.2 Evaluation des performances globales du routage 115
7.2.1 Impact du relâchement de la fraîcheur . 115
7.2.2 Apport du routage décentralisé . 117
7.2.3 Passage à l’échelle . 118
7.2.4 Conclusion sur les performance du routage 120

7.3 Evaluation des performances de la tolérance aux pannes 120
7.3.1 Configuration du temporisateur . 121
7.3.2 Surcharge de la gestion des pannes . 122
7.3.3 Performances de la gestion des pannes . 123
7.3.4 Conclusion sur l’évaluation de la gestion des pannes 125

7.4 Conclusion . 126

8 Conclusion et Perspectives 127
8.1 Synthèse . 127
8.2 Perspectives . 129

Résumé 143

3

Table des matières

4

Chapitre 1

Introduction

1.1 Motivations

L’Internet, réseau mondial d’ordinateurs, fournit une infrastructure pour le stockage des don-
nées et facilite le partage de très grands volumes de données. Cette facilité de partage d’information
est une des principales clés du succès des applications Web et particulièrement celles dénommées
applications Web 2.0. Les applications Web2.0 sont ouvertes car elles peuvent être complétées par
des applications tierces qui ajoutent du contenu ou qui accèdent aux données de l’application d’ori-
gine. On peut alors considérer qu’une application Web2.0 joue le rôle de pépinière d’applications.
De plus, une application Web2.0 contrôle les données manipulées par les utilisateurs directement
ou via les applications tierces. Plus précisément, elle gère l’exécution des transactions émises par
les utilisateurs ou les applications tierces.

Aujourd’hui, beaucoup d’applications Web2.0 voient leur nombre d’utilisateur croître forte-
ment pour atteindre des centaines de millions de personnes (e.g., début 2010, Facebook aurait 400
millions de membres actifs). Face à cette forte croissance, les applications Web2.0 sont confron-
tées à un problème de passage à l’échelle. Notamment, le système de gestion de données atteint
rapidement les limites de la charge qu’il peut traiter. Cela peut provoquer une dégradation des
temps de réponses perçus par l’utilisateur, situation qu’il n’accepte pas. Pour éviter une telle situa-
tion, il est nécessaire d’augmenter les ressources (calcul, stockage, communication) utilisées par
les applications Web2.0.

L’ajout de ressource se faisant par étapes et progressivement, l’infrastructure obtenue est com-
posée de ressources hétérogènes (diverses capacités de stockage, calcul et communication) répar-
ties à l’échelle mondiale. Du fait de sa taille et de son étendue, l’infrastructure est sujette à de
nombreuses pannes dont il faut tenir compte en prévoyant la redondance des données et des fonc-
tions. Dans cette thèse, nous apportons des solutions aux problèmes soulevés par la manipulation
de données réparties et répliquées à très large échelle.

5

Chapitre 1. Introduction

1.2 Objectifs et Contexte de la thèse

Cette thèse s’inscrit en partie dans le cadre du projet ANR Respire [Prod] réalisé entre 2006
et 2009, et dont l’objectif principal est d’offrir des fonctionnalités avancées pour le partage de
ressources et de services dans les systèmes pair à pair, en présence de données répliquées.

La réplication dans les bases de données a été largement étudiée, au cours des trois dernières
décennies. Elle vise à améliorer la disponibilité des données et à augmenter la performance d’accès
aux données. Un des défis majeurs de la réplication est de maintenir la cohérence mutuelle des
répliques, lorsque plusieurs d’entre elles sont mises à jour, simultanément, par des transactions.
Des solutions qui relèvent partiellement ce défi pour un nombre restreint de bases de données
reliées par un réseau fiable existent. Toutefois, ces solutions ne sont pas applicables à large échelle
car elles nécessitent une communication rapide et fiable entre les nœuds traitant les transactions ;
ce qui limite le nombre de nœuds (de l’ordre d’une centaine) et le type d’interconnexion (réseau
local).

Dans cette thèse nous nous intéressons à la gestion des transactions dans une base de données
répliquées à large échelle et particulièrement au routage des transactions. Nos principaux objectifs
peuvent être résumés comme suit :

– réduire le temps de réponse des transactions, en équilibrant la charge des répliques et en
tenant compte de la disponibilité des ressources (SGBD, gestionnaire de transactions).

– contrôler la cohérence des accès aux données réparties et répliquées afin de rendre aux ap-
plications des résultats conformes à leur exigence ;

– garantir l’autonomie des applications et des SGBD i.e. pouvoir intégrer les solutions propo-
sées avec des applications et SGBD existants en les modifiant le moins possible.

1.3 Problématiques

Dans les systèmes déployés à grande échelle comme Facebook ou eBay, le nombre de sources
de données, répliques incluses, est très élevé (plus de 10.000 pour eBay). Face à cette situation,
plusieurs problèmes se posent parmi lesquels le problème de routage que nous tentons de résoudre
et spécifions comme suit :

1. Soit un ensemble de bases de données réparties et répliquées, et une transaction envoyée par
une application, le problème du routage de transactions se pose ainsi : sur quelle réplique
décide-t-on de traiter la transaction et quel traitement doit être effectué sur la base choisie,
afin de satisfaire au mieux les objectifs de cohérence et de performance ? Notons que le
routage ne consiste pas à faire un ordonnancement des transactions entrantes mais il s’agit
plutôt de faire une optimisation du traitement de la transaction.
Ce problème de routage est très important d’autant plus qu’aujourd’hui les machines héber-
geant les données peuvent être fournies par un service tiers tel que les ASP (Application Ser-
vice Provider) ou les clouds. Ainsi, pour un fournisseur de service cloud ou ASP, il devient
indispensable d’avoir des mécanismes efficaces pour identifier les données d’une application
particulière regroupées avec les données d’autres applications pour des soucis économiques ;

6

1.4. Contributions

2. Le problème du choix de la réplique pose la question de maintenir l’état du système : quelle
information sur les répliques doit-on connaitre pour en choisir une qui permettra de traiter la
transaction rapidement ? Dans un système décentralisé et de grande taille, comment disposer
de cette information au bon endroit sachant que plusieurs demandes de transactions peuvent
arriver simultanément ?
L’information sur les répliques dénommée souvent métadonnées, requiert une gestion minu-
tieuse puisqu’elle détermine à tout instant l’état global du système. Dans un environnement à
grande échelle l’utilisation des métadonnées est indispensable pour exploiter les ressources
qui composent le système. De plus, la gestion des métadonnées fait partie des problèmes les
plus important pour garantir les performances puisque la largeur d’échelle implique beau-
coup de métadonnées. C’est pourquoi nous nous intéressons à ce problème.

1.4 Contributions

Nos contributions dans cette thèse sont résumées en cinq points décrits ci-après.

Architecture globale du système de routage

Nous concevons un intergiciel pour contrôler l’accès à la base de données. L’architecture de
l’intergiciel est composée de deux parties : une partie assurant le service de médiation entre les
différents composants du système et une autre chargée de la gestion des métadonnées qui sont les
données nécessaires au fonctionnement du système en entier. Notre architecture est à mi-chemin
entre les systèmes P2P structurés et ceux non structurés afin de tirer profit à la fois des avantages
des uns et des autres. De fait, les nœuds chargés d’assurer le routage sont organisés autour d’un
anneau logique, ce qui facilite leur collaboration et garantit le traitement cohérent des transactions.
Par contre les nœuds chargés de stocker les données sont faiblement structurés, ce qui leur confère
une grande autonomie. Notre intergiciel est redondant pour mieux faire face à la volatilité d’un
environnement à large échelle puisqu’à chaque fois qu’un nœud chargé de routage ou de stockage
des données tombe en panne, nous utilisons un autre nœud disponible pour continuer le traitement
ou récupérer les données.

Gestion d’un catalogue réparti

Une exploitation optimale d’une base de données distribuée dans un système à large échelle
requiert un service d’indexation (ou catalogue) des ressources qui stockent les données. Le cata-
logue est conçu pour héberger des informations utiles à l’exécution rapide et cohérente des tran-
sactions. Nous concevons uns structure qui permet de garder les informations telles que le schéma
d’allocation des données, l’historique de l’exécution des transactions, l’état des répliques et leur
disponibilité. Notre choix de garder uniquement ces informations se justifie par le fait que :1) elles
sont suffisantes pour pouvoir router une transaction tout en contrôlant la cohérence des répliques ;
et 2) elles sont suffisamment compactes pour ne pas trop allonger le temps de réponse.

7

Chapitre 1. Introduction

Pour des soucis de performances, nous fragmentons le catalogue en fonction des classes de
conflits. Concrètement un fragment contient les métadonnées décrivant une seule classe de conflit.
Cela rend possible l’accès au catalogue en parallèle pour router deux transactions qui ne partagent
pas la même classe de conflit. Une classe de conflit contient les données que la transaction peut
potentiellement lire (resp. modifier)

Pour garantir la cohérence du catalogue lors de l’accès au métadonnées, nous proposons deux
approches : une approche utilisant le verrouillage et une autre sans verrouillage.

La gestion avec verrouillage permet de garantir la cohérence des métadonnées et s’avère très
efficace tant que les accès concurrents aux métadonnées restent peu fréquents. Malheureusement,
nous vérifions que le verrouillage ne facilite pas le passage à l’échelle. C’est pourquoi nous optons
pour une solution sans verrouillage lors de l’accès au catalogue. De fait, nous avons conçu un pro-
tocole pour coordonner les accès aux métadonnées sans avoir recours au verrouillage. Ce protocole
offre les mêmes garanties de cohérence que le verrouillage et supporte beaucoup mieux les accès
concurrents aux métadonnées.

Routage des transactions à travers un intergiciel

L’antinomie entre les besoins de performances et ceux de cohérence étant bien connue, l’ap-
proche suivie dans cette thèse consiste à relâcher les besoins de cohérence afin d’améliorer la per-
formance d’accès aux données . Autrement dit, il s’agit de relâcher la fraîcheur pour diminuer le
temps de réponse des transactions de lecture seule. Or, dans le contexte du Web2.0, de nombreuses
applications tolèrent le relâchement de la fraîcheur i.e. , acceptent de lire des données qui ne sont
pas nécessairement les plus récentes. Par exemple, il est possible de gérer des transactions de vente
aux enchères (sur eBay ou Google Adsense) sans nécessairement accéder à la dernière proposition
de prix, puisque l’enchère est sous pli cacheté. Le relâchement de la fraîcheur ouvre la voie vers de
nouvelles solutions offrant de meilleures performances en termes de débit transactionnel, latence,
disponibilité des données et passage à l’échelle.

Nous proposons des mécanismes de routage des transactions pour garantir une exécution co-
hérente et rapide des transactions en utilisant un modèle de coût. Le modèle de coût utilise le
relâchement de la fraîcheur afin de réduire le temps de réponse et d’équilibrer les charges. Nos al-
gorithmes requièrent des accès au catalogue réparti pour maintenir la cohérence mutuelle à terme et
ils définissent l’ordre dans lequel les transactions doivent être exécutées pour ne pas compromettre
la cohérence.

Le premier algorithme est dit pessimiste et ordonne toutes les transactions conflictuelles en
s’appuyant sur les conflits potentiels. En d’autres mots, le protocole de routage assure une séria-
lisation globale définie de manière pessimiste et qui est utilisé pour router toutes les transactions.
Chaque transaction est associée à une ou plusieurs classes de conflits. En fonction des classes de
conflits, les transactions sont ordonnées dans un graphe en s’appuyant sur leur ordre d’arrivée. Bien
que cette approche assure une sérialisation globale, il réduit malheureusement la parallélisation du
traitement des transactions puisqu’elle s’appuie sur des sur-ensembles potentiels de données réel-
lement accédées.

Pou améliorer le parallélisme du traitement des transactions, nous avons proposé un second
algorithme qui combine une approche pessimiste et optimiste. Ce second algorithme s’appuie sur

8

1.4. Contributions

une tentative d’exécution des transactions afin de minimiser davantage le temps de réponse des
transactions. Autrement dit, les transactions accédant aux mêmes classes de conflit sont exécutées
de manière optimiste et une phase de validation est utilisée à la fin pour garantir la cohérence. Dans
le contexte des applications Web 2.0 où les transactions courantes et potentiellement conflictuelles,
sont peu nombreuses, les chances de réussite du routage optimiste s’avèrent très élevées, ce qui fait
qu’il soit plus adapté. De plus, nous mettons à jour le graphe de sérialisation pour le rendre plus
précis.

L’une des caractéristiques de notre intergiciel est qu’il assure une transparence complète de la
distribution des ressources en jouant le rôle d’interface entre les applications et les données. Les
transactions envoyées par les applications sont transmises aux sources de données par l’intergiciel,
mais les résultats sont directement envoyés aux applications. Ce protocole de communication per-
met à notre architecture de s’écarter de la structure client/serveur et de faciliter aussi le passage à
l’échelle.

Gestion des pannes

Nous proposons également un mécanisme de gestion des pannes. Ce mécanisme est basé sur la
détection sélective des fautes et sur un algorithme de reprise des transactions. Contrairement à la
plupart des autres approches, notre mécanisme n’implique pas l’utilisation de nœuds qui ne parti-
cipent pas à l’exécution de la transaction en cours, ce qui permet de passer à l’échelle. Pour cela,
nous adaptons des approches existantes de détection des pannes afin de les rendre opérationnelles
pour chaque type de nœud (gestionnaire de transaction et nœud de données) de notre système.
Nous avons proposé un protocole permettant de gérer toutes les situations lorsqu’un nœud quitte
le système pendant le traitement d’une transaction. Ceci est nécessaire et suffisant pour contrôler
la cohérence du système, surtout en cas de déconnexions intempestives.

Cependant, pour maintenir le débit transactionnel en cas de fréquentes pannes, il faut être
capable d’ajouter de nouvelles ressources en fonction des déconnexions. Pour ce faire, nous avons
proposé un modèle permettant de déterminer et contrôler le nombre de répliques requises pour
garder le système disponible. Ce modèle permet de déterminer le nombre minimum de répliques
nécessaires au bon fonctionnement du système et donc de minimiser les surcoûts liés à la gestion
des répliques. Notons que les pannes des noeuds sont détectées et prises en compte de manière
complètement transparent aux applications.

Validation et résultats

Pour valider la faisabilité de nos approches, nous implémentons deux prototypes nommés res-
pectivement DTR (Distributed Transaction Routing) et TRANSPEER (TRANSaction on PEER-to-
peer). L’implémentation de deux prototypes est liée au besoin de gérer le catalogue avec ver-
rouillage ou sans verrouillage. De fait, DTR constitue le prototype développé avec verrouillage du
catalogue alors que TRANSPEER est conçu pour une gestion du catalogue sans verrouillage et un
modèle de communication de type P2P. Puis, nous effectuons quelques simulations pour étudier
le passage à l’échelle et la tolérance aux pannes de notre solution. Notre choix d’utiliser à la fois
de l’expérimentation et de la simulation se justifie par le fait que : (1) l’expérimentation permet

9

Chapitre 1. Introduction

d’évaluer un système dans des conditions réelles ; et (2) la simulation est une représentation sim-
plifiée du système, facile à réaliser et requiert moins de ressources que l’implémentation, ce qui
favorise l’évaluation d’un système à grande échelle. Nous avons mené une série d’expériences sur
nos deux prototypes pour étudier les performances de notre système : débit transactionnel, temps
de réponse, passage à l’échelle et tolérance aux pannes.

Les résultats obtenus pendant la thèse ont fait l’objet de plusieurs publications : [SNG08a,
SNG10b, SNG10c, GSN09, SNG10a, SNG08b, DSS10].

Ces résultats montrent que l’utilisation d’un catalogue pour stocker les métadonnées permet de
router les transactions en contrôlant le niveau de fraîcheur sollicité par les applications. De plus,
la surcharge induite par la gestion d’un catalogue réparti est faible et donc n’a pas trop d’impact
négatif sur le débit du routage. Les expériences ont montré que le relâchement de la fraîcheur
des données améliore le temps de réponse des requêtes et l’équilibrage des charges, ce qui est
économiquement important vis-à-vis de l’utilisation totale des ressources disponibles. Les résultats
montrent également que la redondance du routeur accroît le débit de routage et réduit le temps
de réponse tout en introduisant plus de disponibilité. Les résultats obtenus avec notre prototype
TRANSPEER démontrent le gain de la gestion des métadonnées sans verrouillage, ce qui favorise
la réduction du temps de réponse. Enfin, nous avons montré que la prise en compte de la dynamicité
du système permet de maintenir les performances. Les méthodes de détection et de résolution des
pannes utilisées sont simples à mettre en œuvre et s’avèrent bien adaptées pour un système à large
échelle.

1.5 Organisation du manuscrit
Ce manuscrit est structuré en huit chapitres.
– Le chapitre 1 présente l’introduction de nos travaux.
– Le chapitre 2 présente les systèmes distribués. Nous y décrivons nos applications visées et

l’architecture et le fonctionnement des systèmes distribués : caractéristiques, avantages et
implémentation via un intergiciel. Puis nous faisons une discussion sur le modèle d’archi-
tecture requis pour gérer une base de données destinées à des applications à grande échelle.

– Le chapitre 3 décrit les travaux connexes au nôtre. Il présente quelques méthodes existantes
pour gérer les transactions dans les bases de données répliquées. Plus précisément, nous
étudions les solutions de gestion de transactions en privilégiant quatre caractéristiques des
systèmes distribués que nous détaillons dans le chapitre 2 à savoir le passage à l’échelle,
la tolérance aux pannes (ou disponibilité), la transparence et l’autonomie des données. Les
solutions étudiées sont placées dans notre contexte afin de bien situer leurs limites mais aussi
de bien comprendre les principes à mettre en œuvre pour mieux satisfaire les applications à
large échelle.

– Le chapitre 4 présente l’architecture de notre système. Il détaille les différents composants
du système de routage, leur rôle et leur interaction pour assurer le traitement des transactions.

– Le chapitre 5 décrit nos mécanismes de routage et de gestion du catalogue. Dans ce chapitre,
nous détaillons les algorithmes de routage pour envoyer les transactions vers les répliques
optimales et nous présentons les algorithmes proposés pour gérer le catalogue réparti afin

10

1.5. Organisation du manuscrit

d’assurer sa cohérence .
– Le chapitre 6 présente la gestion des pannes. Nous y étudions la détection et la résolution

des pannes afin de maintenir la cohérence et de borner le temps de réponse.
– Le chapitre 7 détaille notre validation. Nous y étudions les performances de notre système :

débit transactionnel, temps de réponse, passage à l’échelle et tolérance aux pannes. Pour ce
faire, nous étudions d’abord la surcharge liée à la gestion du catalogue, puis les performances
globales du routage et enfin les apports de la gestion des pannes.

– Le chapitre 8 présente la conclusion et les perspectives de cette thèse.

11

Chapitre 1. Introduction

12

Chapitre 2

Systèmes répartis à grande échelle

La gestion des données dans un environnement à grande échelle est indispensable pour prendre
en compte les besoins des nouvelles applications telles que les applications Web 2.0. Si la ges-
tion des données dans les systèmes distribués a été largement étudiée dans les dernières années,
des solutions efficaces et à bas coût tardent à voir le jour à cause de la complexité des problèmes
introduits par la largeur de l’échelle et le caractère hétérogène et dynamique de l’environnement.
Plus particulièrement, l’étude des applications Web 2.0 nous a permis de comprendre leurs exi-
gences à satisfaire. Ces exigences qui peuvent se résumer en un grand débit transactionnel, une
haute disponibilité et une latence faible, nécessitent de nouvelles approches de concevoir et de gé-
rer les systèmes distribués. Ceci se décline en deux problèmes qui sont, i) une bonne conception
et implémentation des architectures réparties qui hébergent les services ; et ii) des mécanismes ef-
ficaces de gestion des données utilisées par ces applications. Dans ce chapitre, nous décrivons les
spécifications d’une implémentation des systèmes distribués.

Nous décrivons d’abord nos applications visées avant de décrire l’architecture et le fonction-
nement des systèmes distribués : caractéristiques, avantages et implémentation via un intergiciel.
Puis, nous faisons une discussion sur le modèle d’architecture requis pour gérer une base de don-
nées destinées à des applications à grande échelle.

2.1 Applications Web 2.0

Dans cette section nous décrivons les applications Web 2.0 qui sont nos applications cibles. La
définition du Web 2.0 est malaisée. Il n’en reste pas moins que l’ensemble des applications Web
2.0 présente des caractéristiques communes, parmi lesquelles nous pouvons citer :

– l’utilisation du réseau internet comme une plateforme puisque qu’elles interagissent avec les
autres applications via des navigateurs ;

– l’offre d’un environnement collaboratif en donnant l’opportunité aux utilisateurs d’ajouter et
de contrôler leur propre contenu ;

– la proposition de services permettant de mettre en relation des utilisateurs partageant des
intérêts commun, par exemple les réseaux sociaux.

13

Chapitre 2. Systèmes répartis à grande échelle

Les types d’applications Web 2.0 sont très nombreux, par exemple, weblogging, wikis, réseaux
sociaux, podcasts, flux, etc. Pour tous ces exemples d’application, le défi majeur consiste à délivrer
le service attendu par l’utilisateur et à assurer sa satisfaction en termes de fonctionnalités et de
temps de réponse. De plus, si la mission première d’un site web consiste, par exemple, à "convertir
les visiteurs en clients", son principal objectif peut être résumé comme étant "tout d’abord d’attirer
suffisamment de visiteurs, puis de convertir suffisamment de visiteurs en clients".

Pour atteindre cet objectif, les applications Web 2.0 doivent satisfaire les exigences suivantes :
haute disponibilité, forte réactivité (temps de réponse faible), maintenance ou évolution facile,
chacune étant essentielle à son succès. L’environnement Web 2.0 offre de nouveaux moyens pour
atteindre ces objectifs, mais croise également de nouveaux obstacles. En effet le nombre de visi-
teurs convertis en utilisateurs (ou clients) est très important et dépasse facilement une centaine de
millions, par exemple plus de 200 millions pour Facebook, ou eBay ou Myspace, etc. Ce nombre
d’utilisateurs engendre des téraoctets de données à gérer puisque chaque utilisateur peut éditer et
contrôler son propre contenu. Par conséquent, le nombre de requêtes qui en découle correspond
à des dizaines de milliards d’instructions par jour. De plus, certaines applications Web 2.0 fonc-
tionnent en mode pair-à-pair, ce qui élargit la taille de l’application mais aussi les difficultés de
gérer les données du fait de leur hétérogénéité.

Cependant cette forte charge applicative générée par les utilisateurs des applications Web 2.0
est très particulière comme le montre l’étude de Jean-Francois Ruiz [Rui]. En effet, parmi les utili-
sateurs d’une application Web 2.0, il y a 1% qui génèrent ou créent un contenu, 10% qui réagissent
(commenter, améliorer, noter, voter) sur le contenu et 89% qui ne font que consulter, i.e. lire le
contenu. En d’autres mots, la charge applicative est fortement dominées par les requêtes de lecture
mais cela n’empêche pas que la charge d’écriture restante est supérieur à 30 millions d’instruc-
tions d’écritures par jour pour un site comme Facebook. Cette valeur est obtenue en supposant que
chaque utilisateur ne fasse au plus qu’une opération d’écriture par jour.

Cette brève étude montre les fortes exigences des applications Web 2.0 qui sont entre autres,
un grand débit transactionnel, une haute disponibilité, une latence faible, etc.

De plus, cette étude montre que la charge d’écriture intensive est due à un un volume important
de données modifiées et non pas par une faible portion de données très fréquemment mises à
jour (hotspot). Cette caractéristique des applications Web 2.0 qui est la conséquence directe de
l’autorisation accordée aux utilisateurs à ne modifier que leurs propres données ou celle de leurs
accointances est très importante car elle révèle que les conflits d’accès aux données sont rares dans
ce contexte.

2.2 Notions de système distribués
Selon Tanenbaum [TS99], un système réparti est un ensemble d’ordinateurs (ou processus) in-

dépendants qui apparaît à un utilisateur comme un seul système cohérent. Les ordinateurs peuvent
garder leur autonomie et être regroupés dans un même lieu ou dispersés sans que cela ne soit vi-
sible de l’extérieur par un utilisateur. Du fait que l’ensemble des ordinateurs forment un système
en entier, la défaillance d’un ordinateur peut avoir un impact négatif le fonctionnement du sys-
tème et introduire des incohérences. En prenant en compte cet aspect, un système distribué peut

14

2.2. Notions de système distribués

être défini comme "un système qui vous empêche de travailler si une machine dont vous n’avez
jamais entendu parler tombe en panne, (Leslie Lamport). S’il existe moult définitions dont nous
ignorons le nombre, on peut dire que les principaux objectifs des systèmes répartis sont de faire
coopérer plusieurs ressources dans l’optique de partager des tâches, de faire des traitements pa-
rallèles, etc . Ainsi, un système distribué peut être vu comme une application qui coordonne les
tâches de plusieurs équipements informatiques (ordinateurs, téléphones mobile, PDA, capteurs...).
Cette coordination se fait le plus souvent par envoi de messages via un réseau de communication
qui peut être un LAN (Local Area Network), WAN (Wide Area Network), Internet, etc.

Les systèmes distribués peuvent être classés de différentes manières et dans [TS99], trois
classes ont été essentiellement identifiées à savoir les systèmes de calcul distribué (Distributed
Computing Systems), les systèmes d’information distribués (Distributed Information Systems) et
les systèmes pervasifs distribués (Distributed Pervasive Systems). Cette classification est axée es-
sentiellement sur les domaines applicatifs des systèmes distribués plutôt que sur leur organisation
interne (répartition géographique et support de communication) et les spécificités des ressources
(hétérogénéité, stabilité des ressources, etc.). Pourtant, l’organisation et les caractéristiques des
ressources sont des éléments essentiels qui permettent de bien prendre en compte les besoins spé-
cifiques des applications en termes de performance. Ce faisant, nous avons fait un classement qui
s’appuie plus sur l’organisation et les caractéristiques des ressources.

– la grappe d’ordinateur (Cluster) : c’est un ensemble d’ordinateurs connectés par un réseau
LAN rapide et fiable pour assurer la disponibilité. Les ressources quasi-homogènes (même
système d’exploitation, logiciels quasi-similaires) sont sous le contrôle d’un seul noeud ap-
pelé noeud maître ;

– la grille informatique (Grid) : c’est une collection d’ordinateurs hétérogènes réparties sur dif-
férents sites maintenus par plusieurs organisations. Les sites sont reliés par un réseau WAN
et chacun d’entre eux contient plusieurs ressources informatiques administrées de manière
autonome et uniforme ;

– les systèmes pair-à-pair (peer-to-peer (P2P)) : c’est un ensemble d’ordinateurs appelés pairs,
qui s’accordent à exécuter une tâche particulière. Les ressources peuvent être des ordinateurs
ou des assistants personnels interconnectés via Internet, ce qui rend le système beaucoup plus
flexible mais aussi moins fiable et stable ;

– cloud : du point de vue système, le cloud est un ensemble d’ordinateurs (ressources) stockés
sur de vastes grilles de serveurs ou de data centres. Les ressources du cloud sont mutualisées
à travers une virtualisation qui favorise la montée en charge, la haute disponibilité et un plan
de reprise à mondre coût.

– les réseaux de capteurs (Sensor Network) : c’est une collection de micro-ressources informa-
tiques (micro-capteur ou système embarqué) reliées le plus souvent par un réseau sans fil en
vue de collecter, d’échanger et de transmettre des données (en général environnementales)
vers un ou plusieurs points de collecte, d’une manière autonome.

15

Chapitre 2. Systèmes répartis à grande échelle

2.3 Les propriétés requises des systèmes distribués
Un système réparti doit assurer plusieurs propriétés pour être considéré comme performant.

Nous ne citerons dans cette section que celles que nous trouvons les plus connexes à notre contexte
d’études : la transparence, le passage à l’échelle, la disponibilité et l’autonomie.

2.3.1 Transparence
La transparence permet de cacher aux utilisateurs les détails techniques et organisationnels

d’un système distribué ou complexe. L’objectif est de pouvoir faire bénéficier aux applications une
multitude de services sans avoir besoin de connaître exactement la localisation ou les détails tech-
niques des ressources qui les fournissent. Ceci rend plus simple, le développement des applications
mais aussi leur maintenance évolutive ou corrective. Selon la norme (ISO, 1995) la transparence a
plusieurs niveaux :

– accès : cacher l’organisation logique des ressources et les moyens d’accès à une ressource ;
– localisation : l’emplacement d’une ressource du système n’a pas à être connu ;
– migration : une ressource peut changer d’emplacement sans que cela ne soit aperçu ;
– re-localisation : cacher le fait qu’une ressource peut changer d’emplacement au moment où

elle est utilisée ;
– réplication : les ressources sont dupliquées mais les utilisateurs n’ont aucune connaissance

de cela ;
– panne : si un noeud est en panne, l’utilisateur ne doit pas s’en rendre compte et encore moins

de sa reprise après panne ;
– concurrence : rendre invisible le fait qu’une ressource peut être partagée ou sollicitée simul-

tanément par plusieurs utilisateurs.
Le parcours de cette liste montre qu’il n’est pas évident d’assurer une transparence totale. En
effet, masquer complètement les pannes des ressources est quasi impossible aussi bien d’un point
de vue théorique que pratique. Ceci est d’autant plus vrai qu’il n’est pas trivial de dissocier une
machine lente ou surchargée de celle qui est en panne ou dans un sous-réseau inaccessible. En
conclusion, le choix d’un niveau de transparence moyen, ne prenant en compte que les spécificités
des applications Web 2.0 que nous ciblons dans cette thèse, est nécessaire pour amoindrir les coûts
de mise en place du système et de sa complexité.

2.3.2 Passage à l’échelle
Le concept de passage à l’échelle désigne la capacité d’un système à continuer à délivrer avec

un temps de réponse constant un service même si le nombre de clients ou de données augmente
de manière importante. Le passage à l’échelle peut être mesuré avec au moins trois dimensions : i)
le nombre d’utilisateurs et/ou de processus (passage à l’échelle en taille) ; ii) la distance maximale
physique qui sépare les noeuds ou ressources du système (passage à l’échelle géographique) ; iii) le
nombre de domaines administratifs (passage à l’échelle administrative). Le dernier type de passage
à l’échelle est d’une importance capitale dans les grilles informatiques car il influe sur le degré
d’hétérogénéité et donc sur la complexité du système (voir section 2.4.2).

16

2.3. Les propriétés requises des systèmes distribués

Pour assurer le passage à l’échelle, une solution coûteuse consiste à ajouter de nouveaux ser-
veurs puissants (plusieurs dizaines de CPU) pour garder le même niveau de performance en pré-
sence de fortes charges. Ce type de passage à l’échelle est plus connu sous le nom de Scale Up.
Le problème avec cette solution est que si le système est sous-chargé les ressources consomment
de l’énergie inutilement et ne servent à rien. D’autres solutions moins chères consistent à utiliser
plusieurs machines moins puissantes (d’un à deux CPU par machine) pour faire face aux pics des
charges, on parle alors de Scale Out. Trois techniques peuvent être utilisées pour favoriser le pas-
sage à l’échelle à faible coût. La première technique consiste à ne pas attendre la fin d’une tâche
pour commencer une autre si elles sont indépendantes. Cela permet de cacher la latence du réseau
ou la lenteur d’une ressource. Ce modèle de fonctionnement est appelé modèle asynchrone. La
deuxième technique consiste à partitionner les données et les stocker sur plusieurs serveurs. Ceci
permet de distribuer la charge applicative et de réduire le temps de traitement global des tâches. Il
est aussi possible d’effectuer certains traitements aux niveaux des clients (Java Applets). La troi-
sième technique est l’utilisation de la réplication et/ou des mécanismes de cache. L’accès à des
informations stockées dans un cache réduit les accès distants et donne de bonnes performances
aux applications de type web. La réplication, quant à elle, permet une distribution des traitements
sur plusieurs sites permettant ainsi une amélioration du débit du traitement.

Cependant, l’utilisation de ces techniques présente quelques inconvénients. En effet, le parti-
tionnement et la distribution d’un traitement nécessitent des mécanismes de contrôle plus com-
plexes pour intégrer les résultats et assurer leur cohérence. En plus, garder plusieurs copies d’une
même donnée (caches ou répliques) peut entraîner des incohérences à chaque fois que l’on met
une copie à jour. Pour éviter ce problème, il faut penser à faire des synchronisations, ce qui est
souvent contradictoire avec la première technique de passage à l’échelle à savoir faire de l’asyn-
chronisme. En conclusion, les besoins de passage à l’échelle et de cohérence sont en opposition,
d’où la nécessité de trouver des compromis en fonction des besoins des applications cibles.

2.3.3 Disponibilité
Un système est dit disponible s’il est en mesure de délivrer correctement le ou les services

de manière conforme à sa spécification. Pour rendre un système disponible, il faut donc le rendre
capable de faire face à tout obstacle qui peut compromettre son bon fonctionnement. En effet,
l’indisponibilité d’un système peut être causée par plusieurs sources parmi lesquelles nous pouvons
citer :

– les pannes qui sont des conditions ou évènements accidentels empêchant le système, ou un
des ses composants, de fonctionner de manière conforme à sa spécification ;

– les surcharges qui sont des sollicitations excessives d’une ressource du système entraînant
sa congestion et la dégradation des performances du système ;

– les attaques de sécurité qui sont des tentatives délibérées pour perturber le fonctionnement
du système, engendrant des pertes de données et de cohérences ou l’arrêt du système.

Pour faire face aux pannes, deux solutions sont généralement utilisées.
La première consiste à détecter la panne et à la résoudre, et ce dans un délai très court. La

détection des pannes nécessite des mécanismes de surveillance qui s’appuient en général sur des
timeouts ou des envois de messages périodiques entre ressources surveillées et ressources sur-

17

Chapitre 2. Systèmes répartis à grande échelle

veillantes. Cette détection, outre la surcharge qu’elle induit sur le système, ne donne pas toujours
des résultats fiables. En effet, avec l’utilisation des timeouts, à chaque fois qu’un timeout est expiré,
la ressource sollicitée, ne pouvant être contactée ou n’arrivant pas à envoyer une réponse, est en
général suspectée d’être en panne. Par conséquent, une simple variation de la latence du réseau ou
de la surcharge d’une ressource peut entraîner l’envoi et/ou la réception d’une réponse en dehors
du timeout et donc conduire à des fausses suspicions. Par ailleurs, une fois la panne détectée, il
faut des mécanismes de résolution efficace pour arriver à la cacher aux clients. Cette tâche est loin
d’être triviale car il existe plusieurs types de pannes et chacune d’entre elle requiert un traitement
spécifique (voir chapitre suivant).

La deuxième solution consiste à masquer les pannes en introduisant de la réplication. Ainsi,
quand une ressource est en panne, le traitement qu’elle effectuait est déplacé sur une autre ressource
disponible. La réplication peut être aussi utilisée pour faire face à la seconde cause d’indisponibilité
d’un système (surcharge du système). Pour réduire la surcharge d’une ressource, les tâches sont
traitées parallèlement sur plusieurs répliques ou sur les différentes répliques disponibles à tour de
rôle (tourniquet). Une autre technique qui permet de réduire la surcharge d’une ressource consiste
à distribuer les services (ou les données) sur plusieurs sites et donc de les solliciter de manière
parallèle. Le partitionnement des services ou des données permet d’isoler les pannes et donc de les
contrôler plus simplement.

Enfin, la gestion de la dernière source d’indisponibilité nécessite des politiques de sécurité sur
l’accès et l’utilisation des ressources. Ces politiques ont pour objet la mise en œuvre de méca-
nismes permettant de garantir les deux propriétés suivantes : la confidentialité et l’intégrité des res-
sources ou informations sensibles. La confidentialité permet de protéger les accès en lecture aux
informations, alors que l’intégrité permet de protéger les accès en écriture. S’il existe une seule
politique de sécurité pour l’ensemble des ressources, la sécurité est dite centralisée, dans le cas
contraire, elle est dite distribuée et permet à chaque partie du système d’avoir sa propre politique.
Il est à noter qu’une politique de sécurité distribuée permet plus d’hétérogénéité et s’adapte à des
systèmes comme les grilles informatiques mais nécessite des mécanismes plus complexes. Nous
mentionnons aussi que bien que la sécurité est capitale pour la disponibilité, nous ne l’aborderons
pas dans cette thèse pour ne pas trop s’éloigner de nos objectifs.

Nous venons de voir que quelque soit la manière dont la gestion de la disponibilité est assu-
rée, des modules supplémentaires sont requis (gestion de réplication, détection et résolution des
pannes, politique de sécurité, etc.). Ceci entraîne d’une part, une surcharge du système (nombre de
messages très important, collection de processus en arrière-plan) et d’autre part, une complexité du
système. Une solution idéale serait de minimiser la complexité mais aussi la surcharge introduite
pour assurer la disponibilité. Ainsi, les modules supplémentaires intégrés doivent être très légers
(requièrent peu de ressources pour leur fonctionnement) et les techniques de détection/résolution
des pannes ne doivent pas être réalisées sur la base d’une communication qui génère plusieurs
messages (ex : broadcast).

2.3.4 Autonomie
Un système ou un composant est dit autonome si son fonctionnement ou son intégration dans

un système existant ne nécessite aucune modification des composants du système hôte. L’autono-

18

2.4. Etude de quelques systèmes distribués

mie des composants d’un système favorise l’adaptabilité, l’extensibilité et la réutilisation des res-
sources de ce système. Par exemple, une ressource autonome peut être remplacée avec une autre
ressource plus riche en termes de fonctionnalités, ce qui étend les services du système. Le change-
ment du pilote d’accès à une base de données ODBC par un pilote JDBC illustre bien cette notion
d’autonomie et son impact dans le fonctionnement d’un système, puisqu’aucune modification ne
sera effectuée au niveau du SGBD.

L’une des motivations de maintenir l’autonomie est que les applications existantes sont diffi-
ciles à remplacer car d’une part, elles sont le fruit d’une expertise développée pendant plusieurs
années et d’autre part, leur code n’est pas souvent accessible, i.e. les SGBD tels que Oracle, SQL
Server, Sybase, etc. Pourtant, il est indispensable de s’appuyer sur les applications existantes car
les clients ont leurs préférences et ne sont pas nécessairement prêts à confier leur traitement à une
nouvelle application ou de stocker leurs données sur un SGBD nouveau qui ne présente pas les
mêmes garanties qu’un système connu, fiable et maintenu. Une solution pour garder l’autonomie
d’une application ou d’un SGBD est d’intégrer toute nouvelle fonctionnalité supplémentaire et
spécifique à une application sous forme d’intergiciel.

Cependant, l’implémentation de l’intergiciel introduit de nouvelles surcharges en ajoutant une
couche de plus à l’accès aux données. A cela, s’ajoute que l’intergiciel devient indispensable au
fonctionnement du système et peut devenir très rapidement source de congestion s’il est partagé
par plusieurs applications. Pour minimiser ces impacts négatifs, l’intergiciel doit être conçu de tel
sorte qu’il soit toujours disponible et non surchargé. La complexité de son implémentation doit
être contrôlée afin de minimiser le coût de sa traversée. Pour ce faire, il faut éviter de concevoir un
intergiciel très générique à destination de plusieurs applications au profit d’un intergiciel ad-hoc.

2.4 Etude de quelques systèmes distribués
Dans cette section, nous étudions trois catégories de systèmes distribués à savoir les systèmes

pair-à-pair (P2P), les grilles informatiques et le cloud. Le choix d’étudier ces trois catégories est
fortement tributaire de leur caractère très hétérogène et leur besoin de passage à l’échelle, que
nous avons privilégié dans cette thèse. L’étude met l’accent sur les architectures et les mécanismes
permettant d’assurer la disponibilité, le passage à l’échelle et la transparence et l’autonomie.

2.4.1 Systèmes P2P
Comme nous l’avons mentionné ci-avant, le terme P2P fait référence à une classe de systèmes

distribués qui utilisent des ressources distribuées pour réaliser une tâche particulière de manière
décentralisée. Les ressources sont composées d’entités de calcul (ordinateur ou PDA), de stockage
de données, d’un réseau de communication, etc. La tâche à exécuter peut être du calcul distribué,
du partage de données (ou de contenu), de la communication et collaboration, d’une plateforme
de services, etc. La décentralisation, quant à elle, peut s’appliquer soit aux algorithmes, soit aux
données, soit aux métadonnées, soit à plusieurs d’entre eux.

L’une des particularités des systèmes P2P est que tous les nœuds (pairs) sont en général sy-
métriques, c’est à dire qu’ils jouent à la fois le rôle de client et de serveur. En particulier, les

19

Chapitre 2. Systèmes répartis à grande échelle

systèmes de partage de fichiers permettent de rendre les objets d’autant plus disponibles qu’ils
sont populaires, en les répliquant sur un grand nombre de nœuds. Cela permet alors de diminuer
la charge (en nombre de requêtes) imposée aux nœuds partageant les fichiers populaires, ce qui
facilite l’augmentation du nombre de clients et donc le passage à l’échelle en taille des données.

Les pairs sont organisés autour d’une architecture qui peut être centralisée ou non. Dans l’ar-
chitecture centralisée, un noeud joue le rôle de coordinateur central (serveur, ou index central) et
gère soit les partages, soit la recherche, soit l’insertion d’informations et de nouveaux nœuds. Ce-
pendant l’échange d’informations entre noeuds se passe directement d’un noeud à l’autre. D’aucun
considèrent que de telles architectures ne sont pas pair-à-pair, car un serveur central intervient dans
le processus. Par contre d’autres arguent que ce sont bien des systèmes pair-à-pair car les fichiers
transférés ne passent pas par le serveur central. Néanmoins, c’est une solution fragile puisque le
serveur central est indispensable au réseau. Ainsi, s’il est en panne ou non accessible, tout le réseau
s’effondre. En plus, le système n’est pas transparent puisque les nœuds ont besoin de savoir à tout
moment l’emplacement de l’index et sont sensibles à tout changement de celui-ci. Un exemple de
solution P2P centralisée est Napster [Nap], qui utilise un serveur pour stocker un index ou pour
initialiser le réseau.

Pour faire face à ces insuffisances, une architecture distribuée s’impose, puisqu’un nœud pour-
rait solliciter plusieurs serveurs en même temps. Le système est ainsi plus robuste mais la re-
cherche d’informations est plus difficile. Elle peut s’effectuer dans des systèmes décentralisés
non-structurés, comme Gnutella [Gnu]. Dans ce système, la recherche se fait par propagation de la
requête aux voisins jusqu’à trouver les résultats, ce qui nécessite dès lors un nombre de messages
élevé, proportionnel au nombre d’utilisateurs du réseau (et exponentiel suivant la profondeur de
recherche). Dans les systèmes décentralisés structurés, une organisation de connexion et de répar-
tition des objets partagés est maintenue entre les nœuds. Souvent cette organisation est basée sur
les tables de hachage distribuées, permettant de réaliser des recherches en un nombre de messages
croissant de façon logarithmique avec le nombre d’utilisateurs du réseau, comme CAN [RFH+01],
Chord [SMK+01], Kademlia [MM02] Pastry [RD01a], etc.

Une autre solution possible est l’utilisation de « super-pairs », noeuds du réseau choisis en
fonction de leur puissance de calcul et de leur bande passante, réalisant des fonctions utiles au
système comme l’indexation des informations et le rôle d’intermédiaire dans les requêtes. Cette
solution que l’on retrouve dans Kazaa [KaZ], rend le système un peu moins tolérant aux pannes
que les systèmes complètement décentralisés et englobe un peu l’idée de client-serveur entre pairs
et super-pairs.

Comme tous les noeuds sont au même niveau avec les architectures complètement distribuées,
celle-ci offrent plus de transparence dans l’organisation et la localisation des ressources que les
architectures centralisées ou semi-centralisées (super-pairs).

Les systèmes P2P soulèvent plusieurs problèmes bien qu’ils facilitent le passage à l’échelle et
la disponibilité des ressources avec un faible coût. Il faut noter en premier lieu que les noeuds du
système sont totalement autonomes et donc qu’ils peuvent choisir de partager ou non leur CPU
et leur capacité de stockage. Cette autonomie leur confère aussi le choix de rejoindre ou quitter
le système à tout moment. Cela a pour effet de compromettre la capacité de calcul totale et réelle
du système mais aussi la disponibilité des ressources (informations, capacité de stockage, etc.). En

20

2.4. Etude de quelques systèmes distribués

second lieu, le système de communication utilisé est de faible bande passante (en général Internet),
ce qui peut créer une surcharge du système et une latence plus élevée que dans les clusters. Enfin,
l’absence d’infrastructures de contrôle sur les systèmes P2P rend ces derniers moins pratiques pour
prendre en compte certains types d’applications qui exigent une grande qualité ou des services
transactionnels. Néanmoins, les systèmes P2P sont devenus incontournables aujourd’hui dans le
domaine du partage de fichiers, de la recherche d’information et de la collaboration.

2.4.2 Les grilles informatiques ou grid
Le terme anglais grid désigne un système distribué d’électricité. Initialement, le concept de

grille partait du principe d’un tel système : les ressources d’un ordinateur (processeur, mémoire,
espace disque) étaient mises à la disposition d’un utilisateur aussi facilement que l’on branche un
appareil électrique à une prise électrique. Une grille informatique est une infrastructure virtuelle
constituée d’un ensemble de ressources informatiques potentiellement partagées, distribuées, hé-
térogènes, délocalisées et autonomes. Une grille est en effet une infrastructure, c’est-à-dire des
équipements techniques d’ordre matériel et logiciel. Cette infrastructure est qualifiée de virtuelle
car les relations entre les entités qui la composent n’existent pas sur le plan matériel mais d’un
point de vue logique. D’un point de vue architectural, la grille peut être définie comme un système
distribué constitué de l’agrégation de ressources réparties sur plusieurs sites et mises à disposi-
tion par plusieurs organisations différentes [Jan06]. Un site est un lieu géographique regroupant
plusieurs ressources informatiques administrées de manière autonome et uniforme. Il peut être
composé d’un super-calculateur ou d’une grappe de machines (cluster).

Contrairement aux systèmes P2P, une grille garantit des qualités de service non triviales, c’est-
à-dire qu’elle répond adéquatement à des exigences (accessibilité, disponibilité, fiabilité, ...) compte
tenu de la puissance de calcul ou de stockage qu’elle peut fournir.

Il existe plusieurs projets de grilles qui on été mis en place aussi bien à des échelles nationales
qu’internationales : la grille expérimentale française Grid’5000 [Proc], la grille de calcul scien-
tifique nord américain TeraGrid [proe], la grille chinoise CNGrid [prob], la grille Asie-Pacifique
ApGrid [proa], etc.

Les grilles informatiques sont caractérisées par une forte hétérogénéité et une grande dynami-
cité. En effet, les machines d’une grappe sont reliés par un réseau gigabits alors que les sites sont
liés par un réseau WAN, dont la latence peut aller jusqu’à 100 millisecondes. De là, nous pouvons
noter une différence importante de la latence entre deux machines d’un même site et celle entre
deux machines de deux sites. En outre, chaque site est administré de manière autonome et par
conséquent les politiques de sécurité varient d’un site à l’autre. Un autre exemple d’hétérogénéité
relève de la composition interne d’un site. Chaque site est libre de choisir le type de processeur de
ses machines (Intel, AMD, IBM, ...), la capacité de stockage et le réseau d’interconnexion entre
machines (Gigabit Ethernet, Infiniband, ...). Enfin l’infrastructure d’une grille est composée d’un
nombre important de sites et de machines qui sont susceptibles de tomber en panne à tout moment.
A cela s’ajoute le fait que de nouveaux sites peuvent être ajoutés ou retirés de la grille sans trop
impacter le fonctionnement de la grille. De par leur hétérogénéité, leur gestion décentralisée et
leur taille, les grilles sont des infrastructures très complexes à mettre en oeuvre. La transparence
n’est assurée qu’à moitié parce qu’ il faut avoir une information précise des ressources dans un site

21

Chapitre 2. Systèmes répartis à grande échelle

pour pouvoir distribuer les tâches convenablement. Cependant à l’intérieur d’un site, la machine
qui effectue concrètement la tâche n’est pas connue en général.

2.4.3 Le cloud
Le cloud est un concept plus récent dont une définition unanime tarde à voir le jour [VRMCL09,

Gee09, BYV08, WLG+08]. Cette divergence découle des principes considérés par les chercheurs
pour définir le cloud. En effet , certains auteurs mettent l’accent sur le passage à l’échelle et la
mutualisation de l’usage des ressources [Gee09] alors que d’autres privilégient le concept de vir-
tualisation [BYV08] ou le business model (collaboration et pay-as-you-go) [WLG+08]. Cependant,
il est unanimement reconnu que le cloud permet l’utilisation de la mémoire et des capacités de cal-
cul des ordinateurs et des serveurs répartis dans le monde entier et liés par un réseau, tel Internet.
Les ressources sont en général logées dans des data centres qui sont géographiquement distribués
dans l’optique de garantir le passage à l’échelle et la disponibilité. Avec le cloud, les utilisateurs
ne sont plus propriétaires de leurs serveurs informatiques mais peuvent ainsi accéder de manière
évolutive à de nombreux services en ligne sans avoir à gérer l’infrastructure sous-jacente, souvent
complexe. C’est pourquoi, on peut considérer le cloud comme une extension des ASP. Les applica-
tions et les données ne se trouvent plus sur l’ordinateur local, mais dans un nuage (cloud) composé
d’un certain nombre de serveurs distants interconnectés au moyen d’une excellente bande passante
indispensable à la fluidité du système. L’accès au service se fait par une application standard fa-
cilement disponible, la plupart du temps un navigateur Web. Les service offerts par le cloud sont
nombreux parmi lesquels nous avons :

– Infrastructure as a service (IaaS) : c’est un service qui donne à l’utilisateur un ensemble de
ressources de traitement et de stockage dont il a besoin à un instant précis pour effectuer ses
tâches ;

– Platform as a Service (PaaS) : ce service, en dehors de fournir une infrastructure virtuelle,
assure aussi la plateforme logicielle pour que les applications de l’utilisateur puissent tour-
ner ;

– Software as a Service (SaaS) : c’est une alternative de toute application locale. Un exemple
de ce cas est l’utilisation en ligne de la suite bureautique de Microsoft Office.

Pour assurer ces services qui varient d’un utilisateur à un autre, l’architecture des clouds est com-
posée à son niveau le plus basique d’une couche logique composée d’un ensemble de machines
virtuelles et d’une couche physique composée de data centres[BYV08]. Ainsi, plusieurs machines
virtuelles peuvent être démarrées dynamiquement sur une seule machine physique pour satisfaire
les besoins de plusieurs services. Les data centres qui regroupent les machines physiques sont en
général répartis sur des sites géographiquement distants afin d’assurer une haute disponibilité. En
plus cette répartition permet aussi d’assurer un niveau de performances élevé en branchant un uti-
lisateur sur le site le plus proche de son emplacement afin de réduire les délais de communication.

La mutualisation du matériel permet d’optimiser les coûts par rapport aux systèmes conven-
tionnels et de développer des applications partagées sans avoir besoin de posséder ses propres
machines dédiées au calcul. Comme pour la virtualisation, l’informatique dans le nuage est plus
économique grâce à son évolutivité. En effet, le coût est fonction de la durée de l’utilisation du ser-
vice rendu et ne nécessite aucun investissement préalable (homme ou machine). Notons également

22

2.4. Etude de quelques systèmes distribués

que l’élasticité du nuage permet de fournir des services évolutifs et donc de supporter les mon-
tées de charges. Par exemple, Salesforce.com, pionnier dans le domaine de l’informatique dans le
nuage gère les données de 54 000 entreprises, et leurs 1,5 millions d’employés, avec seulement 1
000 serveurs (mars 2009). De plus, les services sont extrêmement fiables car basés sur des infra-
structures performantes possédant des politiques efficaces de tolérance aux pannes (notamment des
répliques). Grâce à ses avantages, on assiste aujourd’hui à une multiplication rapide d’entreprises
qui proposent des solutions cloud parmi lesquelles figurent : Amazon, IBM, Microsoft, Google,
etc.

Cependant, le problème fondamental reste d’une part la sécurisation de l’accès à l’application
entre le client et le serveur distant. On peut aussi ajouter le problème de sécurité générale du
réseau de l’entreprise : sans le cloud computing, une entreprise peut mettre une partie de son
réseau en local et sans aucune connexion (directe ou indirecte) à internet, pour des raisons de
haute confidentialité par exemple ; dans le cas du cloud computing, elle devra connecter ces postes
à internet (directement ou pas) et ainsi les exposer à un risque d’attaque ou a des violations de
confidentialité.

2.4.4 Exemple d’utilisation des systèmes distribués à large échelle
Les systèmes à large échelle tels que les P2P ou les grilles peuvent être utilisés pour concevoir

et réaliser différentes classes d’applications.
– Communication et collaboration. Cette catégorie inclut les systèmes qui fournissent des in-

frastructures pour faciliter la communication et la collaboration en temps réel (ex. Skype [Sky],
MSN [MSN], Yahoo [Yah], Groove [Gro]) ;

– Calcul distribué. Ce type d’application permet le partage de ressources CPU en divisant et
répartissant le travail sur plusieurs machines. Seti@home [Pau02], le projet de recherche
d’une intelligence extraterrestre de l’université de Californie et de Berkley d’une part et
Folding@Home [prof], le projet de calcul réparti étudiant les protéines de l’université de
Standford d’autre part sont des illustrations de ce cas d’application.

– Support de service internet. Un nombre considérable d’applications basées sur les systèmes
P2P ont été développées pour supporter les services sur internet. Parmi les exemples de ce
type d’applications, nous pouvons citer les systèmes de multicast P2P publish/subscribe [VBB+03,
CDKR02] ou les applications de sécurité et d’antivirus [VMR02, JWZ03, VATS04].

– Système de Base de données. Les sytèmes distribués sont également utilisés pour conce-
voir des bases de données distribuées. Par exemple, Local Relational Model [SGMB01],
PIER [HCH+05] et Piazza [HIM+04] utilisent des architectures P2P pour stocker et exploi-
ter des données.

– Distribution et gestion de contenu. Elle constitue la charnière centrale des utilisations que
l’on peut faire avec les systèmes distribués. Elle couvre une variété d’applications allant du
simple partage de fichiers direct aux systèmes sophistiqués qui fournissent des supports de
stockage distribué, une technique d’indexation et de localisation efficace et enfin des procé-
dures de mises à jour. Google File System (GFS) [GGL03], Hadoop Distributed File System
(HDFS) [Prog] sont des exemples de support de stockage distribués avec un mécanisme d’in-
dexation efficace. Un autre avantage majeur de cette classe d’applications est qu’elle donne

23

Chapitre 2. Systèmes répartis à grande échelle

aux utilisateurs la possibilité de publier, de stocker et de gérer leur contenu de manière assez
efficace. Les applications Web2.0 tels que eBay [Sho07] ou Facebook [Fac] reposent sur ce
concept et en constituent des exemples très populaires.

Dans cette thèse, nos objectifs sont orientés vers les applications Web 2.0. En effet, nous voulons
gérer une base de données distribuée à grande échelle dans l’optique de donner la possibilité aux
utilisateurs d’un accès rapide et cohérent. La conception d’un tel système nécessite une étude d’un
des types d’applications ciblées à savoir eBay pour mieux comprendre les exigences à satisfaire.

Exemple d’applications Web 2.0 : eBay

eBay [Sho07] est devenu le leader mondial du commerce en ligne avec plus de 276 millions
de membres inscrits. La société fondée en 1995, est devenue une place de marché mondiale où
une communauté de passionnés, composée aussi bien de particuliers que de professionnels, peut
acheter et vendre en ligne des biens et des services aux enchères ou à prix fixe. Chaque jour, plus
de 113 millions d’articles répartis dans plus de 55.000 catégories sont à vendre sur eBay et corres-
pondent à 2 Pétaoctects de données. D’un point de vue technique, la plate-forme d’eBay est très
dynamique avec l’ajout de plus de 100.000 lignes de code tous les deux semaines pour satisfaire
les besoins de 39 pays, dans 7 langues et ce 24h/24 et 7j/7. Cette charge applicative correspond à
plus de 48 milliards d’instructions SQL par jour. Les utilisateurs sont soit des vendeurs qui offrent
des biens soit des acheteurs qui achètent les biens. Un bien est dans une catégorie donnée et appar-
tient à un seul vendeur. Pour faire face à cette intense charge applicative, l’architecture de eBay est
conçue pour prendre en compte cinq critères de performances à savoir la disponibilité, le passage à
l’échelle, le coût, la maintenance et la latence des réponses. La prise en compte de la disponibilité
et du passage à l’échelle est faite en adoptant quatre stratégies :

– Partitionner tout en divisant tout problème (données, traitement, ...) en taille maîtrisable :
permet de passer à l’échelle, assure le disponibilité par isolation des pannes, moins coûteux
à maintenir et requiert peu de hardware.

– Introduire de l’asynchronisme en mettant en œuvre des processus (ou composants) asyn-
chrones et en regroupant certains traitements (batch) : favorise le passage à l’échelle in-
dépendante de chaque composant, une meilleure disponibilité par la détection et la reprise
ciblées des composants en panne et diminue la latence des réponses par parallélisation des
traitements.

– Automatiser tout en intégrant des systèmes auto-adaptatifs : le passage à l’échelle sans une
intervention manuelle, la latence comme la disponibilité sont assurées par l’auto-configuration
quand l’environnement change et le coût est faible du fait de l’absence de l’intervention hu-
maine.

– Garder à l’esprit que tout tombe en panne et donc être prêt à détecter toute panne et la
résoudre dans un délai court : assure la disponibilité du système

Pour stocker les données, eBay utilise un partitionnement horizontal et des milliers de SGBDs
MySQL comme Facebook. Pour assurer la disponibilité, eBay a développé des techniques de
cache autour du SGBD MySQL, ce qui lui permet de pouvoir exécuter un nombre très signifi-
catif d’opérations de lecture/écriture à un coût relativement faible. En plus, il utilise un mécanisme
de réplication asynchrone qui est très adapté au passage à l’échelle.

24

2.5. Implémentation d’un système distribué avec un middleware

L’étude de l’exemple d’eBay montre les exigences des applications Web 2.0 en termes de dé-
bit transactionnel, de haute disponibilité, de latence faible, etc. Pour prendre en compte tous ces
critères, il faut de nouvelles approches basées sur une bonne conception et implémentation du
système distribué qui héberge les services mais aussi des mécanismes efficaces de la gestion des
données utilisées par ces applications. Dans la prochaine section, nous décrivons les spécifications
d’une bonne implémentation des systèmes distribués et détaillerons les spécifications adéquates de
la gestion des données dans le prochain chapitre.

2.5 Implémentation d’un système distribué avec un middleware
La plupart des systèmes distribués sont implémentés avec un middleware comme le montre la

figure 2.1.

FIGURE 2.1 – Architecture d’un système distribué structuré avec un integiciel

Le mot middleware (intergiciel ou logiciel médiateur en français) désigne un ensemble de
logiciels ou de technologies informatiques qui servent d’intermédiaire entre les applications. Il
peut être défini aussi comme un outil de communication entre des clients et des serveurs. Ainsi, il
fournit un moyen aux clients de trouver leurs serveurs et aux serveurs de trouver leurs clients et
en général de trouver n’importe quel objet atteignable. L’intérêt que présente un middleware est
multiple et peut être résumé en quatre points [Kra09] :

– cacher la répartition, c’est-à-dire le fait qu’une application est constituée de parties intercon-
nectées s’exécutant à des emplacements géographiquement répartis ;

– cacher l’hétérogénéité des composants matériels, des systèmes d’exploitation et des proto-
coles de communication utilisés par les différentes parties d’une application ;

25

Chapitre 2. Systèmes répartis à grande échelle

– fournir des interfaces uniformes, normalisées, et de haut niveau aux équipes de développe-
ment et d’intégration, pour faciliter la construction, la réutilisation, le portage et l’interopé-
rabilité des applications ;

– fournir un ensemble de services communs réalisant des fonctions d’intérêt général, pour
éviter la duplication des efforts et faciliter la coopération entre applications.

Un middleware peut être générique ou spécifique à un type d’applications. Il faut remarquer que
les gains introduits par un middleware ne vont pas sans inconvénients. En effet, un inconvénient
potentiel est la perte de performances liée à la traversée de couches supplémentaires de logiciel.
L’utilisation de techniques intergicielle implique par ailleurs de prévoir la formation des équipes
de développement.

2.5.1 Catégories de Middleware

Les middlewares peuvent être classés suivant plusieurs critères, incluant les propriétés de l’in-
frastructure de communication, leur propre architecture et la structure globale des applications.

Propriétés de la communication

L’infrastructure de communication sur laquelle se repose un middleware peut être caractérisé
par plusieurs propriétés qui permettent une première classification.

Topologie statique ou dynamique. Avec un système de communication statique, les entités com-
municant sont logées dans des endroits fixes et la configuration du système ne change pas. Si
toutefois, la configuration doit changer, elle est programmée en avance, peu fréquente et bien inté-
grée dans le fonctionnement du middleware. Par contre, un système de communication dynamique
donne la possibilité aux entités communicantes de changer de localisation, de se connecter et/ou
se déconnecter pendant le fonctionnement de l’application (téléphones mobiles, PDA, P2P, ...).

Comportement prévisible ou imprévisible. Dans certains systèmes de communication, des bornes
peuvent être établies dans l’optique de maintenir les facteurs de performances des applications (par
exemple la latence). Hélas, dans la plupart des cas pratiques, ces bornes ne sont pas connues car
les facteurs de performances dépendent de la charge des composants du système mais aussi du
débit du réseau de communication. Le système de communication est dit synchrone si le temps de
transmission d’un message est borné. Si par contre, cette borne ne peut être établie, le système est
dit asynchrone.

Il est possible de faire une combinaison de ces différentes propriétés pour obtenir :
– topologie statique, comportement prévisible ;
– topologie dynamique, comportement prévisible ;
– topologie statique, comportement imprévisible ;
– topologie dynamique, comportement imprévisible.

La dernière combinaison inclut les applications déployées sur les systèmes mobiles ou P2P avec
lesquelles un noeud peut à tout moment joindre ou quitter le système. Cependant, le caractère
imprévisible de cette classe de système, impose une surcharge supplémentaire au middleware afin
qu’il puisse maintenir à un niveau acceptable les performances du système.

26

2.5. Implémentation d’un système distribué avec un middleware

Structuration des composants des applications.

Les middlewares peuvent être classés aussi en fonction des types d’entités (composants) gérées
ou en fonction de la structure des différents rôles que jouent les composants.

Type de composants. Un middleware peut avoir à sa charge plusieurs types d’entités qui dif-
fèrent par leur définition, leur propriété et leur mode de communication. Suivant le type de l’entité,
le rôle du middleware peut varier. Le premier type d’entité que l’on peut avoir est le message.
Dans ce cas, le rôle du middleware est de fournir aux applications la capacité d’envoyer et de
recevoir des messages. Ce type de middleware est plus connu sous le nom Messaging-Oriented
Middleware (MOM) ou plus récemment de Loosely Coupled Message Passing (LCMP). Un autre
type d’entité que l’on peut avoir est l’objet (de programmation orientée objet). Le middleware aura
comme tâche de faire collaborer (communiquer) des objets qui se trouvent sur différentes plates-
formes. Comme exemple de middleware de ce type, nous pouvons citer entre autres CORBA,
J2EE, DCOM/DCOM+, ORB, etc. Un autre type d’entité manipulée peut être une base de don-
nées, ce qui a donné naissance au middleware de base de données (Database Middleware). Ce type
de middleware donne le possibilité aux clients d’accéder à des données hétérogènes et ce, quel que
soit le modèle de donnée ou le SGBD utilisé. Ces middlewares sont souvent conçus sous forme
d’API comme ODBC, JDBC, etc.

Structure des composants. Les composants gérés par un middleware peuvent jouer différents
rôles comme celui de client (demandeur de service), ou celui de serveur (fournisseur de service),
celui d’annonceur (éditeur de service à diffuser), ou celui d’abonné (souscripteur à une service).
Parfois, tous les composants peuvent être au même niveau et donc il est possible de trouver tous
les rôles au sein d’une seule entité, comme par exemple dans les systèmes P2P.

Architecture des middlewares.

Les middlewares peuvent être aussi catégorisés en s’appuyant sur leur architecture. Il existe
deux types d’architectures : l’une centralisée et l’autre distribuée.

Architecture centralisée. Avec l’architecture centralisée, l’ensemble des modules du middle-
ware sont stockés sur un seul site (machine). Cette approche est beaucoup plus facile à mettre en
oeuvre mais elle facilite aussi la maintenance et l’exploitation cohérente du système. Cependant,
si le nombre de composants pris en compte devient important, cela peut induire à une source de
contention et donc réduire les performances du système.

Architecture distribuée. L’approche distribuée répartit les tâches du middleware sur plusieurs
sites, ce qui donne la possibilité d’accéder au middleware de manière parallèle. Ce type d’archi-
tecture est beaucoup plus tolérant aux pics de charges grâce à la répartition des demandes sur les
différents composants répartis du middleware. Cependant, la maintenance et la gestion cohérente
des entités du systèmes deviennent beaucoup plus fastidieuse. En fait, les composants du middle-
ware sont obligés de travailler de manière collaborative pour éviter des incohérences. Ce qui néces-
site l’envoi de messages ou le partage de structures de données et par conséquent, des surcharges
supplémentaires. Une autre approche de la distribution d’un middleware est d’avoir plusieurs ins-
tances du middleware qui s’exécute sur plusieurs sites. Cette technique, outre la tolérance aux pics
de charges qu’elle offre, assure aussi une tolérance aux pannes. En fait, la duplication du middle-

27

Chapitre 2. Systèmes répartis à grande échelle

ware sur plusieurs sites permet de masquer la panne de l’une des instances du middleware ou du
site qui l’héberge.

2.6 Modèle d’architecture pour la gestion des données à large
échelle

Notre objectif dans cette thèse, est de proposer un modèle de traitement des transactions dans
une base de données distribuée sur un système à large échelle (grille ou P2P). Pour atteindre cet
objectif, il est nécessaire de concevoir une infrastructure qui tire profit autant des systèmes P2P que
des grilles. Ce faisant, l’architecture proposée doit être auto-configurable et tolérante aux pannes
pour prendre en compte l’instabilité, le caractère transitoire des composants (ou ressources) et les
pannes des systèmes à grande échelle à l’image des systèmes P2P. Une telle infrastructure doit
permettre l’interopérabilité entre les ressources du système de manière complètement décentra-
lisée. Par ailleurs, l’architecture du système doit être basée sur une approche middleware qui ne
doit pas être centralisée pour assurer un bon niveau de transparence et d’autonomie (surtout des
données), une haute disponibilité et une utilisation efficace des ressources du système (minimiser
les surcharges et contrôler l’accès aux données). Dans la quête de l’idéal, des modules de contrôle
de la sécurité sont aussi à envisager mais nous les ignorons dans cette thèse qui tente d’apporter
plutôt des réponses sur les problèmes liés aux pannes et aux surcharges.

28

Chapitre 3

Gestion des transactions dans les bases de
données répliquées

La réplication dans les bases de données a été largement étudiée dans les trois dernières dé-
cennies. Elle consiste en la gestion des copies stockées sur différents sites qui utilisent leur propre
SGBD autonome. Le défi majeur des bases de données répliquées est le maintien de la conformité
des copies (cohérence mutuelle) lorsque les données sont mises à jour. Dans le contexte des bases
de données les mises à jour sont souvent encapsulées dans des transactions. En d’autres termes, la
base de données supporte les opérations regroupées sous forme de transactions plutôt que l’exécu-
tion indépendante des opérations les unes à la suite des autres. Par ailleurs, les applications Web
2.0 utilisent souvent les transactions pour manipuler les données (lire, modifier, insérer). C’est
pourquoi la manière (quand et où) dont les transactions sont exécutées sur les différentes copies
d’une base de données répliquées peut avoir un impact sensible sur la cohérence des données et
les performances des applications. Par conséquent, le modèle de traitement des transactions doit
être judicieusement choisi pour satisfaire les exigences des applications aussi bien en termes de co-
hérence que de performances. Les applications exigent en général comme performances un grand
débit transactionnel, une latence faible, une disponibilité des données, un passage à l’échelle, une
utilisation efficiente des ressources, etc.

Cependant, il est connu de tous que les besoins de performances et de cohérence sont en op-
position car le coût de maintien de la cohérence est un frein à l’exécution des traitements de l’ap-
plication. Par exemple, pour assurer une conformité des répliques à tout moment, il est nécessaire
de mettre à jour toutes les répliques au sein de la même transaction. Ceci entraîne le ralentisse-
ment des traitements puisqu’il faut attendre que tous les sites, quelque soit leur endroit et leur état,
valident la transaction localement pour que les données redeviennent disponibles. Cet exemple
montre qu’il est indispensable de trouver un compromis entre la cohérence et les performances.
Malheureusement, ce compromis n’est pas facile à trouver et dépend surtout des besoins de l’ap-
plication considérée. De fait, une application de type Web 2.0 qui requiert une forte disponibilité et
un passage à l’échelle exige nécessairement un relâchement de la cohérence. Par contre, une appli-
cation de gestion de stock destinée à un petit magasin a besoin d’une cohérence plutôt forte. Dans
cette thèse, nos travaux se situent dans le contexte des applications Web 2.0 et donc le compromis
est penché vers le relâchement de la cohérence pour un meilleur passage à l’échelle.

29

Chapitre 3. Gestion des transactions dans les bases de données répliquées

L’objectif de ce chapitre est de donner quelques généralités sur les transactions et leur gestion
dans une base de données répliquée. Pour commencer, nous donnons quelques définitions et no-
tions sur les transactions et sur les bases de données répliquées. Ensuite, nous étudions quelques
méthodes existantes pour gérer les transactions dans les bases de données répliquées. Plus préci-
sément, nous étudions les solutions de gestion de transactions en privilégiant les quatre caracté-
ristiques des systèmes distribués que nous avons mentionnées dans le premier chapitre à savoir le
passage à l’échelle, la tolérance aux pannes (ou disponibilité), la transparence et l’autonomie des
données. En d’autres mots, nous ne nous intéressons qu’aux approches proposées par certaines
solutions pour garantir ces quatre propriétés. Ainsi, il faut noter qu’en ce qui concerne le passage à
l’échelle, il existe plusieurs principes qui permettent de l’obtenir parmi lesquels nous avons choisi
de détailler ceux utilisant la cohérence à terme, ou la réplication partielle, ou le maintien de plu-
sieurs versions des copies (Snapshot Isolation (SI)). Quant à la gestion de la tolérance aux pannes,
deux approches seront étudiées : les techniques de masquage des pannes avec la réplication ac-
tive et les techniques basées sur la détection et la résolution des pannes. Enfin, pour aborder la
transparence et l’autonomie, nous étudions les solutions de réplication basées sur des intergiciels,
qui permettent de cacher la distribution des données (répartition et localisation des répliques) mais
aussi l’indisponibilité de certaines ressources. Les solutions étudiées seront placées dans notre
contexte afin de bien situer leurs limites mais aussi de bien comprendre les principes à mettre en
œuvre pour mieux satisfaire les applications à large échelle.

3.1 Notions de transactions
Une transaction peut être considérée comme une unité de traitement cohérente et fiable. Une

transaction prend un état d’une base de données, effectue une ou des actions sur elle et génère un
autre état de celle-ci. Les actions effectuées sont des opérations de lecture ou d’écriture sur les
données de la base. Par conséquent, une transaction peut être définie comme étant une séquence
d’opérations de lecture et d’écriture sur une base de données, qui termine en étant soit validée
soit abandonnée. Si la base de donnée est cohérente au début de la transaction, alors elle doit rester
cohérente à la fin de l’exécution de la transaction bien que cette dernière peut s’exécuter de manière
concurrente avec d’autres ou qu’une panne survienne lors de son exécution. Une base de données
est dite cohérente si elle est correcte du point de vue de l’utilisateur, c’est à dire qu’elle maintient
les invariants de la base ou les contraintes d’intégrité. La notion de cohérence recouvre plusieurs
dimensions comme décrit dans [RC96]. Du point de vue des demandes d’accès, il s’agit de gérer
l’exécution concurrente de plusieurs transactions sans que les mises à jour d’une transaction ne
soient visibles avant sa validation, on parle de cohérence transactionnelle ou isolation. Du point de
vue des données répliquées, il consiste à garantir que toutes les copies d’une même donnée soient
identiques, on parle de cohérence mutuelle. La cohérence transactionnelle est assurée à travers
quatre propriétés, résumées sous le vocable ACID :

– Atomicité : toutes les opérations de la transaction sont exécutées ou aucune ne l’est. C’est
la loi du tout ou rien. L’atomicité peut être compromise par une panne de programme, du
système ou du matériel et plus généralement par tout évènement susceptible d’interrompre
la transaction.

30

3.1. Notions de transactions

– Cohérence : La cohérence signifie que la transaction doit être correcte du point de vue
de l’utilisateur, c’est-à-dire maintenir les invariants de la base ou contraintes d’intégrité.
Une transaction cohérente transforme une base de données cohérente en un base de données
cohérente. En cas de non succès, l’état cohérent initial des données doit être restauré.

– Isolation : elle assure qu’une transaction voit toujours un état cohérent de la base de données.
Pour ce faire, les modifications effectuées par une transaction ne peuvent être visibles aux
transactions concurrentes qu’après leur validation. En outre, une transaction a une opération
marquant son début (begin transaction) et une autre indiquant sa fin (end transaction). Si la
transaction s’est bien déroulée, la transaction est terminée par une validation (commit). Dans
le cas contraire, la transaction est annulée (rollback, abort).

– Durabilité : une fois que la transaction est validée, ses modifications sont persistantes et ne
peuvent être défaites. En cas de panne de disque, la durabilité peut être compromise.

Les propriétés ACID sont très difficiles à maintenir car elles représentent un frein aux performances
du système. Par exemple, l’atomicité cause un sérieux problème quand l’environnement est réparti
sur un système à large échelle puisque toutes les sites participant à une transaction doivent valider
localement avant que la transaction ne soit validée globalement. Autrement dit, le maintien de la
cohérence exige que toutes les sites participants soient mises à jour au sein de la même transaction,
ce qui ralentit la validation. Pour des besoins de performances, certaines propriétés ne sont pas par-
fois garanties dans l’optique d’améliorer les performances du système. En effet, les propriétés C
et I peuvent être relâchées au profit d’un degré de concurrence plus élevé et donc d’un débit tran-
sactionnel plus important. Les transactions peuvent être classées suivant plusieurs critères [OV99].
Un des critères utilisé est la nature des différentes opérations qui composent la transaction. Ainsi,
si une transaction contient au moins une opération qui effectue des modifications sur les données
de la base, la transaction est dite transaction d’écriture ou de mise à jour. Si toutes les opérations
ne font que des lectures sur les données de la base, la transaction est dite transaction de lecture.

Un autre classement peut être fait à partir de la durée de la transaction. Avec ce critère, une
transaction peut être classée on-line ou batch [GR92, OV99]. Les transactions on-line, communé-
ment appelées transactions courtes, sont caractérisées par un temps de réponse relativement court
(quelques secondes) et accèdent à une faible portion des données. Les applications qui utilisent
ce modèle de transaction sont dénommées applications OLTP (On-line Transactional Processing)
parmi lesquelles, nous avons les applications bancaires, de réservation de billets, de gestion de
stocks, etc. Les transactions batch, appelées transactions longues, peuvent prendre plus de temps
pour s’exécuter (minutes, heures, jours) et manipulent une très grande quantité des données. Les
applications utilisant ce type de transactions sont les applications décisionnelles ou OLAP (On-line
Analytical Processing), de conception, de workflow, de traitement d’image, etc.

Dans cette thèse nous nous focalisons sur les transactions de type OLTP, et nous allons étudier
leur traitement dans le contexte des bases de données distribuées et répliquées dans la section
3.3. En plus, nous précisons que nous prenons en compte aussi bien les transactions de lecture
que d’écriture mais en mettant plus l’accent sur les transactions d’écritures qui sont des sources
d’incohérences.

31

Chapitre 3. Gestion des transactions dans les bases de données répliquées

3.2 Bases de données réparties et répliquées
Dans cette partie, nous donnons quelques généralités afférentes aux bases de données réparties

(distribuées) et aux mécanismes de base de la réplication.

3.2.1 Objectifs et principes des bases de données réparties
Une base de données répartie est une collection de sites connectés par un réseau de communi-

cation.Chaque site est une base de donnée centralisée qui stocke une portion de la base de données.
Chaque donnée est stockée exactement sur un seul site [BHG87]. La gestion d’une base de don-
nées répartie est gérée de manière transparente par un SGBD réparti. Les transactions peuvent être
envoyées sur chaque site puis traduites en transactions locales avant d’être routées sur les sites ap-
propriés (stockant une portion des données manipulées). Les résultats sont intégrés puis renvoyés
aux applications clientes. Pour améliorer les performances, les données peuvent être répliquées sur
plusieurs sites. La principale motivation de la réplication des données est l’augmentation de la dis-
ponibilité. En stockant les données critiques sur plusieurs sites, la base de données distribuée peut
fonctionner même si certains sites tombent en panne. Un second avantage de la réplication consiste
à l’amélioration des temps de réponses des requêtes grâce à la parallélisation des traitements et un
accès plus facile et rapide des données. Cependant, l’introduction de la réplication introduit un
nouveau problème car si une réplique est mise à jour à travers une transaction, toutes les autres
répliques devraient l’être pour garantir la cohérence mutuelle, ce qui signifie que toutes les copies
sont identiques. Ce faisant, il est évident que plus le nombre de répliques est grand, plus le coût du
maintien de la cohérence est important. Par conséquent, il doit exister un compromis entre gestion
de la cohérence et les performances (passage à l’échelle, latence, ...). Ce compromis dépend surtout
des types d’applications conduisant à plusieurs mécanismes de réplication que nous allons décrire
très brièvement dans la prochaine section.

3.2.2 Mécanismes de réplication
La réplication a fait l’objet de plusieurs études dans le contexte des systèmes distribués et aussi

dans les bases de données répliquées. La motivation principale est la disponibilité pour les systèmes
distribués et la performance (parallélisme) pour les bases de données. Dans [Gan06], l’auteur pré-
sente la gestion de la réplication suivant plusieurs dimensions. Pour des soucis de présentation,
nous regroupons les dimensions décrites dans [Gan06] en quatre concepts à savoir la distribution
ou placement des données, la configuration (rôle) des répliques, la stratégie de la propagation des
mises à jour et enfin la stratégie de maintien de la cohérence.

– Placement des données. Les données peuvent être répliquées partiellement ou totalement.
La réplication totale stocke entièrement la base de données sur chaque site. La réplication
partielle nécessite une partition des données en fragments. Chaque fragment est stocké par la
suite sur plusieurs noeuds. L’avantage de la réplication partielle est qu’elle permet de réduire
de manière significative les accès concurrents aux données. En outre, le coût de la mise à
jour des copies est moins important que dans le cas de la réplication totale compte tenu de la

32

3.2. Bases de données réparties et répliquées

faible portion des données sollicitée par les opérations de mises à jour.

– Configuration des répliques. Les mises à jour peuvent être effectuées sur une seule réplique
(appelée maître) avant d’être propagées vers les autres (esclaves). Une telle configuration
est appelée mono-maître (primary copy) car les autres répliques ne sont utilisées que pour
les requêtes de lecture seule, ce qui améliore les performances des opérations de lecture
seule. L’avantage d’une telle approche est qu’elle facilite la gestion de la cohérence globale
du système (cohérence mutuelle) puisque toutes les mises à jour sont effectuées sur une
seule copie. Cependant, cet avantage est contradictoire avec le passage à l’échelle et avec la
disponibilité qui nécessitent que plusieurs copies soient utilisées en même temps pour faire
face à une charge applicative d’écritures très importante et variable. Une approche multi-
maître (update anywhere), dans laquelle les mises à jour peuvent être exécutées sur n’importe
quelle réplique, permet d’améliorer aussi bien les performances des transactions de lecture
seule que d’écriture. L’inconvénient de cette approche est qu’elle requiert des mécanismes
de contrôle de concurrence distribués plus complexes pour garantir la cohérence mutuelle.
La configuration mono-maître profite plus aux applications de type OLAP avec lesquelles
les données de production (sujettes à des modifications) doivent être séparées des données
d’analyse (milliers d’opérations de lecture seule). Par contre les applications OLTP tirent
plus de bénéfices de l’approche multi-maître et particulièrement quand le nombre de mises
à jour est très important et provient de diverses sources (utilisateurs). Il existe beaucoup de
produits commerciaux qui offrent des solutions de réplication mono-maître ou multi-maître.
Pour les architectures mono-maître, nous pouvons citer de manière non-exhaustive Micro-
soft SQL Server replication, Oracle Streams, Sybase replication Server, MySQL replication,
IBM DB2 DataPropagator, GoldenGate TDM platform, et Veritas Volume Replicator. Alors
que les exemples de solutions multi-maître incluent Continuent uni/Cluster, Xkoto Gridscale,
MySql Cluster, DB2 Integrated Cluster.

– Stratégies de rafraîchissement (propagation). Elles définissent comment la propagation va
être effectuée en précisant le contenu à propager, le modèle de communication utilisé, l’ini-
tiateur et le moment du déclenchement. Le rafraîchissement est fait grâce à une transaction
appelée transaction de rafraîchissement dont le contenu peut être les données modifiées (wri-
tesets en anglais) ou le code de la transaction initiale [EGA08, Gan06]. La caractéristique
principale d’une transaction de rafraîchissement est qu’elle est déjà exécutée sur au moins
une réplique. La propagation de la transaction par la ré-exécution de celle-ci sur toutes les
répliques, ne garantit pas toujours le même résultat sur chaque site si des instructions SQL
contextuelles comme RANDOM ou LIMIT ou plus simplement SYSDATE sont utilisées
dans la requête [EGA08]. La propagation des données modifiées requiert la récupération de
celles-ci, ce qui est souvent très coûteux (triggers, log sniffing, comparaison de snapshot,
etc.) et donc peut impacter les performances du système. Néanmoins, la propagation des
données modifiées évite de rejouer une transaction qui a nécessité beaucoup de calcul avant
de produire un résultat et ne dépend pas du contexte. La propagation peut être initiée par le
noeud qui a exécuté une première fois les mises à jour, on parle de PUSH (pousser). Elle

33

Chapitre 3. Gestion des transactions dans les bases de données répliquées

peut être aussi initiée par les noeuds recevant les mises à jour, c’est l’approche PULL (tirer).
Quant à la communication, elle peut se faire de point à point, ou par communication de
groupe (multicast, broadcast), de manière épidémique, etc. Cependant, le modèle de com-
munication est fortement tributaire du type de système. Par exemple l’utilisation du multicast
dans un réseau P2P réduit le nombre de messages mais n’est pas toujours faisable à cause du
caractère dynamique du système.
Enfin, le déclenchement peut se faire dès la réception ou l’exécution d’une nouvelle transac-
tion (immédiat), périodiquement, quand une réplique est obsolète, quand un noeud est peu
chargé, à la demande, etc. Comme nous allons le montrer dans le prochain chapitre, le mo-
ment du déclenchement joue un rôle capital dans les performances du système (cohérence
mutuelle, surcharge du réseau, ...). Le déclenchement à la demande ou quand un noeud est
moins chargé permet de réduire la surcharge du réseau en regroupant plusieurs mises à jour
mais a l’inconvénient de laisser diverger les copies.

– Maintien de la cohérence. La cohérence peut être gérée de manière stricte (réplication
synchrone) ou relâchée (réplication asynchrone) [GHOS96]. Avec la réplication synchrone,
toutes les répliques sont mises à jour à l’intérieur de la transaction. Cette approche a l’avan-
tage de garder toutes les copies cohérentes à chaque instant, mais nécessite que toutes les
répliques soient disponibles et synchronisées au moment de l’exécution de la transaction
(ROWA pour Read-One/ Write-All). Une amélioration de cette approche est de synchroniser
uniquement les répliques disponibles au moment de l’exécution d’une transaction (ROWAA
pour Read-One/ Write-All-Available). Pour des systèmes à large échelle, de telles approches
entraîneraient des retards dans la validation des transactions puisque la communication n’est
pas toujours stable. Par conséquent et comme il a été démontré dans [GHOS96], cette solu-
tion ne passe pas généralement à l’échelle.
La réplication asynchrone est plus souple car une transaction est d’abord validée sur une
seule réplique avant d’être propagée sur les autres répliques dans une autre transaction. L’in-
convénient de cette approche est que les copies peuvent diverger. Cette divergence a pour
impact de retourner aux utilisateurs des résultats faux (par exemple l’achat d’une place de
cinéma qui n’existe pas) ou de faire varier les invariants (les règles de gestion) du système
(par exemple créditer un compte qui n’est pas encore créé).
Cependant, il est possible de laisser volontairement les copies diverger dans l’optique d’amé-
liorer les performances du système. En effet, il est possible d’effectuer des transactions de
lectures sur des copies pas nécessairement fraîches pour accélérer l’exécution des transac-
tions de lecture [GNPV07, LG06, LGV04, RBSS02]. Néanmoins, l’obsolescence des copies
doit être contrôlée en fonction des exigences des applications [GNPV07]. L’obsolescence
peut être définie de différentes manières [LGV04]. Dans cette thèse, nous considérons une
seule mesure à savoir le nombre de transactions de mise à jour manquantes. Précisément,
l’obsolescence d’une réplique Ri sur un site sj est égale au nombre de transactions de mise
à jour modifiant Ri sur un site quelconque mais non encore propagée sur sj . L’obsolescence
tolérée d’une transaction de lecture est donc, pour chaque objet de la base lue par la tran-
saction, le nombre de transactions qui ne sont pas encore exécutées sur le site traitant la

34

3.3. Gestion des transactions dans les bases de données répliquées

transaction. L’obsolescence tolérée reflète le niveau de fraîcheur requis par une transaction
de lecture pour s’exécuter sur un site. Par exemple, si une transaction de lecture requiert des
données parfaitement fraîches, alors l’obsolescence tolérée est zéro. Pour des raisons de co-
hérence, les transactions de mise à jour ainsi que celles de rafraîchissement doivent lire des
données parfaitement fraîches.
Par ailleurs, on peut classer la réplication asynchrone en deux familles : réplication optimiste
et réplication pessimiste. Avec la réplication pessimiste, les transactions sont ordonnées a
priori avant d’être envoyées sur les répliques en respectant leurs contraintes conflictuelles.
L’ordonnancement a priori ne permet pas un contrôle d’accès concurrent très fin, car deux
transactions peuvent apparaître conflictuelles sans pour autant l’être réellement. La réplica-
tion asynchrone optimiste autorise l’exécution de plusieurs transactions simultanément sur
plusieurs sites. Au moment de la validation globale (maintien de la cohérence mutuelle), on
vérifie les conflits et les résoud. La résolution peut se faire par abandon de certaines transac-
tions ou par ré-exécution des transactions. Si les données sont bien partitionnées, les conflits
sont moins fréquents et donc l’utilisation de la réplication optimiste devient bénéfique car le
débit transactionnel est fortement augmenté.

3.3 Gestion des transactions dans les bases de données répli-
quées

Les propriétés ACID d’une transaction doivent être garanties aussi bien dans le cadre d’un
système centralisé que celui d’un système distribué. L’objectif des transactions est de pouvoir as-
surer la cohérence de la base, même en présence de mises à jour. Cependant dans le contexte des
bases de données, nous pouvons identifier deux types de cohérences à prendre en compte. Tout
d’abord une cohérence transactionnelle qui consiste à garantir la cohérence sémantique (validité
des contraintes d’intégrité) d’une copie de la base après l’exécution d’une transaction. Puis, une
cohérence mutuelle qui assure la conformité de toutes les copies de la base après l’exécution de la
transaction. La gestion de la cohérence mutuelle définie quand et comment les modifications d’une
transaction sont écrites sur l’ensemble des copies. Comme nous l’avons déjà souligné dans le cha-
pitre précédent, si les modifications sont écrites sur l’ensemble des copies avant que la transaction
ne soit validée, la réplication est dite synchrone, autrement, elle est dite asynchrone. Il est à noter
que parfois les écritures d’une transaction ne sont pas appliquées sur toutes les répliques mais elles
y sont envoyées dans le seul but d’assurer la cohérence globale (vérifier s’il n’y a pas de conflit
compromettant la cohérence) avant de valider la transaction. Une telle approche bien qu’elle soit
considérée comme synchrone est moins stricte et favorise des temps de réponses beaucoup plus
bas. L’avantage et l’inconvénient d’une approche dépendent de la stabilité de l’environnement, de
sa composition et surtout des attentes des applications. Plusieurs dizaines de travaux ont abordé le
problème de la gestion des transactions dans les bases de données répliquées en privilégiant l’une
ou l’autre approche en fonction des applications cibles.

Dans la suite de ce chapitre, nous allons décrire les solutions de gestion de transactions les plus
connexes à nos travaux et ce, suivant les quatre caractéristiques des systèmes distribués que nous

35

Chapitre 3. Gestion des transactions dans les bases de données répliquées

avons mentionnées dans le premier chapitre : passage à l’échelle, tolérance aux pannes, transpa-
rence des données et autonomie des applications et des données. Nous mentionnons également que
dans cette thèse, nous ne nous occupons pas de la gestion des contraintes d’intégrité.

3.3.1 Gestion des transactions et passage à l’échelle en taille
Pour faire face aux besoins des nouvelles applications qui gèrent plusieurs millions d’utili-

sateurs, il faut des techniques de gestion de transactions efficaces pour garder au bon niveau les
performances du système en cas de fortes charges. Cela est d’autant plus vrai que dans [GHOS96],
les auteurs ont montré que les techniques usuelles de gestion de transactions ne passent pas à
l’échelle si l’environnement est dynamique.

La réplication a été introduite dans les bases de données pour résoudre le problème de passage à
l’échelle. Malheureusement plusieurs solutions n’arrivent pas à atteindre une large échelle à cause
de deux limitations. Premièrement, la plupart des approches adopte une réplication totale où chaque
site stocke intégralement la base de données. Par conséquent, la synchronisation des répliques
pour garantir la cohérence mutuelle entraîne une surcharge supplémentaire très importante qui
n’améliore guère les performances du système à partir d’un certain degré de réplication [GSN09,
BGRS00]. Deuxièmement, les protocoles de réplication utilisées sont synchrones et s’appuient
souvent sur le critère de cohérence 1-copy-serializability. Dans la théorie de la sérialisabilité, un
système répliqué est dit 1-copy-serializable si l’exécution des transactions dans le système répliqué
est équivalent à une exécution sérielle sur une seule copie de la base. Ce critère de cohérence exige
que toutes les copies soient synchronisées avant de valider une mise à jour. Ceci limite le degré de
concurrence et par conséquent le passage à l’échelle. Pour repousser ces limites, de nouvelles so-
lutions de réplication ont été proposées [BGRS00, BKR+99, CMZ05, HSAA03, PMS99, ATS+05,
LKMPJP05, RBSS02, PA04, JEAIMGdMFDM08, SPMJPK07, MN09, PA04, GNPV07, BFG+08,
LM09, ATS+05, PST+97, PCVO05, LFVM09, FDMBGJM+09, APV07, SSP10, ACZ03]. L’un
des principaux objectifs de ces nouvelles approches est d’éliminer le contraignant critère de 1-
copy-serializability. Pour ce faire, la solution la plus utilisée est de retarder l’application des écri-
tures d’une transaction vers toutes les répliques mais aussi de diminuer le volume des données à
propager. En effet, le résultat est envoyé au client dès que la transaction est validée sur une des
répliques mais avant que toutes les répliques restantes n’appliquent les écritures (données modi-
fiées).

Pour garantir la cohérence, une première solution est la réplication synchrone et consiste à coor-
donner toutes les répliques au moment de la validation d’une transaction. Ce type de coordination
permet de s’assurer qu’il n’y a pas d’incohérences mais aussi d’obtenir des temps de réponses
faibles puisque la transaction n’est écrite que sur une seule réplique. Une possible clé de voûte de
cette solution est, d’une part, le maintien de plusieurs versions d’une même copie (Snapshot Iso-
lation) [BBG+95, PGS97, DS06, CRF09, LKJP+09, LKMPJP05, MN09, PA04, FDMBGJM+09]
et d’autre part, l’utilisation de modèles de communication par groupe [PGS03, HAA99, KA00b,
SR96, WK05] pour synchroniser les répliques.

Une autre solution consiste à exécuter une transaction et la valider sans faire de coordination
entre toutes les répliques au moment de la validation ni au moment de l’exécution (réplication asyn-
chrone). Cette solution utilise des techniques d’ordonnancement afin de définir l’ordre d’exécution

36

3.3. Gestion des transactions dans les bases de données répliquées

des transactions. Une transaction est exécutée puis validée sur une seule réplique puis les modi-
fications sont propagées plus tard. En cas d’absence de nouvelles transactions de mises à jour, le
système converge vers un même état, on parle de cohérence à terme. Parmi les solutions s’appuyant
sur cette technique, figurent [GNPV07, BGL+06, BFG+08, LM09, ATS+05, PST+97, Vog09].

Une autre solution est de minimiser le nombre de répliques à synchroniser en fragmentant les
données (réplication partielle) [JEAIMGdMFDM08, SPMJPK07, PCVO05, SOMP01, HAA02,
PCVO05, LFVM09]. Avec la réplication partielle, la surcharge due aux propagations des mises à
jour diminue car les sites ne stockent qu’une partie de la base de données. En fait, si un site ne
stocke pas la partie de la base de données modifiée par une transaction, il n’est pas concerné ni par
le protocole de validation ni par la propagation des modifications.

Dans la suite de cette section, nous allons décrire quelques travaux s’appuyant sur le Snapshot
Isolation (SI) ou la cohérence à terme pour gérer la cohérence mutuelle entre les copies. Puis, nous
décrivons quelques travaux sur la réplication partielle.

Passage à l’échelle avec Snapshot Isolation

L’une des propriétés les plus importantes du SI est que les opérations de lecture seule ne sont
pas en conflit avec les opérations d’écriture. Par conséquent les opérations de lecture ne sont jamais
bloquées, ce qui augmente le degré de concurrence et améliore les performances du système et par-
ticulièrement pour les transactions de lecture seule. Dans la spécification classique du SI décrite
dans [BBG+95], une transaction obtient une estampille de démarrage (ED) quand elle commence
son exécution. Cette estampille indique la dernière version de la base de données (snapshot) vue
par la transaction. Toutes les opérations de lecture sont faites sur le snapshot associé à la transac-
tion. En fait, le snapshot associé à une transaction reflète toutes les mises à jour validées avant le
début de celle-ci. Quand une transaction met à jour les données, elle produit une nouvelle version
qui ne sera correcte (ou cohérente) qu’au moment de la validation. Cependant, il faut remarquer
qu’une transaction peut lire à tout moment ses propres modifications avant même leur validation.
Au moment de valider une transaction, une seconde estampille dite estampille finale (EF) lui est
associée. Les estampilles accordées au début et à la fin d’une transaction permettent de décider si
elle peut valider ou annuler ses modifications. En effet, une transaction T valide ses écritures (ou
modifications) s’il n’existe aucune autre transaction T’ modifiant la même donnée et dont l’estam-
pille finale est comprise entre les deux estampilles (ED et EF) de T. Cet algorithme de validation
appelée règle du "First-Committer-Wins (FCW)" signifie que deux transactions concurrentes qui
modifient les mêmes données ne peuvent pas valider toutes les deux à la fois. En pratique, la
plupart des implémentations du SI utilisent le verrouillage lors des opérations de modifications
pour empêcher qu’une transaction écrive sur une donnée qui est déjà modifiée par une transaction
concurrente. La première transaction qui a le verrou sur une donnée est autorisée à la modifier : si
la transaction valide et relâche le verrou, toute autre transaction qui était en attente du verrou est
annulée. Cette approche connue sous le nom de "First-Updater-Wins" produit les mêmes effets que
la règle FCW du point de vue des histoires d’exécutions permises. L’algorithme de SI est implé-
menté par les SGBDR Oracle, PostgreSQL, SQL Server 2005, Interbase 4 et Oracle Berkley DB. Il
évite les problèmes connus de pertes d’écritures et de lectures sales et introduit des améliorations
considérables par rapport au protocole de 2PL et notamment le Strict-2PL en augmentant le débit

37

Chapitre 3. Gestion des transactions dans les bases de données répliquées

transactionnel. Cependant, comme mentionné dans [BBG+95], SI ne garantit pas que toutes les
exécutions soient sérialisables (au sens des conflits). De plus, il peut entraîner la violation de cer-
taines contraintes d’intégrité par l’entrelacement des transactions concurrentes. Ce problème plus
connu sous le nom de write skew [BBG+95, CRF09] est illustré dans l’exemple suivant.

Exemple. Supposons l’exécution concurrentielle de deux transactions T1 et T2 retirant de l’ar-
gent à partir de deux comptes bancaires C1 et C2. Les deux comptes sont liées par la contrainte
C1 + C2 > 0. Voici un entrelacement qui peut être obtenu avec SI :

r1(C1 = 50)r1(C2 = 50)r2(C1 = 50)r2(C2 = 50)w1(C1 = −20)w2(C2 = −30)c1c2

Au démarrage des deux transactions, tous les deux comptes ont chacun comme solde 50 euros et
à tout moment, chaque transaction isolée, maintient la contrainte C1 + C2 > 0 : quand T1 valide
il calcule la contrainte C1 + C2 = −20 + 50 = 30 et quand T2 valide il calcule C1 + C2 =
−30 + 50 = 20. Pourtant les résultats de l’entrelacement produisent C1 + C2 = −50, ce qui viole
la contrainte. Ce problème découle du fait que seuls les conflits "écriture-écriture" sont considérés
et par conséquent si deux transactions accèdent en même temps à deux données et que chacune
des transactions ne modifie qu’une donnée de manière disjointe, alors toutes les deux transactions
seront validées.

Regardons en détail les conséquences d’un tel problème sur une base de données répliquée
asynchrone. Comme T1 et T2 ne sont pas en conflit "écriture-écriture" sous le protocole SI, leur
modification peut donc être validée dans l’ordre T1 suit T2 sur un site s1 mais avec l’ordre inverse
sur un autre site s2. Ainsi, si une troisième transaction T3 lit le contenu des comptes C1 et C2

sur le site s1 obtient une version de la base de données non équivalente à celle qu’elle aurait
eu si elle avait consulté le site s2. Ce problème ne survient jamais avec un système centralisé
utilisant le SI car soit T1 suit T2 soit l’inverse mais pas les deux à la fois. Pour assurer la cohérence
mutuelle avec l’utilisation de SI et éviter ce problème dans les systèmes asynchrone distribués
et répliqués, les transactions doivent être exécutées dans le même ordre sur tous les sites [DS06,
LKMPJP05, PA04, EZP05, SPMJPK07, WK05]. Ces approches tentent d’améliorer le degré de
concurrence, conformément à l’idée de base du SI [BBG+95], dans un environnement répliqué ou
chaque réplique utilise localement le SI comme protocole de contrôle de concurrence.

Dans [LKMPJP05], les auteurs présentent une solution de réplication basée sur le SI, appelé 1-
copy-snapshot-isolation, pour garantir la cohérence mutuelle dans les bases de données répliquées.
La solution conçue s’appuie sur un intergiciel et, à l’image de Postgres-R(SI) [WK05] et de Pan-
gea [MN09], est implémentée avec le SGBD relationnel PosgresSQL pour prouver sa faisabilité.
L’objectif principal de cette solution est de permettre l’exécution des transactions (lecture seule et
écriture) sur n’importe quelle réplique sans savoir au préalable les données sollicitées par la tran-
saction. En effet, cette approche assure le contrôle de concurrence à deux niveaux : chaque SGBD
sous-jacent assure le SI, et un protocole appelé SI-Rep détecte les conflits entre les transactions
s’exécutant sur différentes répliques. Au dessus de chaque SGBD, une réplique de l’intergiciel est
installée et permet la coopération avec les autres répliques. La communication ou coopération des
intergiciels se fait via une communication par groupe. L’exécution d’une transaction T requiert
plusieurs étapes. Tout d’abord, T est exécutée sur une réplique locale. A la fin de l’exécution, les

38

3.3. Gestion des transactions dans les bases de données répliquées

tuples modifiés par T sont extraits sous forme de writesets. L’extraction des writesets est un mé-
canisme standard utilisé par plusieurs produits commerciaux et implémentée via des triggers ou
du log-sniffing [SJPPMK06]. Bien que les solutions commerciales extraient les writesets unique-
ment après la validation d’une transaction, une extraction avant validation est utilisée de manière
similaire aux travaux de [PA04]. Après récupération des writesets, SI-Rep vérifie si il n’y as pas de
conflit "écriture-écriture" entre T et les autres transactions exécutées sur d’autres répliques et qui
sont déjà validées. Si aucun conflit n’est détecté alors T est validée au niveau de la réplique locale
et les writesets sont appliquées de manière asynchrone sur les répliques distantes. Si par contre il y
a un conflit, T est annulée localement. Le critère de cohérence sur lequel s’appuie ces travaux est
le 1-copy-SI. Ce critère signifie que l’exécution de plusieurs transactions sur différentes répliques
produit le même résultat qu’une exécution sur un système centralisé utilisant SI comme protocole
de contrôle concurrence. Un système de bases de données répliquées assure le critère de 1-copy-SI
si deux conditions sont garanties :

– l’exécution des transactions suit l’approche ROWA : soit une transaction est validée sur
toutes les répliques soit aucune ne l’est ; par contre les transactions de lecture seule sont
toujours validées sur une seule réplique.

– Soit WSkl et RSkl représentant respectivement les writesets et readsets (données lues) de Tl
sur une réplique Sk , alors pour toute paire de transactions Ti et Tj :
i) si WSki ∩ WSkj 6= ∅ : l’ordre dans lequel Ti et Tj sont validées est identique à l’ordre
produit par un système centralisé utilisant SI ;
ii) si WSki ∩ RSkj 6= ∅ : si Ti valide avant le début de Tj alors, (1) Tj doit forcément lire les
écritures de Ti, (2) cette relation entre Ti et Tj est équivalente à celle produit par un système
centralisé utilisant SI.

Pour assurer la deuxième condition du critère de 1-copy-SI, les transactions sont envoyées vers
toutes les répliques par multicast en utilisant des primitives de communication par groupe. Avec
ces primitives, les transactions sont envoyées dans un ordre total et traitées dans cet ordre sur tous
les sites. Il est à remarquer que cette approche et comme celle présentée dans [WK05] peuvent être
considérées comme synchrone car les writesets sont envoyés à toutes les autres répliques avant que
la transaction ne soit validée.

Les solutions basées sur le SI offrent de bonnes performances en réduisant le temps de syn-
chronisation entre les répliques tout en maintenant un niveau de cohérence élevé. Ces solutions ne
prennent pas en compte les conflits "lecture-écriture", ce qui diminue le nombre de transactions
annulées mais aussi la taille des données (données lues non incluses) à envoyer aux répliques pour
valider une transaction. Cependant, l’utilisation des communications par groupe pour assurer un
ordonnancement total des transactions sur les différentes répliques ne fonctionne que pour des ré-
seaux à latence faible et stable (Cluster, LAN). Dans des systèmes où la latence est non négligeable
et l’environnement est dynamique (grille, P2P, ...), la coordination entre les répliques nécessite plus
de temps et par conséquent augmente le temps de réponse. Pour des applications de type Web2.0
qui sont conçues sur des architectures à large échelle avec des réseaux WAN, utiliser les méca-
nismes de réplication SI ne semble pas être une solution adaptée pour assurer le passage à l’échelle
à cause de la dynamicité et de la faible latence de l’environnement.

39

Chapitre 3. Gestion des transactions dans les bases de données répliquées

Passage à l’échelle avec la cohérence à terme

La cohérence à terme [Vog09] est un niveau de cohérence faible qui stipule que les différentes
répliques peuvent diverger pendant une période mais convergent à terme vers un même état en l’ab-
sence de nouvelles transactions entrantes. Ainsi, une séquence d’accès sur les différentes répliques
ne retourne pas nécessairement la version la plus à jour. La cohérence à terme est de plus en plus
utilisée dans les nouvelles solutions pour faire face aux besoins des applications web notamment
dans les cloud. Parmi les solutions dédiées aux clouds et qui utilisent une cohérence à terme, nous
pouvons citer Cassandra [LM09] et Amazon S3 [BFG+08]. Cependant, ces solutions du cloud qui
commencent à émerger ne s’appuient pas sur les traditionnels SGBD et nécessitent de nouvelles
manières de concevoir les SGBD et les applications, ce qui les éloignent un peu de notre contexte.
Pour rappel, notre objectif dans cette thèse est de s’appuyer les SGBDs existants pour concevoir
une solution de traitement de transactions à large échelle.

Des approches qui utilisent les SGBDs classiques pour assurer le traitement des transactions
sont décrites dans [DS06, PA04, RBSS02]. Dans ces approches, une réplication asynchrone avec
une configuration maître-esclave est utilisée. En plus, il y a une séparation des transactions de lec-
ture seule des transactions d’écriture. Précisément, les transactions de mises à jour sont exécutées
sur le site primaire alors que les transactions de lecture seule sont envoyées sur les sites secon-
daires. Les modifications faites par les transactions de mises à jour sont propagées vers les autres
répliques à travers des transactions de rafraîchissement. Une transaction de rafraîchissement est
utilisée pour propager les transactions de mise à jour sur les autres répliques.

En plus, pour garantir la cohérence globale, les transactions de rafraîchissement doivent être
appliquées dans un ordre compatible à l’exécution des transactions d’écriture correspondantes sur
le site primaire. De manière plus précise, si deux transactions T1 et T2 produisent respectivement
les transactions de rafraîchissement R1 et R2, alors si T1 valide avant T2 sur le site primaire,
donc sur n’importe quel site secondaire R1 précède R2. Pour atteindre ce but, une liste FIFO des
transactions validées est utilisée dans [DS06] afin d’envoyer les transactions de rafraîchissement
conformément à l’ordre obtenu sur le site primaire. Cependant pour accélérer l’application des
transactions de rafraîchissement sur les sites secondaires, la base de données locale les exécute
simultanément en associant un thread à chaque transaction de rafraîchissement mais en veillant
à ce que les écritures faites par une transactions soient visibles à toutes celles qui la suivent dans
la file FIFO. Les travaux menés dans [DS06] assurent aussi la cohérence globale par session. En
d’autres mots, si un client envoie une première transaction de modification, Tm, puis une autre de
lecture seule, Tl, alors cette dernière accédera à la copie des données incluant la modification faite
par Tm. Cette propriété n’est pas garantie par toutes les solutions de réplication basées sur le SI
notamment [FLO+05].

Cependant, l’utilisation d’une architecture maître-esclave ne facilite pas le passage à l’échelle
car : i) le site maître devient très rapidement une source de congestion si le nombre de mises à
jour augmente, ii) si le nombre de noeuds esclave est important, la synchronisation entre maître
et esclaves handicape la disponibilité du noeud maître à traiter de nouvelle requêtes entrantes. Les
solutions proposées pour les clouds requièrent souvent des data centres qui nécessitent des méca-
nismes de maintenance très coûteux. Pour remédier à ces limites, nous envisageons de concevoir
des solutions multi-maîtres tout en assurant la cohérence à terme. Notre solution s’intègre aux tra-

40

3.3. Gestion des transactions dans les bases de données répliquées

ditionnels SGBDs existants et donc ne requiert aucune modification de leur conception ni de celles
des applications qui les utilisent.

Par ailleurs la divergence (obsolescence) introduite par l’utilisation de la cohérence à terme,
permet de minimiser les synchronisations entre répliques et donc améliore significativement les
performances si la divergence est contrôlée [GN95]. De plus, dans le contexte du web2.0, de nom-
breuses applications tolèrent une cohérence relâchée et acceptent de lire des données qui ne sont
pas nécessairement les plus récentes ; cela ouvre la voie vers de nouvelles solutions offrant de
meilleures performances en termes de débit transactionnel, latence, disponibilité des données et
passage à l’échelle. Par exemple, il est possible de gérer des transactions de vente aux enchères
(sur eBay ou Google Adsense) sans nécessairement accéder à la dernière proposition de prix,
puisque l’enchère est sous pli cacheté, autrement dit, on lit les quelques informations relatives
au produit sans lire la dernière proposition de prix fait sur ce produit. L’application doit pouvoir
spécifier la limite de divergence tolérée ainsi que la nature de cette divergence en fonction de sa
sémantique. Le système doit quant à lui garantir que cette limite est respectée. Différents modèles
de divergence ont été proposés dans la littérature [GN95, LGV04]. Pour définir a divergence, on
peut utiliser des mesures temporelles, numériques, par version, mixte, etc. [Pap05]. De plus, la
nature de la divergence tolérée doit être fonction de l’application. Les approches de contrôle best-
effort [PA04, LKMPJP05, PMS99] permettent de minimiser la divergence temporaire des données
mais ne tirent pas profit de la divergence autorisée, et ne garantissent pas non plus qu’elle reste
bornée. Le projet MTCache [GLRG04] borne la divergence mais a l’inconvénient de nécessiter la
modification du gestionnaire de transactions. De plus, il ne prend en compte que la mesure tempo-
relle. Néanmoins, les algorithmes proposés nécessitent de modifier le gestionnaire de transaction,
par exemple en étendant les verrous avec des compteurs [Pu91, WYP97, YV00]. Le contrôle de
la divergence de certaines mesures (mesure numérique) nécessite un mécanisme de détection des
conflits à la granularité fine. Néanmoins, la seule méthode exacte et non intrusive (indépendante)
pour le gestionnaire de transaction est l’analyse de journal, réputée lourde. Dans cette thèse, nous
utilisons des techniques non intrusives pour contrôler la divergence tout en se passant des tech-
niques d’analyse de journal. En définissant la divergence d’une réplique comme étant le nombre
de transactions manquantes sur cette réplique, nous utilisons le catalogue réparti qui stocke des
informations pour calculer à tout moment la divergence.

Passage à l’échelle avec réplication partielle

La réplication totale d’une base de données passe mal à l’échelle puisque toutes les mises à jour
doivent être appliquées sur tous les sites [JPMPAK03], et qu’une augmentation du nombre de sites
ne fait qu’augmenter la surcharge du système. Dans ce contexte, la réplication partielle a plus de
sens et consiste à diviser la base de données en plusieurs portions et à répliquer chaque portion dans
un sous-ensemble des sites du système [SOMP01, JEAIMGdMFDM08, HAA02, SSP10]. L’un des
gains visés par la réplication partielle est la réduction de la taille des données à propager vers les
répliques pour vérifier les conflits. Ce gain est d’une utilité capitale si le nombre de répliques est
très élevé puisque la surcharge du système est tributaire de la quantité des informations à envoyer et
du nombre de sites destinataires. Par ailleurs, avec les applications Web 2.0, les utilisateurs ne mo-
difient qu’une faible portion de leur données personnelles. Ce faisant, même si le nombre d’utilisa-

41

Chapitre 3. Gestion des transactions dans les bases de données répliquées

teurs est de l’ordre de centaines de millions, les accès aux données sont disjoints et par conséquent
une répartition des données augmente le degré de concurrence et diminue le temps de réponse. Par
conséquent, le système passe plus facilement à l’échelle. Dans [HAA02], les auteurs proposent un
algorithme de réplication partielle dans un environnement WAN. Chaque donnée a un ou plusieurs
sites permanents qui en stockent une copie. Le protocole de réplication utilise une communication
multicast épidémique pour propager les logs des bases données. Les logs (readsets et writesets)
utilisés pour ordonner les transactions sont envoyés sur l’ensemble des sites indépendamment du
fait qu’ils stockent ou non les données modifiées. La différence principale de cette approche par
rapport à leur protocole de réplication totale présenté dans [HAA00] est qu’un site n’applique les
modifications que pour les données qu’ils stockent. Ceci constitue un problème car envoyer des
logs à des sites qui ne stockent pas les données modifiées n’est qu’une source de surcharge de
trop, surtout si le nombre de site est élevé. Par contre dans [SOMP01], les logs ne sont envoyés
qu’aux sites stockant une portion des données sollicitées par la transaction. Bien que cela réduit la
surcharge notée dans les travaux de [HAA02], il demeure que l’utilisation du critère de cohérence
de 1-copy-serializability sur laquelle se base l’approche rend la solution impraticable dans les sys-
tèmes à environnement dynamique ou à latence faible. Dans [SPMJPK07, JEAIMGdMFDM08]
le protocole de réplication partielle utilisé s’appuie sur le SI. Par conséquent, seules les données
modifiées (writsets) sont envoyées pour détecter les conflits au moment de la validation, ce qui
réduit le nombre de transactions annulées. Si les données sollicitées par une requête se trouvent
sur un seul site alors la transaction peut être exécutée sur ce site. Par contre, si les données sont
réparties sur plusieurs sites, alors la transaction doit être distribuée tout en préservant la cohérence
mutuelle. Bien que la plupart des travaux sur la réplication partielle suppose qu’une transaction ne
s’exécute que sur un seul site, la solution présentée dans [SPMJPK07] étudie par contre le cas des
transactions distribuées.

L’objectif des auteurs de [SPMJPK07] est d’assurer la cohérence globale pour les transactions
distribuées bien qu’aucun site n’ait une connaissance globale du système. Pour ce faire, un coordi-
nateur est choisi pour chaque transaction et correspond au site qui stocke au moins quelques unes
des données requises par les premières opérations de la transaction. Si le coordinateur stocke toutes
les données sollicitées, il exécute la totalité des opérations et valide la transaction. Autrement, il
envoie les opérations restantes aux sites contenant les données non disponibles sur le coordinateur.
Si un site reçoit des opérations à exécuter, il envoie après exécution les résultats et les writesets
au coordinateur qui peut alors initialiser la phase de validation. Lors de la phase de validation, le
coordinateur envoie par multicast les writesets et l’estampillage de la transaction qui lui est attri-
buée à son démarrage. Ainsi toutes les répliques peuvent valider la transaction en s’appuyant sur
l’estampille de la transaction et les conflits "écriture-écriture". L’inconvénient de cette approche
est qu’il est bloquant car si un site ne renvoie pas sa réponse (résultats et les writesets) pour une
quelconque raison (panne, latence faible, site chargé, ...), la transaction ne peut pas être validée. En
outre, l’envoie des writesets à toutes les répliques est quasi-identique à une réplication totale avec
laquelle les transactions de mises à jour ne contiennent pas beaucoup d’opérations de lecture.

Dans [JEAIMGdMFDM08], l’approche aborde la gestion des transactions distribuées dans le
même sens que dans [SPMJPK07]. L’une de leurs différences est que dans [JEAIMGdMFDM08],
le coordinateur (site maître de la transaction) transmet les opérations qui touchent des données

42

3.3. Gestion des transactions dans les bases de données répliquées

stockées dans d’autres sites en envoyant, souvent, les writesets des opérations déjà faites sur le
coordinateur. Ceci s’explique par le fait qu’une opération Oj envoyée sur un site distant peut avoir
besoin des écritures de Oi effectuée sur le coordinateur. En outre, quand une opération Oj avec ses
writesets sont reçus par un site secondaire Sk, toutes les transactions locales sur Sk sont annulées
pour appliquer les writesets de Oj puis l’exécuter. Ensuite, les writesets de Oj sont envoyés au
coordinateur qui peut valider la transaction si toutes les opérations distantes ont réussi. Tant que la
transaction n’est pas validée par le coordinateur, aucune autre opération d’écriture n’est permise
sur Sk. Cependant, l’opération Oj peut être aussi bloquée par des transactions globales en phase
de certification sur Sk et dans ce cas elle sera mise en attente. Outre le fait que ce protocole est
bloquant, l’annulation des transactions peut avoir un impact très négatif sur le système : i) une
transaction locale ayant déjà fait toutes ses opérations est reprise même s’il ne lui reste que la
validation, ii) l’annulation des transactions locales augmente la charge d’un site, le rendant du
coup moins disponible pour traiter et participer à la validation des transactions globales.

P-Store[SSP10] est une solution de réplication partielle pour des données de type "clé-valeur"
stockées sur un WAN. Lors de l’exécution d’une transaction seuls les sites contenant une copies
des données lues et/ou modifiées sont synchronisés. Ceci réduit considérablement la charge de
certains nœuds qui peuvent dès lors exécuter en parallèle d’autres transactions, ce qui augmente le
passage à l’échelle. Une transaction globale (qui sollicite des données stockées sur plusieurs sites)
T , est pilotée par un coordinateur appelée Proxy(T). Les opérations de lecture d’une transaction
sont exécutées de manière optimiste et à la validation le Proxy initie une phase de certification
pour assurer le critère de 1-copy-serializability. L’un des inconvénients de cette solution est qu’il
se base sur le critère de 1-copy-serializability et par conséquent les transactions de lecture seule
sont bloquées par les transactions d’écriture dès qu’elles ne sont pas locales. En outre, la notion de
transaction décrite n’est pas identique à la notion de transaction dans les bases de données puisque
les opérations sont très simplistes et consistent à accéder à une donnée via sa clé. En d’autres
termes, les transactions autorisées sont des transactions basées sur la clé : il n’est pas possible de
faire des transactions qui utilisent la valeur (ou un attribut de la valeur) comme prédicat ni de faire
des requêtes par intervalle.

En conclusion, l’objectif de la réplication partielle est de réduire les situations de conflits (pour
diminuer les reprises de transactions) et donc de traiter plus de requêtes de manière parallèle.
Une bonne solution est d’éviter des mécanismes d’exécution de transaction bloquants qui génèrent
souvent des annulations et donc plusieurs reprises. Certes, faire l’hypothèse que le partitionnement
des données peut être parfait à tel point qu’une transaction puisse se tenir sur une seule partition
est très irréaliste. Cependant, les solutions proposées pour faire face à ce problème sont bloquantes
et ne s’éloignent pas du principe du 2-PC avec des aller-retours entre master (coordinateur) et
sites distants (participants). En outre, le partitionnement des données doit permettre de minimiser
le temps de synchronisation par réduction de la taille des données mais aussi du nombre de sites
à synchroniser. De ce fait, les solutions qui coordonnent toutes les répliques lors des phases de
validation même si ces dernières ne stockent pas les données manipulées s’éloignent de cet objectif.
Par conséquent, pour un meilleur passage à l’échelle avec l’utilisation de la réplication partielle,
il faut envisager des solutions non bloquantes et qui nécessitent une faible synchronisation des
répliques lors de l’exécution des transactions.

43

Chapitre 3. Gestion des transactions dans les bases de données répliquées

3.3.2 Gestion des transactions et disponibilité

La gestion des transactions dans les bases de données répliquées nécessite la prise en compte
de la disponibilité des répliques pour assurer une cohérence mutuelle. En effet, il y a plusieurs
motivations qui encouragent la gestion de la disponibilité dans les bases de données répliquées. La
première raison est de pouvoir borner le temps de réponse de la transaction : si elle est envoyée
sur un site qui tombe en panne avant sa validation, il faut pouvoir continuer le traitement de la
transaction sur une autre réplique afin de pouvoir répondre aux clients dans des délais acceptables.
Une deuxième raison est qu’avec des systèmes très volatiles (connexion et déconnexion fréquentes
des répliques), il est important de gérer l’indisponibilité de certaines ressources afin de minimiser
la dégradation des performances en cas de présence de pannes. Une autre raison est de maintenir les
copies identiques sur toutes les répliques : si une copie est indisponible lors d’une synchronisation,
il faut à son retour lui envoyer toutes les modifications qu’elle n’a pas pu recevoir durant son
absence. Cependant, il est à remarquer que l’introduction de modules pour gérer la disponibilité
entraîne des surcharges dans le système et réduit donc le débit transactionnel. Par conséquent, des
compromis doivent être trouvés pour éviter de trop surcharger le système et de gérer efficacement
l’indisponibilité des répliques pouvant compromettre la cohérence du système.

Dans le cadre des bases de données répliquées deux cas peuvent affecter la disponibilité du
système à savoir les déconnexions prévues et celles intempestives appelées souvent pannes. Les
déconnexions prévues causent moins de problèmes car elles sont connues à l’avance et prises en
compte dans le processus de traitement en cours. Par contre, les déconnexions intempestives sur-
venant lors d’un processus de traitement, peuvent occasionner de sérieux problèmes de cohérence.
C’est pour cela qu’elles ont attiré une attention toute particulière dans les récents travaux sur la
réplication [PA04, ADM06, Sch90, VBLM07, AT89, JPMPAK03, PRS07, BHG87, PMJPKA05,
APV07]. Une des premières approches utilisées pour gérer les pannes est de les masquer ou de
les rendre transparentes vis-à-vis du client. Pour ce faire, le noeud effectuant les mises à jour en-
voie une transaction à toutes les répliques. Les répliques exécutent la transaction simultanément
et envoient les résultats (ou acquittements des copies mises à jour) au noeud. Ce dernier attend
soit la première réponse d’une réplique soit une majorité de réponses identiques (quorum) avant
de décider de terminer l’exécution de la transaction. Cette approche de traitement des mises à jour
plus connue sous le nom de réplication active ou state-machine approach [GS97, Sch90] et parfois
sous le nom d’algorithme à base de quorum [Gif79, JPMPAK03, VS05] cache au client l’occur-
rence d’une panne d’une réplique durant l’exécution d’une transaction. Le principal problème de
cette approche est qu’elle réduit les performances du système car à un instant donné, toutes les
répliques exécutent la même transaction, ce qui réduit sensiblement le degré de concurrence. En
outre pour envoyer une transaction à toutes les répliques, il est nécessaire de les connaître toutes et
de pouvoir les localiser.

Cette technique de masquage est également utilisée dans [PRS07] où tous les noeuds stockant
une même portion des données sont regroupés dans une même cellule. Un réseau logique structuré
est construit aux dessus des cellules formées. Chaque cellule est un groupe de machines physiques
dynamiquement paramétré et utilise le state-machine approach décrite dans [Sch90, Sch93]. Ce
faisant, si un noeud au sein d’une cellule tombe en panne, celle-ci est masquée. Par contre, cette
solution fait l’hypothèse qu’une cellule entière ne peut tomber en panne et si plusieurs noeuds

44

3.3. Gestion des transactions dans les bases de données répliquées

d’une même cellule tombent en panne simultanément, cette dernière s’auto-détruit et les données
sont redistribuées sur les cellules voisines. Ainsi, la panne de certains noeuds dans une cellule
entraîne la déconnexion des membres du groupe sur lesquels on pouvait faire recours pour une
meilleure disponibilité. Outre son coût, la redistribution des données sur les cellules voisines peut
les rendre plus chargées et donc réduire leur performance.

Une deuxième solution pour gérer les pannes consiste à les détecter d’abord et à les résoudre
après. Avec cette technique, il est beaucoup plus difficile de rendre la panne transparente car sa
détection avant sa résolution introduit une latence. Plusieurs mécanismes de détection de pannes
ont été proposés [CT96, LAF99, ACT99]. Ces mécanismes sont soit basés sur des échanges pé-
riodiques de messages de vie [ACT99], soit sur des allers retours "ping/pong" [DGM02]. Avec la
première technique, chaque noeud envoie périodiquement un message de vie à tous les noeuds et
attend, à son tour, un message de vie de chacun d’eux à chaque période. L’inconvénient majeur
de cette technique est le modèle de communication "tous-vers-tous" qui engendre beaucoup de
messages quand le nombre de sites est important. La deuxième méthode permet une détection plus
ciblée car elle permet de ne surveiller qu’un sous-ensemble de noeuds. Cette deuxième approche
est beaucoup plus adaptée dans les systèmes à large échelle qui contiennent des milliers de noeuds
qui ne se connaissent pas tous.

Une fois la panne détectée, il faut l’identifier pour savoir quels mécanismes utiliser afin de la
gérer. Il existe plusieurs types de pannes classées en général en trois catégories :

– Panne franche ou crash (fail-stop) : cette défaillance entraîne l’arrêt total du composant.
Avant cette panne le processus a un comportement normal et à partir de celle-ci, le processus
cesse définitivement toute activité.

– Panne transitoire ou ommission (omission failure) : avec cette panne, le composant cesse
momentanément son activité puis la reprend normalement.

– Panne byzantine (byzantine failure) : ce type de panne entraîne le système dans un compor-
tement imprévisible. Ce type de panne représente l’intégralité des comportements possibles.
Tout système qui tolère les pannes byzantines peut tolérer tout autre type de pannes.

Dans le contexte des systèmes répliquées, beaucoup de travaux ont été proposés pour faire face
aux pannes de type fail-stop [PA04, BHG87, MN09, LKMPJP05, LKJP+09, PRS07, PMJPKA05,
APV07, CPW07, SSP10] mais aussi de type byzantine [VBLM07, CL02, CVL10]. En général les
solutions proposées pour faire face aux pannes byzantines nécessitent une synchronisation de plu-
sieurs répliques avant la validation de toute transaction. Malheureusement cette synchronisation
est quasi-impossible à réaliser dans le cas d’un système à grande échelle ou génère une surcharge
en termes de messages très important. C’est la raison pour laquelle la plus part des travaux ef-
fectués dans le domaine des bases de données répliquées se concentrent plus sur les pannes de
type fail-stop. Par exemple dans Ganymed [PA04], Middle-R [PMJPKA05] et Pangea [MN09],
les auteurs décrivent des solutions de gestion de pannes très simples basées sur une architecture
maître-esclave. En fait si le noeud maître (coordonnateur des mises à jour) tombe en panne, un
noeud secondaire est choisi pour le remplacer. Il faut remarquer qu’avec Middle-R il n’existe
pas un seul noeud maître qui coordonne toutes les transactions mais plutôt un noeud maître pour
chaque classe de conflit. Dans Pangea, les clients sont invités à renvoyer au nouveau maître toutes
les transactions qui n’ont pas été validées avant l’arrivée du crash. Il faut noter que l’occurrence

45

Chapitre 3. Gestion des transactions dans les bases de données répliquées

d’une panne ne peut pas compromettre la durabilité des transactions car le protocole de réplication
est totalement synchrone. Cependant avec Ganymed, le protocole utilisé est asynchrone et donc
outre le fait d’élire un nouveau site maître, il faut garantir que toutes les transactions qui ont va-
lidé avant le crash soient pérennes. Pour ce faire, un client ne peut recevoir la notification de la
validation d’une transaction que si les writesets ont été déjà appliqués sur un certain nombre de
répliques. Ce retard de notification de la fin d’une transaction augmente le temps de réponse. Quant
à l’approche de Middle-R, si le noeud maître d’une classe de conflit tombe en panne, le premier
noeud sur la vue (liste des noeuds actifs et connectés) est élu maître et est chargé de continuer
toutes les transactions non encore validées. La liste des transactions non validées est connue par le
nouveau maître car à chaque fois qu’une transaction est envoyée à un noeud, celui ci l’envoie par
multicast à tous les autres membres du groupe de la classe de conflits. Cependant, dans tous les
deux systèmes (Pangea et Ganymed), si un noeud secondaire tombe en panne celui-ci est ignoré
jusqu’à l’intervention manuelle de l’administrateur tandis que Middle-R le supprime simplement
de la liste des noeuds actifs et qui peuvent recevoir des messages. Par conséquent, la panne de
plusieurs noeuds secondaires dans une courte période pousse le noeud maître à devenir une source
de congestion mais aussi de panne totale du système.

UMS/KTS [APV07] aborde la gestion de versions des données dans des systèmes pair-à-pair
structurés reposant sur une table de hachage distribuée. La cohérence mutuelle est garantie à l’aide
d’un service d’estampillage, tolérant aux pannes, qui permet de retrouver efficacement la version
courante d’une réplique. A chaque clé est associé un noeud chargé de gérer l’estampillage de la
donnée associée à cette clé. A chaque fois que le noeud responsable de l’estampillage tombe en
panne, un autre noeud est choisi pour le remplacer. Cependant la disponibilité des noeuds sto-
ckant les données n’est pas étudiée, ainsi une incohérence peut se produire si un noeud stockant la
dernière version d’une donnée quitte le système avant d’avoir propagé sa donnée.

En conclusion, plusieurs solutions sont proposées pour faire face aux pannes dans les systèmes
distribués. Certaines ne permettent pas de passer à l’échelle, en l’occurrence la réplication active
ou state-machine approach, car introduisant des surcharges qui ralentissent le fonctionnement du
système. D’autres proposent des solutions avec un modèle maître-esclave (réplication passive) tout
en s’intéressant essentiellement à la panne du noeud maître. L’inconvénient de cette seconde solu-
tion est qu’elle nécessite une détection au préalable de la panne du noeud maître puis suivie d’une
élection d’un nouveau maître. Cette phase de transition peut nécessiter un temps considérable, sur-
tout dans les systèmes à large échelle et hélas elle est souvent ignorée. En plus, comme la panne
des noeuds secondaires n’est pas prise en compte, le noeud maître devient très rapidement une
source de congestion, ce qui limite les performances du système en cas de forte dynamicité. Pour
une meilleure prise en compte des pannes dans les systèmes distribués à large échelle, il faut s’as-
surer de deux choses : i) la détection des pannes doit être peu coûteuse en termes de messages : il
faut pour cela utiliser des techniques de détection ciblée et en fonction du type de noeud surveillé ;
ii) la détection doit se faire dans les meilleurs délais, et pour tout type de noeud défaillant, afin de
pouvoir donner une suite positive à toute transaction qui se trouvait sur ce noeud en panne.

46

3.3. Gestion des transactions dans les bases de données répliquées

3.3.3 Gestion transparente des transactions avec transparence et autonomie

L’approche la plus classique pour implémenter la réplication est de l’intégrer au coeur du
SGBD [BKR+99, KA00a, BHG87, HSAA03, SSP10]. Cependant, cette approche présente quelques
limites et compromet l’autonomie des bases de données. Premièrement, elle nécessite un accès
aux codes sources du SGBD, ce qui signifie que seuls les propriétaires des produits commerciaux
peuvent l’utiliser. Deuxièmement, elle est fortement couplée avec les autres modules du SGBD,
créant du coup une interdépendance avérée des composants du même produit, ce qui ne facilite pas
les maintenances et les évolutions du protocole de réplication. Enfin, cette absence de transparence
entraîne le client à interroger plus fréquemment certaines répliques au détriment d’autres, ce qui
ne facilite pas une meilleure exploitation des ressources notamment l’équilibrage des charges.

En outre, nous avons mentionné dans le chapitre précédent que la transparence permet de ca-
cher aux utilisateurs les détails techniques et organisationnels d’un système distribué ou complexe.
L’intérêt visé est de faire bénéficier aux applications d’une multitude de services sans avoir besoin
de connaître exactement la localisation ou les détails techniques des ressources qui les fournissent.
Dans le cas d’une base de données répliquée, il s’agit essentiellement de cacher la distribution
des données (répartition et localisation des répliques) mais aussi l’indisponibilité de certaines res-
sources. Cette transparence a pour gain : i) de mieux exploiter les répliques disponibles en faisant
une bonne répartition des charges, ii) dans le cas où les transactions de lecture seule acceptent
des données obsolètes, il devient plus simple de les router vers les noeuds pouvant satisfaire leur
exigence afin de réserver les répliques totalement à jour pour les transactions demandant une forte
cohérence.

Pour assurer cette transparence de la réplication, des solutions basées sur des intergiciels ont été
largement étudiées dans les dernières années [GNPV07, CPW07, PMJPKA05, CMZ05, LKMPJP05,
ACZ03, PA04, PCVO05, RBSS02, MN09]. Avec cette approche, l’interface utilisateur (ou client)
du SGBD est utilisée pour faire la médiation entre applications et bases de données. Ce faisant, les
protocoles de réplication peuvent être modifiés sans impacter le SGBD, ce qui garantit l’autono-
mie des SGBD. De plus, le client n’a plus besoin de connaître la localisation et/ou répartition des
données dont la connaissance est confiée à l’intergiciel. L’intergiciel garde le niveau de cohérence
de chaque réplique (la fraîcheur de chaque réplique) afin de pouvoir router toute transaction sur la
réplique satisfaisant ses exigences de fraîcheur. Par ailleurs si le SGBD est réparti, cette approche
permet une meilleure exploitation des ressources disponibles et donc un équilibrage de charge de
bonne qualité.

Sprint [CPW07] est un intergiciel offrant de hautes performances et une haute disponibilité
pour un SGBD en mémoire et répliqué. Sprint dissocie trois types de noeuds logique : i) Edge
Server (ES) qui joue le rôle d’interface entre le client et le reste du système ; ii) Data Server (DS)
qui stocke une base de données en mémoire et exécute les transactions sans accès au disque dur ;
iii) Durability Server (XS) qui assure la durabilité des transactions et la reprise après panne. Une
transaction est envoyée par un client à un serveur ES qui se charge de l’envoyer sur le ou les DSs qui
stockent les portions de données requises, ce qui garantit une transparence totale vis-à-vis du client.
Si la transaction est en lecture seule, elle est validée sans aucun problème par le serveur ES qui se
charge de son exécution. Par contre, quand il s’agit d’une transaction de modification, le serveur
ES coordonne la validation en contactant tous les serveurs DS qui ont participé à l’exécution de

47

Chapitre 3. Gestion des transactions dans les bases de données répliquées

la transaction. En effet, tout serveur DS qui est prêt à valider envoie par multicast son vote au
serveur ES, à tous les serveur DS participant à la transaction et à tous les serveurs XS pour assurer
la durabilité. Si tous les serveurs DS votent "commit", la transaction est validée autrement elle
est annulée. Pour garantir que les toutes transactions s’exécutent dans le même ordre sur tous les
serveurs, une communication par groupe d’ordre total (total order multicast) est utilisée. Si les
pannes ne sont pas fréquentes ou si les noeuds logiques se trouvent dans un même réseau, cette
approche garantit de bonne performances en termes de temps de réponse. Par contre en cas de
panne ou d’un environnement en grande échelle ces performances ne sont plus garanties à cause
des pannes fréquentes ou des latences du réseau faible (occasionne des suspicions de pannes) qui
entraîne l’annulation et la reprise de plusieurs transactions. De plus, l’autonomie des SGBD est
compromise car le protocole de validation nécessite la mise en oœuvre de protocole de terminaison
sur chaque participant afin de garantir l’ordre total.

FAS [RBSS02] est un intergiciel de réplication mono-maître et asynchrone. Il prend en compte
la fraîcheur des SGBD afin de garantir que les exigences de fraîcheur d’une requête soient sa-
tisfaites. Il transmet les transactions sur le SGBD maître, et les requêtes de lecture sur le nœud
le moins chargé. La synchronisation des répliques est différée périodiquement. FAS étant mono-
maître, cela ne permet pas de supporter une charge transactionnelle croissante. De plus si aucun
SGBD n’est suffisamment frais pour traiter une requête, celle-ci est mise en attente, ce qui peut
provoquer la surcharge d’un SGBD au moment où il devient disponible pour traiter les requêtes en
attente. Dans ce cas précis, la synchronisation anticipée des répliques aurait été bénéfique. Il faut
remarquer aussi que l’approche de FAS est quasi-similaire à celle de Ganymed [PA04] en dehors
du fait que cette dernière utilise un modèle de communication par groupe pour garantir le 1-copy-SI
décrit précédemment.

C-JDBC [CMZ05] est un intergiciel de réplication gérant un cluster de SGBD. Etant conçu
comme un pilote JDBC, il permet à l’utilisateur de traiter des transactions de manière transparente.
La stratégie de routage est simple et efficace : chaque requête de lecture seule est envoyée à un
SGBD différent à tour de rôle, chaque transaction est diffusée à tous les SGBD. La cohérence
des répliques n’est pas garantie car la première réplique ayant fini de traiter une transaction est
désignée pour servir de référence sans tenir compte des autres répliques. Ainsi, cette solution est
restreinte à un environnement stable.

Leg@net [GNPV07] est une solution de réplication multi-maîtres pour le routage de transac-
tions dans un cluster de bases de données. Leg@net relâche autant que possible la fraîcheur des
données, dans les limites acceptées par les requêtes. Cela réduit le surcoût de synchronisation
des répliques et permet ainsi d’allouer davantage de ressources au traitement des transactions.
Leg@net cible les applications transactionnelles dont l’autonomie doit être préservée. Toutefois,
cette solution manque de passage à l’échelle car l’intergiciel est centralisé.

Certes, le liste des travaux cités dans cette section n’est pas exhaustive mais elle reflète la quasi-
totalité des approches de gestion des transactions dans une base de données répliquée à travers un
intergiciel. La plupart des approches ne passent pas souvent à l’échelle pour plusieurs raisons parmi
lesquelles, nous pouvons citer :

– l’utilisation de communication par groupe pour synchroniser les répliques [PMJPKA05,
MN09] : cette technique nécessite un environnement stable comme les clusters ou les LAN ;

48

3.4. Discussion

– une configuration mono-maître ou une architecture centralisée qui ne supporte pas une charge
transactionnelle croissante et en même temps constitue une source de pannes.

– une cohérence très forte qui exige que toutes les répliques soient synchronisées (ou blo-
quées) pour le traitement d’une transaction de mise à jour. En plus, chaque transaction re-
quiert toutes les modifications des transactions conflictuelles qui la précèdent, ce qui em-
pêche l’exécution simultanée ou en parallèle de plusieurs transactions ;

Les applications comme celle du Web 2.0 requièrent une forte disponibilité et des performances
très importantes pour des raisons économiques. En effet ces applications sont entretenues grâce à
l’argent obtenu à partir des sponsors et des publicités qui se font rares dès que le système est trop
souvent indisponible. Ainsi pour satisfaire les besoins de telles applications il faut une gestion des
transactions efficaces et par conséquent des intergiciels décentralisés pour mieux absorber la charge
applicatives. Cette décentralisation permet à l’intergiciel d’être très disponible et d’assurer un accès
rapide et pas nécessairement cohérent aux données, tout en exploitant au mieux l’ensemble des
ressources.

3.4 Discussion
Nous avons étudié dans les trois sections précédentes la gestion des transactions dans une base

de données répliquées en privilégiant trois dimensions à savoir le passage à l’échelle, la disponi-
bilité et enfin la transparence. Nous avons présenté quelques solutions existantes et leurs limites
qui empêchent leur réutilisation dans un environnement à très grande échelle. Nous récapitulons à
présent dans cette section les choix que nous avons jugés judicieux pour repousser les limites des
solutions existantes afin de mieux prendre en compte les besoins des applications Web 2.0.

3.4.1 Modèle de réplication pour les bases de données à large échelle
Le choix d’un modèle de réplication exige la prise en compte de plusieurs paramètres ou di-

mensions qui dépendent essentiellement des applications visées. Comme décrit par le théorème
CAP (Consistency-Availability, Performance) [Bre00], il est impossible d’assurer à la fois la cohé-
rence, la disponibilité et la performance dans un système distribué. Par conséquent, pour satisfaire
les besoins des applications de type Web2.0 qui génèrent un workload avec lectures intensives,
nous avons préféré la disponibilité et la performance. Pour la simple raison que le relâchement
de la cohérence est souvent toléré par les applications que nous ciblons et permet d’avoir un bon
passage à l’échelle [FJB09, GL02], le modèle de réplication que nous voulons mettre en oeuvre
s’appuie sur les principes suivants :

– une configuration multi-maître qui donne la possibilité de répartir aussi bien les opérations
de lecture que les opérations d’écriture sur l’ensemble des répliques, ce qui permet une paral-
lélisation des traitements. En plus, cela permet d’éviter la surcharge de certaines ressources
au détriment d’autres, ce qui aboutit à un meilleur équilibrage des charges ;

– une réplication asynchrone pour éviter de synchroniser toutes les répliques lors des mises à
jour, mais aussi pour réduire le temps de réponse des transactions. Entre la validation d’une
transaction sur une réplique et la propagation de ses résultats sur les autres répliques, il peut

49

Chapitre 3. Gestion des transactions dans les bases de données répliquées

y avoir une divergence entre les copies. Cette divergence copies est tolérée (ou introduite
délibérément) pour améliorer les performances des opérations de lecture. Cependant, elle
doit être toujours contrôlée ou bornée en fonction du niveau de cohérence exigé par les
applications ;

– les utilisateurs des applications Web2.0 modifient en général une faible portion de leurs
propres données. Ainsi, une réplication partielle permettra d’avoir un grain d’accès aux don-
nées beaucoup plus fin et par conséquent, améliore le degré de concurrence.

– la propagation des mises à jour se fait exclusivement entre deux sites, celui qui envoie et celui
que reçoit. La plupart du temps, elle est initialisée pour rendre cohérente une réplique qui
doit traiter une nouvelle requête ou valider une transaction. Si la propagation est initialisée
pour valider ou non une transaction, les datasets (ensemble des données lues par la ou les
transactions à propager) sont envoyés. Autrement, la propagation par envoi du code des
mises à jour est utilisée pour éviter de surcharger le réseau. Nous supposons aussi qu’une
transaction ne contient pas de clauses SQL (e.g LIMIT, RANDOM, ...) qui ne reproduisent
pas le même résultat quelque soit la réplique sur laquelle elle est exécutée [EGA08]. En
d’autres termes, cette hypothèse permet de garantir que l’exécution d’une transaction sur
deux répliques identiques donne le même résultat. Par ailleurs quand il s’agit de valider une
transaction, l’approche PULL sera utilisée par la réplique qui veut valider une transaction.
Dans le cas contraire c’est l’approche PUSH qui est utilisé et en général sous le contrôle
d’un TM.

– la gestion de la réplication via un intergiciel permet de faire moins de modifications sur les
bases de données mais aussi de mieux contrôler les ressources disponibles.

3.4.2 Modèle de middleware pour les bases de données distribuées et répli-
quées

L’étude des middleware a permis de bien comprendre leurs caractéristiques mais aussi leurs
avantages. La fonction essentielle du middleware est d’assurer la médiation entre les parties d’une
application, ou entre applications elles même. Par conséquent, les considérations architecturales
tiennent une place centrale dans la conception du middleware [Kra09]. L’architecture couvre l’or-
ganisation, la structure d’ensemble, et les schémas de communication, aussi bien pour les appli-
cations que pour les composants du middleware. Dans le contexte d’un système de bases données
distribuées, le problème soulevé est soit la persistance (conservation à long terme et procédures
d’accès) soit la gestion des transactions (maintien de la cohérence pour l’accès concurrent aux
données en présence de défaillances éventuelles). Si la base de données est répliquée, le maintien
de la cohérence se traduit le plus souvent par la gestion de la convergence des répliques, dénom-
mée cohérence mutuelle. Ce faisant, une répartition de la base de données dans un environnement
à large échelle, caractérisé par un nombre important de noeuds (clients et serveurs de données) et
une volatilité avérée du système, requiert un middleware redondant par duplication des instances.
La première raison de ce choix est que la charge applicative interceptée peut être répartie sur les
différentes instances du middleware. La seconde raison découle du fait que les sources de conges-
tion sont moins fréquentes et le passage à l’échelle peut être donc obtenu plus facilement. Une

50

3.4. Discussion

dernière raison et non la moindre est que la duplication confère une disponibilité du middleware
ou une tolérance aux pannes beaucoup plus importante.

Il est à noter aussi que le modèle de communication utilisé pour l’interaction entre les compo-
sants et le middleware doit être le moins contraignant possible. De ce fait, un mode de communi-
cation asynchrone est beaucoup plus adapté car dans les systèmes distribués tels que les réseaux
P2P, le caractère hétérogène des ressources et les connexions/déconnexions fréquentes des noeuds
rendent impossible toute tentative de borner la transmission des messages.

Le chapitre prochain décrit en profondeur l’architecture que nous avons proposée pour le trai-
tement des transactions à large échelle.

51

Chapitre 3. Gestion des transactions dans les bases de données répliquées

52

Chapitre 4

Architecture d’un Système de Routage des
Transactions

Le traitement des transactions dans une base de données répartie est fortement lié au modèle
de réplication utilisé. Dans le chapitre précédent, nous avons argumenté notre choix d’utiliser un
modèle de réplication multi-maître asynchrone. Avec ce modèle, la base de donnée est répliquée
sur plusieurs nœuds et une transaction peut être exécutée sur chaque nœud, appelé nœud initial
pour cette transaction. Les mises à jour de la transaction sont envoyées vers les autres répliques
après validation. Le principal problème avec la réplication multi-maître asynchrone est d’assurer
la cohérence mutuelle des répliques même en présence de transactions concurrentes.

Nous proposons dans ce chapitre une architecture pour gérer les transactions exécutées dans
une base de données répliquée destinée aux applications Web 2.0. L’architecture doit être structu-
rée de telle sorte que la disponibilité, la transparence et le passage à l’échelle soient garantis. Notre
architecture peut être divisée en deux parties : une partie assurant le service de médiation entre les
différents composants du système (intergiciel) et une autre chargée de la gestion des métadonnées
qui sont les données nécessaires au fonctionnement du système en entier. Avant de décrire l’archi-
tecture de notre système nous présentons d’abord quelques définitions et concepts indispensable à
la compréhension de notre approche.

4.1 Modèle et concepts
Dans cette section, nous définissons les généralités et concepts sur les quelles sont définis notre

approche. Nous décrivons d’abord les concepts relatifs au modèle de réplication et de transactions.
Puis, nous présentons les principes généraux sur l’ordonnancement des transactions.

4.1.1 Modèle de transactions et de données
Nous considérons une base de données unique partiellement répliquée surm nœuds de données

ND1, ..., NDm. Les données sont partitionnées dans n relations R1, ..., Rn et une copie locale
de Ri sur un nœud NDj est notée par Ri

j et gérée par le SGBD local. Nous supposons que le

53

Chapitre 4. Architecture d’un Système de Routage des Transactions

partitionnement des données est fait de tel sorte qu’une transaction peut être exécutée entièrement
sur un seul nœud, les transactions réparties sont exclues de cette étude. Nous utilisons un modèle de
réplication asynchrone multi-maître. Chaque ND peut être mis à jour par une transaction entrante
et est appelé ensuite le nœud initial de cette transaction. Les autres ND sont mis à jour plus tard
par propagation de la transaction. Nous distinguons trois types de transactions :

Définition 1. Transaction de mise à jour
Une transaction de mise à jour est une séquence d’instructions lecture/écriture dont au moins une
d’entre elles modifie la base de données ;

Définition 2. Transaction de rafraîchissement
Une transaction de rafraîchissement est utilisée pour propager les transactions de mise à jour sur
les autres ND. En d’autres mots, elle ré-exécute une transaction de mise à jour ou applique les
modifications faites par cette dernière sur un ND autre que le ND initial.

Pour distinguer les transactions de rafraîchissement des transactions de mise à jour, on mémo-
rise dans le catalogue réparti, pour chaque ND, les transactions déjà routées sur ce ND ;

Définition 3. Requête
Une requête effectue une lecture sans mettre à jour de la base de données. Ainsi, il n’est pas
nécessaire de la propager.

Par ailleurs, chaque transaction (mise à jour, rafraîchissement, requête) lit un certain nombre
de relations. Nous dissocions les données supposées être modifiées par une transaction de celles
réellement modifiées.

Définition 4. Relations potentiellement accédées par une transaction
Nous définissons parRel(T), les relations qu’une transaction T planifie d’accéder durant son exé-
cution. Nous avons Rel(T) = {RelR(T), RelW (T)}, avec RelR(T) (resp. RelW (T)) les relations
que T a l’intention de lire (resp. modifier).

Notons que Rel(T) peut être obtenu en parsant le code.

Définition 5. DataSet
L’ensemble des tuples qu’une transaction T a réellement accédé durant son exécution est appelé
DataSet(T). Ainsi, nous avons DataSet(T) = {ReadSet(T),WriteSet(T)},
avec ReadSet(T) (resp. WriteSet(T)) l’ensemble des tuples que la transaction T a réellement
lu (resp. modifié).

Rel(T) est connu au moment où T est soumise pour routage et est obtenu par analyse de code
de la transaction.

Les requêtes peuvent accéder à des données obsolètes dont l’obsolescence est contrôlée par les
applications. Cette obsolescence introduite permet d’accroître le débit et le temps de réponse des
requêtes et elle peut être mesurée de différentes manières (i.e. mesure booléenne, mesure numé-
rique, mesure de version, mesure temporelle, etc) [LGV04, Pap05]. Dans cette thèse, nous mesu-
rons l’obsolescence en utilisant le nombre de transactions de mise à jour manquantes.

54

4.1. Modèle et concepts

Définition 6. Obsolescence
L’obsolescence de Ri

j est égale au nombre de transactions de mise à jour modifiant Ri sur un ND
quelconque mais non encore propagée sur le nœud NDj .

Le concept d’obsolescence est associé souvent au concept de fraîcheur. La fraîcheur d’une
réplique NDj correspond à l’opposé de son obsolescence. La fraîcheur est donc maximale (ou
parfaite) si l’obsolescence vaut zéro, autrement dit, NDj est totalement frais par rapport à Ri s’il a
reçu toutes les mises à jour faites sur Ri.

L’obsolescence tolérée d’une requête est donc, pour chaque relation lue par la requête, le
nombre de transactions qui ne sont pas encore exécutées sur le nœud traitant la requête. L’ob-
solescence tolérée reflète le niveau de fraîcheur requis par une requête pour s’exécuter sur un ND.
Pour des raisons de cohérence, les transactions de mise à jour ainsi que celles de rafraîchissement
doivent lire des données parfaitement fraîches : elles sont exécutées toujours sur des nœuds totale-
ment frais. Notons alors que nous garantissons la cohérence à terme qui peut être définie comme
suit :

Définition 7. Cohérence à terme
La cohérence à terme permet que les différentes répliques d’une base de données peuvent diver-
ger pendant une période mais convergent à terme vers un même état en l’absence de nouvelles
transactions entrantes.

Ainsi, une séquence de transactions de lectures les différentes répliques ne retourne pas néces-
sairement la version la plus à jour.

Nous calculons l’obsolescence de la copie d’une relation Ri
j en nous appuyant sur l’état global

du système stocké dans le catalogue réparti, qui donne des informations détaillées sur les transac-
tions courantes ou déjà exécutées.

Bien que nous utilisons le modèle de données relationnelle pour décrire notre approche, nous
mentionnons que notre solution est aussi applicable pour les autres modèles de données sur les-
quelles les opérations d’écriture ou de lecture sont faites à travers un programme.

4.1.2 Ordre de précédence des transactions

Nous nous plaçons dans un contexte de transactions plates, sans sous-transactions imbriquées,
et non distribuées. Une transaction peut être traitée en totalité sur un seul nœud. Soit T , une tran-
saction de mise à jour ou de lecture seule (requête), nous distinguons les états dans lesquels T peut
se trouver :

– ENTRANTE : T vient d’arriver dans le système mais n’a commencé son exécution sur aucun
nœud ND. Une date de début, debut(T) est affectée à T par le GT qui l’a reçu et on suppose
que chaque transaction arrive à une date différente. Chaque transaction a son identifiant com-
posé du numéro du client (NA) qui l’a envoyé et d’un numéro de séquence local maintenu
au niveau du client. Une transaction dans cet état est dite transaction entrante.

– COURANTE : T a commencé son exécution sur un ND. Ses effets éventuels ne sont pas
encore persistants. Toute transaction dans cet état est appelée transaction courante.

55

Chapitre 4. Architecture d’un Système de Routage des Transactions

– VALIDÉE : T est exécutée et validée au moins sur le nœud NDi. Ses effets sont visibles
sur NDi et peuvent l’être aussi sur les nœuds ND restants en fonction des exigences des
transactions entrantes. Autrement, si T ′ exige des données totalement fraîches, alors quelque
soit le ND, les effets de T seront visibles. La date à laquelle une T est validée est appelée
fin(T).

– TERMINÉE : T passe à l’état global si elle est propagée sur tous les ND du système. Ses
effets sont visibles sur n’importe quel nœud.

Une transaction validée ou terminée ne peut être défaite et ses effets persistent durablement.
Le processus de routage définit l’ordre dans lequel les transactions entrantes doivent être exé-

cutées sur les différentes répliques pour garder le système cohérent. Avec la réplication asynchrone
multi-maître, la cohérence mutuelle de la base de données peut être compromise par l’exécution
simultanée des transactions conflictuelles sur différents sites. Pour éviter ce problème, les transac-
tions de mise à jour sont exécutées sur les nœuds de la base dans un ordre compatible, produisant
ainsi des états cohérents de toutes les répliques de la base de données (cohérence à terme des
données). Les requêtes sont routées sur n’importe quel nœud, suffisamment frais vis-à-vis des
conditions requises par la requête. Ceci implique qu’une requête peut lire différents états de la
base de données en fonction du nœud sur lequel elle est exécutée. Néanmoins, les requêtes lisent
toujours des états cohérents (probablement obsolètes) car elles ne sont pas distribuées. Pour assurer
la cohérence globale, nous maintenons un graphe dans le catalogue, appelé graphe de sérialisation
global (GSG).

Définition 8. Graphe de sérialisation globale
Un GSG <T,→ > est un graphe au sens mathématique où un sommet est une transaction (T)
et un arc (→), une contrainte de précédence entre deux transactions. Il est orienté et sans circuit
et garde la trace des dépendances conflictuelles entre les transactions actives i.e. les transactions
courantes mais non encore validées et les transactions validées mais pas globales.

Le GSG est construit au départ en se basant sur la notion de conflit potentiel puis peut être
raffiné grâce aux conflits réels.

Définition 9. Conflit potentiel
Une transaction entrante Te est en conflit potentiel avec une transaction courante ou validée Tc si
elles manipulent une même relation et que l’une des transactions effectue au moins une écriture sur
cette relation, autrement dit, RelR(Te)∩RelW (Tc) 6= ∅∨RelW (Te)∩RelR(Tc) 6= ∅∨RelW (Te)∩
RelW (Tc) 6= ∅

Une contrainte de précédence est un ordre pré-établi sur les transactions conflictuelles et est
défini suivant l’arrivée des transactions.

Définition 10. Ordre de précédence
Soient deux transactions conflictuelles T et T ′, on dit que T précède T ′ si debut(T) < debut(T ′)
et nous notons T → T ′.

A partir des deux dernières définition, nous notons que le GSG est un graphe qui contient l’en-
semble des transactions conflictuelles ordonnées suivant leur date d’arrivée. En raison des relations

56

4.1. Modèle et concepts

de transitivité entre les contraintes de précédence, nous ne maintenons que la réduction transitive
du GSG : un arc de T1 à T2 n’est pas ajouté si T1 précède déjà T2 indirectement. La réduction
transitive étant unique du fait que le graphe est orienté et acyclique, alors garder la réduction tran-
sitive suffit pour garder un ordre unique de l’exécution des transactions. En outre, à cause de la
réplication, le GSG contient aussi les transactions déjà validées mais non encore propagées sur
l’ensemble des répliques. Ceci est nécessaire pour ordonner les transactions de rafraîchissement.
L’ordonnancement des transactions de rafraîchissement peut être basée sur la notion de conflit réel.

Définition 11. Conflit réel
Deux transactions T et T ′ sont en conflit réel si T a lu ou modifié ce que T ′ a modifié, autrement
dit, WriteSet(T) ∩ReadSet(T ′) 6= ∅ ∨WriteSet(T) ∩WriteSet(T ′) 6= ∅.
Corollairement, deux transactions T et T ′ en conflit potentiel mais non en conflit réel sont dites
transactions sans précédence et nous notons par T 6→ T ′. Autrement dit, T et T ′ peuvent être
exécutées dans n’importe quel ordre sur n’importe quelle réplique et le GSG est raffiné.

Notons que nous vérifions les conflits réels entre deux transactions que lorsqu’elles sont en
conflit potentiel. Les détails de la gestion du répertoire réparti et en particulier duGSG sont décrits
dans la section 5.2.

4.1.3 Structuration des métadonnées

Puisque les métadonnées contiennent plusieurs types d’informations, une structuration logique
des informations permet d’ accélérer les recherches au sein du catalogue.

Comme nous l’avons mentionné précédemment, notre base de données est fragmentée en plu-
sieurs relations. Toutes les métadonnées relatives à une relation Ri sont regroupées dans une struc-
ture appelée Meta(Ri). Cette structure contient les informations nécessaires à un GT pour récupérer
toutes les contraintes de précédence relatives à la relation Ri et l’état courant d’une réplique Ri

j .
Les informations que l’on retrouve dans cette structure sont :

– GSG(Ri), la partie du GSG relative à la relation Ri ;
– L’historique de toutes les transactions qui ont déjà modifié la relation Ri mais qui ne sont

pas encore propagées vers toutes les répliques. Celle-ci correspond à un sous ensemble du
GSG(Ri) réduit aux transactions déjà validées. L’historique, dénommée History(Ri) men-
tionne également sur quel site une transaction a été exécutée une première fois et est repré-
sentée sous forme de graphe où un sommet est un couple (Ti, DNj) et un arc représente une
contrainte de précédence. History(Ri) permet de restaurer l’état cohérent du système même
en cas de panne du nœud qui a reçu les dernières mises à jour.

– State(Ri
j), l’état local de chaque réplique Nj : c’est la liste des transactions qui ont accédé

à la relation Ri et qui ont déjà validé leur modification. Cette information est indispensable
pour mesurer l’obsolescence de chaque réplique et la séquence de transactions à lui envoyer
pour qu’elle soit totalement fraîche.

57

Chapitre 4. Architecture d’un Système de Routage des Transactions

4.2 Définition générale des composants de l’architecture
Cette section présente l’architecture du système de routage (appelé routeur par la suite). Le

système est constitué d’un ensemble de composants qui jouent des rôles spécifiques.
– Application : nous appelons application le composant générant la charge applicative. Les

applications émettent des demandes de transactions qui sont envoyées au gestionnaire de
transactions.

– Gestionnaire de transactions : C’est l’intergiciel transactionnel au cœur du système de rou-
tage. Il reçoit les demandes de transactions et les transmet à une base de données, de manière
optimale. Il ordonne les transactions pour conserver la cohérence des bases de données sous-
jacentes.

– Catalogue. Le catalogue contient toutes les informations nécessaires au routage des tran-
sactions. Il informe le gestionnaire de transaction sur l’état des différents composants du
système.

– Base de données : nous appelons base de données le composant représentant la base de
données. Le composant base de données reçoit et gère l’exécution des transactions que le
gestionnaire de transactions lui envoie, puis transmet le résultat à l’application ayant émis la
transaction.

La figure 4.1 décrit l’assemblage des 4 composants. Les deux composants gestionnaires de
transaction et catalogue forment l’intergiciel de routage. Les deux autres composants, application
et base de données, situés aux extrémités de l’architecture, agissent comme des relais vis-à-vis de
l’environnement extérieur.

FIGURE 4.1 – Architecture globale en couche

De plus, cette architecture modulaire présente l’avantage de faciliter l’évolution et la mainte-
nance du système. En effet, il est possible d’améliorer l’implémentation de chaque module indivi-
duellement, tout en conservant intacts les autres modules.

4.2.1 Impact des besoins applicatifs sur l’architecture
La conception d’une architecture modulaire se justifie pour mieux répondre aux principaux

besoins du routeur : préserver l’autonomie des applications, passer à l’échelle et être disponible.

58

4.2. Définition générale des composants de l’architecture

En effet, pour chaque composant, nous définissons son interface avec ses composants connexes.
Puis, l’étude détaillée de chaque composant permet de définir sa mise en œuvre dans un contexte
réparti.

Besoin de préserver l’autonomie des applications et des SGBD

Le routeur est conçu pour améliorer des applications existantes. Pour cela, le routeur doit pou-
voir s’insérer dans une application existante. Cela est possible car les applications visées sont déjà
conçues de façon modulaire avec deux couches bien distinctes : la couche au niveau du serveur
d’application gère le dialogue avec l’utilisateur, la couche sous-jacente contient les services de
gestion de données. Les deux couches communiquent à travers des interfaces standards (e.g. JDBC
ou REST), ce qui permet l’insertion du routeur entre ces deux couches. Par exemple, il est pos-
sible d’insérer le routeur dans une application qui utilise JDBC pour se connecter aux serveurs de
données. Dans ce cas, le routeur se comportera comme un pilote JDBC vis-à-vis de l’application
et comme un client JDBC vis-à-vis du serveur de données. Donc, du point de vue de l’applica-
tion, le routeur se substitue au pilote d’accès à la base, de manière transparente, sans impliquer la
modification de l’application existante ni celle du SGBD.

Besoin de passage à l’échelle et de disponibilité

Le routeur est conçu pour fonctionner à grande échelle en s’appuyant sur une infrastructure dis-
tribuée constituée d’un grand nombre de ressources (ou nœuds) de traitement. Le routeur doit aussi
être hautement disponible. Ces deux exigences nécessitent de répartir et répliquer les composants
de l’architecture. Ainsi, chaque composant est mis en œuvre par un ensemble (potentiellement
grand) de nœuds. Chaque nœud étant un processus, on peut avoir plusieurs nœud sur une même
machine physique et les noeuds doivent se coordonner entre eux, si nécessaire. Cependant, tous
les composants ne demandent pas le même niveau de coordination. C’est pourquoi, nous distin-
guons plusieurs organisations des nœuds, plus ou moins structurées, selon le composant à mettre
en œuvre (voir la figure 4.2) :

– Application : indépendance totale entre les différentes instances du composant application.
Il n’y a pas d’échange d’informations entre les applications, donc pas de liens entre applica-
tions.

– Gestion des transactions : structuration forte des nœuds représentant le routeur, organisa-
tion en anneau car leur nombre est relativement faible, et il est nécessaire d’échanger très
fréquemment des informations entre les différentes instances du composant de gestion de
transactions puisqu’elles peuvent gérer des transactions touchant les mêmes données.

– Catalogue : structuration forte en anneau. Les informations contenues dans le catalogue sont
répliquées pour éviter leur perte. De plus, les informations sont réparties sur plusieurs nœuds
pour paralléliser les accès disjoints, raison pour laquelle nous l’appelons aussi catalogue
réparti.

– Base de données : structuration faible car leur nombre est très élevé et il n’est pas nécessaire
pour une instance de base de données de connaître toutes les autres bases de données (c’est

59

Chapitre 4. Architecture d’un Système de Routage des Transactions

le rôle du catalogue et pas celui des bases de données). Toutefois, certains échanges d’infor-
mations directs entre les bases de données sont nécessaires pour valider des transactions.

Pour des soucis de présentation, nous utilisons par la suite le terme nœud applicatif (NA) pour
désigner une instance du composant "Application", gestionnaire de transaction (GT) pour une ins-
tance du "Gestionnaire de transaction", nœud catalogue (NC) pour une instance du "Catalogue" et
enfin nœud de données (ND) pour une instance du composant "Base de données".

FIGURE 4.2 – Architecture détaillée globale du système

4.2.2 Modèle de communication
Pour garantir la communication des différents nœuds logiques qui composent notre système

(GT, NC, NA et ND), nous nous appuyons sur les primitives de communication des systèmes P2P.
Sur la figure 4.3, la couche haute concentre les différents noeuds de notre système et la couche
basse un réseau logique de P2P (ou d’un système de grille) construit sur des machines physique
connectées par Internet ou un réseau WAN. La couche basse fournit des primitives de connexions
et déconnexions au système et des services tels que la localisation d’un nœud, le support d’identi-
fication unique des nœuds et de la communication asynchrone entre nœuds. Un nœud logique de
la couche basse peut regrouper plusieurs nœuds logiques de la couche haute. Ce faisant, un noeud
GT peut communiquer avec un noeud ND en passant par le réseau logique P2P sous-jacent. Ce
choix d’implémentation nous épargne la tâche de développer des protocoles de communication via
des sockets ou autres. Il nous permet aussi de pouvoir intégrer notre solution sur n’importe quel
système offrant des services de communication et de localisation des ressources.

L’ensemble des nœuds de notre système communiquent par des messages. Chaque message
envoyé, doit être acquitté par le destinataire. Notre modèle de communication est fortement lié au

60

4.2. Définition générale des composants de l’architecture

FIGURE 4.3 – Communication via un système P2P ou grille

protocole de routage décrit dans le chapitre prochain et qui permet à un ND d’envoyer directement
les résultats au noeuds NA. En fait, pour exécuter une transaction T , un NA contacte un GT qui
à son tour va contacter un ND. Le ND envoie directement les résultats aux NA et un message de
notification au GT. Ce message de notification permet au GT de marquer T comme exécutée au
moins sur un nœud du système. Pour faciliter la collaboration des nœuds, des informations sont

FIGURE 4.4 – Format des messages

ajoutées à chaque message envoyé. Les messages envoyés ont le format décrit dans la figure 4.4
et sont composés de quatre champs. Le premier champ définit le type de message, le deuxième
contient l’identifiant de l’émetteur du message, le troisième garde le contenu du message alors que
le quatrième champ est optionnel et son contenu est fortement tributaire du type du message. Les
types de messages sont au nombre de dix dont les plus utilisés sont : les demandes de traitement
de transactions (entre NA, GT et ND), les messages de notification de fin d’exécution (ND et GT),
les messages d’acquittement, les messages véhiculant les résultats et les messages de détection de
pannes. Le type d’un message est appelé aussi tag. Pour envoyer un message à un nœud (respecti-
vement recevoir un message d’un nœud), un nœud utilise la primitive sendMsg() (respectivement
getMsg()).

4.2.3 Architecture détaillée

Cette section présente l’architecture interne de chaque composant. Elle définit aussi la coordi-
nation de plusieurs instances d’un même composant.

61

Chapitre 4. Architecture d’un Système de Routage des Transactions

Nœud Applicatif (NA)

Interfaces. Chaque NA est constitué de l’instance de l’application et de quelques modules ajou-
tés pour des besoins spécifiques du routeur (voir figure 4.5). Ces modules additionnels jouent alors
le rôle d’interface entre l’application et le gestionnaire de transaction et nous les appelons inter-
face cliente. Les transactions envoyées par l’application sont encapsulées par l’interface cliente
dans des primitives sous forme de messages et sont envoyées au GT. En effet l’application envoie
sa transaction via une interface standard JDBC et n’a pas connaissance de l’existence des GT. La
transaction est interceptée par l’interface cliente qui l’inclut dans un message avec des informa-
tions destinées aux GT. L’interface cliente qui a une connaissance de l’adresse de certains GT en
choisit un et l’envoie le message pour traiter la transaction qui y est incluse. A titre illustratif, voici
un exemple de requête encapsulée dans un message à destination d’un GT.

[msgToRoute : 123 : Update table where attribut = val ; : <123,15>]

Le premier champ contient le tag "MsgToRoute" qui signifie que c’est une transaction à traiter.
Le second champ permet d’identifier l’identifiant de l’émetteur du message (123). Le champs
"Contenu" contient le code de la transaction à exécuter alors que le champs "Options" stocke
l’identifiant de la transaction (<123,15>). De même les réponses aux transactions sont décapsulées
par l’interface cliente avant de transmettre le résultat à l’application.

FIGURE 4.5 – Structure interne d’un NA

Rôle des composants internes. Un NA associe à chaque transaction un identifiant global unique
(GId) qui est nécessaire pour éviter toute ambigüité durant son exécution. Le GId d’une transaction
est la paire <Id, SeqN>, où Id représente l’identifiant du client (adresse IP) et SeqN le numéro de
séquence local de la transaction. Il correspond à <123,15> pour l’exemple précédent. Le GId est
généré par un module spécial appelé Module d’estampille qui doit assurer son unicité et sa mono-
tonie. Les transactions sont envoyées par le module Ordonnanceur. Ce dernier a une connaissance

62

4.2. Définition générale des composants de l’architecture

partielle des différents GT existants et les choisit suivant l’algorithme du tourniquet. Toute transac-
tion T envoyée est journalisée dans une structure appelée Mémoire locale (ML) au niveau du NA
jusqu’à la réception des résultats de son exécution. Le ML stocke aussi tous les TMs connus par le
nœud applicatif tout en pointant à chaque instant le dernier TM qui a été contacté. Dés réception
des résultats de l’exécution d’une transaction, le module Planificateur efface du ML l’entrée cor-
respondante à T . En cas de non réception des résultats de T au bout d’un délai fixé, le Planificateur
charge le module Ordonnanceur de renvoyer la transaction avec le même GId. L’objectif de ré-
émettre une transaction avec un même GId est d’une part, d’éviter qu’elle soit exécutée plusieurs
fois et d’autre part, qu’elle soit prise en compte si elle ne l’est pas encore. Les détails de cette ap-
proche seront donnés dans les prochains chapitres. Les nœuds NA n’ont aucune connaissance de la
localisation et encore moins de l’état des nœuds de la couche de données, ce qui permet d’assurer
une transparence totale de la distribution des données.

Pour se connecter au système, un nouveau NA a besoin de connaître un GT qui lui renvoie par
la suite les identifiants de ses voisins.

Gestionnaire de transaction(GT)

Interfaces. Les nœuds gestionnaire de transactions (GT) transmettent les transactions pour exé-
cution sur les nœuds de données (ND) tout en préservant la cohérence globale. Les GT utilisent
les métadonnées stockées sur le catalogue réparti pour choisir le nœud vers lequel envoyer une
transaction. C’est pourquoi, le GT a deux interfaces : une pour accéder au catalogue et une autre
pour dialoguer avec les nœuds de données. L’interface utilisée pour communiquer avec les ND est
similaire à celle utilisée pour interagir avec un NA. Le message ci-après correspond au message
envoyé par un GT pour demander l’exécution d’une transaction sur un ND.

[MsgToPerform : 005 : Update table where attribut = val ; : <123,15> ; Ordre]

Le champs "Options", contient cette fois des informations pour garder la cohérence : Ordre
contient les transactions qui doivent précéder la transaction entrante identifiée par <123 ,15> (voir
section 5.1). L’interface utilisée pour accéder aux métadonnées utilise des primitives offertes par
des systèmes tiers qui sont utilisés pour stocker les métadonnées (voir section 4.3).

Rôle des composants interne. Les GT sont organisés sous forme d’anneau logique [LAF99].
Cette structuration a pour but de faciliter leur collaboration et leur communication afin de maintenir
les performances du système (disponibilité, cohérence, ...). Pour ce faire, chaque GT est relié à
k prédécesseurs et k successeurs. L’ensemble des successeurs de GTi est obtenu par la formule
Suc(GTi) = {GT((i+j) mod n), 1 ≤ j ≤ k}, avec n le nombre total de GT. Chaque GT est composé
de quatre modules (voir figure 4.6) :

– Le Module de routage (MR) est chargé de réceptionner les transactions provenant des NA
et de choisir un nœud ND pour l’exécution de celle-ci. Le choix du nœud qui traitera la
transaction se fait suivant des algorithmes que nous présenterons dans le prochain chapitre.
La plupart de ses algorithmes sont basés sur un modèle de coût qui permet de choisir un

63

Chapitre 4. Architecture d’un Système de Routage des Transactions

FIGURE 4.6 – Structure interne d’un GT

nœud parmi plusieurs candidats potentiels. Ainsi lors du processus de routage, le MR fait
appel à la fonction de coût, qui permet de retrouver le nœud optimal.

– Le Module de synchronisation (MS) est le module qui permet la convergence des copies vers
un même état. Concrètement, il initialise la propagation des modifications faites sur un nœud
ND vers d’autres nœuds ND. Cette propagation se fait soit à la demande d’un GT ou d’un
ND, soit périodiquement. Pour déterminer les mises à jour à propager, certaines informations
stockées dans le catalogue sont utilisées à savoir la dernière transaction exécutée sur un
nœud, la transaction la plus récente, etc.

– Le Module de détection des pannes (MDP) permet de prendre en compte la volatilité des
ressources du système, particulièrement les nœuds ND et GT. En effet, il est responsable de
la détection des pannes et de leur notification auprès des GT pour les pannes de nœuds ND.
Quand un nœud GT tombe en panne, ces prédécesseurs en seront informés pour maintenir
l’anneau à jour. Chaque nœud ND en panne est inscrit dans une file appelée file des nœuds
en panne (FNP). Cette file est stockée sur le catalogue et est utilisée lors des processus de
routage pour éviter qu’un nœud en panne soit choisi par un GT. Ceci augmente la chance
d’envoyer une transaction sur un nœud ND non défaillant et donc les chances d’obtenir une
réponse rapidement.

– Le Gestionnaire des pannes (GP) est chargé de détecter le retour de tout nœud précédemment
déclaré comme étant en panne par le MDP. S’il s’agit d’un ND, il l’enlève de la file (FNP)
et dans le cas d’un GT, il initialise la réorganisation de l’anneau.

Les GT sont sans état et toutes les informations dont ils ont besoin sont toujours stockées dans
le catalogue réparti. Ainsi, un GT défaillant peut être remplacé par n’importe quel autre GT sans
perdre des informations. Un GT a besoin de connaître au moins un autre GT pour s’insérer dans
l’anneau et recevoir les informations nécessaire à l’accès au catalogue.

64

4.2. Définition générale des composants de l’architecture

Nœud de données (ND)

Interfaces. Les nœuds ND utilisent un système de gestion de base de données (SGBD) local
pour stocker les données et exécuter les transactions envoyées par les GT. Après l’exécution d’une
transaction, les résultats sont directement envoyés au NA à l’origine de la transaction, sans repasser
par les GT. Ce mécanisme permet de s’éloigner du fonctionnement Client/Serveur. Par conséquent,
le ND a une interface pour communiquer avec le GT et le ND et une autre interface pour commu-
niquer avec le SGBD local. La première interface est identique à celle utilisée par le GT pour
communiquer avec le ND et consiste donc à un message encapsulant des informations de routage.
Un exemple d’un message envoyé via cette interface est :

[MsgToNotify : 025 : Positive EOT : <123,15>]

Le champ "Options" contient le GId de la transaction que le ND vient d’exécuter. Le champs
"Contenu" indique l’état de l’exécution de la transaction. On rappelle que la fin d’une transaction
(EOT) peut être positive si l’exécution a réussi et négative dans le cas contraire.

Par contre pour communiquer avec le SGBD local, le ND utilise l’interface standard JDBC
pour envoyer la transaction et recevoir les résultats.

FIGURE 4.7 – Structure d’un ND

Rôle des composants internes. Des informations de routage (Identifiant émetteur, GId, ...) sont
ajoutées à chaque transaction dans l’optique de garder une traces des nœuds qui ont participé à
l’exécution de la transaction. Pour dissocier le code de la transaction à exécuter des informations de
routage, un nœud ND utilise un module dénommé Filtre. Ainsi, les instructions de la transaction à
traiter sont transmises au SGBD local via un pilote JDBC par le Filtre et les informations de routage
sont gardées jusqu’à la fin de l’exécution pour informer les GT de la bonne terminaison de celle-ci
mais aussi pour renvoyer les résultats directement au NA à l’origine de la transaction. Par ailleurs,
nous mentionnons qu’avec les systèmes à large échelle, que deux messages envoyés avec un ordre

65

Chapitre 4. Architecture d’un Système de Routage des Transactions

peuvent être reçus dans un ordre différent et par conséquent, engendrer quelques problèmes de
cohérence. Pour prendre en compte ce genre de problème, nous avons un module Ordonnanceur
qui est chargé de transmettre la transaction au SGBD tout en garantissant que l’ordre de précédence
soit respecté (les détails de cette garantie seront donnés dans le chapitre suivant). Ce module permet
également à un nœud ND de ne pas exécuter une même transaction deux fois de suite pendant une
période supérieure à la période de synchronisation totale des répliques. Les informations de routage
collectées par le Filtre sont stockées dans une zone tampon sur le ND local. Enfin, un dernier
module Planificateur est chargé de l’envoi des résultats aux clients (NA) et les notifications de fin
de traitement des transactions aux GT.

Contrairement aux nœuds GT, un nœud ND ne connaît pas les autres NDs même si ces derniers
stockent la même copie que lui. Toutefois, si un nœud ND a besoin de collaborer avec un autre ND
pour l’exécution d’une transaction T , les informations nécessaires pour cela (identifiant, et adresse
IP) sont fournies lors du routage de T . Cette absence de connaissance globale du système permet
à un ND de ne pas avoir besoin de faire des mises à jour lors des connexions ou déconnexions
d’autres NDs.

4.3 Description de la structure des métadonnées

Dans cette section nous présentons la structure de métadonnées. Nous décrivons d’abord le
contenu des métadonnées avant de détailler leur implémentation.

4.3.1 Description et structure des métadonnées

Cette partie décrit les informations qui sont stockées dans le catalogue réparti et comment elles
sont structurées.

Besoin de garder des informations multiples

Les métadonnées sont les informations relatives à la distribution des données et des transac-
tions exécutées, autrement dit, les métadonnées contiennent les informations sur les ND. Elles sont
stockées dans le catalogue réparti à travers des nœuds appelés nœuds catalogue (NC). L’objectif de
garder des métadonnées est de faciliter la recherche des ressources du système et particulièrement
l’état des bases de données afin de router efficacement une transaction. Plus les informations utili-
sées pour décrire les ressources du systèmes sont nombreuses plus la recherche d’une ressource sa-
tisfaisant un certain nombre de critère est rapide, précise et fructueuse. Ainsi, pour chaque relation
Ri de la base de données, nous gardons plusieurs informations : (1) les identifiants de l’ensemble
des ND qui stockent une copie de Ri ; (2) pour chaque NDj stockant Ri, nous gardons l’état cou-
rant de la base i.e. la liste des transactions courantes et/ou déjà exécutées sur NDj ; (3) pour chaque
ND, nous gardons son statut i.e. s’il est connecté ou déconnecté ; etc. Nous mentionnons que nous
gardons dans le catalogue toutes les transactions en cours et celles qui sont déjà validées mais non
encore propagées sur toutes les répliques. Le choix de garder qu’une partie des transactions déjà

66

4.3. Description de la structure des métadonnées

exécutée a pour objectif de minimiser le volume des métadonnées. En effet un volume de méta-
données très important peut entrainer des latences lors des accès . En outre, les transactions déjà
exécutées sur un quelconque ND sont propagées périodiquement sur l’ensemble des ND distants
et sont immédiatement éffacées du catalogue. Le catalogue réparti stocke aussi, pour chaque tran-
saction T , le temps estimé pour exécuter T , qui est une moyenne variable obtenue par l’exécution
des précédentes exécutions de T . Il est initialisé par une valeur par défaut en exécutant T sur un
nœud non chargé. Cette mesure est indispensable pour effectuer le routage (voir chapitre 5).

Besoin de fragmenter le catalogue

Comme nous l’avions mentionné ci-avant, les GT ont besoin des métadonnées pour assurer le
traitement des transactions envoyées par les noeuds NA et contrôler la cohérence globale. De ce
fait, le catalogue devient indispensable et doit être disponible d’autant plus que les GT peuvent
simultanément solliciter l’accès aux métadonnées.

Pour garantir la disponibilité des métadonnées et leur utilisation simultanée par plusieurs GT,
les métadonnées sont fragmentées et répliquées sur plusieurs sites. La fragmentation augmente les
accès disjoints et favorise ainsi les accès parallèles, ce qui améliorer les performances du système,
particulièrement le débit du routage. La fragmentation est faite de telle sorte que chaque fragment
ne contient que les métadonnées relatives à une relation Ri (Meta(Ri). Ceci facilite la recherche
par nom de relation et fournit des accès indépendants de chaque GSG(Ri). Pour trouver le graphe
global (GSG(T)) relatif à la transaction T , il faut récupérer les GSG(Ri) tel que Ri ∈ Rel(T) et
donc GSG(T) =

⋃
GSG(Ri)|Ri ∈ Rel(T).

Cependant, la réplication peut entraîner quelques problèmes dans la gestion des métadonnées,
notamment leur cohérence. Ainsi, il devient important de gérer les accès concurrents au catalogue
de manière efficace afin de garantir le cohérence et de réduire la latence (cf. section 5.2).

4.3.2 Implémentation du catalogue
Pour implémenter les nœuds NC, nous avons utilisé des systèmes tiers qui fournissent des

services de gestion et de stockage de données dans un environnement à grande échelle. En premier
lieu, nous utilisons JuxMem [ABJ05] qui fournit un service transparent et cohérent de partage de
données sur une grille informatique. En second lieu, nous utilisons une DHT pour un meilleur
passage à l’échelle et une disponibilité plus importante du catalogue.

Architecture du catalogue avec un système à mémoire partagée : JuxMem

JuxMem fournit un service transparent et cohérent de partage de données sur une grille in-
formatique. Il permet le partage d’un ensemble de blocs de données dans un système à mémoire
partagé. Ainsi, il offre des primitives d’écriture et de lecture de données stockées sur ces blocs tout
en garantissant leur cohérence et leur disponibilité. Par conséquent, pour stocker les informations
du catalogue, le problème consiste à travers JuxMem de demander des blocs de mémoire de blocs
nécessaire sans pour autant se soucier des endroits où le stockage physique se fera proprement fait.
Cependant, comme les blocs de JuxMem sont de taille limitée, il faut éviter que les informations

67

Chapitre 4. Architecture d’un Système de Routage des Transactions

d’un fragment de métadonnées se trouvent dans deux blocs, qui peuvent être éloignés et donc ra-
lentir l’accès. C’est une motivation de plus à notre choix de ne pas garder dans le catalogue les
transactions déjà propagées afin de réduire la taille des métadonnées.

Interfaces. JuxMem offre à travers une interface plusieurs primitives pour manipuler les données
parmi lesquelles nous pouvons citer :

– alloc (size, attributes), une primitive qui permet d’obtenir un nouveau bloc d’une taille don-
née (size) avec un degré de redondance et un protocole de contrôle de cohérence mutuelle
spécifiés par le paramètre attributes.

– put (id, value) permet de modifier la valeur d’une donnée d’un bloc identifié par id.
– get(id) permet de récupérer la valeur du bloc identifié par id.
– lock(id) et unlock(id) respectivement pour verrouiller et déverrouiller le bloc d’identifiant id.

FIGURE 4.8 – Méthodes d’accès au catalogue avec JuxMem

Pour manipuler les métadonnées, les nœuds GT se comportent comme des clients dans l’ar-
chitecture de JuxMem (voir figure 4.8). Par conséquent, un GT demande à JuxMem un nouveau
bloc lors de la création d’un fragment de métadonnées, puis utilise la primitive put (id, value) pour
insérer la structure Meta(R). Pour lire le contenu du Meta(R), il utilise la primitive get(id).

Accès concurrents avec JuxMem. La lecture et la modification des blocs avec Juxmem se fait
via l’utilisation de verrous. Pour assurer la cohérence lors des routages, nous avons utilisé les pri-
mitives de verrous de JuxMem pour reproduire le schéma classique de verrouillage à deux phases
(2PL). En d’autres termes, un GT garde un verrou sur le bloc de données requis durant tout le
processus de routage. Ceci ne dégrade pas les performances du système, puisque : (1) le processus
de routage est très rapide comparé à l’exécution de la transaction et des opérations de rafraîchis-
sement, et (2) le catalogue est découpé de tel sorte qu’un seul bloc est souvent sollicité par une
transaction.

68

4.3. Description de la structure des métadonnées

JuxMem permet d’obtenir de bonnes performances si le nombre de GT concurrents est faible.
L’utilisation des verrous entraîne la dégradation des performances si le nombre de GT concur-
rents est important puisqu’il faut attendre toujours le relâchement d’un verrou pour pouvoir traiter
(router) une transaction. Dans un environnement à volatilité très importante la panne d’un noeud
cause de sérieux problème à l’utilisation des verrous puisqu’un nœud détenant un verrou peut tom-
ber à tout moment en panne. En outre, JuxMem cache les détails de stockage et de réplication
des données. Ainsi, il devient impossible de modifier le protocole de réplication pour des besoins
spécifiques de gestion du catalogue réparti.

Architecture du catalogue avec une DHT

Pour garantir que le catalogue réparti soit plus disponible et que son utilisation simultanée par
plusieurs GT ne constitue pas une source de congestion, nous avons utilisé une DHT qui permet
d’avoir des services d’indexation passant à l’échelle. La DHT distribue et réplique les métadonnées
sur plusieurs noeuds NC pour assurer la disponibilité. Dans la suite de cette section, nous décrivons
comment nos métadonnées sont intégrés dans une DHT.

Interfaces. Pour manipuler les métadonnées dans la DHT, nous avons besoin d’opérations de
base pour les insérer, les retrouver et les modifier. Pour ce faire et compte tenu de notre contexte,
nous avons d’une part les primitives natives offertes par la plupart des implémentations des DHT
et d’autre part des primitives additionnelles développées pour nos propres besoins (cf. figure 4.9).

FIGURE 4.9 – Méthodes d’accès au catalogue avec DHT

Méthodes d’accès avec les primitives natives des DHT. En général, une DHT offre deux pri-
mitives d’opérations très usuelles : put(k, v) pour insérer une valeur v associée à une clé k, et get(k)

69

Chapitre 4. Architecture d’un Système de Routage des Transactions

pour récupérer la valeur v associée à k. Dans notre cas, k est nom d’une relation R et v est la
structure Meta(R). En outre, pour tolérer la panne ou la déconnexion des noeuds, la DHT réplique
chaque couple (k, v) sur plusieurs nœuds. Une opération put(k, v) crée n répliques (k, vi)0 < i < n.
La valeur de n est initialisée au moment de l’insertion de la valeur et en fonction du niveau de dis-
ponibilité sollicité. En plus toute réplique peut être utilisée par la DHT sans distinction. La seule
chose à assurer est qu’une opération get retourne toujours une des copies de la valeur associée à
la clé utilisée. Ainsi, deux opérations get concurrentes peuvent trouver des répliques différentes
gérées par deux nœuds distincts. La DHT ne prend pas en compte la détection d’opérations get
concurrentes puisque les DHT sont conçues de tel sorte que les données qui y sont stockées ne
soient accessibles qu’en lecture seule. C’est la raison pour laquelle il n’y a que deux situations
dans lesquelles, les primitives natives des DHT peuvent être utilisées. Premièrement, quand une
GT route une transaction de lecture seule, il utilise la primitive get(R) pour obtenir la structure
Meta(R). Le GT ne modifie pas Meta(R), il le traverse uniquement dans l’objectif de calculer la
séquence de rafraîchissement. Deuxièmement, quand une structure Meta(R) vient d’être créée, on
utilise la primitive put pour l’insérer une première fois dans le catalogue réparti. Tout autre accès
nécessite les primitives personnalisées ci dessous.

Personnalisation des méthodes d’accès d’une DHT Il existe deux cas dans lesquels nous avons
besoin de primitives autre que celles proposées par une DHT et correspondent à des modifications
du contenu du catalogue. En effet, quand un GT route une transaction, il lit le graphe de précédence
avec l’intention de le modifier (get_for_update), ainsi il a besoin d’être tenu informé des autres
accès concurrents pour ne pas faire diverger les copies des métadonnées. A la fin de l’exécution
d’une nouvelle transaction, le GT a besoin de marquer sur le catalogue que la transaction a été bien
exécutée et pour ce faire il modifie le graphe de précédence et l’état du nœud sur la quelle la tran-
saction est validée. Cette dernière opération est appelée metadata_update. L’implémentation des
opérations metadata_update et get_for_update est basée simplement sur les primitives d’accès des
DHT. De manière plus précis, nous modifions légèrement le protocole de réplication d’une DHT
de tel sorte que tous les noeuds stockant une copie d’une même portion des métadonnées ne jouent
pas le même rôle. Les noeuds qui stockent une copie du couple (k, v) sont appelés successeurs de
la clé k. Ainsi, le premier successeur (nœud dont l’identifiant est le plus proche de la clé k) est
appelé nœud NC maître et est utilisé pour le routage des transactions de mises à jour. Les autres
successeurs sont appelés secondaires et sont utilisés pour le routage des transactions de lecture et
donc sont accessibles avec les primitives d’opérations natives de la DHT. Le NC maître est utilisé
pour mettre à jour les métadonnées et est donc responsable de la synchronisation avec les autres
successeurs.

Accès concurrent avec une DHT. Pour gérer l’accès concurrent au catalogue lors du routage,
nous ajoutons une entrée dans le catalogue appelée Last(R) . Last(R) est un pointeur sur le dernier
GT qui a accédé à la structure Meta(R). Ceci permet d’ordonner les écritures des GT accédant
simultanément la structure et donc de préserver la cohérence. Le choix de garder le dernier GT à
accéder à la structure Meta(R) est guidé par notre principe de conception qui consiste à ne jamais
utiliser de verrous durant l’accès aux métadonnées. Nous argumentons cela par le fait que les

70

4.4. Conclusion

mécanismes de verrous ne passent jamais à l’échelle notamment parce qu’un noeud détenant un
verrou peut quitter le système et donc bloquer tous les autres nœuds qui souhaitent accéder aux
même métadonnées. Cependant, nous avons besoin de contrôler l’accès simultané de plusieurs GT
afin d’éviter des incohérences au niveau du graphe de précédence. En bref, Last(R) permet aux
GT de reconstruire le graphe de précédence complet de manière cohérent. Nous donnerons plus de
détails sur la gestion de la cohérence des métadonnées dans la section 5.2

4.4 Conclusion
Dans ce chapitre nous avons présenté, l’architecture de notre solution en spécifiant ses diffé-

rents composants, leur rôle et leur modèle de communication. Le choix d’une architecture hybride
à mi-chemin entre les systèmes P2P structurés et ceux non structurés nous permet de tirer profit des
avantages des uns et des autres. En fait, la structuration des noeuds GT autour d’un anneau logique
permet de faciliter leur collaboration pour assurer le traitement cohérent des transactions alors que
la structuration faible des nœuds ND leur confère une grande autonomie. Notre intergiciel redon-
dant permet de faire face à la volatilité d’un environnement à large échelle puisqu’à chaque fois
qu’un nœud GT ou ND tombe en panne, nous utilisons un autre nœud disponible pour continuer le
traitement ou récupérer les données. L’utilisation d’un catalogue réparti facilite l’exploitation des
ressources disponibles et un contrôle global de l’état du système. Pour rendre disponible les infor-
mations stockées à l’intérieur du catalogue, nous avons utilisé JuxMem, puis une DHT qui sont
des systèmes de gestion de données à large échelle. Pour exploiter avec efficacité, les ressources
du systèmes (équilibrer les charges, identifier rapidement le nœud optimal, etc.), nous collectons
plusieurs informations dans le catalogue comme métadonnées et nous les avons structurés logique-
ment pour que leur manipulation (lecture et modification) soit simple en se basant sur les interfaces
offertes par JuxMem ou par la DHT.

Dans le prochain chapitre, nous décrivons comment les différents composants de notre archi-
tecture interagissent pour garantir un traitement de transaction adapté à large échelle et tolérant
aux pannes.

71

Chapitre 4. Architecture d’un Système de Routage des Transactions

72

Chapitre 5

Routage des transactions

Nous considérons un environnement constitué d’une base de données répartie à très grande
échelle, et dont les fragments sont répliqués sur plusieurs nœuds de données. Dans un tel envi-
ronnement, le routage d’une transaction consiste tout d’abord à localiser les répliques contenant
les données à manipuler. Ensuite, il s’agit de choisir, parmi les répliques candidates, celle qui sera
accédée. Le choix de la réplique vise un objectif de performance : la réplique minimisant le temps
de réponse de la transaction, est choisie. Plus précisément, le choix de la réplique s’appuie sur
une fonction de coût qui estime la durée de traitement d’une transaction sur un nœud de données,
en tenant compte des pré-traitements nécessaires au maintien de la cohérence des données. Le
coût d’une transaction est l’estimation de son temps de réponse, en fonction de la charge du nœud
et de la latence des communications entre les différents nœuds impliqués dans le routage de la
transaction.

Dans ce chapitre, nous détaillons les deux principales tâches du routage :

1. Répertorier les répliques candidates et leur état. Nous décrivons l’accès au catalogue ré-
parti et la gestion des métadonnées qu’il contient. Les solutions proposées garantissent la
cohérence des métadonnées. Deux variantes sont décrites et leurs avantages respectifs sont
présentés.

2. Gérer le traitement d’une transaction sur une réplique. Les solutions proposées ordonnent
les transactions de telle sorte que les ordres, sur chaque réplique, soient tous compatibles
entre eux, i.e. , qu’ils soient tous conformes au graphe de sérialisation définit dans le cha-
pitre précédent. Il existe plusieurs façons d’exécuter une transaction sans compromettre la
cohérence des données. Nous distinguons deux algorithmes d’exécution des transactions. Le
premier algorithme appelé routage pessimiste consiste à exécuter au préalable l’ensemble
des transactions pouvant être en conflit avec la transaction demandée, puis à exécuter ensuite
la transaction proprement dite. Le deuxième algorithme appelé routage hybride consiste à
omettre certains traitements préalables afin de gagner du temps. Une tentative d’exécution
optimiste de la transaction est effectuée au risque de compromettre la cohérence des données.
Il s’en suit une vérification de l’état de la base de données afin de rejeter les tentatives qui
introduiraient des incohérences. Les risques de conflits entre transactions étant faibles avec
les applications Web 2.0, alors le routage hybride s’avèrera plus performant que le routage

73

Chapitre 5. Routage des transactions

pessimiste.
Le chapitre s’organise comme suit. La section 5.1 présente le routage des transactions en détaillant
tout d’abord l’algorithme de routage de manière générique 5.1.2. Puis l’algorithme pessimiste 5.1.3
et enfin l’algorithme hybride 5.1.4 sont détaillés. La section 5.2 présente la gestion des métadon-
nées et l’accès au catalogue réparti.

5.1 Routage des transactions
Cette section présente les détails de l’algorithme de routage. Le routage est effectué par un ges-

tionnaire de transaction (GT). Le routage a pour objectif de déterminer pour chaque transaction, un
nœud de données (ND) apte à traiter rapidement la transaction tout en assurant que les différentes
répliques restent cohérentes. La solution étant entièrement décentralisée, l’algorithme de routage
se déroule sur chaque nœud GT. Ainsi, un GT doit tenir compte des autres GT lorsqu’il effectue
le routage, afin d’éviter que des choix de routage contradictoires se produisent. La condition suffi-
sante pour éviter un routage contradictoire est que chaque GT ordonne les transactions qu’il reçoit
dans l’ordre défini par le graphe GSG.

Par conséquent, on suppose ici que chaque GT peut lire et compléter le GSG de manière co-
hérente. Les mécanismes garantissant la cohérence du GSG, sont décrits dans la section suivante.
L’interface d’accès au GSG pendant le routage de la transaction T consiste en deux méthodes get-
MetaData(T) et putMetaData(G) qui ont été définis dans la section 4.3.2 du chapitre architecture.

5.1.1 Définition du graphe de rafraîchissement et du plan d’exécution
L’algorithme de routage a pour rôle de déterminer, à chaque fois qu’une nouvelle transaction

T arrive, le plan d’exécution de T . Le plan d’exécution de T sur un nœud de donnée ND, nommé
P (T,ND) est la procédure suivie pour exécuter T sur ND. Dans notre approche, c’est l’ordonnan-
cement de l’ensemble des transactions qui précèdent T , appelé graphe de rafraîchissement (GRT)
suivi de T elle même.

Définition 12. Graphe de rafraîchissement pour une transaction T
Un graphe de rafraîchissement d’une transaction T pour un nœud NDi est un graphe orienté et
acyclique noté GRTi <G,→> tel que :
i) GRTi est un sous graphe du GSG ;
ii) ∀ T ′ ⊂ G, T ′ est une transaction de mise à jour ;
iii) ∀ T ′ ⊂ G, T ′ → T ;
iv) l’exécution de toutes les transactions de G sur NDi est suffisante et nécessaire pour rendre NDi

suffisamment frais vis-à-vis de T , autrement dit, T peut démarrer son exécution.

GRT
i est le plus petit sous-graphe du GSG tel que l’exécution des nœuds de G dans l’ordre

rend NDi suffisamment frais pour l’exécution de T . En d’autres termes, après application de GRT

sur NDi, l’obsolescence de ce dernier par rapport à chaque relation lue par T est inférieure à
l’obsolescence tolérée par T pour la relation correspondante.

Nous définissons de manière formelle, le plan d’exécution de T sur un NDi comme suit :

74

5.1. Routage des transactions

Définition 13. Plan d’exécution
Le plan d’exécution de T sur un nœud NDi est : Pi(T,NDi) = GRTi ∪ {T}, i.e. GRTi avec tous les
arcs allant de GRTi vers T .

Après avoir déterminé le plan d’exécution, il faut l’exécuter. L’exécution de P peut se faire de
deux manières : 1) soit on exécute totalement le plan sur un NDi, on parle d’algorithme de routage
pessimiste ; 2) soit on exécute uniquement T et à la fin on vérifie s’il existe des conflits réels entre
T et les transactions de GRTi , on parle d’algorithme de routage optimiste. Le second algorithme
fait l’hypothèse que le plan d’exécution est obtenu à partir des conflits potentiels puisqu’il est un
sous-graphe de GSG et ne correspond pas totalement aux conflits réels. Avant de décrire ces deux
algorithmes qui définissent comment les transactions sont exécutées et validées sur les ND, nous
présentons d’abord le scénario global de routage qui est identique pour les deux algorithmes.

5.1.2 Algorithme générique de routage

Le processus de routage débute dès la réception de la transaction et prend fin après exécution
de la transaction. L’algorithme de routage est schématisé par la figure 5.1.

FIGURE 5.1 – Scénario de routage

Au début, un nœud applicatif NA envoie une transaction T à un nœud GT. Si T est une tran-
saction de mise à jour, alors les étapes suivantes sont suivies :

1. Le GT identifie d’abord les classes de conflits, i.e. les relations sollicitées par T (Rel(T)).
Pour chaque classe de conflit, le GT demande au répertoire réparti deux types d’informa-
tions : les contraintes de précédence existantes et relatives à la transaction T , et la localisa-
tion de tous les sites dont le contenu inclut toutes les données sollicitées par T . Le GT reçoit
du répertoire réparti, une description de tous les sites candidats avec leur état mentionnant
les transactions déjà validées ou en cours sur chaque réplique.

75

Chapitre 5. Routage des transactions

2. Ensuite, le GT choisit le ND le plus optimal, i.e. le nœud de données qui minimise le temps
estimé par une fonction de coût pour exécuter T . Une fois un ND choisi, le GT lui envoie le
plan d’exécution.

3. Le ND qui reçoit le plan d’exécution, exécute soit toutes les transactions de P (T,ND), soit
T seulement en fonction de l’algorithme de routage choisi. Une fois que le ND a validé T , il
envoie une notification au GT et au NA. Pour NA, la notification correspond aux résultats de
l’exécution de T alors que pour GT, elle consiste en information sur la fin de la transaction
(validée ou annulée). A la réception de la notification du ND, le GT mentionne dans le
répertoire que la transaction T est validée avec succès sur le ND ou la route de nouveau sur
un autre ND.

Les détails du calcul du nœud optimal ainsi que les mécanismes d’exécution de P (T,ND) seront
donnés dans la section 5.1.3 (resp. section 5.1.4) pour l’algorithme de routage pessimiste (resp.
optimiste).

Si T est une requête, alors la première étape est identique à celle d’une transaction de mise à
jour. A l’étape 2, le plan P (T,ND) inclut uniquement les transactions à propager pour rendre le
ND correspondant frais vis-à-vis des exigences de la requête. Le GT choisit le ND qui minimise le
coût du plan d’exécution. A l’étape 3, le ND exécute toujours le plan complètement.

5.1.3 Algorithmes de routage pessimiste

Dans cette section nous décrivons la mise en œuvre du scénario décrit dans la section précé-
dente avec un modèle d’exécution pessimiste. Le principe de base est que les transactions sont
exécutées dans l’ordre défini par le plan d’exécution. Nous présentons d’abord l’algorithme pour
choisir un nœud ND afin d’exécuter une transaction T . Puis, nous détaillons l’exécution de T sur
ND.

Choix du nœud optimal

Nous définissons parCard(G) le nombre de sommets d’un graphe, autrement dit, le nombre de
transactions. La fonction getF irst(G) retourne le premier sommet (i.e. sommet sans prédécesseur)
d’un graphe G. Le choix du nœud sur lequel exécuter une transaction est basée sur le coût et utilise
la synchronisation à la demande. Il tient compte du coût de rafraîchissement d’un nœud dans le
calcul du coût global d’un nœud.

Dans un premier temps, l’algorithme évalue, pour chaque nœud NDj de la liste des candidats
potentiels :

– la charge de NDj . Cette composante du coût du nœud est obtenue en évaluant le temps
d’exécution restant de toutes les transactions actives sur NDj ;

– le coût de rafraîchissement de NDj afin que celui-ci soit suffisamment frais par rapport à
l’obsolescence tolérée par la transaction T (on rappelle que si T fait des mises à jours, cette
tolérance est forcément nulle). A cet effet, l’algorithme calcule le graphe de rafraîchissement
GRT

j pour NDj . La procédure de calcul de GRT
j est donnée par l’algorithme 1.

76

5.1. Routage des transactions

Algorithme 1: CalculRafraichissement (NDj , Obs)
entrées : NDj nœud de données, Obs obsolescence tolérée, GSG.
sorties : GRT

j graphe de rafraichissement
variables : GV fraîcheur du nœud NDj i.e. graphe de transactions déjà validées et/ou en

cours sur NDj .
1 begin
2 GRT

j = ∅ ;
3 while Card(GSG)− card(GV) ≤ Obs do
4 T ′ = getF irst(GSG−GV) ;
5 GRT

j = GRT
j ∪ T ′);

6 GV = GV ∪ T ′ ;
7 return GRT

j

Le coût de rafraîchissement est donc le temps total estimé pour exécuter toutes les transac-
tions dans GRT

j . Nous mentionnons également que GRT
j peut contenir des transactions déjà

validées et des transactions en cours.
– le coût d’exécution de T elle-même. Ce coût est obtenu en calculant la moyenne glissante

du temps d’exécution des dernières transactions exécutées sur le système ;
– le coût total de l’exécution de T sur NDj appelé CoutExec(NDj, T) est obtenu en faisant

la somme des trois coûts précédents.
Ensuite le ND avec un coût d’exécution le plus faible est choisi comme nœud optimal et correspond
à NDk défini par notre fonction de coût CoutExec(NDk, T) = Min({(CoutExec(NDi, T)})
tel que pour tout NDi appartenant aux nœuds candidats. La fonction ChoisirNoeud() décrite par
l’algorithme 2 donne les détails du calcul du nœud optimal.

Exécution cohérente des transactions au niveau du ND

Dans cette section nous présentons comment un ND assure la cohérence mutuelle en exécutant
une transaction conformément aux exigences du plan d’exécution. Nous montrons d’abord qu’une
exécution suivant le plan d’exécution est cohérente puis nous présentons l’algorithme utilisé pour
exécuter le plan.

Maintien de la cohérence. Ce paragraphe décrit pourquoi le plan d’exécution généré par l’al-
gorithme 5.1.3 est suffisant pour garantir la cohérence mutuelle. Pour ce faire nous énonçons la
propriété suivante.

Propriété 1. Si l’ordre d’exécution des transactions sur chaque nœud est compatible avec l’ordre
global (GSG), alors la cohérence à terme est garantie puisque toutes les transactions seront exé-
cutées sur tous les nœuds dans un ordre compatible.

Preuve: Soient deux transactions T1 et T2 (avec debut(T1) < debut(T2)) routées respectivement

77

Chapitre 5. Routage des transactions

Algorithme 2: ChoisirNoeud (LC, Obs)
entrées : LC liste des nœuds candidats, Obs obsolescence tolérée.
sorties : Nopt nœud ND choisi, P plan d’exécution.
variables : GC : Graphe de transaction en cours sur le ND considéré, GR le graphe de

rafraichissement, AV G(T) : temps moyen d’exécution des transactions, Min : réel,
CoutExec : coût d’exécution de T

1 begin
2 Min =∞ ;
3 foreach N ∈ LC do
4 GR = CalculRafraichissement(N,Obs);
5 CoutExec(N, T) = AV G(T) ∗ [(Card(GR) + Card(GC)) + 1];
6 if CoutExec(N, T) < Min then
7 Min = CoutExec(N, T);
8 Nopt = N ;

9 return Nopt

parGT1 etGT2 sur ND1 et ND2. Supposons que T1 et T2 soient exécutées dans un ordre différent
sur les deux ND, par exemple, T1→ T2 sur ND1 et T2→ T1 sur ND2.

Cela veut dire que GT1 et GT2 ont utilisé chacun un GSG différent pour calculer les plans
d’exécution de T1 et T2, autrement dit, GT2 n’a pas lu les modifications faites sur le GSG par
GT1. Ceci n’est pas possible puisque le GSG est unique et est géré de tel sorte que tout accès
concurrent soit sérialisé (cf. section 5.2). Ainsi GT2 utilise forcément le même GSG que GT1
vient de modifier, ce qui veut dire que GT2 inclut T1 dans le graphe de rafraîchissement requis
pour exécuter T2 et dès lors T1→ T2.

De plus comme toutes les transactions de mise à jour et de rafraîchissement sont routées avec
cet algorithme 5.1.3, alors la convergence des copies ne peut pas être compromise puisque les ND
exécutent les transactions dans le même ordre qu’ils les reçoivent (cf. paragraphe ci-après).

Exécution des transactions. Pour exécuter les transactions sans compromettre la cohérence mu-
tuelle, il faut garantir la propriété 2, qui à son tour exige une application parfaite de (P (ND,T)).
Pour respecter l’ordre de P (ND,T), l’Ordonnanceur d’un nœud ND ne transmet au SGBD local
la transactions T que lorsque toutes les transactions qui l’ont précédées ont été transmises et vali-
dées avec succès. Si une ou plusieurs transactions précédant T ne peuvent pas être exécutées pour
une raison quelconque, l’Ordonnanceur avise le Planificateur qui à son tour renseigne le GT de la
situation en lui faisant parvenir l’état de rafraîchissement du nœud si toutefois il a été entamé. En
d’autres mots, si une partie des transactions de rafraîchissement a été validée avec succès, alors le
GT est tenu au courant pour qu’il mette à jour les informations du catalogue. L’algorithme 3 définit
la procédure déroulée par l’Ordonnanceur pour s’assurer de la bonne exécution de P .

La fonction delivrer(Tc) permet d’envoyer la transaction courante au SGBD local pour exécu-

78

5.1. Routage des transactions

Algorithme 3: ExecuterP (P)
entrées : P plan d’exécution.
sorties : booléen

1 begin
2 while Card(P) 6= 0 do
3 Tc = (getF irst(P));
4 delivrer(Tc) ;
5 repeat
6 attendre();
7 until fin transaction;
8 if Tc.etat=validee then
9 P = P − Tc ;

10 else
11 return Echec ;

12 return Succes;

tion. De plus, l’Ordonnanceur via la fonction attendre() est bloqué jusqu’à ce que Tc soit validée
ou annulée. Si Tc est annulée alors la transaction T échoue puisque le nœud ne sera pas suffi-
samment frais pour l’exécuter. Une fois le GT averti de l’échec de l’exécution de T ou d’une
exécution en partie de la séquence de transaction qui devrait la précéder, il choisit un autre nœud
pour reprendre l’exécution de T mais en recalculant la nouvelle séquence de précédence relative au
nouveau ND choisi. Ce processus est itéré jusqu’à ce que la transaction puisse être exécutée sur un
ND. En cas de non exécution de la transaction après avoir sollicité toutes les répliques candidates,
le client est informé.

Exemple. La figure 5.2 illustre un système composé de deux nœuds de données ND1 et ND2.
Le catalogue réparti indique que ND1 a reçu T1 et T2 alors que ND2 n’a exécuté que T1 avec
la contrainte T1 précède T2. Supposons qu’à partir de cet état du système, il arrive une troisième

FIGURE 5.2 – GSG avant routage

79

Chapitre 5. Routage des transactions

transaction T3 avec un niveau de fraîcheur maximal. En d’autres mots, T3 requiert l’état le plus
récent des données. La figure 5.3 montre que le GT ayant reçu T3, par l’intermédiaire de l’algo-
rithme décrit précédemment désigne le nœud ND2 comme nœud optimal. Ce qui fait que le GR
correspondant est T2 puisque c’est l’unique transaction dans le GSG à ne pas être exécutée sur
ND2. Enfin, le GT envoie le GR et T3 à ND2 puis met à jour le catalogue. Ainsi, comme le
montre la figure 5.3, le GSG est complété avec T3 et l’état de ND2 inclut désormais les deux
dernières transactions qui viennent d’être envoyées. L’envoi de GR suivi de T3 signifie et sera
interprété par ailleurs par ND2 que T2→ T3.

FIGURE 5.3 – GSG après routage

Nous mentionnons que le GSG est utilisé que pour garder la cohérence par conséquent, il ne
contient que les transactions de mises à jour qui peuvent introduire des incohérences.

Discussion

Le mécanisme de routage décrit dans cette section assure une sérialisation globale de manière
pessimiste. Il est utilisé aussi bien pour router les transactions de mise à jour que les requêtes.
Chaque transaction est associée avec ses classes de conflits, qui contiennent les données que la
transaction peut potentiellement lire (resp. modifier). En fonction des classes de conflits, les tran-
sactions sont ordonnées dans un GSG en s’appuyant sur leur ordre d’arrivée. Bien que cette ap-
proche assure une sérialisation globale, il réduit malheureusement la parallélisation du traitement
des transactions puisqu’elle s’appuie sur des sur-ensembles potentiels de données réellement accé-
dées. Par exemple, si les transactions T et T ′ écrivent sur la relation R, alors elles seront exécutées
sur chaque nœud dans le même ordre. Pourtant, si T et T ′ n’accèdent pas aux même tuples, elles
pourraient être exécutées dans n’importe quel ordre, ce qui accroît le parallélisme et donc le débit
transactionnel.

Par conséquent, pour accroître la parallélisation du traitement des transactions, nous proposons
dans la prochaine section, un second algorithme hybride qui combine une approche pessimiste et
optimiste.

80

5.1. Routage des transactions

5.1.4 Algorithme de routage hybride

L’objectif du routage hybride est de traiter une transaction plus rapidement en réduisant les
pré-traitements appliqués juste avant le traitement de la transaction proprement dite.

Le routage hybride se déroule comme suit : Un GT reçoit une nouvelle transaction entrante,
nommée T . Puis le GT consulte le catalogue et obtient le graphe de rafraichissement contenant
toutes les transactions courantes (notées TC) ou validées (notées TV) qui précèdent T. Il obtient
aussi la description de toutes les répliques candidates pour traiter T . Pour chaque réplique can-
didate, le GT construit un plan d’exécution constitué des TV et de T , de telle sorte que chaque
transaction dans TV précède T . On rappelle que l’idée est de ne pas inclure les TC dans le plan. Le
coût de chaque plan est estimé, celui de moindre coût est choisi pour être exécuté. Le GT demande
au nœud de donnée (ND) de traiter le plan d’exécution. Lorsque le ND reçoit le plan, il exécute
et valide toutes les TV. Puis il exécute T sans la valider. Il compare les données accédées par T
avec celles accédées par les transactions TC afin de détecter un conflit. Deux issues peuvent se
produire : (1) S’il n’y a pas de conflit, alors T est validée. Le ND notifie ensuite le GT de l’absence
conflit entre T et TC. Le GT répercute cette information au niveau du catalogue afin de simplifier
le graphe de précédence : toutes les précédences entre T et les TC sont supprimées. (2) En cas de
conflit, T est abandonnée. Le ND bascule en mode pessimiste. Il traite l’ensemble des TC puis finit
par traiter T .

Nous exposons ci-après les principales raisons qui justifient le routage hybride. L’avantage du
routage hybride repose sur notre aptitude à déterminer la présence d’un conflit réel entre deux
transactions. Plus précisément, si on peut prouver que le graphe de rafraichissement est disjoint de
la transaction à traiter, alors le traitement de T sans rafraichissement est acceptable, et évidemment
plus rapide.

Or, dans notre contexte, la preuve que le rafraichissement n’est pas nécessaire, se base sur la
connaissance des conflits réels, ce qui nécessite d’avoir déjà traité la transaction. C’est pourquoi le
routage hybride consiste tout d’abord à tenter, de manière optimiste, de traiter la transaction sans
son rafraichissement, puis à vérifier, à postériori, que cela est correct.

Naturellement, la probabilité que la transaction accède aux mêmes données qu’une autre tran-
saction est proportionnelle au nombre de transactions considérées. Par conséquent, nous sommes
confrontés à un compromis : d’une part ne pas trop rafraichir si cela n’est pas nécessaire, d’autre
part réduire le risque d’échec en rafraichissant malgré tout

Afin de trouver une issue à ce compromis, nous décidons de conserver les pré-traitements qui
peuvent être appliqués rapidement, l’objectif principal étant d’accélérer le traitement d’une tran-
saction. Ainsi, toutes les transactions déjà validées (TV) sur un autre nœud seront appliquées car
elles ont l’avantage de pouvoir être appliquées immédiatement sans être ré-exécutées, donc beau-
coup plus rapidement que l’exécution initiale. L’application immédiate d’une transaction validée
consiste à propager ses effets sans la ré-exécuter. Notons que l’application immédiate est plus ra-
pide que la ré-exécution du fait de notre contexte applicatif où une transaction passe beaucoup
de temps à lire des données et faire des calculs et peu de temps à écrire des données. En fin de
compte, le "pari optimiste" ne portera que sur les quelques transactions courantes (TC) qu’on ne
peut pas appliquer immédiatement car elles n’ont pas encore validé. Les transactions courantes et
potentiellement conflictuelles, étant peu nombreuses par hypothèse (faible taux de conflit des ap-

81

Chapitre 5. Routage des transactions

plications, comme expliqué en section 2.1), les chances de réussite du routage optimiste s’avèrent
très élevées.

Dans cette section, nous détaillons comment le scénario décrit dans 5.1.2 est mise en œuvre
avec un modèle d’exécution optimiste des transactions. Nous présentons d’abord l’algorithme pour
choisir un nœud ND qui exécutera T . Puis, nous détaillons l’exécution de T sur ND.

Choix du nœud optimal

La fonction ChoisirNoeudhyb() définie par l’algorithme 4 détaille le calcul du nœud optimal.
Contrairement à l’algorithme présenté dans la section 5.1.3, le coût de rafraîchissement des

transactions en cours n’est pas pris en compte dans le coût global, autrement dit, seul le coût
de rafraichissement des transactions déjà validées avant debut(T) sont prises en compte. Toute
transaction T ′ tel que debut(T) ≤ fin(T ′) < fin(T) est considérée comme transaction courante.
Ainsi, nous dissocions les transactions validées de celles en cours dans la séquence des transactions
qui ont précédées T . Les transactions déjà validées doivent être appliquées sur le ND choisi avant
de commencer l’exécution de T . Par contre, les transactions en cours ne sont pas reprises sur le
ND mais leurs modifications doivent être confrontées avec celles de T pour garder la cohérence.
Ce choix de comparer avec T que les transactions courantes et non celles déjà validées avant son
arrivée se justifie par le souci d’une exécution rapide de T . De fait, comparer les modifications avec
toutes les transactions courantes et validées est beaucoup plus coûteux et long que l’application des
transactions validées sur le ND qui exécute T .

Pour calculer le graphe de rafraîchissement GR d’un ND lors de l’exécution de T , nous uti-
lisons la même procédure de l’algorithme 1 mais en enlevant toutes les transactions non encore
validées. La fonction CalculConcurrent() (ligne 4) retourne toutes les transactions courantes et
qui sont en conflits avec T . Ainsi, le graphe de rafraîchissement GR est obtenu en appliquant la
différence entre CalculRafraichissement et CalculConcurrent(). L’estimation du coût prend
aussi en compte la charge des nœuds ND et du coût d’exécution de la transaction (obtenu par éta-
lonnage). La fonction CalculConcurrent() retourne un graphe dont les sommets ne sont pas des
transactions mais des couples (T, ND), qui signifie que T a comme nœud initial ND. Autrement
dit, ND est le nœud sur lequel T est exécutée une première fois par conséquent, il est capable de
fournir DataSet(T). La ligne 6 de l’algorithme 5 montre comment on ajoute un nouveau sommet
au graphe GRT . Le terme (getF irst(GSG−GV)) permet de retrouver une transaction précédant
T alors que la fonction getInitial(T ′) renvoie le nœud ND sur lequel T ′ a été exécutée. Le code
de la fonction CalculConcurrent() est donné par l’algorithme 5.

Le coût obtenu avec l’algorithme 4 est sous-estimé quand un conflit réel advient puisque toutes
les transactions conflictuelles courantes (GC) doivent être exécutées avant T . Cependant ce cas
est rare et donc a un impact négligeable sur le fonctionnement du système. Une fois le nœud ND
choisi, le GT lui envoie le plan d’exécution composé des transactions de GR, de GC et de T .

Validation des transactions

Pour accélérer le traitement, le ND qui reçoit un plan d’exécution exécute GR puis T . Une
fois T en phase de validation, le ND compare les modifications de T avec celles des transactions

82

5.1. Routage des transactions

Algorithme 4: ChoisirNoeudHyb (LC, Obs)
entrées : LC liste des nœuds candidats, Obs obsolescence tolérée.
sorties : Nopt nœud ND choisi.
variables : GC : Graphe de transaction en cours sur le ND considéré, AV G(T) : temps

moyen d’exécution des transactions, Min : réel, GR graphe de rafraîchissement (de
transactions validées sur les autres ND)

1 begin
2 Min =∞ ;
3 foreach N ∈ LC do
4 GR = CalculRafraichissement(N,Obs)− CalculConcurrent(N,Obs)

CoutExec(N, T) = AV G(T) ∗ [Card(GC) + Card(GR) + 1];
5 if CoutExec(N, T) < Min then
6 Min = CoutExec(N, T);
7 Nopt = N ;

8 return Nopt

Algorithme 5: CalculConcurrent (NDj , Obs)
entrées : NDj nœud de données, Obs obsolescence tolérée, GSG.
sorties : GC graphe de concurrence
variables : GV fraîcheur du nœud NDj i.e. graphe de transactions déjà validées et/ou en

cours sur NDj .
1 begin
2 GC = ∅ ;
3 while Card(GSG)− card(GV) ≤ Obs do
4 T ′ = getF irst(GSG−GV) ;
5 if debut(T) ≤ fin(T ′) < fin(T) then
6 GC = GC ∪ (T ′, getInitial(T ′));
7 GV = GV ∪ T ′ ;

8 return GC

83

Chapitre 5. Routage des transactions

en cours GC. En effet, le ND contacte tous les ND qui ont exécutée des transactions comprises
dans GC. Nous rappelons que GC est un graphe dont les sommets sont composés des transactions
conflictuelles en cours et les ND sur lesquels elles s’exécutent.

Par exemple, soient deux nœuds de données ND1 et ND2. Supposons que GR = ∅, i.e. il
n’existe pas de transaction validée non encore propagée sur ND2 etGC = (T1,ND1)→ (T2, ND2).
Cette séquence signifie que T1 est en train d’être exécutée sur ND1 et que debut(T1) < debut(T2).

Après avoir exécuté T2, ND2 demande à ND1 les données réellement manipulées par T1 (i.e.
les DataSet(T1)) pour toute relation R ∈ Rel(T1). Une fois les DataSet(T1) reçus par le ND2,
alors ce dernier compare les DataSet(T2) avec ceux de T1. A la suite de cette comparaison deux
cas peuvent se présenter :

– soit DataSet(T1) ∩ DataSet(T2) = ∅, i.e. il n’y a pas d’intersection entre les données
modifiées et lues par T1 et T2, par conséquent, T2 peut valider. De plus, ND2 notifie le GT en
lui informant que le conflit potentiel entre T1 et T2 n’est pas un conflit réel, ce qui veut dire
que T1 6→ T2.

– soit DataSet(T1) ∩ DataSet(T2) 6= ∅, i.e. T2 a lu ou modifié des données modifiées
par T1, alors T2 est annulée et ND2 exécute dans l’ordre T1 puis T2. Mais comme les
DataSet(T1) contiennent les modifications de T1, alors ND2 ne ré-exécute pas T1 mais
plutôt il se contente d’appliquer les modifications. Le conflit potentiel prédéfini sur T1 et
T2 est réel et donc T1 et T2 seront exécutées sur toute les répliques en respectant l’ordre de
précédence.

FIGURE 5.4 – Validation des transactions

Nous notons par ailleurs que si le nombre de transactions concurrentes à T est supérieur à un
(i.e. Card(GC) > 1), alors le ND est obligé de comparer les DataSet(T) avec tous DataSet(Ti)

84

5.1. Routage des transactions

tels que Ti ∈ GC. Cependant, pour récupérer tous les DataSet(Ti), un seul ND est contacté. Les
détails de cette stratégie de communication seront données dans les prochaines sections.

Exemple. La figure5.4 illustre la phase de validation de trois transactions concurrentes T1, T2 et
T3 (avec debut(T1) < debut(T2) < debut(T3)), chacune manipulant la même relation Produit.
Supposons que GT1 reçoit T1 et la route sur ND1, GT2 (respectivement GT3) route T2 vers ND2
(respectivement T3 vers GT3).

Quand GT2 route T2 vers ND2, il indique que T1 qui précède T2 est exécutée sur ND1 :
(T1, ND1)→ (T2, ND2).

De même, GT3 indique à ND3 les nœuds sur lesquels s’exécutent T1 et T2 : (T1, ND1) →
(T2, ND2)→ (T3, ND3).

Quand ND1 veut valider T1, cela se passe sans problème car il n’y a aucune transaction qui
précède T1.

Par contre, quand ND2 tente de valider T2, il récupère les informations de T1. En faisant
la comparaison des modifications de T1 et T2, il trouve que :DataSet(T1) ∩ DataSet(T2) =
{11, stylo, 23}. Il annule alors T2, applique les DataSet(T1) et reprend T2.

GT3 effectue aussi la même procédure et trouve que : (1) DataSet(T1) ∩ DataSet(T3) =
{8, cahier, 16} ; et (2) DataSet(T2) ∩ DataSet(T3) = ∅. Il conclut que T1 → T3 par contre
T2 6→ T3. Il annule ainsi T3, applique les modifications de T1 et reprend T3. L’information
d’absence de précédence entre T2 et T3 sera remontée au GT pour qu’il corrige le GSG.

L’avantage majeur de cette vérification de conflits en fin d’exécution de la transaction esÒt qu’il
favorise plus de parallélisme et donne l’opportunité de différer les propagations. Avec l’exemple
précédent, l’exécution parallèle de T2 et T3 favorise un temps de réponse plus faible que T2 suivi
de T3. Cette stratégie est très adaptée à notre contexte dans lequel les conflits sont rares.

Calcul d’intersection des DataSets. Dans ce paragraphe, nous définissons comment les conflits
sont détectés lors de la validation. LesDataSet(T) sont un sous-ensemble des tuples deRel(T) et
sont obtenus avec des règles actives. Chaque tuple à un identifiant unique appelé Id et correspond
à la clé de la relation. Nous supposons que la clé d’une relation n’est jamais modifiée par une tran-
saction de mise à jour. Lors de l’extraction des DataSet(T), les valeurs de tous les attributs d’un
tuple t modifié ou lu par T sont associées avec leur Id pour former un nouveau tuple tacc. A cela
s’ajoute le type d’opération (lecture ou écriture) permettant d’obtenir tacc. Ainsi les DataSet(T)
sont similaires à une vue obtenue par sélection sur Rel(T) en gardant les mêmes noms des attri-
buts. Nous associons alors à chaque DataSet(T) un schéma relationnel appelé DataSetSc(T).
Le schéma relationnel d’un DataSet(T) est composé des noms des attributs de Rel(T) alors que
DataSet(T) est la relation associé à tous les tuples modifiés ou lus.
Supposons la relation Produit (Id, nomproduit, stock) et les deux transactions suivantes liées par
la contrainte de précédence Ti → Tj .

– Ti : SELECT NOMPRODUIT FROM PRODUIT WHERE ID=25 ;
– Tj : UPDATE PRODUIT SET STOCK=17 WHERE ID=25 ;

85

Chapitre 5. Routage des transactions

Alors les schémas des DataSet(Ti) et DataSetTj sont respectivement DataSetSc(Ti)={Id, nom-
produit} et DataSetSc(Tj)={Id, stock}. L’algorithme 6 détaille le calcul des intersections. Pour
faire la comparaison des DataSet(Ti) et DataSet(Tj), les schémas sont d’abord comparés (ligne
2-5). S’il n’existe aucun attribut en commun en dehors des Id, cela est suffisant pour conclure que
Ti 6→ Tj . Par contre, si un attribut figure en même temps dans les deux schémas, les valeurs des
attributs sont comparées pour identifier s’il y a réellement un conflit (ligne 8-12).

Algorithme 6: CalculIntersection (DataSet(Ti), DataSet(Tj)
entrées : DataSet(Tk) les datasets à comparer.
sorties : Booleén
variables : Tab : tableau de chaine de caractères

1 begin
2 foreach attr1 ∈ DataSetSc(Ti) do
3 foreach attr2 ∈ DataSetSc(Tj) do
4 if (attr2 = attr1) et (attr1 6= Id) then
5 Ajouter attr2 dans Tab;

6 if Tab est vide then
7 return false;

8 else
9 foreach tupleA ∈ DataSet(Ti) et tupleB ∈ DataSet(Tj) do

10 foreach attr ∈ Tab do
11 if (tupleA.Id = tupleB.Id) et (tupleA.attr 6= tupleB.attr) then
12 S’il existe au moins une écriture return true;

13 return false;

Nous remarquons que l’algorithme 6 permet de vérifier l’intersection des DataSet(T) que si les
transactions concernées ne font que des modifications. Lorsque l’une des deux transactions Ti et
Tj liées par le conflit potentiel Ti → Tj fait des insertions ou des suppressions, alors l’algorithme
6 conclut que Ti 6→ Tj puisqu’il n’existe pas de tuples accédés en commun. Pourtant, ceci n’est
pas toujours vrai comme le montrent les cas suivants :

– Ti fait des insertions et Tj des modifications (ou des suppressions), alors les tuples insérés
par Ti peuvent satisfaire les conditions requises par Ti pour faire une modification. Donc,
l’exécution de Ti et de Tj dans n’importe quel ordre ne donne pas le même résultat ;

– Ti et Tj font des insertions. Si les insertions dépendent d’une lecture préalable de la base,
alors l’ordre de Ti et de Tj a une influence sur l’état de la base.

Pour éviter ce genre de problème, nous maintenons le même ordre défini grâce aux conflits poten-
tiels. Autrement dit, nous concluons que les conflits réels sont identiques aux conflits potentiels
à chaque fois que l’une des transactions concernées contiennent des insertions. Cependant ce cas
est rare car la plupart des applications Web 2.0 et des ASP maintiennent des serveurs pour insert-

86

5.1. Routage des transactions

only dans le souci de faciliter le passage à l’échelle, de maintenir plusieurs versions, d’assurer la
cohérence à terme, etc. [FJB09].

Gestion des surcharges induites par la validation

La procédure de validation utilisée pour terminer l’exécution d’une transaction T peut engen-
drer quelques surcharges. En effet la récupération des DataSet(T) peut allonger le temps de ré-
ponse des transactions puisque T n’est validée qu’après comparaison deDataSet(T) avec tous les
DataSet(Ti) correspondant aux modifications des transactions concurrentes. Ainsi, les messages
envoyés peuvent être important si le nombre de transactions concurrentes est important. Dans ce
paragraphe, nous étudions les mécanismes utilisés pour borner le temps de réponse et le nombre de
messages. Nous détaillons aussi comment les DataSet(T) peuvent être utilisés pour rendre plus
frais les répliques même en situation de conflit.

Gestion des messages. Pour valider une transaction, un ND a besoin de contacter tous les ND
qui ont exécuté une transaction conflictuelle et courante. Ainsi, le coût de la communication de-
vient très significatif quand le nombre de ND à contacter est important. Pour limiter le nombre
de message, un ND cache les DataSet(T) qu’il a reçu d’un autre ND pour pouvoir les transférer
à d’autres ND qui en auront besoin. En d’autres mots, un ND qui valide T contacte toujours le
ND qui a exécuté la dernière transaction pour chacune des classes de conflits dans lesquelles T est
impliquée. Un ND qui doit fournir les DataSet(T ′), transmet également tous DataSet(Ti) tel que
Ti soit dans la séquence des transactions concurrentes qui précède T ′.

Par exemple, soit la séquence de précédence suivante T1 → T2 → T3 → T4 routée respective-
ment sur ND1, ND2, ND3 and ND4. Quand ND2 veut valider T2, il demande les DataSet(T1)
qu’il met en cache à leur réception. Ensuite, quand ND3 cherche à valider T3, il contacte seule-
ment ND2 qui est capable de lui délivrer à la fois DataSet(T1) et DataSet(T2). Ainsi, en cas
d’absence de panne , deux messages sont largement suffisants pour décider de valider ou d’annuler
une transaction.

Propagation indirecte des mises à jour. Pour récupérer les DataSet(T ′) d’une transaction T ′

précédant une transaction T en cours de validation, nous utilisons des triggers et l’interface JDBC
avec laquelle nous accédons au SGBD local d’un ND. Cela génère un coût supplémentaire non
négligeable quand le volume des données lues est importante. Par conséquent, une fois que les
DataSet(T) sont obtenus, les ND en font une exploitation maximale. En effet, à la réception
des DataSet(T) pour valider T ′, nous avons décrit que deux cas pouvaient se présenter à savoir
l’existence de conflit ou l’absence de conflit entre T et T ′. Dans tous les deux cas, le ND applique
les modifications de T . De fait, si T et T ′ sont en conflit réel, le ND est obligé d’exécuter d’abord T
puis T ′. Si heureusement, T 6→ T ′, le ND valide d’abord T ′ et ensuite applique les modifications de
T puisqu’il a déjà à sa possession lesDataSet(T). Ainsi, même en cas d’annulation de transaction
la récupération des DataSet(T) n’est pas une perte en soit puisqu’ils ont permis à rendre plus
frais un ND, ce qui fera de lui un candidat potentiel pour les prochaines exécution. Le gain obtenu
avec cette approche est comparable à celui obtenu avec la synchronisation précoce décrite dans

87

Chapitre 5. Routage des transactions

[GNPV07]. Il permet de réduire la séquence de transaction nécessaire pour rendre un nœud plus
frais pour les futures transactions et donc diminue le temps de réponse global.

Majoration du temps de réponse. Pour valider T , un ND est obligé d’attendre les modifications
de toutes les transactions conflictuelles et courantes. Pour éviter des temps réponses élevés, nous
bornons le temps d’attente pour l’obtention des DataSet(Ti). Ce temps d’attente est appelé Temps
de Décision (∆TD). A l’expiration de ∆TD, le ND contacte le GT en lui envoyant le DataSet(T)
pour qu’il prenne une décision finale. Cette situations est très délicate car plusieurs scénarios sont
envisageables. Par exemple, une transaction Ti précédant T peut être déjà exécutée sur un ND qui
tombe en panne tout juste avant d’envoyer les DataSet(Ti), ou même que Ti n’a pu être traitée et
donc il n’existe aucun DataSet(Ti) à envoyer. La détection et la gestion des pannes sont détaillées
dans le chapitre 6.

De plus, si le nœud ND1 qui veut valider T n’arrive pas à récupérer les DataSet(Ti) des
transactions qui précèdent T , alors tous les ND qui attendaient lesDataSet(T) hériteront du même
problème. Pour éviter que tous ces ND bloqués contactent les GT, ND1 les avisent afin que ces
derniers puissent allonger leur temps de décision.

Ce temps de décision est choisi en prenant en compte la latence du réseau et correspond à
∆TD ≥ 2n ∗ (Avg(T) + λN), avec (λN), la latence du réseau, Avg(T), le temps de traitement
d’une transaction, et n le nombre de transaction précédent Ti.

Pour trouver cette borne, supposons que ti(Tj) soit la date d’envoi de Tj à un ND et λN le délai
écoulé avant la réception de Tj . A tout instant, le temps d’exécution restant pour exécuter Tj peut
être obtenu par :

RT (Tj) = Avg(T)− (δGTsys − ti(Tj))

avec δGTsys la date système du nœud GT qui a routé Tj . Pour obtenir les datasets , chaque ND
fait un aller-retour qui est équivalent à 2 ∗ λN . Ainsi, en supposant que le temps d’extraction des
datasets est identique au temps d’exécution de la transaction, le temps total de récupération de tous
les datasets est :

RT (Tj) = 2 ∗ Avg(T)− (δGTsys − ti(Tj)) + 2 ∗ λN

Si le nombre de transaction précédent Ti est égal à n, alors

∆TD ≥
k=n∑
k=0

(2 ∗ Avg(T)− (δGTsys − ti(Tk)) + 2 ∗ λN)

D’où :
∆T ≥ 2n ∗ (Avg(T) + λN)

5.1.5 Discussion

Dans cette section, nous avons présenté notre protocole de routage. Les applications spéci-
fient leurs exigences en termes de besoin de cohérence, puis l’intergiciel honore ces exigences en

88

5.2. Gestion des métadonnées

contrôlant la cohérence des données. Nous avons défini deux protocoles pour maintenir la cohé-
rence globale, en fonction de la connaissance des données manipulées par les transactions. Le pre-
mier protocole ordonne les transactions à partir de la définition a priori des données accédées. Le
deuxième protocole détermine un ordre plus souple, en comparant les données accédées, le plus
tardivement possible, juste avant la validation des transactions. La deuxième solution offre plus
d’opportunité de parallélisme surtout dans le contexte des applications web2.0 avec lesquelles les
conflits sont rares. De plus, l’utilisation du temps de décision permet de borner le temps de valida-
tion des transactions, puisque son expiration entraîne l’intervention du GT qui a une connaissance
plus détaillée de l’état des ND, ce qui peut accélérer le traitement. Cette majoration associée à
une gestion des pannes permet de garde de bonnes performances en garantissant l’exécution d’une
transaction quelque soient les problèmes de pannes et de latence. Nous détaillons la gestion des
pannes dans le chapitre 6. Dans la prochaine section nous étudions comment les GT accèdent et
manipulent réellement les métadonnées afin de garantir leur cohérence en cas d’accès concurrent.

5.2 Gestion des métadonnées

Le scénario de routage décrit dans la section 5.1.2 se déroule à chaque fois qu’un GT reçoit
une transaction d’un client. Ainsi, deux ou plusieurs GT peuvent avoir des accès concurrent sur
le même nœud NC si leurs transactions partagent une même classe de conflit, ou un même ND
si le nœud avec le plus faible coût choisi est le même pour tous les deux GT. Soient GT1 et
GT2 deus routeurs voulant accéder à Meta(R1) pour router respectivement deux transactions T1
et T2 qui tentent de modifier la relation R1. Chaque GT obtient une copie de Meta(R1) via le
catalogue. Supposons queGT1 route T1 vers le nœud de donnéesND1 et met à jourMeta(R1) en
écrivant (T1, ND1) qui signifie que T1 est entrain de s’exécuter sur ND1. Si GT2 route T2 vers un
second nœud de données ND2 sans prendre en compte T1, la cohérence mutuelle est compromise
puisqu’une transaction de mise à jour doit lire toujours des données totalement fraîches.

Pour éviter cette situation, il faut des mécanismes d’accès concurrents au catalogue réparti pour
maintenir la cohérence des métadonnées lors des opérations de routage.

Pour ce faire, nous proposons deux approches : une approche utilisant le verrouillage et une
autre sans verrouillage. La gestion avec verrouillage garantit la cohérence des métadonnées et en
particulier le GSG. La gestion avec le verrouillage est implémentée via JuxMem dans le but d’in-
tégrer nos travaux dans le cadre du projet ANR Respire [Prod]. Malheureusement, nous avons
remarqué que le verrouillage ne facilite pas le passage à l’échelle puisque l’attente de l’obtention
d’un verrou peut être longue et rallonger les temps de réponse. C’est pourquoi, nous avons opté
pour une solution sans verrouillage lors de l’accès au catalogue. De plus, nous nous sommes rendu
compte qu’il existait des systèmes tels que les DHT qui permettent de gérer des données répliquées
sans utilisation de mécanismes de verrouillage. Ainsi, nous avons implémenté la gestion du cata-
logue à travers une DHT d’autant plus que celle-ci favorise le passage à l’échelle et une grande
disponibilité, deux caractéristiques très importantes pour notre système de routage.

89

Chapitre 5. Routage des transactions

5.2.1 Gestion des métadonnées avec verrouillage
Nous décrivons dans cette section les détails de la gestion du catalogue avec JuxMem. Comme

nous l’avons déjà mentionné, un GT a besoin d’accéder au catalogue pour lire les métadonnées
et les modifier. Avec l’utilisation de JuxMem, un GT se comporte comme un client via-à-vis de
JuxMem. Par conséquent, toute opération de lecture ou d’écriture nécessite un verrou. Quand il
s’agit d’opération de lecture, un verrou partagé est accordé au lecteur tandis qu’un verrou exclusif
est fourni lors d’une opération d’écriture. Autrement dit, un GT fait une demande de verrou partagé
quand il veut lire les métadonnées et un verrou exclusif lorsqu’il veut écrire dans le catalogue.

Conformément à la spécification du routage, à chaque fois qu’une transaction veut manipuler
une donnée, le routeur doit accéder au catalogue pour retrouver l’ensemble des nœuds qui stockent
une copie de la donnée, puis la modifier en cas de besoin. Supposons que l’on ait deux transactions
T1 et T2 qui manipulent simultanément la même relation Ri. Les deux transactions sont intercep-
tées respectivement par GT1 et GT2. GT1 accède à la partie du catalogue qui contient Meta(Ri)
pour avoir la liste des nœuds candidats en lecture. Pour ce faire, Juxmem va allouer un verrou
partagé à GT1 qui le relâchera dès qu’il finira sa lecture. A ce moment GT2 acquiert un verrou
partagé sur Meta(Ri) et va lire la même chose que GT1. Si un des deux GT finit son traitement et
met à jour le catalogue, la copie de Meta(Ri) qui est en train d’être manipulée par l’autre GT est
erronée. Pour éviter ce problème, on utilise une méthode simple qui consiste à demander et garder
un verrou exclusif durant tout le choix du nœud optimal. Autrement dit, on fait toujours une lecture
avec intention d’écriture. Ainsi, à chaque fois qu’un GT détient le verrou exclusif il fait toutes ses
opérations de lecture et d’écriture avant de relâcher les verrous.

Pour éviter des situations d’inter-blocages entre GT, les Meta(Ri) sont ordonnés suivant le
nom de la relation. Ainsi, le GT qui gère T récupère les GSG(Ri) en respectant cet ordre. Par
exemple, si T a besoin de manipuler R1 et R2, le GT demande d’abord un verrou exclusif sur
Meta(R1) et tant que le verrou ne lui sera pas accordé, le GT ne peut demander un verrou exclusif
surMeta(R2). Cette situation ou un GT doit demander et obtenir tous les verrous pour commencer
le processus du routage est comparable à la méthode de verrouillage à deux phases.

Ce mécanisme a la lourde conséquence d’augmenter le nombre de transactions en attente d’être
routées au niveau d’un GT puisque l’attente d’un verrou peut être long ou indéfini si toutefois le
GT qui le détient est en panne. Pour éviter ces problèmes nous avons proposé une solution sans
verrouillage à l’aide d’une DHT.

5.2.2 Gestion des métadonnées sans verrouillage
Bien que le GSG ne soit pas verrouillé par le NC, il faut s’assurer que lorsqu’un GT modifie

un GSG, aucun autre GT ne modifie le GSG simultanément, sinon il y a risque d’incohérence du
GSG. Un GT doit obtenir l’accès exclusif au GSG avant de pouvoir le compléter. Cela est réalisé
par un accord entre les GT concurrents et en ordonnant les accès au GSG

Pour atteindre ce but, les GT déclarent leur intention de modifier les métadonnées à chaque
fois qu’ils tentent de router une transaction de mise à jour. Ce faisant, un GT utilise la primitive
get_for_update pour récupérer un GSG. Toute demande d’accès faite à partir de cette primitive ne
peut être résolue que par le NC maître de la relation correspondante. Ainsi, le NC maître détecte

90

5.2. Gestion des métadonnées

les accès concurrents et peut informer les GT qui en ont besoin. Concrètement, à chaque fois qu’un
GT sollicite unGSG, le NC maître lui donne une copie mais aussi dans le cas échéant lui indique le
dernier GT qui a accédé simultanément au même GSG. Bien que le NC ne maintienne pas l’ordre
des GT effectuant des demandes concurrentes, cet ordre existe sous la forme d’un chaînage entre
les GT, car chaque GT connait son prédécesseur (Last). Un GT doit compléter leGSG qu’il reçoit
en contactant le dernier GT ayant lu le GSG avant lui. Les détails de la gestion cohérente du GSG
sont donnés ci-après.

Pour obtenir le GSG le plus cohérent, un GT contacte d’abord la DHT et particulièrement le
ou les NC maîtres de la portion des métadonnées sollicités. Chaque NC maître contacté, envoie au
GT le Meta(R) qu’il gère. Le Meta(R) contient les informations comme le GSG(R), l’état de
chaque réplique (State(Ri)) et le pointeur Last(R). A la réception de la réponse du NC maître, le
GT a deux alternatives :

– i) si le pointeur Last(R) est vide, alors le GSG reçu est le plus récent et donc le GT effectue
son choix, i.e. détermine le ND qui va exécuter la transaction ;

– ii) si le pointeur n’est pas vide, cela signifie qu’il y a des accès concurrents, ainsi le GT
contacte le GT pointé par Last(R) pour obtenir des dernières modifications faites sur le
GSG avant de router la transaction.

L’utilisation du pointeur permet de connaître à tout moment le dernier GT qui a accédé au GSG
et donc de pouvoir retrouver les récentes modifications qui y sont annexées. Quand un GT pointé
(Last(R)) est contacté par un autre GT qui veut recevoir les dernières modifications, il envoie
uniquement le sous-graphe qu’il a obtenu des GT qui l’ont précédé et auquel il ajoute la dernière
transaction qu’il vient de router. En d’autres termes, un GT pointé n’envoie pas le GSG global
mais uniquement le sous-graphe manquant au GT qui l’a contacté. L’envoi que du sous-graphe
manquant à un GT minimise les informations à transférer et par conséquent la surcharge.

A titre illustratif, la figure 5.5 schématise le scénario pour construire un GSG cohérent en
cas d’accès concurrent aux métadonnées. Trois applications clientes soumettent trois transactions
T1, T2 et T3 aux routeurs GT1, GT2, and GT3 respectivement. Les trois transactions mettent à
jour la même relation R. Pour router T1, GT1 demande au NC maître le Meta(R) via l’opération
getMetadata(T1, R1) : le GSG et le pointeur Last sont initialement vide. Puis, GT2 voulant rou-
ter T2, demande au NC le Meta(R), et reçoit Last=GT1. Ainsi, GT2 contacte GT1 pour les mises
à jour manquantes sur le GSG (getPreced(R)) ; GT1 lui envoie le sommet T1. Par conséquent,
GT2 reconstruit le GSG complet qui devient : T1 → T2. Enfin, GT3 déroule le même procédure
que GT2 et obtient Last=GT2. Alors, GT3 contacte à son tour GT2 pour récupérer le sous-graphe
manquant et obtient T1→ T2. Ce faisant, GT3 reconstruit le GSG complet : T1→ T2→ T3.

Quand une transaction T accède à plusieurs relations, le GSG correspondant est obtenu en
réunissant les différents GSG(Ri). Cependant, l’accès à plusieurs relations peut engendrer des
problèmes. Soient deux transactions concurrentes T1 et T2. T1 souhaite modifier la relation R1

puis R2 alors que T2 décide de modifier R2 avant R1. Supposons que GT1 se charge de router
T1 alors que GT2 s’occupe de T2. GT1 demande au NC maître de R1 le GSG(R1) et GT2 fait
la même chose pour R2. Alors quand chacun des GT cherchera de récupérer le second GSG,

91

Chapitre 5. Routage des transactions

FIGURE 5.5 – Routage concurrent

voici la situation qui arrive : pour GT1, Last(R2) = GT2 alors que pour GT2, Last(R1)=GT1.
Ceci amène une situation de blocage des deux GT puisque chacun attend la réponse de l’autre
pour pouvoir lui donner une réponse à son tour, on parle de précédence croisée. Pour éviter ce
problème, les Meta(Ri) sont ordonnés suivant le nom de la relation. Ainsi, le GT qui gère T
récupère les GSG(Ri) en respectant cet ordre. Par exemple, si T a besoin de manipuler R1 et R2,
le GT récupère d’abord GSG(R1) via Meta(R1) avant de récupérer GSG(R2) dans Meta(R2).
Le graphe globale de T sera obtenu par GSG(T) = GSG(R1)∪GSG(R2). Cette stratégie permet
d’éviter l’occurrence des précédence croisée et donc de pourvoir construire toujours leGSG d’une
transaction.

En conclusion, malgré le fait que les NC délivrent des versions obsolètes du GSG, les GT sont
capable de reconstruire un GSG complet et cohérent avec une surcharge limitée par un aller-retour
de communication. Le bénéfice de cette approche est qu’un GT arrive à router une transaction
sans attendre que les modifications faites sur les métadonnées soient inscrites dans la DHT. Les
modifications sur les métadonnées sont propagées d’un GT à un autre, donc regroupées avant
d’être insérées dans la DHT. L’écriture en bloc des modifications constituent également un gain de
taille. En outre, nous mentionnons que le GSG reste de taille faible puisque que toute transaction
terminée ’validée sur l’ensemble des répliques) est soustraite du GSG.

5.2.3 Etude comparative des deux méthodes de gestion du catalogue
Intuitivement, la solution sans verrouillage est plus rapide que celle avec verrouillage car elle

demande moins de communication avec le catalogue. Plus précisément, nous souhaitons quantifier
la différence de coût entre les deux solutions. Le coût pour obtenir l’accès exclusif au GSG est
exprimé en nombre de messages. Nous distinguons deux types de messages dont les coûts diffèrent.
Un message GT→ GT (ou NC→ GT) a un coût unitaire m correspondant à une communication

92

5.3. Conclusion

directe entre deux noeuds. Un message GT→NC a un coût plus élevé car il doit effectuer plusieurs
sauts avant d’atteindre sa destination. Le nombre de sauts (noté r) dépend de l’organisation des
nœuds NC. La valeur de r est souvent supérieure à 2, par exemple, avec notre implémentation de
JuxMem, r vaut 3, car il faut contacter un groupe local et ou un groupe global. De plus, notons que
r augmente avec le nombre de nœuds gérant le catalogue. Nous détaillons le coût pour que GT2
obtienne l’accès exclusif lorsque GT1 détient le GSG.

1. Coût avec verrouillage
– GT1 demande et obtient le GSG ;
– GT2 demande le GSG au NC : r ∗m ;
– NC met en attente GT2 ;
– GT1 renvoie le GSG modifié au NC : r ∗m ;
– NC accorde leGSG à GT2 : m ;
– le nombre de message total est : C = (2r + 1)m

2. Coût sans verrouillage
– GT1 demande et obtient le GSG ;
– GT2 demande le GSG au NC : r ∗m ;
– GT2 demande le GSG à GT1 : m
– GT1 envoie le GSG à GT2 : m
– le nombre de message total est : C ′ = (r + 2)m

On ne prend pas en compte dans la deuxième solution le coût de transmettre leGSGmodifié au NC
car cela est fait de manière découplée et peu fréquente. En faisant la comparaison des deux coûts,
nous observons avec la méthode sans verrouillage, un bénéfice deC−C ′ = (2r+1)m−(r+2)m =
(r − 1)m.

Ce résultat montre que si tous les NC se trouvent dans un même réseau LAN et que chaque
NC connait tous les autres NC, alors les solutions avec verrouillage ou sans verrouillage sont
équivalentes car r = 1. Par contre, quand les NC sont sur différents LAN, comme dans le cas de
JuxMem, ou bien chaque NC ne connait que quelques NC (par exemple le cas des DHT), alors la
gestion des métadonnées sans verrouillage est toujours meilleure puis que r est largement supérieur
à un.

5.3 Conclusion
Nous avons décrit dans ce chapitre, notre approche pour gérer les traitements des transactions

et le catalogue réparti en cas d’accès concurrents. Nous proposons deux approches pour sérialiser
et router les transactions : une approche pessimiste basée sur les conflits potentiels et une seconde
qui est plutôt hybride puisqu’il fait un premier ordonnancement des transactions en se basant sur
les conflits potentiels, puis corrige cet ordonnancement en se basant sur les conflits réels. Notre
seconde approche favorise plus le parallélisme puisque les transactions sont exécutées de manière
optimiste, ce qui est très bénéfique dans le contexte des applications web 2.0 où les conflits sont
rares. Pour maintenir la cohérence globale, nous avons conçu un catalogue pour stocker les méta-
données. Le catalogue est maintenu de tel sorte qu’il soit disponible et passant à l’échelle.

93

Chapitre 5. Routage des transactions

94

Chapitre 6

Tolérance à la dynamicité des noeuds

La dynamicité, qui peut être définie comme étant l’attitude des nœuds à joindre ou quitter vo-
lontairement ou non le système, est un aspect important à prendre en compte lors d’une conception
d’un système réparti à grande échelle. Ceci est vrai pour la simple raison que la dynamicité a deux
impacts négatifs dans le fonctionnement du système : (1) une diminution de la capacité du système
(quand plusieurs nœuds quittent le système) et (2) des pertes d’informations quand un nœud quitte
le système durant le traitement d’une tâche, ce qui peut entrainer des incohérences du système.
Nous dissocions deux situations dans la gestion de la dynamicité : la déconnexion intempestive
d’un nœud que nous appelons panne d’un nœud et la déconnexion prévue d’un nœud. Le problème
des déconnexions prévues est assez simple à résoudre (cf. section 6.1). C’est pour cela ce chapitre
se concentre sur le cas des pannes.

Dans le chapitre précédent, nous avons présenté les algorithmes de routage pour contrôler l’exé-
cution cohérente des transactions. Cependant, ces algorithmes supposent que tous les nœuds impli-
qués dans l’exécution d’une transaction ne tombent pas en panne. Cette hypothèse est loin d’être
plausible dans le contexte d’un système à grande échelle où les nœuds qui composent le système
peuvent tomber en panne à tout moment. Pourtant, l’occurrence des pannes peut entraîner des si-
tuations d’incohérences même si le routage est fait de manière correcte. Pour illustrer le problème
introduit par les pannes, supposons qu’une application de vente en ligne A envoie une transaction
T pour acheter un objet. L’objet se trouve dans deux répliques Ri

1 et Ri
2 et il y a deux routeurs

GT1 et GT2. Supposons que GT1 reçoit T et l’envoie sur Ri
1 qui l’exécute mais tombe malheureu-

sement en panne avant d’envoyer les résultats à A. Au bout d’un moment, A n’ayant pas reçu de
réponse, renvoie T . Supposons cette fois ci que T soit interceptée par GT2. GT2, n’ayant aucune
connaissance de la première exécution de T sur Ri

1, route T sur Ri
2. Si l’exécution de T se déroule

avec succès sur Ri
2, alors T est exécutée à deux reprises et A aurait acheté deux fois le même ob-

jet. Pour éviter ce genre de problème, il faut contrôler l’occurrence des pannes des nœuds durant
l’exécution des transactions.

Ce chapitre aborde la tolérance à la dynamicité des nœuds pour l’algorithme de routage défini
dans le chapitre précédent. Le système de routage que nous proposons (cf chapitre 4) est redon-
dant : il contient plusieurs nœuds GT, et NC, et les données sont répliquées sur plusieurs nœuds
ND. Il y a deux raisons à cette redondance :

1. accroitre les ressources permet de traiter les transactions plus rapidement ;

95

Chapitre 6. Tolérance à la dynamicité des noeuds

2. disposer de plusieurs nœuds identiques permet d’assurer une continuité de service malgré la
panne de certains nœuds.

Cette dernière raison nécessite de concevoir un algorithme de routage capable de réagir correcte-
ment face à l’occurrence d’une panne. L’objectif principal de ce chapitre est de rendre l’algorithme
de routage tolérant aux pannes. Le deuxième objectif de ce chapitre est d’étudier de manière théo-
rique la disponibilité de notre système dans le temps : quelles conditions garantissent qu’il y a
toujours au moins un nœud actif (i.e. en service) pour traiter une transaction, autrement dit, com-
ment définir le nombre de répliques optimal pendant une période donnée afin d’avoir toujours un
nœud disponible pour traiter la transaction.

Nous précisons que nous étudions la détection et la résolution des pannes afin de maintenir la
cohérence et de borner le temps de réponse uniquement. Autrement dit, nous ne nous intéressons
pas à restaurer les nœuds en panne.

Le reste de ce chapitre est organisé comme suit. La section 6.1 présente la gestion des dé-
connexions prévues. La section 6.2 décrit les mécanismes utilisés pour faire face aux pannes. La
section 6.3 étudie le nombre minimal de répliques en dessous duquel, le système n’assure plus la
disponibilité du système.

6.1 Gestion des déconnexion prévue
Une déconnexion prévue survient si un nœud décide volontairement de quitter le système et

en informe aux GT responsable du système. Nous rappelons que nous intéressons qu’aux décon-
nexions des GT et des ND qui peuvent compromettre la cohérence du système.

Déconnexion prévue d’un GT

Nous supposons que deux nœuds GT adjacents (liés par la relation prédécesseur - successeur)
ne quittent jamais l’anneau en même temps. Ils le font l’un à la suite de l’autre. La figure 6.1 décrit
sommairement le processus de déconnexion d’un GT. Quand GT2 qui a comme prédécesseur GT1
et comme successeur GT3 décide de quitter le système, il informe GT1 de son intention de quitter
l’anneau. Pour ce faire, GT2 envoie un message Quitte Anneau (QA) à GT1 en précisant qui était
son successeur. Cette information permet à GT1 de savoir qui va devenir son nouveau successeur.
Par la suite,GT2 envoie un message Maj Anneau (MA) àGT3 qui, à la réception de ce message, met
à jour sa vue (i.e. définit GT1 comme son nouveau prédécesseur). Durant la phase de déconnexion,
GT2 ignore simplement les messages entrants et particulier les transactions entrantes.

Déconnexion prévue d’un ND

Si un ND veut se déconnecter, il envoie un message appelé Requête Déconnexion (RD) au
dernier GT qui lui a envoyé une transaction. Supposons comme le montre la figure 6.2, GTi est
le dernier GT qui ait contacté ND1 et GTj l’avant dernier GT. Donc ND1 contacte d’abord GTi et
attend pendant une période pour recevoir l’aval de ce dernier. Si ce GTi n’arrive pas à répondre
au bout de cette période, ND1 contacte GTj . Si toutefois le GTj n’est pas aussi disponible, ND1

96

6.1. Gestion des déconnexion prévue

FIGURE 6.1 – Déconnexion d’un GT

contactera le GT qui l’a contacté avant GTj , et ainsi de suite. Quand GTj reçoit le message RD, il
enlève ND1 de la liste des ND disponibles pour éviter qu’un autre GT route une transaction vers ce
nœud en cours de déconnexion. Par la suite, GTj envoie à ND1 un message appelé Déconnexion
Reçue (DR), ce qui permet à ce dernier de se déconnecter. Si après plusieurs tentatives de contacter
un GT, ND1 n’y arrive pas, il se déconnecte et son départ sera interprété comme une panne par tout
GT qui tentera de lui envoyer une transaction implicite (cf. section suivante).

FIGURE 6.2 – Déconnexion d’un ND

97

Chapitre 6. Tolérance à la dynamicité des noeuds

6.2 Gestion des pannes

Dans cette section nous étudions les mécanismes de gestion des pannes dans le but de maintenir
la cohérence des données et de borner le temps de réponse en cas de pannes des nœuds du système.
Pour détailler nos protocoles de gestion des pannes, nous présentons les types de pannes que nous
prenons en compte dans cette étude. Puis nous décrivons comment ces pannes sont détectées puis
résolues.

6.2.1 Modèle et détection de pannes

Dans cette section, nous présentons les types de pannes que nous prenons en compte et com-
ment elles sont détectées.

Modèle de pannes

Dans cete section, nous considérons les systèmes constitués uniquement de deux types de com-
posants : les nœuds qui traitent les transactions (NA, ND et GT), et les canaux de communications.
Chacun de ces types de composants peut tomber en panne durant le fonctionnement du système,
engendrant ainsi une panne de nœud ou de communication. Les nœuds du catalogue NC, sont
exclus car ils sont gérés via une DHT ou JuxMem qui ont leur propre mécanisme de gestion des
pannes. Dans la suite de ce travail, nous axons notre réflexion sur les types de pannes suivants :

– Panne d’un nœud. Quand un nœud tombe en panne, ses traitements s’arrêtent anormale-
ment, ce qui peut conduire à des incohérences. Nous supposons qu’un nœud fonctionne
correctement ou s’arrête complètement (il est en panne). En d’autres mots, nous ne prenons
en compte que les pannes franches et non les pannes byzantines ;

– Panne de communication. Une panne de communication survient quand un nœud Ni est
incapable de contacter le nœud Nj , bien qu’aucun d’entre eux ne soit en panne. Si une telle
panne survient, aucun message n’est délivré. Dans notre contexte, la communication est
asynchrone et chaque message reçu par un nœud doit être acquitté. Sans cet acquittement,
nous supposons que le message est perdu à cause d’une panne de communication ou d’un
nœud.

Par ailleurs, chaque noeud (NA, GT, ND) qui rejoint le système est capable de contacter un
noeud GT disponible. Le GT contacté est alors responsable d’inclure le nouveau nœud en mettant
à jour l’anneau (arrivée d’un GT) ou le répertoire partagé (connexion d’un NA ou ND). Comme
notre principal objectif est de préserver la cohérence quand un nœud quitte le système, nous re-
streignons notre étude aux pannes des GT et ND (si un NA quitte le système, la cohérence du
système n’est nullement menacée puisque le NA délègue l’exécution des transactions aux GT).
De plus, nous supposons qu’il y a toujours au moins un nœud disponible (GT ou ND) sur lequel
on peut s’appuyer à chaque fois que l’on détecte une panne de nœud. Autrement dit, il n’y a pas
d’occurrence simultanée de pannes de tous les nœuds du système.

98

6.2. Gestion des pannes

Détection des pannes

En général, les pannes sont détectées soit par des messages périodiques de type heartbeat [ACT99],
soit à la demande par des messages ping-pong [LAF99]. [CT96] présentent les principes de détec-
tion collaborative pour les systèmes à large échelle. Nous nous inspirons de ces travaux en com-
binant l’utilisation des messages heartbeat et ping-pong. En effet, nous utilisons une détection de
pannes à la demande pour les ND et une détection périodique pour les GT. L’utilisation des mes-
sages périodiques pour détecter les pannes des GT se justifie par le nombre réduit de GT comparé
à celui des ND, générant moins de messages. En outre la détection des pannes de ND se fait par
collaboration entre les GT, d’où l’importance de détecter le plus tôt possible une panne de GT. Par
contre l’utilisation de cette technique pour détecter les pannes des ND engendrerait beaucoup de
messages du fait de leur nombre important. Ainsi, pour détecter les pannes des ND sans surcoût
significatif, on intègre la détection dans le protocole de routage utilisant la méthode ping-pong.
De ce fait, un ND en panne n’est détecté que si un GT essaie de lui envoyer une transaction. Pour
prendre en compte des pannes survenant lors de l’accès au répertoire réparti, nous nous appuyons
soit sur JuxMem qui empêche qu’un lecteur (ou écrivain) en panne verrouille l’accès aux données
indéfiniment, soit sur la DHT qui offre des primitives de récupération ou de localisation de res-
sources même en présence de pannes, autrement dit, elle a ses propres mécanismes de gestion de
panne.

Les déconnexions prévues n’ont pas besoin d’être détectées car elles sont déclarées avant leur
occurrence par les nœuds qui l’expérimentent. Nous présentons d’abord les mécanismes de gestion
des déconnexions prévues avant de présenter ceux des pannes.

6.2.2 Tolérance aux pannes
Dans l’optique de gérer les pannes, nous reprenons notre protocole de routage décrit dans 5.1.2

en faisant abstraction de l’accès aux métadonnées. En effet l’accès aux métadonnées est considéré
dans cette section comme étant une action interne d’un GT. Ce choix découle du fait que nous
déléguons la gestion des pannes des nœuds stockant les métadonnées à JuxMem ou à la DHT. Le
protocole de routage peut être découpé en trois phases. La figure 6.3 représente le déroulement du
processus d’exécution de la transaction T en absence de pannes.

1. phase d’initialisation : Durant cette phase, un NA envoie T à un GT ;

2. phase de routage : Le GT exécute un des algorithmes de routage (voir section 5.1.4 et sec-
tion 5.1.3) et envoie ainsi la transaction à un ND ;

3. phase d’exécution : Pendant cette phase, un ND reçoit une transaction T , l’exécute locale-
ment et envoie le résultat au NA qui avait initié la transaction. Il informe aussi le GT qui l’a
contacté que T a été correctement exécutée.

Dans la suite, nous utilisons les noms de messages définis dans la figure 6.3. A chacune des
phases de notre protocole, des pannes peuvent survenir, empêchant alors l’exécution correcte des
tâches qui sont allouées aux GT et ND participant à l’exécution d’une transaction. Suivant la phase
en cours, un nœud (NA, GT ou ND) peut détecter la panne d’un nœud participant à l’exécution

99

Chapitre 6. Tolérance à la dynamicité des noeuds

FIGURE 6.3 – Les phases d’exécution d’une transaction

de la transaction et donc essayer de la résoudre. Ainsi, lors de la première phase, un NA peut
expérimenter la panne d’un GT et tente de résoudre celle-ci, on parle alors de gestion des pannes
faite par le NA. De même durant la phase de routage ou d’exécution, un GT peut détecter la panne
d’un ND qu’il résoudra : il s’agit de la gestion des pannes faites par le GT. Enfin, durant la phase
d’exécution, un ND peut détecter la panne d’un GT ou d’un NA et on parle de gestion faite par un
ND. Dans les trois prochaines sections nous présentons comment un nœud arrive à détecter ou à
suspecter une panne et comment il le prend en compte.

Gestion des pannes faite par le NA

Un NA envoie un message req à un GT et initialise ensuite un temporisateur δa (cf. figure 6.4).
Quand δa expire, le NA conclut que le message req ou l’acquittement ack1 est perdu à cause d’une
panne de communication ou du GT contacté. Alors, NA retransmet le message req avec le même
identifiant global. Pour accroître les chances de réussite de la retransmission, le NA incrémente
le nombre de GT cibles. Plus précisément, le NA ajoute un GT de plus sur la liste des destina-
taires à chaque fois qu’il retransmet req. Les GT candidats sont choisis parmi les GT connus par
le NA en utilisant l’algorithme du tourniquet. Remarquons que la cohérence ne peut être compro-
mise puisque la transaction n’est transmise à aucun ND pour exécution. Même si plusieurs GT
reçoivent la même transaction, cette dernière n’est transmise qu’à un seul ND grâce à l’utilisation
de l’identifiant global et de l’accès exclusif au répertoire partagé.

Quand un NA reçoit ack1 de la part d’un GT, il arrête toute tentative de retransmission de req
et initialise un autre temporisateur δs. Si le NA n’a pas de résultats jusqu’à l’expiration de δs, il
conclut que la transaction T est toujours en exécution ou ses résultats sont perdus ou T a échoué.
Ce faisant NA envoie req’ aux GT précédemment contactés (req’ ressemble à req, mais signifie
aussi que le NA avait déjà reçu ack1). Afin de réduire les retransmissions inutiles, les valeurs des

100

6.2. Gestion des pannes

temporisateur sont basées sur la latence du réseau et le temps moyen d’exécution des transactions.
D’où, δa ≥ 2 ∗ λN et δs ≥ 2 ∗ δa + λD + Avg(T) avec λN la latence du réseau, λD est le temps
pour lire/écrire sur le répertoire partagé et Avg (T) est le temps moyen d’exécution de T .

FIGURE 6.4 – Comportement du NA en fonction des temporisateur

Gestion des pannes faite par le GT

A la réception d’un message req, le GT envoie l’acquittement ack1 au NA. Ensuite, le GT
vérifie si la transaction T est terminée ou est encore en exécution. Si T n’est pas mentionnée dans
le répertoire partagé, alors le GT route T vers un ND (ceci évite d’exécuter deux fois la même
transaction).

A la réception d’un message req’ de la part d’un NA, trois cas peuvent être identifiés en fonction
de l’état de la transaction T :

1. si T est déjà exécutée sur le nœud NDi, alors le GT retransmet T sur NDi. Ce cas survient,
si le résultat de l’exécution de la transaction n’a pu être envoyé à cause d’une panne de communi-
cation ;

2. si T est en progression (déjà routée mais non encore exécutée), alors le GT répond par un
message wait au NA. Ce cas se présente quand T dure plus longtemps que prévu à cause d’une
panne d’un nœud ND ;

3. si T n’est pas mentionnée dans le répertoire partagé, alors le GT achemine T vers un ND.
Ce cas est identifié si le GT tombe en panne avant de choisir un ND (donc avant d’écrire sur le
répertoire partagé).

A chaque évaluation de l’algorithme de routage, le GT garde la liste des ND candidats triés
suivant l’ordre croissant du coût. Par la suite, le GT envoie le message proc au premier candidat
NDi, et initialise un temporisateur δa. Une fois que le message ack2 est reçu, le GT inscrit dans le

101

Chapitre 6. Tolérance à la dynamicité des noeuds

répertoire partagé que T est en cours d’exécution. A partir de ce moment, il initialise un second
temporisateur δr.

FIGURE 6.5 – Comportement du GT en fonction des temporisateur

Quand δa et δr expirent, le GT conclut qu’une panne de communication ou du ND est survenue.
Il envoie alors le message proc au prochain candidat NDj sur la liste (cf. figure 6.5). En parallèle, il
invoque le module de détection de pannes (cf. figure 4.6) qui vérifie si NDi est disponible ou non.
Pour cela, il contacte son prédécesseur et son successeur et chacun d’entre eux essaie d’entrer en
contact avec NDi en lui envoyant un message. Les résultats de ces échanges sont envoyés au nœud
initial. Si tous les résultats sont négatifs, il conclut que NDi est en panne et l’ajoute dans la file des
nœuds en panne, appelée FNP et stockée dans le répertoire partagé. Par contre, si au moins un des
résultats est positif, le GT suppose qu’il y a une panne de communication temporaire entre lui et
NDi. Il peut donc considérer NDi comme un candidat potentiel lors des prochains routages.

Le GT utilise également cette même procédure quand un nœud ND voulant valider une tran-
saction T le contacte à l’expiration du temps de décision ∆TD (cf. section 13).

Quelle que soit la cause de ce retard, le GT vérifie que les transactions correspondantes aux
DataSet(Ti) manquants sont déjà exécutées en consultant le catalogue réparti.

Dans l’affirmative, il essaie de récupérer les DataSet(Ti) manquants et de faire la vérification
nécessaire. Si malgré cette tentative, il n’arrive pas à récupérer tous les DataSet(Ti) manquants
ou même que les transactions correspondantes ne sont pas encore exécutées, alors le GT envoie
directement au ND les transactions manquantes en tenant compte des vérifications positives faites
avec DataSet(Tk) qui ont pu être récupérés. Précisément, si avec les DataSet(Tk) déjà reçus, le
GT détecte des conflits il demande au ND de reprendre la transaction T . Par contre, s’il existe des
transactions qui ne sont pas réellement en conflit avec T , le GT avise le ND en lui donnant une
nouvelle séquence de contraintes de précédence.

Si un nœud NDj exécutant une transaction Ti qui précède T n’arrive pas à être joint par le GT,

102

6.2. Gestion des pannes

ce dernier lance le module de détection de pannes.
Le gestionnaire des pannes, appelé module de reprise sur panne (cf. figure 4.6), est chargé

de vérifier la reprise de chaque nœud en panne et de l’enlever de la file FNP comme décrit dans
[CT96].

Finalement, quand un GT reçoit un message eot de la part d’un NDi, il met à jour le répertoire
partagé en mentionnant que T est exécutée sur NDi, et il envoie un acquittement ack3 à NDi.

La valeur de δr est proportionnelle à la latence du réseau et au temps moyen d’exécution de T .
Nous définissons δr ≥ δa + Avg(T). Pour éviter les messages inutiles, nous posons δr < δs de tel
sorte qu’un NC ne peut retransmettre une requête avant qu’un GT n’ait la possibilité de détecter
une potentielle panne du ND.

Gestion des pannes faite par le ND

A la réception d’un message proc, le ND répond au GT par l’envoi de l’acquittement ack2. Le
ND vérifie d’abord si T n’est pas déjà exécutée (en consultant son journal). Dans la négative, le
ND exécute T . Si T a fini de s’exécuter, le ND répond par un message res (contenant le résultat
de l’exécution de T) au client qui a initialisé T . Si toutefois, T a déjà été exécutée, le ND envoie
un nouveau message res au NA. Le ND répond également par un message eot au GT, et initialise
un temporisateur δa. Quand δa expire, le ND conclut qu’il y a une panne de communication ou du
GT. Alors, il ajoute un message eot dans un buffer pour l’envoyer lors de la prochaine notification
en utilisant la technique de piggybacking. Ceci a pour objectif de réduire le nombre de messages
envoyés au GT par rapport à une stratégie de tentatives périodiques.

En outre, nous remarquons que si le nœud suspecté a déjà traité la transaction avant de tomber
en panne, alors l’exécution de T sur un autre ND ne compromet pas la cohérence, puisque l’exé-
cution de toutes les transactions est faite de manière similaire sur tous les nœuds (i.e. avec un ordre
de précédence global).

6.2.3 Majoration du temps de réponse

Comme décrit précédemment, notre protocole de routage se termine malgré la présence de
pannes. Néanmoins, le délai pour exécuter totalement une transaction augmente proportionnelle-
ment avec le nombre de pannes. Plus le nombre de retransmissions nécessaires pour exécuter une
transaction est grand, plus le temps d’exécution s’élève. Pour démontrer l’efficacité de notre ap-
proche, nous montrons que le nombre d’essais requis pour exécuter une transaction est souvent
faible. Dans cette perspective, nous notons avg(T), le temps moyen d’exécution d’une transaction,
λN , la latence moyenne du réseau, λD, le temps d’accès moyen au répertoire partagé et S̄, la taille
de la séquence de rafraîchissement. En absence de toute panne, le temps nécessaire pour exécuter
T est :

time(T) = 3 ∗ λN + (S̄ + 1) ∗ avg(T) + λD

Si un GT et/ou un ND participant à l’exécution de T tombe en panne, alors dans le pire des cas,
la transaction va être exécutée après k tentatives initiées par le NC. Soit k le nombre de tentatives

103

Chapitre 6. Tolérance à la dynamicité des noeuds

requises lors de l’exécution de T , alors le temps total d’exécution de T est :

timek(T) = k ∗ time(T) + (k − 1) ∗ δs

Supposons que p est la probabilité qu’une transaction tombe en panne (i.e. NC n’a reçu aucun
résultat) et X une variable aléatoire représentant le nombre de tentatives.

P (X = i) = (1− p) ∗ (p)i−1 est la probabilité que les (i-1) premières tentatives ont échoué et
que la ime a réussi. Le nombre de tentatives exécutées est obtenu avec la formule suivante :

E(X) =
n∑
i=0

i ∗ P (X = i) = (1− p) ∗ (
n∑
i=0

i ∗ pi−1)

Une majoration possible de E(X) est E(X) < (1 − p) ∗ (
∑∞

i=0 i ∗ pi−1). En remplaçant∑∞
i=0 i ∗ pi−1 par sa limite 1

(1−p)2 , on obtient :

E(X) <
1

(1− p)

Par conséquent, nous pouvons estimer le nombre de tentatives : k ≈ d 1
1−pe. Par exemple, k=2

pour une probabilité de panne inférieure à 50 %. A partir de ces résultats, nous concluons que le
nombre de tentatives d’exécuter une transaction est borné et il est faible.

6.3 Gestion contrôlée de la disponibilité
Dans la section précédente, nous avons décrit les mécanismes pour faire face aux pannes des

nœuds lors d’un traitement d’une transaction. Cet algorithme suppose qu’il existe toujours un
nœud sur lequel une transaction peut être reprise. Nous allons étudier comment peut on garantir
cette hypothèse en contrôlant le degré de la réplication. Comme nous l’avons spécifié dans la
section 2.3.3, la réplication permet de masquer les pannes, puisqu’à chaque fois qu’un nœud tombe
en panne, un autre nœud peut être utilisé pour poursuivre les traitements que le nœud en panne
effectuait. Cela suppose qu’il existe au moins un nœud sur le système capable de faire le traitement
du nœud en panne, ce qui nous amène à la définition suivante.

Définition 14. Un système est dit disponible, s’il existe au moins un nœud non en panne (appelé
remplaçant) qui peut continuer à faire les traitements que le nœud en panne faisait.

S’il s’agit d’un nœud ND, le nœud remplaçant doit être capable de faire les transactions du
nœud en panne et s’il s’agit d’un GT, il doit être capable de router les transactions.

Avec cette définition, il apparaît que pour rendre un système disponible il suffit de garantir la
présence d’au moins un nœud remplaçant à tout moment pendant une période fixée.

Dans cette section nous présentons un modèle qui nous permet de savoir le nombre de répliques
minimal pour garder le système disponible pendant un intervalle de temps. Pour ce faire, nous
proposons une approche basée sur la probabilité (ou fréquence) des pannes. En effet, connaissant la

104

6.3. Gestion contrôlée de la disponibilité

probabilité d’occurrence des pannes, nous définissons le nombre minimal de répliques nécessaires
pour rendre le système disponible pendant un intervalle de temps. Pour ce faire, nous supposons
que les pannes sont franches (cf. section 6.2.1).

Le calcul de la probabilité de pannes dans un système distribué est un problème résolu de
longue date. Dans [OV99], les auteurs arguent que l’occurrence des pannes suit une distribution de
Poisson. De cette hypothèse, la probabilité des pannes est donnée par :

Pk =
(λt)k

k!
e−λt (6.1)

Pk représente la probabilité que k pannes surviennent durant l’intervalle de temps t et λ le taux
d’occurrence des pannes pendant t.

Partant de cette probabilité, nous déterminons le nombre minimal de répliques nécessaire pour
que l’occurrence de k pannes ne rend pas indisponible le système. Pour ce faire, supposons λ, le
taux d’arrivée des pannes, Ptol, la probabilité de panne des nœuds que l’on veut tolérer pendant
l’intervalle de temps t (i.e. le nombre de pannes qui ne doit pas compromettre la disponibilité).
Pour assurer la disponibilité durant t, nous avons besoin de définir K le nombre de répliques tel
que PK > Ptol.

Soit m tel que : ∀m < K,PK < Ptol ≤ Pm.
Pour m = 2, P2 ≥ Ptol et nous pouvons obtenir par addition de termes P1 + 2P2 ≥ Ptol + 2Ptol.
Pour m = 3, P3 ≥ Ptol et P1 + 2P2 + 3P3 ≥ Ptol + 2Ptol + 3Ptol.
En continuant ce raisonnement jusqu’au rang m, nous obtenons l’inégalité suivante dont la partie
droite est une suite arithmétique puisque Ptol est constante.

P1 + 2P2 + ...+mPm ≥ Ptol + 2Ptol + ...+mPtol (6.2)

En faisant le calcul de la somme de la suite arithmétique, nous obtenons :

m∑
n=1

nPn ≥
m(m+ 1)

2
Ptol (6.3)

Ensuite, en remplaçant Pn par sa valeur dans 6.3, nous obtenons :

e−λt
m∑
n=1

(λt)n

(n− 1)!
≥ m(m+ 1)

2
Ptol (6.4)

L’ajout de quelques termes positifs dans la partie gauche de l’équation 6.4 ne change pas le sens
de l’inégalité et donne :

λt.e−λt[
m−1∑
n=0

(λt)n

(n)!
+

∞∑
n=m

(λt)n

(n)!
] ≥ m(m+ 1)

2
Ptol (6.5)

Ceci est équivalent à :

λt.e−λt
∞∑
n=0

(λt)n

(n)!
≥ m(m+ 1)

2
Ptol (6.6)

105

Chapitre 6. Tolérance à la dynamicité des noeuds

Par ailleurs, comme
∑∞

n=0
(λt)n

(n)!
= eλt alors, l’inégalité 6.6 devient :

λt ≥ m(m+ 1)

2
Ptol (6.7)

En posant m = K - 1, nous obtenons l’inéquation suivante m2 + m − 2λt
Ptol
≤ 0 dont la résolution

aboutit à :

K > d
√

1

4
+

2λt

Ptol
− 1

2
e (6.8)

La formule 6.8 permet de déterminer le nombre de réplique suffisant pour tolérer une probabi-
lité de pannes Ptol dont le taux d’occurrence des pannes est λ. Par exemple, soit un système avec un
taux d’arrivée des pannes égal à 0.005 (λ = 0.005) et un intervalle de temps t égal à 1000 secondes.
Nous calculons le nombre de pannes moyen durant t par λ ∗ t = 5. Par conséquent, en utilisant
la formule 6.8, le nombre de répliques est K > d7.06575e. Intuitivement, il est clair qu’avec 7
répliques, il existe au moins un nœud disponible durant t malgré l’occurrence de 5 pannes.

6.4 Conclusion
Dans ce chapitre, nous avons présenté un mécanisme de gestion de la dynamicité. Ce méca-

nisme est basé sur la détection sélective des fautes et sur un algorithme de reprise. Contrairement à
la plupart des autres approches, notre mécanisme n’implique pas l’utilisation de nœuds qui ne parti-
cipent pas à l’exécution de la transaction en cours, ce qui le permet de passer à l’échelle. Pour cela,
nous adaptons des approches existantes de détection des pannes afin de les rendre opérationnelles
pour chaque type de nœud (gestionnaire de transaction et nœud de données) de notre système.
Nous avons proposé un protocole permettant de gérer toutes les situations lorsqu’un nœud quitte
le système pendant le traitement d’une transaction. Ceci est nécessaire et suffisant pour contrôler
la cohérence du système, surtout en cas de déconnexions intempestives.

Cependant, pour garder le débit transactionnel constant en cas de fréquentes pannes, il faut
être capable d’ajouter de nouvelles ressources en fonction des déconnexions. Pour ce faire, nous
avons proposé un modèle pour déterminer et contrôler le nombre de répliques requises pour garder
le système disponible. Autrement dit, ce modèle permet de déterminer le nombre minimum de
répliques nécessaires au bon fonctionnement du système et donc de minimiser les surcoûts liés à la
gestion des répliques. Cette étude nécessite d’être complétée pour déterminer la manière d’ajouter
ou de réduire le nombre de répliques en fonction de l’évolution de la charge du système ou de sa
dynamicité.

106

Chapitre 7

Validation

Pour valider la faisabilité de nos approches, nous avons implémenté et expérimenté deux pro-
totypes nommés respectivement DTR (Distributed Transaction Routing) et TRANSPEER (TRAN-
Saction on PEER-to-peer).

Puis, nous avons effectué des simulations pour étudier le passage à l’échelle et la tolérance
aux pannes de notre solution. Nous mentionnons que l’implémentation de deux prototypes est liée
au besoin de gérer le catalogue avec verrouillage ou sans verrouillage. De fait, DTR constitue le
prototype développé avec verrouillage en s’appuyant JuxMem. TRANSPEER est conçu pour la
gestion du catalogue sans verrouillage et pour un modèle de communication de type P2P entre
les composants du routeur et s’appuie sur FreePastry [Fre]. De plus, notre algorithme de routage
pessimiste est implémenté dans DTR alors que l’approche hybride l’est avec TRANSPEER.

De plus, notre choix d’utiliser à la fois de l’expérimentation et de la simulation se justifie par
le fait que : (1) l’expérimentation permet d’évaluer un système dans des conditions réelles ; et (2)
la simulation est une représentation simplifiée du système, facile à réaliser et requiert moins de
ressources que l’implémentation, ce qui favorise l’évaluation d’un système à grande échelle. Nous
avons mené une série d’expériences sur nos deux prototypes pour étudier les performances de notre
système : débit transactionnel, temps de réponse, passage à l’échelle et tolérance aux pannes.

Notons dores et déjà que nous n’avons fait qu’une validation partielle du passage à l’échelle de
notre solution, autrement dit, notre solution n’assure pas un grand passage à l’échelle. Néanmoins
les expériences effectuées nous ont permis de savoir les impacts de nos différents choix sur le
passage à l’échelle. Nous décrivons dans le section 8.2 (Perspectives), comment nous comptons
assurer ce passage à l’échelle.

Pour ce faire, nous étudions d’abord la surcharge liée à la gestion du catalogue dans la section
7.1, puis la section 7.2 les performances globales du routage et enfin les apports de la gestion des
pannes sont décrits dans la section 7.3.

7.1 Evaluation de la gestion du catalogue
Dans cette section nous évaluons les performances de la gestion du catalogue. Nous vérifions

que l’accès au catalogue lors du routage n’est pas une source de congestion, i.e. il ne ralentit pas le

107

Chapitre 7. Validation

Charge applicative nombre de NA (10→ 80)
GT concurrents Nombre de GT en concurrence (1→ 2)
Taux de conflit Nb total d’accès concurrents / Nb total d’accès (0%→ 100%)
Granularité Relation
Degré de réplication Nombre de répliques d’une relation Ri

TABLE 7.1 – Paramètres d’évaluation de l’accès au catalogue

routage des transactions.
Pour atteindre ces objectifs, nous utilisons chacun de nos deux prototypes pour mener des

séries d’expériences. Pour chaque expérience, nous mesurons le débit du routage en faisant varier
les paramètres de notre système qui sont regroupés dans le tableau 7.1. Nous terminons par une
analyse de nos approches de gestion du catalogue, en nous plaçant dans le contexte des applications
Web 2.0.

La charge applicative est constituée aléatoirement de requêtes et de transactions envoyées par
les NA. Un NA envoie une transaction puis attend la réponse avant d’envoyer une autre. Tous les
NA ont la même priorité i.e. leurs transactions sont traitées sans tenir compte du type de l’applica-
tion. Toutes les transactions ont la même granularité (Relation) et accèdent aux données de manière
aléatoire. La base de données est répartie sur les ND de sorte qu’une transaction s’exécute sur un
ND. Le taux de conflit, noté τC est défini par le nombre total de transactions en conflit potentiel
sur le nombre total de transactions courantes. Soit TT l’ensemble des transactions en cours et TC ,
l’ensemble des transactions en conflits, alors τC = |TC |

|TT |
.

7.1.1 Surcharge de la gestion du catalogue dans DTR

Cette section présente une série d’expériences destinées à valider le modèle de gestion des
métadonnées avec verrouillage présenté dans la section 4.3.2. Ces résultats ont fait l’objet de pu-
blications en 2008 dans la conférence nationale BDA [SNG08b] et dans le workshop international
HPDGRID [SNG08a] et en 2010, dans la revue nationale RSTI -ISI [SNG10a].

Environnement expérimental

DTR est implémenté avec le langage C et s’appuie sur les services de JuxMem, qui est conçu au-
dessus de la plate-forme JXTA de Sun. JuxMem fournit des accès à une mémoire virtuelle partagée
à travers une grille. Néanmoins, nous remarquons que notre système est faiblement dépendant de
JuxMem, puisque JuxMem est utilisé comme une API (une librairie). Nous pourrions donc utiliser
tout logiciel qui fournit une API d’accès à une mémoire virtuelle partagée.

Nous avons effectué toutes les expériences sur un cluster de 20 nœuds sur lesquels s’exécutent
les GT, les NC et les ND avec Postgresql comme SGBD sous-jacent pour stocker les données. Nous
avons utilisé les ordinateurs personnels des membres du laboratoire pour faire tourner les NA. Ceci
constitue au total un environnement de 40 machines physiques. Tous les nœuds (P4, 3GHz, 2Gb
RAM) sont interconnectés par un réseau local Fast-Ethernet 1 Gbit/s.

108

7.1. Evaluation de la gestion du catalogue

Impact de l’accès au catalogue partagé

Les premières expérimentations s’intéressent au routage proprement dit. Elles mesurent la sur-
charge engendrée par l’utilisation d’un répertoire partagé pour stocker les métadonnées. La charge
applicative est générée par un nombre croissant d’applications, chacune d’entre elles ne peut pas
envoyer plus d’une transaction par seconde à un routeur. Nous mesurons le débit (en transactions
/ seconde) qu’un routeur peut assurer. La figure 7.1 montre que chacun des routeurs peut traiter
jusqu’à 40 transactions/seconde. Par ailleurs, la figure montre qu’au delà de 40 applications (ou 40
transactions par secondes) le débit du routage reste constant. Cela est dû par le fait que chaque pro-
cessus de routage requiert un accès au catalogue et un calcul du nœud optimal qui est dure environ
24 millisecondes. Par conséquent, au delà d’une charge applicative 40 transactions par seconde,
le routeur n’est plus capable de les traiter toutes en moins d’une seconde. Cependant, les résultats
montrent que le temps d’accès au catalogue est faible, autrement dit, le temps d’accès au catalogue
est acceptable.

FIGURE 7.1 – Débit d’un seul routeur avec DTR

Pour confirmer ce résultat et évaluer davantage le coût de cet accès, nous augmentons la taille
du répertoire en ajoutant de nouvelles répliques, puisque plus de répliques (ND) impliquent plus
de métadonnées et donc plus de temps pour les récupérer et les manipuler. De plus, un grand
nombre de réplique requiert plus de temps pour déterminer le nœud optimal. Nous reportons dans
la figure 7.2, le débit traité dans trois situations : petite, moyenne et grande taille du répertoire
(respectivement 5, 50, 100 répliques). Nous mesurons une baisse des performances inférieure à 20
% pour une grande quantité de métadonnées (100 répliques). Pour un degré de réplication moyen
(par exemple 50 répliques), la baisse est uniquement de 5 %. Ceci montre que le répertoire pénalise
peu les performances. Ce résultat est une conséquence de notre choix architectural de fragmenter
les métadonnées et de ne garder dans le catalogue que les transactions non encore propagées sur
tous les ND. De plus, ce résultat est important si on se réfère à notre contexte où le nombre de

109

Chapitre 7. Validation

transactions est si important que les garder toutes nécessiterait un espace de stockage considérable
pouvant ralentir la recherche d’informations dans le catalogue.

FIGURE 7.2 – Surcharge du répertoire

Impact de l’accès concurrent

Nous étudions l’impact de l’accès concurrent de plusieurs routeurs au répertoire partagé. La
charge applicative est générée de la même manière que les premières expérimentations, cependant
les transactions sont envoyées à 2 routeurs de telle sorte que la moitié de la charge va sur chacun
des nœuds. Les résultats de la figure 7.3 sont obtenus dans le pire des cas (i.e. toutes les transactions
accèdent à la même relation, conduisant les routeurs à accéder au même Meta(R)). Ces résultats
montrent un débit maximal de 21 transactions/seconde, c’est-à-dire la moitié d’un seul routeur. En
effet, l’attente d’un verrou dégrade considérablement les performances. Néanmoins, dans le pire
des cas où chaque accès au répertoire est retardé par un autre accès concurrent sur la même donnée,
le routeur est encore capable de fournir de bons résultats. Bien que ce résultat soit acceptable, nous
tentons de l’améliorer en réduisant l’attente au niveau de l’accès aux métadonnées par suppression
de l’utilisation des verrous. Pour ce faire, nous utilisons à la section suivante notre second prototype
et faisons varier le degré de concurrence entre 0 % et 100 % afin de mesurer réellement l’impact
de l’attente au niveau du catalogue.

110

7.1. Evaluation de la gestion du catalogue

FIGURE 7.3 – Accès concurrent avec DTR

7.1.2 Surcharge de la gestion du catalogue dans TRANSPEER

Cette section présente une série d’expériences destinées à valider la gestion des métadonnées
avec une DHT. Ces résultats ont fait l’objet de publications en 2010 dans la conférence internatio-
nale SAC [SNG10b].

Environnement expérimental

TRANSPEER est implémenté avec Java 1.6 (5000 lignes de code), et peut tourner sur n’importe
quel système qui supporte la machine virtuelle JVM 1.6. Chaque composant est développé comme
une seule application Java et par conséquent on peut le répliquer autant de fois que l’on souhaite. La
couche de communication P2P entre les nœuds est conçu avec la version libre de Pastry [RD01a]
à savoir FreePastry. Pour stocker les métadonnées, nous utilisons la DHT PAST[RD01b]. Nous
utilisons PostgreSQL comme SGBD pour stocker les données, puis nous passons par JDBC et des
règles actives (triggers) pour extraire les modifications faites par les transactions. Les données sont
partitionnées dans des relations et chaque relation est répliquée sur plus de la moitié des ND. Nous
effectuons nos expériences dans un environnement réel composé de 20 machines (P4, 2.4GHz, 2Gb
RAM) connectées par un réseau qui supporte 100 autres machines en même temps. Les expériences
sont faites pendant que les autres machines sont utilisées afin de se placer dans des conditions plus
réalistes.

111

Chapitre 7. Validation

Impact de l’accès au catalogue partagé

Comme avec DTR, nous évaluons la surcharge lié à l’utilisation du catalogue pour router les
transactions. La charge applicative est envoyée par un nombre croissant de NA ; chacun envoie une
transaction par seconde à un routeur. Nous mesurons le débit (en transactions / seconde) que le
routeur peut assurer. La figure 7.4 montre qu’un seul routeur de TRANSPEER peut exécuter plus de
50 transactions par seconde, ce qui représente 25% de plus que le débit d’un routeur de DTR. Cette
amélioration du débit du routage découle de la suppression des verrous lors de l’accès au catalogue.
En effet, pour écrire sur le catalogue via JuxMem, un GT (client de JuxMem) initie toujours une
communication avec les leaders du groupe de données sollicitées (Local Data Group si l’accès
local est possible ou Global Data Group dans le cas ou la donnée est répliquée sur des clusters
distants). Cette communication n’est rien d’autre qu’une forme de synchronisation entre les leaders
des différents sites sur lesquels la donnée est répliquée afin de fournir un verrou exclusif au GT. Par
contre, avec TRANSPEER, le GT contacte directement le NC maître pour récupérer directement les
métadonnées, ce qui réduit le temps de routage et donc augmente le débit transactionnel.

FIGURE 7.4 – Débit d’un seul routeur avec TransPeer

Impact de l’accès concurrent

En restant dans les mêmes conditions d’expérimentation, nous évaluons l’impact de l’accès
concurrent de plusieurs routeurs. La charge applicative est envoyée à deux GT de tel sorte que
chacun reçoit la moitié des transactions. Dans la figure 7.5, nous observons que le débit du rou-
tage maximal est de 32 transactions/seconde quand le taux de conflit est de 100 %. Cependant,
contrairement à DTR, la dégradation du débit n’est que de 40% par rapport à un seul routeur. Cette
diminution s’explique par le fait que lors des accès au catalogue, les GT contactent d’abord la DHT,

112

7.1. Evaluation de la gestion du catalogue

puis s’échangent des informations pour retrouver le GSG complet . De plus, cette échange d’in-
formations entre GT est aussi source d’une surcharge qui est une conséquence directe de l’accès
concurrent au catalogue. En effet, puisque nous avons utilisé Pastry [RD01a] pour implémenter
TRANSPEER, alors le coût d’accès à la DHT est de log2b(N), avec N le nombre de nœud NC.
Ainsi, pour our construire le GSG le plus cohérent, le nombre de messages envoyés par GT1 est de
2m+1 + log2b(N) avec m le nombre de GT qui ont précédé GT1. Précisément, l’opération get(k)
coûte 2 messages alors que les échanges avec les GT précédant GT1 correspondent à 2m messages.
Cependant comme nous l’avons décrit dans le chapitre 5, le GT ne contacte que le dernier GT
parmi tous les GT qui l’ont précédé, ce qui fait que le coût devient 22 + log2b(N). Ce coût est
indépendant du nombre de GT et donc du nombre de transactions courantes, raison pour laquelle
nous confirmons que la surcharge de la gestion du catalogue sans verrouillage est négligeable et
qu’elle surpasse celle avec verrouillage en favorisant un débit plus grand.

FIGURE 7.5 – Accès concurrent avec TransPeer

7.1.3 Analyse de la surcharge du catalogue

Les résultats présentés dans les deux sections précédentes montrent que l’utilisation du cata-
logue lors du routage ne crée pas trop de surcharge. Ce résultat est d’autant plus vrai que dans le
cas d’accès concurrent le débit minimal est de 1260 transactions/minute pour un seul routeur (avec
2 GT). Ce débit minimal est obtenu dans le pire des cas (i.e. quand le taux de conflit est à 100%
de conflit). Pourtant, un taux de conflit à 100% est peu probable. De plus, même si les transac-
tions touchent les mêmes données, l’accès aux métadonnées ne se fait pas toujours simultanément
à cause de la latence du réseau et de la position des GT par rapports aux NC dans le système. En
d’autres termes, deux transactions en conflits peuvent être interceptées par deux GT qui à leur tour
n’accéderont pas simultanément aux métadonnées, mais plutôt de manière séquentielle.

113

Chapitre 7. Validation

Pour vérifier cette affirmation, nous avons mené une série d’expérience avec TRANSPEER pour
mesurer le taux de conflit réel au niveau des métadonnées. Nous voulons savoir si deux transactions
conflictuelles envoyées à deux GT au même moment engendrent toujours un accès concurrent au
niveau du catalogue. Pour ce faire, nous utilisons une charge applicative générée par deux NA et
envoyée à deux GT. Nous avons fait varier le taux de conflit au niveau des NA, i.e. taux de conflits
des transactions τC envoyées par les NA, de 0% à 100%. Puis nous avons mesuré le taux de conflit
observé au niveau du catalogue. Le taux de conflit au niveau du catalogue τAC , est défini comme
étant le nombre total de GT qui sollicite un même Meta(R), NC sur l’ensemble des GT, NT qui
ont accédé au catalogue, autrement dit, τAC = |NC |

|NT |
.

Les résultats de la figure 7.6 montrent que même si le taux de conflits τC est de 100%, le taux
de conflits τC n’est que n’est que de 70%. Par conséquent, les conflits aux niveau des transactions
n’entraînent pas forcément des conflits au niveau du catalogue, ce qui confirme notre précédente
affirmation sur les conflits réels au niveau du catalogue.

FIGURE 7.6 – Débit d’un seul routeur avec TransPeer

Parallèlement nous étudions la diminution du débit de routage quand le taux de conflit des NA
augmente. Les résultats de la figure 7.7 montrent une diminution faible et progressive du débit de
routage quand le taux de conflit varie. Par exemple avec un taux de conflit de 25%, la débit n’a
baissé que de 5%. Cette diminution progressive est une conséquence directe de la rapidité de notre
processus de routage qui fait que les GT libèrent très vite l’accès au catalogue.

De plus, dans le contexte des applications Web 2.0 où les utilisateurs ne modifient que leurs
propres données, les taux de conflits sont encore plus faibles. Ceci nous pousse à affirmer que notre
solution de gestion de catalogue, qui a un faible impact sur le débit du routage, s’adapte bien aux
applications Web2.0 d’autant plus que l’utilisation d’un catalogue dans de tels systèmes permet de
contrôler la cohérence des données mais aussi l’état du système.

114

7.2. Evaluation des performances globales du routage

FIGURE 7.7 – Accès Concurrent avec TransPeer

7.2 Evaluation des performances globales du routage
Dans cette section nous évaluons les performances de notre routage. Comme nous prenons en

compte la fraîcheur lors de notre processus de routage nous étudions très brièvement l’impact du
relâchement de la fraîcheur dans notre système. Nous présentons ensuite les performances de notre
processus de routage et enfin, nous concluons cette section par une analyse de notre approche.

7.2.1 Impact du relâchement de la fraîcheur

Dans cette section, nous étudions et mesurons l’influence du relâchement de la fraîcheur sur
les performances en termes de temps de réponse et d’équilibrage de charge. Pour ce faire, nous
nous plaçons dans le même environnement expérimental décrit dans la section 7.1.1. Nous avons
choisi une taille intermédiaire : 40 applications (20 pour des mises à jour et 20 pour des lectures)
et 20 ND. Chaque application envoie 40 transactions durant toute l’expérience, ce qui donne un
nombre total de transaction égal à 1600. Nous faisons varier l’obsolescence tolérée des transactions
de lecture. La figure 7.8 montre le temps de réponse des transactions en fonction de l’obsolescence
tolérée (exprimée en nombre de mises à jour manquantes). Les résultats révèlent qu’augmenter
l’obsolescence tolérée diminue considérablement le temps de réponse. Cela est principalement dû
au fait que relâcher la fraîcheur donne plus de souplesse pour retarder la synchronisation, et donc
l’exécution des transactions se fait de manière plus rapide. Nous notons que si le degré d’obso-
lescence dépasse 15, le temps de réponse ne s’accroît plus. La raison est que le temps de réponse
minimal d’exécution d’une transaction est atteint. La valeur précise 15 découle de la configuration
de la taille de notre système, i.e. un nombre d’applications et de ND différents de celui que nous
avons considéré engendrerait une valeur différente de 15.

Bien entendu, le relâchement de la fraîcheur s’accompagne d’une perte de cohérence mutuelle
des répliques. La figure 7.9 montre l’obsolescence des données à la fin de l’expérience, en fonc-
tion de l’obsolescence tolérée des transactions de lecture. Heureusement, le nombre de transac-

115

Chapitre 7. Validation

FIGURE 7.8 – Temps de réponse vs. obsolescence tolérée

tions manquantes croit faiblement (avec une tendance logarithmique) quand l’obsolescence tolérée
augmente. Pour une obsolescence tolérée de 24 transactions, le nombre cumulé de transactions
manquantes sur tous les ND n’est que de 315 soit moins de 20 % du nombre total de transactions
envoyées (1600) durant l’expérience avec cependant une diminution du temps de réponse de 80%
(cf. figure 7.8).

FIGURE 7.9 – Nombre de mises à jour manquantes vs. obsolescence tolérée

Ensuite, nous évaluons l’impact du relâchement de la fraîcheur sur l’équilibrage des charges.
Pour atteindre ce but, nous mesurons le taux de déséquilibre de la répartition des charges (ζ). Le
taux de déséquilibre montre l’imperfection ou la déviation de la répartition des charges par rapport
à un équilibrage parfait. Pour obtenir la déviation, nous divisons l’écart type (σ) par la moyenne de
la charge applicative (E) : ζ = σ

E
. Les résultats de la figure 7.10 montrent comment l’obsolescence

tolérée réduit par un facteur de 2 la déviation initiale, i.e. quand une fraîcheur maximale est requise.
En d’autres mots, nous obtenons un meilleur équilibrage quand l’obsolescence tolérée croît. En

116

7.2. Evaluation des performances globales du routage

effet, l’accroissement de l’obsolescence tolérée augmente le nombre de candidats et par conséquent
les choix possibles.

FIGURE 7.10 – Equilibrage des charges vs. obsolescence tolérée

En conclusion, l’introduction du relâchement de la fraîcheur permet d’accroître les perfor-
mances en réduisant le temps de réponses surtout des requêtes et en améliorant l’équilibrage des
charges. Le contrôle du relâchement de la fraîcheur est effectué de manière simple en s’appuyant
sur le catalogue qui stocke l’état des nœuds et donc n’engendre pas de surcharge ni ne compromet
l’autonomie des SGBD.

7.2.2 Apport du routage décentralisé
Après avoir montré que la gestion du catalogue donne de bonnes performances en termes de dé-

bit et de contrôle de la fraîcheur des nœuds. Nous évaluons à présent l’apport du routage distribué,
autrement dit nous mesurons le gain introduit par la redondance des gestionnaires de transactions.

En effet, nous mesurons les améliorations du routage distribué en ce qui concerne le débit,
comparées à la version centralisée de [GNPV07]. La charge est générée par N applications classées
dans 3 catégories en proportion égale. Chaque type d’application accède à une partie distincte de
la base de données et donc est connecté à un routeur spécifique. En d’autres termes, il n y a aucune
concurrence entre routeurs au niveau de l’accès au catalogue, i.e. τAC = 0. Nous mesurons le
débit du traitement quand N varie de 15 à 150 applications. Sur la figure 7.11, nous comparons
ces résultats avec le cas où un seul routeur reçoit cette même charge. Plus N s’accroît, plus la
différence entre le routage centralisé et distribué devient importante. Pour une forte charge de 150
applications, le gain avec le routage distribué atteint un facteur de 3. La raison principale est que
le routage centralisé atteint ses limites très rapidement car s’appuie sur un catalogue stocké sur
un seul nœud. Nous observons un gain égal au nombre de routeurs, ce qui démontre une montée
en charge linéaire. De plus, la répartition des métadonnées sur plusieurs sites permet au GT de
fonctionner de manière totalement parallèle, ce qui maintient les performances.

117

Chapitre 7. Validation

FIGURE 7.11 – Routage réparti vs. routage centralisé

7.2.3 Passage à l’échelle
Dans cette section nous étudions le passage à l’échelle de notre solution. Pour ce faire, nous

utilisons de la simulation afin d’avoir plusieurs milliers de nœuds.
Nous utilisons notre prototype TRANSPEER décrit dans 7.1.2. Notre choix d’utiliser ce proto-

type découle du fait que FreePastry offre un environnement de simulation sans ré-écriture du code
de nos différents composants (GT, NA, ND et NC). Seule la couche communication qui fonction-
nait avec les sockets de Java doit être simulée avec des invocations de messages conçus sous forme
de thread.

Une fois notre environnement de simulation configurée, nous mesurons le temps de réponse
global quand le nombre d’applications varie de 100 à 1000 et que le nombre de GT varie de 2 à
8. Nous fixons le taux de conflits des NA égal à zéro, i.e. les GT accèdent de manière disjoints au
catalogue. Ce choix d’absence de conflits se justifie par le fait que nous voulons mesurer si le débit
théorique correspond au débit réel, autrement dit, l’ajout de n GT permet-il d’obtenir un débit égal
au débit d’un seul GT multiplié par le facteur n.

La première série d’expérience est faite pour évaluer le bénéfice obtenu en ajoutant des GT
quand la charge applicative augmente. Nous utilisons 100 ND pour toute l’expérience pour s’assu-
rer qu’il sont toujours disponible et non surchargés (10 NA / ND). Par conséquent seuls les ND et
le catalogue peuvent être source de congestion.

La figure 7.12 montre deux résultats. Premièrement, pour une charge de 1000 NA, le temps
de réponse diminue si le nombre de GT augmente. Pour un nombre d’applications égal à 1000, le
temps de réponse diminue de 42% si le nombre de GT passe de 2 à 8.

Cette amélioration est obtenue puisque l’accroissement du nombre de GT réduit le temps d’at-
tente d’un client pour voir sa requête être prise en compte.

Deuxièmement, la figure 7.12 détermine le nombre minimal de GT nécessaire quand la charge

118

7.2. Evaluation des performances globales du routage

applicative croît. Par exemple, avec une charge applicative entre 400 et 600 applications, 8 à 10
GT sont suffisants pour assurer un temps de réponse inférieur à 2,5 secondes.

FIGURE 7.12 – Temps de réponse vs. Nombre de NA

Ensuite, nous évaluons l’impact du nombre de ND quand le nombre de GT est judicieusement
choisi en fonction des résultats de l’expérience précédente. Ainsi, nous fixons à 100 le nombre de
GT suffisant pour qu’ils ne soient pas source de congestion et nous faisons varier le nombre de ND
de 50 à 1200.

Nous présentons les résultats obtenus quand le le nombre d’applications varie de 1000 à 4000.
La figure 7.13 montre que le temps de réponse diminue si le nombre de ND augmente. Pour une
charge applicative de 1000 clients, le temps de réponse est acceptable puisqu’il est inférieur à
2500 millisecondes. De plus, il reste constant même si le nombre de ND varie. Pour les charges
applicatives plus importantes (plus de 2000 applications), l’ajout de nouvelles répliques améliore
significativement le temps de réponse jusqu’à ce que le nombre de répliques atteigne quelques
centaines. A partir de ce degré l’ajout de nouvelles répliques n’augmente guère le débit global
pour deux raisons : (1) chaque ND est surchargé par la propagation et l’applications des mises à
jour et (2) le nombre de ND est très important et les GT perdent trop de temps à choisir le ND
optimal. Dans ce cas, l’ajout de nouveaux GT devient nécessaire pour donner plus de choix aux
NA et donc réduire le temps de réponse.

Certes, des expériences avec une charge applicative envoyée par plus de 10.000 NA permettront
de mieux situer les limites de notre système. Cependant des contraintes environnementales nous
empêchent de les faire. Ces contraintes sont entre autre liées à notre modèle d’implémentation et
aux nombres de thread maximum que l’on peut tourner sur nos machines physiques. Nos travaux
en cours tentent de repousser ces obstacles.

119

Chapitre 7. Validation

FIGURE 7.13 – Temps de réponse vs. Nombre de ND

7.2.4 Conclusion sur les performance du routage
Le relâchement de la fraîcheur des données lus par les transactions permet d’améliorer le temps

de réponse et un meilleur équilibrage des charges. Ce résultat est très important dans le contexte
des applications web 2.0 où les transactions peuvent lire des données non fraîches. Par exemple,
la consultation d’un profil d’ami sur facebook ou la participation à une vente d’un objet sur eBay.
De plus, l’équilibrage des charges permet de garder un certain niveau de disponibilité en éliminant
ou réduisant la surcharge d’un nœud. Dans le contexte des applications Web 2.0 où les données
sont réparties sur plusieurs data centres, ce relâchement de fraîcheur permettrait une meilleure
mutualisation des ressources puisqu’une requête d’un client est traité sur le data centre le plus
proche de sa localisation. Ce même constat est aussi valable pour les clouds d’autant plus qu’il
permettrait des modèles de coût plus économiques. Par ailleurs, nous avons étudié l’introduction
de la redondance des GT. Les résultats montrent que cela est indispensable pour le passage à
l’échelle. Limités par nos environnements expérimentaux, nous ne pouvons pas affirmer de manière
catégorique que notre solution fonctionne bien quand le nombre de GT passe à 1.000 ou que le
nombre de ND dépasse les 10.000. Les raisons de ce doute découle du fait que l’ajout de GT
génère plus d’accès au catalogue qui peut devenir source de congestion. Néanmoins dans l’optique
de résoudre ce problème, nous sommes en train de développer une approche où les GT n’auront
pas besoin d’accéder à un catalogue et par conséquent le passage à une échelle d’une dizaine de
milliers de clients pourra être garanti.

7.3 Evaluation des performances de la tolérance aux pannes
Dans cette section, nous évaluons l’impact de la gestion des pannes dans le routage des tran-

sactions. Les résultats de ces expériences ont fait l’objet de publications en 2010 dans la revue

120

7.3. Evaluation des performances de la tolérance aux pannes

nationale RSTI-ISI [SNG10a] et dans la conférence internationale DBKDA [SNG10c]. Notre ob-
jectif est d’abord d’évaluer l’impact de la gestion des pannes en évaluant la surcharge engendrée et
le gain obtenu. Puis nous évaluons notre mécanisme de détection ciblée des pannes en le comparant
avec une technique existante de détection ciblée passant à l’échelle.

Nous nous plaçons dans les mêmes conditions expérimentales de la section 7.2.3, autrement
dit nous utilisons notre prototype TRANSPEER pour évaluer la faisabilité.

7.3.1 Configuration du temporisateur

Comme nos algorithmes de détection et de gestion des pannes sont basés sur des temporisa-
teurs, nous commençons d’abord par bien paramétrer leur valeur. Pour cela, nous faisons varier le
temporisateur de 10 millisecondes à 10 secondes. Nous reportons dans la figure 7.14 le temps de
réponse quand le nombre de 2 NA, 2 GT et 10 ND constituent notre système.

FIGURE 7.14 – Temps de réponse vs. temporisateurs

Nous identifions Topt, la valeur optimale du temporisateur qui ne nécessite aucune retransmis-
sion. Nous observons que le temps de réponse diminue de 900 millisecondes jusqu’à environ 330
millisecondes. Topt correspond au seuil de la valeur du temporisateur à partir duquel le temps de
réponse reste quasi constante et correspond à 1 seconde.

Nous affirmons que cette valeur est un bon compromis entre d’une part, une faible surcharge
de la gestion des pannes des pannes et d’autre part une détection rapide des pannes qui favorise
la réduction du temps de réponse des transactions concernées par une panne. Nous mentionnons
aussi que nous pouvons dynamiquement ajuster la valeur de Topt en fonction de l’augmentation du
taux d’arrivée des pannes.

121

Chapitre 7. Validation

7.3.2 Surcharge de la gestion des pannes

Une fois que nous avons bien défini la valeur du temporisateur, nous mesurons la surcharge
engendrée par la prise en compte des pannes lors du processus de routage. Nous comparons notre
solution tolérante aux pannes par apport à notre approche basique qui ne prend pas en compte les
pannes. En l’absence de pannes, nous mesurons les débits de chacune des solutions.

Nous utilisons 20 PC du laboratoire connecté par un réseau LAN, chacun n’hébergeant qu’un
seul nœud (NA, ND, GT ou NC) pour éviter toute dégradation de performances dues à des partages
de ressources. La charge applicative provient des NA qui envoient des transactions sous forme
d’instructions SQL. Chaque ND est connecté à un SGBD Postgresql qui exécut les transactions.
Chaque expérience est répétée cinq fois afin de s’assurer de la précision des résultats. Alors, nous
mesurons le temps de réponse moyen en variant le nombre de ND de 2 à 10.

La figure 7.15 montre que notre solution non tolérante aux pannes produit un temps de réponse
quasi constant autour de 150 millisecondes (seul 20 millisecondes de plus avec 10 ND qu’avec 2
ND), tandis que la solutions tolérante aux pannes offre des temps de réponses très élevés.

FIGURE 7.15 – Surcharge routage tolérant vs. routage non toléran

En effet, la solution tolérante aux pannes fonctionne deux fois plus lentement que la solution
non tolérante puisqu’elle requiert des processus supplémentaire pour gérer les pannes. Par exemple,
chaque nœud est couplé avec un chronomètre qui signale chaque fin de temporisateur et le coût
supplémentaire découle des tests faits par les GT, ND, NA et NC pour s’assurer que la transaction
n’est exécutée qu’une seule fois. Ceci nécessite que les GT communiquent entre eux pour savoir
si une transaction est en cours ou déjà exécutée. En plus durant le processus de routage le GT
teste si le ND choisi est en panne ou non ce qui rallonge le temps de routage et donc le temps de
réponse. Dans cette expérience, notre solution non tolérante est meilleure puisqu’il n’existe aucune
panne,ce qui ne reflète pas une situation réelle. En situation de panne, notre solution tolérante

122

7.3. Evaluation des performances de la tolérance aux pannes

présente plus davantage puisqu’il assure toujours qu’une transaction soit exécutée, ce qui n’est
pas le cas avec notre solution non tolérante. Nous évaluons le gain de la solution tolérante dans la
prochaine expérience.

7.3.3 Performances de la gestion des pannes
Nous évaluons dans cette section les bénéfices de notre solution en évaluant d’une part l’amé-

lioration du débit de routage et la rapidité de notre protocole à détecter les pannes.

Gain de la gestion des pannes

Dans cette section, nous évaluons l’apport positif de notre solution tolérante. Ainsi, nous ins-
tancions plusieurs nœuds par machine (500 NA/ 500 ND / 50 GT). Nous faisons varier le débit de
panne des ND de 0 à 100%. Les pannes sont uniformément réparties sur l’ensemble de période
d’expérimentation, i.e. un débit de panne de 100% signifie que le premier nœud tombe en panne
au débit et la prochaine panne arrive tf plus tard et ainsi de suite, avec tf = (taux d’arrivée des
pannes * temps d’expérimentation total) / nombre de nœuds. Nous reportons les résultats sur la
figure 7.16.

FIGURE 7.16 – Débit routage tolérant vs. routage non tolérant

Les résultats montrent qu’avec un taux de panne faible, la solution non tolérante dépasse de
18% la solution tolérante en débit de routage. Ceci est la conséquence de la surcharge engendrée
par la solution tolérante évaluée précédemment .

Par contre dès que le taux de panne dépasse 30%, la solution tolérante dépasse de 3% la solution
non tolérante. Ce gain découle du fait que la solution tolérante est capable de continuer les tâches

123

Chapitre 7. Validation

d’un ND en panne sur un autre ND disponible. De plus, chaque ND en panne est enregistré afin de
ne pas l’utiliser pour les prochaines transactions entrantes.

Certes, le débit de panne au delà duquel la solution tolérante surpasse la solution non tolérante
est très élevé (30 %). Cependant, nous mentionnons que ce débit inclut aussi bien les pannes que
les déconnexions prévues sans oublier les pannes de communication, ce qui augmente le nombre
de situations interprétées comme des pannes par notre solution.

Notre objectif dans cette expérience était uniquement de montrer l’apport de la gestion de la
dynamicité dans le routage des transactions. Les résultats obtenus sont somme toute intéressants
bien qu’ils peuvent être améliorer en dissociant la gestion des pannes de réseau de celle des pannes
afin de réduire la surcharge de notre solution tolérante. Cette amélioration inscrite dans nos pers-
pectives, nécessite des techniques de détection des pannes dans un réseau et peuvent être délégués
à un système tiers.

Coût de la détection des pannes

Après avoir montré l’intérêt de la gestion des pannes nous nous intéressons au coût de la dé-
tection des pannes. Nous comparons notre approche de détection ciblée avec celle proposée dans
SWIM [DGM02], en mesurant le coût de communication (i.e. le nombre total de messages néces-
saires pour détecter les pannes). SWIM est une solution de détection des pannes conçue pour les
systèmes à large échelle et s’appuie sur l’envoie de message "ping-pong" sur des ensembles de
nœuds choisis aléatoirement. Dans cette expérience, nous nous intéressons uniquement à la dé-
tection des GT puisque la détection d’un ND est faite uniquement au cours de l’exécution d’une
transaction et ne nécessite pas plus de 5 messages (cf. section 6.2.2).

Dans SWIM, la détection est faite en envoyant périodiquement des messages de "ping-pong" à
un ensemble aléatoire de nœuds (nous avons choisi 4 dans notre cas). Dans notre solution, chaque
GT collabore avec les autres GT (4 dans cette expérience) pour détecter la panne. Nous commen-
çons la simulation avec 18 GT disponibles et 2 GT en panne. Ensuite nous faisons varier le nombre
de GT en panne de 2 à 18. Nous reportons sur la figure 7.17 le nombre de pannes détectées.

FIGURE 7.17 – Pannes détectées vs. pannes survenues

124

7.3. Evaluation des performances de la tolérance aux pannes

FIGURE 7.18 – Nombre de messages vs. pannes survenues

La figure 7.17 montre qu’avec un nombre de pannes élevé, notre solution génère de meilleures
performances que SWIM en ce qui concerne le nombre de pannes détectées. La principale raison
est que chaque GT en panne est détecté par au moins un de ses successeurs, donc il est exclu de
l’anneau logique. Au contraire, avec SWIM, un GT peut tomber en panne sans pour autant être
détecté puisqu’il peut rester longtemps sans être choisi aléatoirement par les autres GT.

En outre, nous comparons le coût de communication engendré par la détection des pannes de
notre solution à celui de SWIM. Pour cela, nous calculons le nombre total de messages envoyés
par les nœuds pour détecter l’occurrence des pannes. Les résultats présentés sur la figure 7.18
montrent que le nombre total de messages pour détecter les pannes augmente si le nombre de nœuds
disponibles est important. En fait, avec 20 GT le nombre de messages est supérieur à 400 durant
une simulation, puisqu’un GT contacte ses successeurs périodiquement. En plus, nous soulignons
que notre solution requiert toujours moins de messages que SWIM lors de la détection. En effet
l’anneau logique est restructuré dès qu’une panne est détectée, évitant ainsi de contacter un nœud
en panne plus d’une fois. Avec SWIM, un nœud en panne peut être contacté par les autres nœuds
qui ne sont pas encore au courant de la panne, puisque la notification de panne n’est pas immédiate.

7.3.4 Conclusion sur l’évaluation de la gestion des pannes

Les expériences effectuées dans cette section montrent l’importance de la gestion des pannes
dans le protocole de routage des transactions. Les résultats montrent qua la prise en compte des
pannes réduit la dégradation des performances en présence de pannes. La tolérance aux pannes
borne les temps de réponse qui sont des critères forts pour les applications. Par exemple, les ap-
plications Web 2.0 fonctionnent avec les revenus générés par les publicités qui sont versés que s’il
y a des visiteurs. Ainsi, des temps de réponses longs engendrés par les indisponibilités du service
réduisent la présence de visiteurs et donc de fonds pour les fournisseurs d’applications.

125

Chapitre 7. Validation

7.4 Conclusion
Dans ce chapitre, nous avons présenté la validation de notre approche. Nous avons développé

deux prototypes DTR et TRANSPEER pour implémenter les composants de notre routeur. DTR

est conçu au dessus de JuxMem et donc nous a permis d’implémenter notre approche de gestion
du catalogue avec verrouillage. TRANSPEER est implémenté au dessus d’un réseau P2P afin de
gérer le catalogue sans verrouillage. Nous les avons utilisé pour mener une série d’expériences
et les résultats obtenus démontrent la faisabilité de nos approches. Les résultats obtenus sont les
suivants :

– la surcharge induite par la gestion d’un catalogue réparti est acceptable ;
– la redondance du routeur accroît le débit de routage et réduit le temps de réponse tout en

introduisant plus de disponibilité ;
– le choix d’une gestion de catalogue sans verrouillage facilite le passage à l’échelle ;
– le relâchement de la fraîcheur améliore le temps de réponse et donne au routeur plus de

choix. Le calcul de la fraîcheur est effectué avec l’utilisation du catalogue sans besoin de
contacter les SGBD.

– la prise en compte de la dynamicité du système est indispensable et permet de borner le temps
de réponse. Les méthodes de détection et de résolution des pannes utilisées sont simples à
mettre en œuvre et s’avèrent bien adaptées pour un système à large échelle.

126

Chapitre 8

Conclusion et Perspectives

8.1 Synthèse
Les travaux présentés dans cette thèse montrent que l’utilisation d’un catalogue réparti associé

à un modèle de routage réparti permet d’améliorer le débit transactionnel d’une base de données
répliquées à large échelle tout en préservant la cohérence à terme et en contrôlant la fraîcheur des
données lues par les requêtes. La prise en compte de la dynamicité des nœuds du système permet
de maintenir les performances du système en cas d’occurrence de pannes.

Architecture du système de routage. Notre architecture se présente comme un intergiciel pour
contrôler l’accès à la base de données et peut être divisée en deux parties : une partie assurant le
service de médiation entre les différents composants du système (intergiciel) et une autre chargée
de la gestion des métadonnées qui sont les données nécessaires au fonctionnement du système en
entier. Le choix d’une architecture hybride à mi-chemin entre les systèmes P2P structurés et ceux
non structurés nous permet de tirer profit des avantages des uns et des autres. En fait, la structura-
tion des nœuds GT autour d’un anneau logique permet de faciliter leur collaboration pour assurer
le traitement cohérent des transactions alors que la structuration faible des nœuds ND leur confère
une grande autonomie. Notre intergiciel redondant permet de faire face à la volatilité d’un environ-
nement à large échelle puisqu’à chaque fois qu’un nœud GT ou ND tombe en panne, nous utilisons
un autre nœud disponible pour continuer le traitement ou récupérer les données. L’utilisation d’un
catalogue réparti facilite l’exploitation des ressources disponibles et un contrôle global de l’état
du système. Pour rendre disponible les informations stockées à l’intérieur du catalogue, nous les
avons répliquées par l’intermédiaire de systèmes garantissant le passage à l’échelle et la disponi-
bilité, notamment JuxMem et une DHT. Pour exploiter avec efficacité, les ressources du systèmes
(équilibrer les charges, identifier rapidement le nœud optimal, etc.), nous collectons plusieurs in-
formations dans le catalogue comme métadonnées et nous les structurons logiquement pour que
leur manipulation (lecture et modification) soit simple.

Protocole de routage. Nous avons proposé un mécanisme de routage des transactions pour ga-
rantir une exécution rapide et cohérente, des transactions. Les algorithmes de routage proposés

127

Chapitre 8. Conclusion et Perspectives

requièrent des accès au catalogue réparti pour maintenir la cohérence mutuelle des répliques et ils
définissent l’ordre dans lequel les transactions doivent être exécutées pour ne pas compromettre la
cohérence. Le premier algorithme est dit pessimiste et ordonne toutes les transactions conflictuelles
en s’appuyant sur les conflits potentiels. En d’autres mots, le protocole de routage assure une séria-
lisation globale définie de manière pessimiste et qui est utilisé pour router les transactions. Chaque
transaction est associée avec ses classes de conflits, qui contiennent les données que la transaction
peut potentiellement lire (resp. modifier). En fonction des classes de conflits, les transactions sont
ordonnées dans unGSG en s’appuyant sur leur ordre d’arrivée. Bien que cette approche assure une
sérialisation globale, elle réduit malheureusement la parallélisation du traitement des transactions
puisqu’elle s’appuie sur des sur-ensembles potentiels de données réellement accédées.

Pour améliorer le parallélisme du traitement des transactions, nous avons proposé un second
algorithme qui combine une approche pessimiste et optimiste. Ce second algorithme s’appuie sur
une tentative d’exécution des transactions afin deréduire le temps de réponse des transactions.
Autrement dit, les transactions conflictuelles sont exécutées de manière optimiste et une phase de
validation est utilisée à la fin pour garantir la cohérence. Dans le contexte des applications Web 2.0
où les transactions courantes et potentiellement conflictuelles sont peu nombreuses, les chances de
réussite du routage optimiste s’avèrent très élevées et donc il apparaît plus adapté.

Catalogue réparti. Pour maintenir la cohérence globale, nous avons conçu un catalogue pour
stocker les métadonnées (GSG). Le catalogue est utilisé à chaque processus de routage et peut
faire alors l’objet d’accès concurrents qui peuvent être source d’incohérence. Pour garantir la co-
hérence du catalogue lors de l’accès au métadonnées, nous avons proposé deux approches : une
approche utilisant le verrouillage et une autre sans verrouillage. La gestion avec verrouillage est
implémentée via JuxMem dans le but d’intégrer nos travaux dans le cadre du projet ANR Respire
[Prod]. Malheureusement, nous avons remarqué que le verrouillage ne facilite pas le passage à
l’échelle. C’est pourquoi nous avons opté pour une solution sans verrouillage lors de l’accès au
catalogue. De plus, nous nous sommes intéressés à des systèmes tels que les DHT qui permettent
de gérer des données répliquées sans utilisation de mécanismes de verrouillage. Ainsi, nous avons
implémenté la gestion du catalogue à travers une DHT d’autant plus que celle-ci facilite le passage
à l’échelle et une grande disponibilité, deux caractéristiques très importantes pour notre système
de routage.

Gestion des pannes. Nous avons présenté un mécanisme de gestion de la dynamicité. Ce méca-
nisme est basé sur la détection sélective des fautes et sur un algorithme de reprise. Contrairement à
la plupart des autres approches, notre mécanisme n’implique pas l’utilisation de nœuds qui ne par-
ticipent pas à léxécution de la transaction en cours, ce qui permet de passer à l’échelle. Pour cela,
nous adaptons des approches existantes de détection des pannes afin de les rendre opérationnelles
pour chaque type de nœud (gestionnaire de transaction et nœud de données) de notre système.
Nous avons proposé un protocole permettant de gérer toutes les situations lorsqu’un nœud quitte
le système pendant le traitement d’une transaction. Ceci est nécessaire et suffisant pour contrôler
la cohérence du système, surtout en cas de déconnexions intempestives.

Cependant, pour maintenir le débit transactionnel en cas de fréquentes pannes, il faut être

128

8.2. Perspectives

capable d’ajouter de nouvelles ressources en fonction des déconnexions. Pour ce faire, nous avons
proposé un modèle permettant de déterminer et contrôler le nombre de répliques requises pour
garder le système disponible. Ce modèle permet de déterminer le nombre minimum de répliques
nécessaires au bon fonctionnement du système et donc de minimiser les surcoûts liés à la gestion
des répliques.

Validation. Pour valider la faisabilité de nos approches, nous avons implémenté deux prototypes
nommés respectivement DTR (Distributed Transaction Routing) et TRANSPEER (TRANSaction on
PEER-to-peer). L’implémentation de deux prototypes est liée au besoin de gérer le catalogue avec
verrouillage ou sans verrouillage. De fait, DTR constitue le prototype développé avec verrouillage
du catalogue alors que TRANSPEER est conçu pour une gestion du catalogue sans verrouillage et
un modèle de communication de type P2P. Puis, nous avons effectué quelques simulations pour
étudier le passage à l’échelle et la tolérance aux pannes de notre solution. Notre choix d’utiliser
à la fois de l’expérimentation et de la simulation se justifie par le fait que : (1) l’expérimentation
permet d’évaluer un système dans des conditions réelles ; et (2) la simulation est une représentation
simplifiée du système, facile à réaliser et requiert moins de ressources que l’implémentation, ce
qui favorise l’évaluation d’un système à grande échelle. Nous avons mené une série d’expériences
sur nos deux prototypes pour étudier les performances de notre système : débit transactionnel,
temps de réponse, passage à l’échelle et tolérance aux pannes. Les résultats obtenus montrent
que l’utilisation d’un catalogue pour stocker les métadonnées permet de router les transactions en
contrôlant le niveau de fraîcheur sollicité par les applications. De plus, la surcharge induite par la
gestion d’un catalogue réparti est acceptable et donc n’a pas trop d’impact négatif sur le débit du
routage. Les expériences ont montré que le relâchement de la fraîcheur des données améliore le
temps de réponse des requêtes et l’équilibrage des charges, ce qui est économiquement important
vis-à-vis l’utilisation totale des ressources disponibles. Les résultats montrent également que la
redondance du routeur accroît le débit de routage et réduit le temps de réponse tout en introduisant
plus de disponibilité. Les résultats obtenus avec notre prototype TRANSPEER démontrent le gain
de la gestion des métadonnées sans verrouillage, ce qui favorise la réduction du temps de réponse.
Enfin, nous avons montré que la prise en compte de la dynamicité du système est indispensable
et permet de borner le temps de réponse. Les méthodes de détection et de résolution des pannes
utilisées sont simples à mettre en œuvre et s’avèrent bien adaptées pour un système à large échelle.

8.2 Perspectives
Nos principales perspectives visent à améliorer la capacité de notre solution à passer à l’échelle

surtout et à la rendre plus générique de telle sorte qu’elle soit indépendante de la définition des
répliques et de leur placement.

Amélioration du passage à l’échelle. Notre solution présente l’avantage de s’adapter dynami-
quement aux évolutions du système. Cependant, son comportement en présence de forts et nom-
breux pics de charge n’a pas été étudié. C’est pourquoi nous nous proposons d’étudier un algo-
rithme de synchronisation gérant les pics de charge en présence de pannes. Cette perspective a pour

129

Chapitre 8. Conclusion et Perspectives

but de proposer un algorithme distribué permettant de résoudre le problème de synchronisation en
soulageant la charge des GT dédiés à la gestion du graphe et en réduisant les communications
nécessaires entre ces noeuds. L’accent sera mis, principalement, sur l’aptitude à gérer les pics de
charge. Ce problème est d’autant plus important que dans le type d’applications visées, on cherche
davantage à garantir, au plus grand nombre, une réponse dans un temps donné, qu’à réduire le
temps d’accès moyen.

Par ailleurs, dans l’implémentation actuelle de notre approche, la synchronisation des accès au
graphe repose sur l’utilisation d’algorithmes centralisés exécutés par quelques pairs dédiés. Cette
solution présente l’inconvénient de traiter toutes les requêtes en parallèle et donc d’être particuliè-
rement sensible aux pics de charge. Parallèlement l’équipe REGAL du LIP6 a développé plusieurs
algorithmes distribués de synchronisation [SALAS09, SAS06] qui offrent une faible sensibilité
aux variations de charge, ainsi que de très bonnes performances (i.e. le temps d’accès conserve
un faible écart type et une faible moyenne). Cependant ces algorithmes ne prévoient pas de ga-
rantie sur la latence maximale d’obtention de l’accès. Ils doivent être améliorés afin d’avertir le
demandeur qu’un accès sera trop long à obtenir plutôt que de le faire patienter.

Pour ce faire, nous proposons de composer les approches développées par les deux équipes
pour obtenir un algorithme tolérant aux fautes et restant efficace sous une forte charge momenta-
née. Le principe consiste à effectuer un accès en deux étapes : on demande l’accès à l’algorithme
distribué pour pouvoir, ensuite, demander l’accès à l’algorithme centralisé. On peut alors voir
l’algorithme distribué comme une simple file d’attente répartie. Cette approche compositionnelle
présente plusieurs avantages :

– La base de donnée utilisant un algorithme centralisé (ou répliqué), verra ses pics de charge
absorbés par l’algorithme distribué qui se comportera en file d’attente distribuée.

– L’algorithme distribué, ne gérant pas directement l’accès au graphe (ressource critique),
pourra traiter un problème de synchronisation un peu simplifié de façon à gérer plus sim-
plement la dynamicité du système.

Transactions multi-pairs. Actuellement nos solutions se limitent à des transactions dites "mono-
site", qui modifient une seule base (toutes les données manipulées par la transaction sont sur une
même réplique). Cette limitation s’avère contraignante car elle empêche de définir librement les
répliques indépendamment des transactions. En effet, une réplique devant contenir toutes les don-
nées accédées par une transaction, cela peut aboutir à une réplication totale des données, ce qui
est contraire au contexte de réplication partielle dans lequel se situe cette thèse. Par conséquent,
le problème se pose de traiter des transactions réparties (ou multi sites) qui ont besoin de mo-
difier plusieurs bases de manière atomique. Plusieurs solutions ont été proposées mais elles ne
fonctionnent pas dans le contexte des applications ciblées. Certaines solutions sont limitées à un
cluster (de l’ordre de 100 nœuds) donc en faisant l’hypothèse que le réseau sous-jacent est fiable
[PMJPKA05, ATS+05], d’autres brisent l’autonomie des sites en imposant de modifier le gestion-
naire de transaction local du SGBD [CPV05].

L’objectif de cette perspective est de concevoir une solution pour router les transactions à très
large échelle, en contrôlant les traitements locaux (sous-transactions) effectuées sur les pairs. L’ap-
proche suivie consiste à utiliser au mieux les SGBD existant sur chaque pair et capable de traiter

130

8.2. Perspectives

des sous- transactions localement. La difficulté est de définir un ordre global de traitement des
transactions, de déterminer un ordre compatible avec l’ordre global et qui apportera un gain de
performance significatif, et finalement de garantir que cet ordre sera toujours respecté par l’exécu-
tion des sous- transactions sur les répliques malgré les pannes probables d’un ou plusieurs pairs.

131

Chapitre 8. Conclusion et Perspectives

132

Bibliographie

[ABJ05] G. Antoniu, L. Bougé, and M. Jan. JuxMem : An Adaptive Supportive
Platform for Data Sharing on the Grid. Scalable Computing : Practice and
Experience, 6(3) :45–55, 2005.

[ACT99] M. Aguilera, W. Chen, and S. Toueg. Using the Heartbeat Failure Detec-
tor for Quiescent Reliable Communication and Consensus in Partitionable
Networks. Theoretical Computer Science, 220(1) :3–30, 1999.

[ACZ03] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning :
consistent replication for scaling back-end databases of dynamic content
web sites. In Middleware ’03 : Proceedings of the ACM/IFIP/USENIX
2003 International Conference on Middleware, pages 282–304, 2003.

[ADM06] G. Antoniu, J. Deverge, and S. Monnet. How to Bring Together Fault To-
lerance and Data Consistency to Enable Grid Data Sharing. Concurrency
and Computation : Practice and Experience, 18(13) :1705–1723, 2006.

[APV07] R. Akbarinia, E. Pacitti, and P. Valduriez. Data Currency in Replicated
DHTs. In Int. Conf. on Management of Data (SIGMOD), pages 211–222,
2007.

[AT89] A. El Abbadi and S. Toueg. Maintaining availability in partitioned replica-
ted databases. ACM Trans. Database Syst., 14(2) :264–290, 1989.

[ATS+05] F. Akal, C. Türker, H. Schek, Y. Breitbart, T. Grabs, and L. Veen. Fine-
Grained Replication and Scheduling with Freshness and Correctness Gua-
rantees. In Int. Conf. on Very Large DataBase (VLDB), pages 565–576,
2005.

[BBG+95] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ansi sql isolation levels. In SIGMOD ’95 : Proceedings of
the 1995 ACM SIGMOD international conference on Management of data,
pages 1–10, 1995.

[BFG+08] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a
database on s3. In SIGMOD ’08 : Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 251–264, 2008.

[BGL+06] R. Baldoni, R. Guerraoui, R. R. Levy, V. Quéma, and S. T. Piergiovanni.
Unconscious eventual consistency with gossips. In SSS, pages 65–81, 2006.

133

Bibliographie

[BGRS00] K. Böhm, T. Grabs, U. Röhm, and H. Schek. Evaluating the coordination
overhead of replica maintenance in a cluster of databases. In Euro-Par
2000 Parallel Processing, pages 435–444, 2000.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[BKR+99] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz.
Update propagation protocols for replicated databates. SIGMOD Rec.,
28(2) :97–108, 1999.

[Bre00] E. A. Brewer. Towards robust distributed systems (abstract). In PODC
’00 : Proceedings of the nineteenth annual ACM symposium on Principles
of distributed computing, page 7, 2000.

[BYV08] R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented cloud computing :
Vision, hype, and reality for delivering it services as computing utilities. In
HPCC ’08 : Proceedings of the 2008 10th IEEE International Conference
on High Performance Computing and Communications, pages 5–13, 2008.

[CDKR02] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe : A large-
scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications (JSAC, 20 :2002, 2002.

[CL02] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4) :398–461, 2002.

[CMZ05] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC : Flexible Data-
base Clustering Middleware. Technical report, ObjectWeb, Open Source
Middleware, 2005.

[CPV05] C. Coulon, E. Pacitti, and P. Valduriez. Consistency management for partial
replication in a high performance database cluster. In ICPADS ’05 : Pro-
ceedings of the 11th International Conference on Parallel and Distributed
Systems, pages 809–815, 2005.

[CPW07] L. Camargos, F. Pedone, and M. Wieloch. Sprint : A Middleware for High-
Performance Transaction Processing. In ACM European Conf. on Compu-
ter Systems (EuroSys), pages 385–398, 2007.

[CRF09] J. M. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation for snapshot
databases. ACM Trans. Database Syst., 34(4) :1–42, 2009.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distri-
buted systems. Journal of the ACM (JACM), 43(2) :225–267, 1996.

[CVL10] M. Correia, G. S. Veronese, and L. C. Lung. Asynchronous byzantine
consensus with 2f+1 processes. In SAC ’10 : Proceedings of the 2010
ACM Symposium on Applied Computing, pages 475–480, 2010.

[DGM02] A. Das, I. Gupta, and A. Motivala. SWIM : Scalable Weakly Consistent
Infection-style Process Group Membership Protocol. In Int. Conf. on De-
pendable Systems and Networks (DSN), 2002.

134

Bibliographie

[DS06] K. Daudjee and K. Salem. Lazy database replication with snapshot isola-
tion. In VLDB ’06 : Proceedings of the 32nd international conference on
Very large data bases, pages 715–726, 2006.

[DSS10] O. Diallo, M. Sene, and I. Sarr. Freshness-aware metadata management :
Performance evaluation with swn. In 8th IEEE/ACS International Confe-
rence on Computer Systems and Applications, 2009 (AICCSA 2009), 2010.

[EGA08] C. Emmanuel, C. George, and A. Anastasia. Middleware-based database
replication : the gaps between theory and practice. In SIGMOD ’08 : Pro-
ceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data, pages 739–752, 2008.

[EZP05] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database replication using
generalized snapshot isolation. In SRDS ’05 : Proceedings of the 24th
IEEE Symposium on Reliable Distributed Systems, pages 73–84, 2005.

[Fac] Facebook. www.facebook.com.
[FDMBGJM+09] noz-Escoí F. D. Mu J. M. Bernabé-Gisbert, R. Juan-Marín, nigo J. E.

Armendáriz-Í and J. R. González De Mendívil. Revising 1-copy equi-
valence in replicated databases with snapshot isolation. In OTM ’09 : Pro-
ceedings of the Confederated International Conferences, CoopIS, DOA, IS,
and ODBASE 2009 on On the Move to Meaningful Internet Systems, pages
467–483, 2009.

[FJB09] S. Finkelstein, D. Jacobs, and R. Brendle. Principles for inconsistency. In
CIDR, 2009.

[FLO+05] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making
snapshot isolation serializable. ACM Trans. Database Syst., 30(2) :492–
528, 2005.

[Fre] FreePastry. http ://www.freepastry.org/freepastry/.
[Gan06] S. Gançarski. Cohérence et Fraîcheur dans les bases de données réparties.

Habilitation à diriger des recherches, Université Pierre et Marie Curie, Paris
6, France, October 2006.

[Gee09] J. Geelan. Twenty one experts define cloud computing. electronic maga-
zine. http ://virtualization.sys-con.com/node/612375, 2009.

[GGL03] S. Ghemawat, H. Gobioff, and S. Leung. The google file system. In SOSP
’03 : Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 29–43, 2003.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. In SIGMOD ’96 : Proceedings of the 1996 ACM SIGMOD
international conference on Management of data, pages 173–182, 1996.

[Gif79] David K. Gifford. Weighted voting for replicated data. In SOSP ’79 : Pro-
ceedings of the seventh ACM symposium on Operating systems principles,
pages 150–162, 1979.

135

Bibliographie

[GL02] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2) :51–59, 2002.

[GLRG04] H. Guo, P. Larson, R. Ramakrishnan, and J. Goldstein. Relaxed currency
and consistency : how to say "good enough" in sql. In SIGMOD ’04 :
Proceedings of the 2004 ACM SIGMOD international conference on Ma-
nagement of data, pages 815–826. ACM, 2004.

[GN95] R. Gallersdörfer and M. Nicola. Improving performance in replicated da-
tabases through relaxed coherency. In VLDB ’95 : Proceedings of the 21th
International Conference on Very Large Data Bases, pages 445–456, 1995.

[GNPV07] S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. The leganet sys-
tem : Freshness-aware transaction routing in a database cluster. Journal of
Information Systems, 32(2) :320–343, 2007.

[Gnu] Gnutella. http ://www.gnutella.com/.

[GR92] J. Gray and A. Reuter. Transaction Processing : Concepts and Techniques.
Morgan Kaufmann Publishers Inc., 1992.

[Gro] Groove. http ://office.microsoft.com/en-us/groove/default.aspx.

[GS97] R. Guerraoui and A. Schiper. Software-Based Replication for Fault Tole-
rance. IEEE Computer, 30(40) :68–74, 1997.

[GSN09] M. Gueye, I. Sarr, and S. Ndiaye. Database replication in large scale sys-
tems : optimizing the number of replicas. In EDBT/ICDT ’09 : Proceedings
of the 2009 EDBT/ICDT Workshops, pages 3–9. ACM, 2009.

[HAA99] J. Holliday, D. Agrawal, and A. El Abbadi. The performance of database
replication using atomic broadcast group communication, 1999.

[HAA00] J. Holliday, D. Agrawal, and A. El Abbadi. Database Replication Using
Epidemic Communication. In Euro-Par 2000 Parallel Processing, pages
427–434, 2000.

[HAA02] J. Holliday, D. Agrawal, and A. El Abbadi. Partial database replication
using epidemic communication. In ICDCS ’02 : Proceedings of the 22 nd
International Conference on Distributed Computing Systems (ICDCS’02),
page 485, 2002.

[HCH+05] R. Huebsch, B. Chun, J. M. Hellerstein, B. Thau Loo, P. Maniatis, T. Ros-
coe, S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture of pier :
an internet-scale query processor. In IN CIDR, pages 28–43, 2005.

[HIM+04] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov.
The piazza peer data management system, 2004.

[HSAA03] J. Holliday, R. Steinke, D. Agrawal, and A. El Abbadi. Epidemic algo-
rithms for replicated databases. IEEE Transactions on Knowledge and
Data Engineering, 15(5) :1218–1238, 2003.

136

Bibliographie

[Jan06] Mathieu Jan. JuxMem : un service de partage transparent de données pour
grilles de calculs fondé sur une approche pair-à-pair. Thèse de doctorat,
Université de Rennes 1, IRISA, Rennes, France, November 2006.

[JEAIMGdMFDM08] nigo J. E. Armendáriz-I A. Mauch-Goya, J. R. González de Mendívil, and
noz-Escoí F. D. Mu˙SIPRe : a partial database replication protocol with SI
replicas. In SAC ’08 : Proceedings of the 2008 ACM symposium on Applied
computing, pages 2181–2185, 2008.

[JPMPAK03] R. Jiménez-Peris, no-Martínez M. Pati G. Alonso, and B. Kemme. Are
quorums an alternative for data replication ? ACM Trans. Database Syst.,
28(3) :257–294, 2003.

[JWZ03] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra : A peer-to-peer ap-
proach to network intrusion detection and prevention, 2003.

[KA00a] B. Kemme and G. Alonso. Don’t be lazy, be consistent : Postgres-r, a new
way to implement database replication. In VLDB ’00 : Proceedings of the
26th International Conference on Very Large Data Bases, pages 134–143,
2000.

[KA00b] B. Kemme and G. Alonso. A new approach to developing and imple-
menting eager database replication protocols. ACM Trans. Database Syst.,
25(3), 2000.

[KaZ] KaZaA. http ://www.kazza.com/.

[Kra09] S. Krakowiak. Middleware Architecture with Patterns and Frameworks.
Creative Commons License, 2009.

[LAF99] M. Larrea, S. Arévalo, and A. Fernández. Efficient Algorithms to Imple-
ment Unreliable Failure Detectors in Partially Synchronous Systems. In
Proceedings of the 13th International Symposium on Distributed Compu-
ting. Springer-Verlag, 1999.

[LFVM09] A. A. Lima, C. Furtado, P. Valduriez, and M. Mattoso. Parallel olap query
processing in database clusters with data replication. Distrib. Parallel Da-
tabases, 25(1-2) :97–123, 2009.

[LG06] C. Le Pape and S. Gançarski. Replica Refresh Strategies in a Database
Cluster. In High-Performance Data Management in Grid Environments
(HPDGrid VECPAR Workshop), 2006.

[LGV04] C. Le Pape, S. Gançarski, and P. Valduriez. Refresco : Improving Query
Performance Through Freshness Control in a Database Cluster. In Int.
Conf. On Cooperative Information Systems (CoopIS), 2004.

[LKJP+09] Y. Lin, B. Kemme, R. Jiménez-Peris, M . Patińo-Martínez, and nigo J. E.
Armendáriz-I˙Snapshot isolation and integrity constraints in replicated da-
tabases. ACM Trans. Database Syst., 34(2) :1–49, 2009.

137

Bibliographie

[LKMPJP05] Y. Lin, B. Kemme, no-Martínez M. Pati and R. Jiménez-Peris. Middleware
based data replication providing snapshot isolation. In SIGMOD ’05 : Pro-
ceedings of the 2005 ACM SIGMOD international conference on Manage-
ment of data, pages 419–430, 2005.

[LM09] A. Lakshman and P. Malik. Cassandra : structured storage system on a
p2p network. In PODC ’09 : Proceedings of the 28th ACM symposium on
Principles of distributed computing, pages 5–5, 2009.

[MM02] P. Maymounkov and D. Mazières. A peer-to-peer information system based
on the xor metric. In 1st Int. Workshop on Peer-to-Peer Systems(IPTPS),
2002.

[MN09] T. Mishima and H. Nakamura. Pangea : an eager database replication midd-
leware guaranteeing snapshot isolation without modification of database
servers. Proc. VLDB Endow., 2(1) :1066–1077, 2009.

[MSN] MSN. www.msn.com.
[Nap] Napster. http ://www.napster.com/.
[OV99] M. T. Özsu and Patrick Valduriez. Principles of Distributed Database Sys-

tems. Prentice Hall, 1999.
[PA04] C. Plattner and G. Alonso. Ganymed : scalable replication for transac-

tional web applications. In Middleware ’04 : Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, pages 155–
174, 2004.

[Pap05] C. Le Pape. Contrôle de qualité des données répliquées dans les clusters.
Thèse de doctorat, Université Pierre et Marie Curie, Paris 6, France, De-
cember 2005.

[Pau02] Pragyansmita Paul. Seti @ home project and its website. Crossroads,
8(3) :3–5, 2002.

[PCVO05] E. Pacitti, C. Coulon, Patrick Valduriez, and T. Ozsu. Preventive replication
in a database cluster. Distributed and Parallel Databases, 18(3) :223–251,
2005.

[PGS97] F. Pedone, R. Guerraoui, and A. Schiper. Transaction reordering in repli-
cated databases. In SRDS ’97 : Proceedings of the 16th Symposium on
Reliable Distributed Systems, page 175, 1997.

[PGS03] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine ap-
proach. Distrib. Parallel Databases, 14(1) :71–98, 2003.

[PMJPKA05] M. Patino-Martinez, R. Jimenez-Peres, B. Kemme, and G. Alonso.
MIDDLE-R, Consistent Database Replication at the Middleware Level.
ACM Transactions on Computer Systems, 28(4) :375–423, 2005.

[PMS99] E. Pacitti, P. Minet, and E. Simon. Fast Algorithms for Maintaining Replica
Consistency in Lazy Master Replicated Databases. Int. Conf. on Very Large
DataBases (VLDB), 1999.

138

Bibliographie

[proa] ApGrid project. http ://www.apgrid.org/.
[prob] China National Grid project. http ://www.cngrid.org/web/guest/home.
[Proc] Grid’5000 Project. www.grid5000.org.
[Prod] Respire Project. http ://www.respire.lip6.fr.
[proe] TeraGrid project. https ://www.teragrid.org/web/about/index.
[prof] The Folding@home project. www.folding.stanford.edu.
[Prog] The Hadoop Project. www.hadoop.apache.org.
[PRS07] S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for distributed

wikis on structured overlays. In Managing Virtualization of Networks and
Services, pages 256 – 267, 2007.

[PST+97] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers.
Flexible update propagation for weakly consistent replication. In SOSP
’97 : Proceedings of the sixteenth ACM symposium on Operating systems
principles, pages 288–301, 1997.

[Pu91] Calton Pu. Generalized transaction processing with epsilon-serializability.
In In Proceedings of Fourth International Workshop on High Performance
Transaction Systems, Asilomar, 1991.

[RBSS02] U. Rohm, K. Bohm, H. Sheck, and H. Schuldt. FAS - a Freshness-Sensitive
Coordination Middleware for OLAP Components. Int. Conf. on Very Large
DataBases (VLDB), 2002.

[RC96] K. Ramamritham and P. K. Chrysanthis. A taxonomy of correctness criteria
in database applications. The VLDB Journal, 5(1) :085–097, 1996.

[RD01a] A. Rowstron and P. Druschel. Pastry : Scalable, decentralized object loca-
tion and routing for large-scale peer-to-peer systems. In IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms (Middleware), pages
329–350, 2001.

[RD01b] A. Rowstron and P. Druschel. Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility. In 18th ACM Symposium
on Operating Systems Principles (SOSP’01), pages 188–201, 2001.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In SIGCOMM ’01 : Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for
computer communications, pages 161–172, 2001.

[Rui] Jean-Francois Ruiz. Web 2.0 - quelles-applications ?
[SALAS09] J. Sopena, L. Arantes, F. Legond-Aubry, and P. Sens. Building effec-

tive mutual exclusion services for grids. The Journal of Supercomputing,
49(1) :84–107, 2009.

[SAS06] J. Sopena, L. Arantes, and P. Sens. Performance evaluation of a fair fault-
tolerant mutual exclusion algorithm. In SRDS, pages 225–234, 2006.

139

Bibliographie

[Sch90] F. B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach : a tutorial. ACM Comput. Surv., 22(4) :299–319, 1990.

[Sch93] F.B. Schneider. Replication Management Using the State-Machine Ap-
proach, pages 169–197. Distributed Systems (2nd Ed.). ACM Press, 1993.

[SGMB01] L. Serafini, F. Giunchiglia, J. Mylopoulos, and P. A. Bernstein. The local
relational model : Model and proof theory, 2001.

[Sho07] R. Shoup. eBay Marketplace Architecture : Architectural Strategies, Pat-
terns and Forces. In InfoQueue Conf. on Enterprise Software Development,
2007.

[SJPPMK06] J. Salas, R. Jimenez-Peris, M. Patino-Martinez, and B. Kemme. Light-
weight reflection for middleware-based database replication. In SRDS ’06 :
Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems,
pages 377–390, 2006.

[Sky] Skype. www.skype.com.

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord : A Scalable Peer-to-peer Lookup Service for Internet Applications.
In ACM SIGCOMM, 2001.

[SNG08a] I. Sarr, H. Naacke, and S. Gançarski. Dtr : Distributed transaction routing
in a large scale network. In VECPAR, pages 521–531, 2008.

[SNG08b] I. Sarr, H. Naacke, and S. Gançarski. Routage décentralisé de transactions
avec gestion des pannes dans un réseau à large échelle. In BDA, 2008.

[SNG10a] I. Sarr, H. Naacke, and S. Gançarski. Routage décentralisé de transactions
avec gestion des pannes dans un réseau à large échelle. Ingénierie des
Systèmes d’Information, 15(1) :87–111, 2010.

[SNG10b] I. Sarr, H. Naacke, and S. Gançarski. Transpeer : Adaptive distributed
transaction monitoring for web2.0 applications. In SAC, pages 423–430,
2010.

[SNG10c] Idrissa Sarr, Hubert Naacke, and Stéphane Gançarski. Failure-tolerant tran-
saction routing at large scale. In DBKDA, pages 165–172, 2010.

[SOMP01] A. Sousa, R. Oliveira, F. Moura, and F. Pedone. Partial replication in the
database state machine. In NCA ’01 : Proceedings of the IEEE Internatio-
nal Symposium on Network Computing and Applications (NCA’01), page
298, 2001.

[SPMJPK07] D. Serrano, M. Patino-Martinez, R. Jimenez-Peris, and B. Kemme. Boos-
ting database replication scalability through partial replication and 1-copy-
snapshot-isolation. In PRDC ’07 : Proceedings of the 13th Pacific Rim In-
ternational Symposium on Dependable Computing, pages 290–297, 2007.

[SR96] A. Schiper and M. Raynal. From group communication to transactions in
distributed systems. Commun. ACM, 39(4) :84–87, 1996.

140

Bibliographie

[SSP10] N. Schiper, P. Sutra, and F. Pedone. P-store : Genuine partial replication
in wide area networks. Technical Report 2010/03, University of Lugano,
2010.

[TS99] A. S. Tanenbaum and M. VAN STEEN. Distributed Systems : Principles
and Paradigms. Prentice Hall, 1999.

[VATS04] V. Vlachos, S. Androutsellis-Theotokis, and D. Spinellis. Security applica-
tions of peer-to-peer networks. Comput. Netw., 45(2), 2004.

[VBB+03] R. VanRenesse, K. Birman, A. Bozdog, D. Dimitriu, M. Singh, and W. Vo-
gels. Heterogeneity-aware peer-to-peer multicast. In 17th International
Symposium on Distributed Computing (DISC2003), 2003.

[VBLM07] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating byzan-
tine faults in transaction processing systems using commit barrier schedu-
ling. In SOSP ’07 : Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, pages 59–72, 2007.

[VMR02] A. K. Vishal, V. Misra, and D. Rubenstein. Sos : Secure overlay services.
In In Proceedings of ACM SIGCOMM, pages 61–72, 2002.

[Vog09] W. Vogels. Eventually consistent. Commun. ACM, 52(1) :40–44, 2009.

[VRMCL09] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break
in the clouds : towards a cloud definition. SIGCOMM Comput. Commun.
Rev., 39(1) :50–55, 2009.

[VS05] D. Del Vecchio and S. H. Son. Flexible update management in peer-to-
peer database systems. In IDEAS ’05 : Proceedings of the 9th International
Database Engineering & Application Symposium, pages 435–444, 2005.

[WK05] S. Wu and B. Kemme. Postgres-r(si) : Combining replica control with
concurrency control based on snapshot isolation. In ICDE ’05 : Procee-
dings of the 21st International Conference on Data Engineering, pages
422–433, 2005.

[WLG+08] P. Watson, P. L., F. Gibson, P. Periorellis, and G. Pitsilis. Cloud computing
for e-science with carmen. In In 2nd Iberian Grid Infrastructure Confe-
rence Proceedings, pages 3–14, 2008.

[WYP97] Kun-Lung Wu, Philip S. Yu, and Calton Pu. Divergence control algorithms
for epsilon serializability. IEEE Trans. Knowl. Data Eng., 9(2) :262–274,
1997.

[Yah] Yahoo. www.yahoo.com.

[YV00] Haifeng Yu and Amin Vahdat. Efficient numerical error bounding for repli-
cated network services. In IN INT. CONF. ON VERY LARGE DATABASES
(VLDB), pages 123–133, 2000.

141

Bibliographie

142

Résumé

La réplication dans les bases de données a été largement étudiée, au cours des trois dernières
décennies. Elle vise à améliorer la disponibilité des données et à augmenter la performance d’accès
aux données. Un des défis majeurs de la réplication est de maintenir la cohérence mutuelle des
répliques, lorsque plusieurs d’entre elles sont mises à jour, simultanément, par des transactions.
Des solutions qui relèvent partiellement ce défi pour un nombre restreint de bases de données
reliées par un réseau fiable existent. Toutefois, ces solutions ne sont pas applicables à large échelle.
Par ailleurs, l’antinomie entre les besoins de performances et ceux de cohérence étant bien connue,
l’approche suivie dans cette thèse consiste à relâcher les besoins de cohérence afin d’améliorer la
performance d’accès aux données. Or, dans le contexte du web2.0, de nombreuses applications
tolèrent une cohérence relâchée et acceptent de lire des données qui ne sont pas nécessairement les
plus récentes ; cela ouvre la voie vers de nouvelles solutions offrant de meilleures performances
en termes de débit transactionnel, latence, disponibilité des données et passage à l’échelle. Par
exemple, il est possible de gérer des transactions de vente aux enchères (sur eBay ou Google
Adsense) sans nécessairement accéder à la dernière proposition de prix, puisque l’enchère est
sous pli cacheté. Dans cette thèse, nous considérons des applications transactionnelles déployées à
large échelle et dont les données sont hébergées dans une infrastructure très dynamique telle qu’un
système pair-à-pair. Nous cherchons à améliorer les performances des applications en contrôlant
la cohérence des données accédées, en équilibrant la charge des répliques et en tenant compte de
la disponibilité des ressources (SGBD, gestionnaire de transactions). Nous proposons une solution
intergicielle qui rend transparente la distribution et la duplication des ressources mais aussi leur
indisponibilité temporaire. Notre solution préserve l’autonomie des applications qui demeurent
inchangées, sans qu’aucune modification interne du SGBD ne soit nécessaire. Les applications
spécifient leurs exigences en termes de besoin de cohérence, puis l’intergiciel honore ces exigences
en contrôlant le routage des transactions et l’état des ressources. Nous définissons deux protocoles
pour maintenir la cohérence globale, en fonction de la connaissance des données manipulées par
les transactions. Le premier protocole ordonne les transactions à partir de la définition a priori
des données accédées. Le deuxième protocole détermine un ordre plus souple, en comparant les
données accédées, le plus tardivement possible, juste avant la validation des transactions. De plus,
nous avons complété notre solution en concevant un catalogue entièrement décentralisé et passant
à l’échelle pour gérer les métadonnées nécessaires au routage des transactions. Toutes les solutions
proposées tolèrent les pannes franches, fonctionnalité essentielle pour que les résultats de cette
thèse puissent être mis en œuvre à très large échelle. Finalement, nous avons implémenté nos
solutions pour les valider expérimentalement. Les tests de performances montrent que la gestion

143

Bibliographie

des métadonnées est efficace et améliore le débit transactionnel. Nous montrons également que la
redondance de l’intergiciel diminue le temps de réponse face aux situations de pannes.

Mots-clés : Bases de Données, Réplication asynchrone, Routage de transactions, disponibilité,
passage à l’échelle, cohérence mutuelle.

144

	Introduction
	Motivations
	Objectifs et Contexte de la thèse
	Problématiques
	Contributions
	Organisation du manuscrit

	Systèmes répartis à grande échelle
	Applications Web 2.0
	Notions de système distribués
	Les propriétés requises des systèmes distribués
	Transparence
	Passage à l'échelle
	Disponibilité
	Autonomie

	Etude de quelques systèmes distribués
	Systèmes P2P
	Les grilles informatiques ou grid
	Le cloud
	Exemple d'utilisation des systèmes distribués à large échelle

	Implémentation d'un système distribué avec un middleware
	Catégories de Middleware

	Modèle d'architecture pour la gestion des données à large échelle

	Gestion des transactions dans les bases de données répliquées
	Notions de transactions
	Bases de données réparties et répliquées
	Objectifs et principes des bases de données réparties
	Mécanismes de réplication

	Gestion des transactions dans les bases de données répliquées
	Gestion des transactions et passage à l'échelle en taille
	Gestion des transactions et disponibilité
	Gestion transparente des transactions avec transparence et autonomie

	Discussion
	Modèle de réplication pour les bases de données à large échelle
	Modèle de middleware pour les bases de données distribuées et répliquées

	Architecture d'un Système de Routage des Transactions
	Modèle et concepts
	Modèle de transactions et de données
	Ordre de précédence des transactions
	Structuration des métadonnées

	Définition générale des composants de l'architecture
	Impact des besoins applicatifs sur l'architecture
	Modèle de communication
	Architecture détaillée

	Description de la structure des métadonnées
	Description et structure des métadonnées
	Implémentation du catalogue

	Conclusion

	Routage des transactions
	Routage des transactions
	Définition du graphe de rafraîchissement et du plan d'exécution
	Algorithme générique de routage
	Algorithmes de routage pessimiste
	Algorithme de routage hybride
	Discussion

	Gestion des métadonnées
	Gestion des métadonnées avec verrouillage
	Gestion des métadonnées sans verrouillage
	Etude comparative des deux méthodes de gestion du catalogue

	Conclusion

	Tolérance à la dynamicité des noeuds
	Gestion des déconnexion prévue
	Gestion des pannes
	Modèle et détection de pannes
	Tolérance aux pannes
	Majoration du temps de réponse

	Gestion contrôlée de la disponibilité
	Conclusion

	Validation
	Evaluation de la gestion du catalogue
	Surcharge de la gestion du catalogue dans Dtr
	Surcharge de la gestion du catalogue dans TransPeer
	Analyse de la surcharge du catalogue

	Evaluation des performances globales du routage
	Impact du relâchement de la fraîcheur
	Apport du routage décentralisé
	Passage à l'échelle
	Conclusion sur les performance du routage

	Evaluation des performances de la tolérance aux pannes
	Configuration du temporisateur
	Surcharge de la gestion des pannes
	Performances de la gestion des pannes
	Conclusion sur l'évaluation de la gestion des pannes

	Conclusion

	Conclusion et Perspectives
	Synthèse
	Perspectives

	Résumé

